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Hybrid resource provisioning for cloud workflows
with malleable and rigid tasks

Long Chen, Xiaoping Li, Senior Member, IEEE, Yucheng Guo, Rubén Ruiz

Abstract—In cloud computing, reserved and on-demand in-
stances are generally provided by service providers. Hybridiza-
tion of the two alternatives can considerably save costs when
renting resources from the cloud. However, it is a big challenge
to determine the appropriate amount of reserved and on-demand
resources in terms of users’ requirements. In this paper, the
workflow scheduling problem with both reserved and on-demand
instances is considered. The objective is to minimize the total
rental cost under deadline constrains. The considered problem
is mathematically modeled. A multiple sequence-based earliest
finish time method is proposed to construct schedules for the
workflows. Four different rules are used to generate initial task
allocation sequences. Types and quantities of resources are deter-
mined by a free time block-based schedule construction mecha-
nism. New sequences are generated by a variable neighborhood
search method. Experimental and statistical analyses and results
demonstrate that the proposed algorithm algorithm generates
considerable cost savings when compared to the algorithms with
only on-demand or reserved instances.

Index Terms—Workflow scheduling, Cloud computing, Hybrid
resource provisioning, Malleable task.

I. INTRODUCTION

COMPLEX workflow applications are widespread in sci-
entific and business analysis, e.g., astronomy (Montage,

LIGO), earthquake detection (CyberShake) and genome se-
quencing (Epigeomics, SIPHT) [1]. They usually are executed
on distributed or cloud systems, such as Pegasus [2], Askalon
[3], Google MapReduce [4] or Amazon EC2 [5]. High quality
computing and storage resources (networks, servers, storage,
applications and services, etc.) are provided by Cloud Service
Providers (CSPs) for workflow applications [6]. Generally,
there are two types of tasks in workflow applications: rigid and
malleable. Rigid tasks are executed only on given number of
VMs all of the same type. A malleable task has multiple execu-
tion modes which can be executed in parallel on several VMs.
Take the scientific workflow application Montage for example,
as shown in Figure 1, mProjectPP, mDiffFit and mBcakground
are malleable tasks while tasks on the other nodes are rigid.
Though malleable tasks have been studied in many existing
works [7][8][9], little attention has been paid to rigid tasks.
However, rigid tasks are most of the time a bottleneck for the
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whole workflow application. In other words, both malleable
and rigid tasks are crucial for the scheduling performance of
workflow applications. In addition, users rent resources from
CSPs without acquisition and maintenance costs. CSPs always
provide two types of resource renting alternatives: reserved
and on-demand [10]. Users can utilize reserved resources with
one-time payment for a relatively long time. The average
cost is much lower as significant discounts can be received
for long time renting. Since resource requirements cannot be
precisely predicted, short-term resource renting is necessary
for peak requirements. The average unit cost of the on-demand
instances is usually higher than that of the reserved one. Most
existing studies mainly focus on single resource provisioning
for workflow applications: reserved alternative [11][12] or on-
demand alternative [8][13].

Data Aggregation

Data Partitioning

Data Aggregation

Pipeline

mProjectPP mDiffFit mConcatFit mBgModel

mBackgroud mImgTbl mAdd mShrink

mJPEG

Fig. 1. An example for the Montage application with rigid and malleable
tasks.

In this paper, we consider the problem of scheduling tasks
of a workflow application to VMs in cloud computing to
minimize the total rental cost. Both malleable and rigid tasks
are considered. VMs are rented by the on-demand or reserved
alternatives. Each workflow application is constrained by a
deadline given in advance. Hybrid task types and different
resource renting alternatives make the complex precedence
constrained workflow scheduling problem difficult to solve.
The main challenges are: (i) Multi-mode malleable tasks
make the determination of their execution times complex. The
critical path of the workflow cannot be verified in advance and
it is difficult to find the optimum solution for the considered
problem. (ii) The complex workflow structure and uncertain
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critical path make it hard to estimate the amount of reserved
and on-demand resources to which the objective (the total
rental cost) is closely related. (iii) Due to the deadline of
the workflow application and unpredicted processing times of
malleable tasks, it is complicated to determine the amount of
rented on-demand resources in each time window.

We propose a multiple sequence-based earliest finish time
method (MEFT) for the problem under study. Compared to
our previous work [14], a new resource and sequence initial-
ization method, schedule construction method and schedule
improvement method are proposed. The proposed MEFT has
three main benefits. First, MEFT generates multiple task
allocation sequences for workflow applications with malleable
and rigid tasks. Second, the free time block-based schedule
construction method determines the amount and renting al-
ternatives of virtual machines and allocates each task to a
suitable virtual machine. Third, the backward and forward
movement based improvement method balances the usage of
resource and reduces the amount of on-demand resources.
Parameters and components of the proposed algorithm are
calibrated and analyzed over a number of instances using the
Design of Experiments approach and a multi-factor analysis of
variance statistical technique. The proposal is compared with
existing state-of-the-art algorithms for related problems. Thor-
ough experiments demonstrate the superiority of the proposed
approach.

The rest of the paper is organized as follows. Section II
describes the existing literature. The definition and the math-
ematical model for the considered problem are given in
Section III. In Section IV, the proposed MEFT algorithm
is described. Computational results are shown in Section V
followed by conclusions and future avenues of research in
Section VI.

II. RELATED WORKS

Due to its relevance, the problem of scheduling workflow
applications has been a hot topic for research over recent
years. In the traditional distributed computation field (utility
Grids), resources are encapsulated as services and services are
not shareable between workflow tasks. There are two main
objectives: cost optimization under deadline constraints and
execution time optimization under budget constraints [15].
Common methods for time optimization include dynamic
programming [16], branch and bound [17], decomposition-
based methods [18], list scheduling [19], critical path based
allocation [20], greedy randomized adaptive search [21] and
ant colony optimization approach [22]. The methods for cost
optimization include the deadline-MDP algorithm [23], DET
(Deadline Early Tree) algorithm [24], PCP (Partial Critical
Paths) algorithm [7] and the CPI (Critical Path-based Iterative)
heuristic [25]. These are just samples of the most relevant
works.

In cloud environments, resources are assumed to be unlim-
ited and continuously available. Huang et al. [26] proposed
a mechanism to determine the minimum set of resources to
minimize the makespan of a workflow. The set size relied on
the scale of the DAG, communication costs between tasks,

computation costs and degrees of parallelism and uniformity
of the tasks, etc. Though the mechanism obtained good results
for the given sample workflows, efficiency was not guaranteed
for actual workflows with complex parallel degrees and unifor-
mities. Byun et al. [11] proposed a Balanced Time Scheduling
(BTS) algorithm to allocate homogeneous resources to a
workflow within a user-specified finish time according to the
reserved strategy. Allocating heterogeneous resources to work-
flow applications was not considered. In a follow up work [27],
the Partitioned Balanced Time Scheduling (PBTS) algorithm
was presented for homogeneous resources in which resources
are provided with an on-demand option. PBTS considers
time partitions in the algorithm and minimizes the amount of
resources for each time partition. Abrishami et al. [7] proposed
a QoS-based Partial Critical Paths (PCP) workflow scheduling
algorithm on utility Grids, and the PCP algorithm was modi-
fied for the on-demand cases [8] in a cloud environment. The
two algorithms IC-PCP and IC-PCPD2 are proposed. Unlike
utility grids they contain on demand on-demand resource
provisioning, homogeneous networks, and the pay-as-you-go
pricing model. Followed by Cai et al. [9], the workflow
scheduling problem with heterogeneous resources and on-
demand resource provisioning was considered. Two heuristics
CPIS and LHCM were proposed to solve the two sub-problems
which were referred to as service mapping and task tabling.
However, these papers considered scheduling workflows with
only on-demand or reserved resources. Scheduling algorithms
including both on-demand and reserved resources were not
considered.

There are a few studies on both the reserved and on-demand
resource provisioning strategies. Chaisiri et al. [13] proposed
an optimal cloud resource provisioning (OCRP) algorithm to
get a balance between the reserved and the on-demand. A
stochastic programming model was formulated. The demand
distribution of resources at each decision stage is supposed to
be known in advance. Polynomial heuristics were proposed
by Khatua et al. [28] for the hybrid resource provisioning
problem. Van den Bossche et al. [29] presented a purchase
management algorithm to automate procurement decisions on
reserved contracts in the contexts of providers. However, these
studies actually focused on independent task scheduling, not
on DAG workflows.

To the best of our knowledge, there is no existing work con-
sidering both malleable tasks and hybrid resource provisioning
for workflow scheduling subject to deadlines. However, work-
flow applications with malleable and rigid tasks are commonly
exist in scientific computing. Hybrid resource provisioning can
significantly reduce the total renting cost for workflow applica-
tions. Therefore, this paper considers the workflow scheduling
problem with hybrid resource provisioning methods.

III. PROBLEM DESCRIPTION AND FORMULATION

A. Problem Description

The task-on-node Directed Acyclic Graph (DAG) is com-
monly used to represent a workflow application in which
tasks are denoted by nodes and dependencies between tasks
are represented by edges. Dependencies between tasks are
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Fig. 2. Hybrid resource provisioning for the considered cloud workflow.

represented by edges. Each task can be processed on one
or several virtual machines. We only consider homogeneous
virtual machines in this paper. Physical machines with differ-
ent configurations are virtualized to the same virtual machine
type with identical CPU cores. Resources are available for all
tasks, i.e., each task can be processed on any virtual machine.
Resources are used by other tasks after the current task finishes
during the resource rental period.

Figure 2 shows the proposed workflow scheduling frame-
work. Users send their requests to CSPs. These requests are
represented by workflow applications. Parameters of work-
flows (deadlines, tasks and runtimes) are distributed to the
workflow scheduling module. The module generates schedul-
ing plans according to these parameters. Each scheduling plan
includes two parts: the workflow schedule and the resource
rental plan. The workflow schedule contains the start time of
each task and the resource rental plan contains the quantities
and the resource renting alternatives. The resource rental plan
is sent to the the resource management module. The resource
management module rents proper on-demand and reserved
resources for different tasks based on the rental plan. The
workflow schedule and the rented resources are than sent back
to the users.

B. Mathematical Model

Let the workflow be G(V,E). V = {v0, . . . , vn} and
E = {(vi, vj)|vi ∈ V, vj ∈ V, i < j} define the set of
tasks and edges in G. The two dummy nodes v0 and vn
represent the start and the end of the workflow. Each node
vi can be processed on several Virtual Machines (VM). Let
the processing time of task vi on a single virtual machine be
Pi. We use the set M and R to denote malleable and rigid
tasks, i.e., V = M ∪ R.

If vi ∈M, then it is a malleable task and processed on mi

virtual machines, the final processing time pi is denoted by
pi = dPi/mie, which is determined by the currently available
virtual machines during the scheduling process. However,
for a rigid task vi (vi ∈ R), it can only be processed on
a fixed number of virtual machines. The processing time
pi = dPi/mie is unchanged during the scheduling process.
pi is supposed to be integer in this paper since resources are
commonly charged for per hour in cloud environments. Let si
and fi be the start and finish times of task vi. The deadline
of the entire workflow is given by D.

During the scheduling process, the total number of rented
resources is H . Let Hr be the amount of reserved resources
with a unit cost of Cr. Once a reserved resource is used, it
will not be released until the whole workflow application is
finished (the dummy end task finishes at time fn). Let H0

t

be the amount of on-demand resources at time t with a unit
cost of C0. The on-demand resources will be released once
all tasks executed on the resource are finished. The discount
is denoted as the ratio of Cr to Co, i.e., discount = Cr/C0.
Then, the considered problem can be modeled as follows. The
objective is

min(fn ×Hr × Cr +

fn∑
t=0

H0
t × C0) (1)

Two sets of binary variables are defined. Binary variables
xiht in Equation (2) take value 1 if and only if task vi is
executed on VM h at time t and it is 0 otherwise. Binary
variables yh in Equation (3) take value 1 if and only if the
VM h is an on-demand instance and it is 0 otherwise.

xiht =


1 if vi is starting on VM h at time t,
∀i ∈ {0, . . . , n}, ∀h ∈ {1, . . . ,H},
∀t ∈ {0, . . . , D}

0 otherwise

(2)

yh =


1 if h is an on-demand virtual machine,
∀h ∈ {1, . . . ,H}

0 if h is a reserved virtual machine,
∀h ∈ {1, . . . ,H}

(3)

subject to the following constraints:

mi =
H∑

h=1

D∑
t=0

xiht, ∀vi ∈M (4)

pi = dPi/mie, ∀i ∈ {0, . . . , n} (5)

si =
D∑
t=0

1

mi

H∑
h=1

t× xiht, ∀i ∈ {0, . . . , n} (6)

fi = si + pi, ∀i ∈ {0, . . . , n} (7)
si + pi 6 sj , ∀(i, j) ∈ E (8)

fn 6 D (9)
D∑
t=0

xiht = 1, ∀i ∈ {0, . . . , n}, ∀h ∈ {1, . . . ,H} (10)
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H0
ti =

H∑
h=1

n∑
i=0

ti∑
t=ti−pi+1

xiht × yh, ∀ti ∈ {0, . . . , D} (11)

Hr =
H∑

h=1

(1− yh) (12)

The number of VMs for malleable tasks is controlled by
Equation (4). Equations (5), (6) and (7) calculate the process-
ing, start and finish times of task vi. Workflow constraints are
specified in constraint set (8) and (9). Equation (10) ensures
that each task can only start at one time, considering that the
execution of a task is non-preemptive. Finally, Equations (11)
and (12) give the amount of reserved and on-demand resources
in the schedule.

C. An Example

Take the workflow in Figure 2 as an example. Parameters
of the workflow are given in Table I. There are seven tasks
denoted as vi (i = 1, . . . , 7) and m denotes the amount
of resources needed. The runtime (the processing time on
a single virtual machine) of each task is 3, 1, 2, 2, 2, 2, 2
respectively. v3 and v4 are malleable tasks with changeable
amounts of resources and variable processing times, e.g., v3
can be executed on 1 virtual machine with a processing time of
2 or on 2 virtual machines with a processing time of 1. The
execution mode of v3 is determined by its runtime and the
virtual machines currently available. The remaining tasks are
rigid tasks requiring fixed resources in which v5 and v6 require
two virtual machines while the other rigid tasks require only
one virtual machine. v5 is executed on 2 virtual machines with
a processing time of 1, which cannot be changed. The actual
processing time of vi is calculated by pi = dRuntime/me.
Actual processing times of the tasks in the example are 3, 1,
2, 2, 1, 1, 2 respectively. discount denotes the ratio of the
average unit cost of reserved resources to that of on-demand
ones. Let the deadline of the example workflow be 9 and the
discount be 0.8.

TABLE I
PARAMETERS OF THE WORKFLOW EXAMPLE.

Task Runtime Type m

1 3 Rigid 1
2 1 Rigid 1
3 2 Malleable 1
4 2 Malleable 1
5 2 Rigid 2
6 2 Rigid 2
7 2 Rigid 1

Figure 3 shows a schedule of the above example where
each task finishes as early as possible. Tasks v1, v2 and v3
start at the same time in parallel. Two virtual machines are
allocated to malleable tasks v3 and v4, and their processing
times become 1. If the virtual machines are all rented using the
reserved method, the total renting cost is 4× 7× 0.8 = 22.4.
Since the resource utilization rate of virtual machine 1 is high,
if only virtual machine 1 is reserved, the total renting cost is
6 × 0.8 + 4 + 3 + 1 = 12.8. If both virtual machine 1 and

virtual machine 2 are reserved, the renting cost is 6 × 0.8 +
6 × 0.8 + 3 + 1 = 13.6. As can be seen, the differences in
costs are highly significant.

1 2 3 4 5 6 7 8

1

2

3

Time

1

2

4 5 6

7

VM

3

Fig. 3. A schedule of the example with tasks finishing as early as possible.

Cloud workflows can be scheduled more effectively by the
hybrid resource provisioning strategy, i.e., reserved resources
can save costs if high utilization is achieved, while on-demand
resources can improve resource utilization during peak demand
periods. For example, Figure 4 shows the optimal schedule of
Figure 4. v3 is allocated to one virtual machine and v4 to two
virtual machines. Virtual machines 1 and 2 are rented using
the reserved strategy while virtual machine 3 is rented using
the on-demand alternative only in time slot 7. The total renting
cost is 7× 0.8 + 7× 0.8 + 1 = 12.2.

1 2 3 4 5 6 7 8

1

2

3

Time

1

3 2

4 5

6

7

VM

Fig. 4. The optimal schedule of the example with hybrid resources renting.

IV. MULTIPLE SEQUENCE-BASED EARLIEST FINISH TIME
HEURISTIC

As the considered problem is NP-hard, exact algorithms
are viable only in small instances. Rule-based heuristics are
proposed for the considered workflow scheduling problems.
The proposed multiple sequence-based earliest finish time
method (MEFT) is composed of five components: resource
and sequence initialization (RSI), schedule construction (SC),
schedule improvement (SI), schedule reconstruction (SR) and
multiple sequence generation (MSG). In the RSI, the amount
of reserved resources is initialized according to some lower
and upper bounds. The initial task allocation sequence is deter-
mined according to the priorities of each task. The procedure
SC schedules tasks sequentially based on the task allocation
sequence. After obtaining a schedule, malleable tasks are
readjusted to improve the schedule by using the SI procedure.
In the schedule reconstruction (SR) phase, some tasks with
on-demand resources are randomly selected and changed to
reserved resources. Finally, the variable neighborhood search
method is used to improve the task allocation sequences in
the MSG step. An outline of the MEFT procedure is shown
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in Algorithm 1. All these steps and components are detailed
in the following sections.

Algorithm 1: multiple sequence-based earliest finish time
method (MEFT)

1 begin
2 Resource and sequence initialization (RSI);
3 repeat
4 Schedule construction (SC);
5 Schedule improvement (SI);
6 Schedule reconstruction (SR);
7 multiple sequences generation (MSG);
8 until (Termination criterion is satisfied);
9 return;

A. Resource and sequence initialization (RSI)

There are two initialization phases in RSI: reserved resource
initialization (RRI) and task allocation sequence initialization
(TASI). The reserved resource initialization phase determines
the initial amount of reserved resources while the task alloca-
tion sequence gives the initial order of tasks.

1) Reserved resource initialization (RRI): The reserved
resource initialization process avoids unnecessary attempts at
finding a suitable amount of reserved resources during the
schedule construction process. The upper and lower bounds
of the reserved resources are determined first. To calculate the
lower bound, the precedence constraints between tasks are not
considered and all the resources are assumed to be fully used.
Only the deadline constraints are considered. The minimum
amount of resources required to accomplish all the tasks is
denoted as the lower bound, which is calculated as follows:

Hr
min = d

∑
vi∈V

Pi/De (13)

According to Formula (1), if a virtual machine is reserved, the
renting cost is Cr×fn. If a virtual machine is on-demand, the
renting cost is

∑fn
t=0H

0
t × C0 (Ht = 1 if this on-demand

virtual machine is used at time t, otherwise is Ht = 0).
Therefore, if the utilization rate ((

∑fn
t=0H

0
t × C0)/(Cr×fn))

is less than the discount (C0/Cr), it is appropriate to use
the on-demand strategy to rent a resource. Therefore, if the
resource utilization equals discount, the amount of resources
required is denoted as the upper bound which is calculated as
follows:

Hr
max = d

∑
vi∈V

Pi/D/discounte (14)

To determine the initial Hr, the reserved resource initialization
process starts from Hr = Hr

min. The feasibility of the current
Hr is checked by allocating each malleable task to the maxi-
mum amount of resources, i.e., all tasks are assumed to finish
as early as possible. For all vi ∈ M, the maximum amount
of resources mi considering and not considering discount are
mi = Hr/(1 − discount) and mi = Hr respectively. The
earliest and latest start times esti and lsti of vi are calculated
with the critical path based dynamic programming method

proposed by [30]. If estn > D, the current Hr is unfeasible
and no feasible schedule can be found. Hr is increased by one
and the above process is iterated until a feasible schedule is
obtained or Hr = Hr

max. Algorithm 2 shows the details of the
reserved resource initialization method. The time complexity
for finding a suitable Hr in step 4 is O(n), the time complexity
to calculate estn in step 7 is O(n2), so the time complexity
of RSI is O(n3) to obtain the initial amount of reserved
resources.

Algorithm 2: Reservation resource initialization (RSI)

1 begin
2 Hr

min ← d
∑

vi∈V Pi/De;
3 Hr

max ← d
∑

vi∈V Pi/D discounte;
4 for (Hr = Hr

min;Hr ≤ Hr
max;Hr ← Hr + 1) do

5 for each vi ∈ V do
6 if vi ∈M then
7 pi ← dPi/(H

r/(1− discount))e;

8 Calculate estn;
9 if estn > D then

10 continue;

11 return Hr;

2) Task allocation sequence initialization (TASI): After
obtaining the amount of reserved resources Hr, tasks are
sequenced by their priorities, which are determined by the
upward-rank values [19]. The upward-rank value based pri-
ority considers both the structure of the workflow and the
characteristics of the tasks. Suppose the upward-rank value
of the dummy task vn is ranku(vn) = 0. The upward-
rank values are recursively calculated by ranku(vi) = Pi +
maxvj∈succ(vi){ranku(vj)} in which succ(vi) denotes the
successors of a task vi. If the processing time of a task is
longer, it has a higher priority. Therefore, tasks on the critical
path will get a higher priority and will be processed first.
The task allocation sequence is initialized by sorting tasks
according to their priorities.

Besides the maximum upward-rank value rule, three other
different task sequencing rules are proposed:

1) minimal processing time: In this rule, only the charac-
teristics of the task are considered. The task’s priorities
are determined by the processing time and the minimal
processing time has the highest priority.

2) maximum number of successors: In this rule, only the
structures of the workflow are considered. The priorities
of the tasks are determined by the number of successors.

3) minimal slack time: In this rule, both the structure of
the workflow and the characteristics of the tasks are
considered. The slack time of a task vi is denoted as
sli = lsti − esti. The task with the smallest slack time
has the highest priority.

B. Schedule construction (SC)

In the SC, the free time block-based schedule construction
procedure is used to schedule tasks. In traditional workflow
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scheduling, the task sequence is a topological task order,
i.e., all precedence constraints are met in the task allocation
sequence. If task vi is a predecessor of vj , vi is placed in
front of vj in the task allocation sequence. A task can only be
scheduled after all of its predecessors have been scheduled. In
the free time block-based schedule construction strategy, tasks
are inserted into the available free time blocks. The earliest
start time is determined by the earliest available free time
blocks, which are updated at each step of the task scheduling
process.

Matrix R = (rij)D×H denotes the resources. Rows and
columns in matrix R represent time slots and virtual ma-
chines respectively. For example, rij = 1 means the virtual
machine j at time slot i is unavailable. Therefore, if a task
is processed, the elements in the corresponding sub-matrix
are set to 1. For example, if the elements in the sub-matrix
R[i

′
, . . . , i

′′
; j

′
, . . . , j

′′
] are all 1, it means that the task is

executed on virtual machine j
′

to j
′′

from time slot i
′

to i
′′

. If
all the elements in a sub-matrix are 0, we call this sub-matrix a
free time block. Free time blocks are continuous time periods
in which a number of virtual machines are available. For a
task, the free time block is between its earliest start time and
latest finish time.

Tasks are allocated to free time blocks as early as possible.
First, all the free time blocks are sorted according to their
start times. For a rigid task vi ∈ R, the first free time block is
checked. There is no sufficient time for vi if the duration of
the block is less than the task processing time pi. The current
time block is unavailable and the next time block is checked. If
there are no sufficient resources for vi, we consider renting the
least amount of on-demand resources. If the current free time
block is not allocated to vi, we calculate the wasted workload
of the current task. Let the workload of vi be wi and the wasted
workload of the free time block be Φ. If Φ×discount > (wi−
Φ), some on-demand resources are rented. vi can be allocated
to the current free time block. For a malleable task vi ∈ M,
the allocation process is much more complex as the amount of
resources can change. If the current time block is available for
vi, vi is mapped to the maximum amount of virtual machines
in order to finish as early as possible. Otherwise, we rent mi =
Hr/(1 − discount) amount of on-demand resources. After
a task is scheduled, the earliest start times of its immediate
successors are updated. Details of the SC procurement are
described in Algorithm 3. The time complexity of SC is O(n3)
to construct the complete schedule for the problem.

C. Schedule improvement (SI)

After the schedule construction process, the following time
periods are checked. If some of them are still available, SI is
conducted in order to reduce the number of free time blocks.
SI includes two procedures: backward and forward movement
to decrease free time blocks and reduction in the amount of
resources for malleable tasks.

The two moving procedures are carried out sequentially.
Let the current schedule be π. First, all tasks are moved
backwards according to the non-increasing order of the finish
times of π. The tasks are kept on the priority list LB . The

Algorithm 3: Schedule construction (SC)

1 Input: the resource matrix (rij)D×H , the amount of
reserved resources Hr, the task allocation sequence s̄.

2 Output: the current schedule π.
3 begin
4 idleList← ∅;
5 for (i = estk;i < tlast;i← i+ 1) do
6 for (j = 0;j < H;j ← j + 1) do
7 if (rij = 0) then
8 Check all free time blocks starting from

rij ;
9 Add the free time block to idleList;

10 Combine time slots after tlast to create a free time
block;

11 Add the free time block to idleList;
12 repeat
13 vi ← the first task of s̄;
14 if vi ∈ R then
15 for (j = 0;j < |idleList|;j ← j + 1) do
16 if the time of idleListj is not available

for vi then
17 continue;

18 if the resources of idleListj are not
available for vi then

19 Φ← the workload idleListj , wi ←
the workload of vi ;

20 if Φ× discount > wi − Φ then
21 Rent new on-demand instances for

vi;
22 Allocate vi to idleListj ;

23 else
24 continue;

25 if idleListj is available for vi then
26 Allocate vi to idleListj ;

27 if vi ∈M then
28 for (j = 0;j < |idleList|;j ← j + 1) do
29 if idleListj is available for vi then
30 Allocate vi to the maximum amount

resources of idleListj ;

31 if idleListj is not available for vi then
32 mi ← Hr/(1− discount);
33 Rent mi amount of on-demand

instances for vi;
34 Allocate vi to idleListj ;

35 Update idleList;
36 Remove the task of s̄;
37 until (s̄ = ∅);
38 return π;

head task L[1]
B (the current task with the largest finish time),

si and fi are calculated by Equations (6) and (7)). L[1]
B is
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denoted as v[1] and removed from LB . All successors of v[1]
have been calculated before v[1] and precedence constraints
are not checked. The start time t of v[1] is decreased one by
one from lst[1] to s[1]. If task v[1] is a malleable task, the
amount of its on-demand resources is also decreased one by
one. The corresponding resource rental costs are calculated for
all possible schedules. The start time and the resource amount
with the minimum costs of v[1] are updated. v[1] is removed
from LB . The procedure is repeated until LB is empty. Then
all tasks are moved forward according to the non-decreasing
order of start times in the current schedule. The decreasing
strategy of start times is similar to the increasing one in the
backward movement process. The new start time t is increased
one by one from s[1] to est[1]. Details of the SI procurement
are described in Algorithm 4 of which the time complexity is
O(n4).

D. Multiple sequence generation (MSG)

Generally, the task allocation sequence greatly influences
the performance of SC. SC adopts upward-rank values to
obtain the task allocation sequence, which does not always
result in the best possible schedule. To obtain more task
allocation sequences, the variable neighborhood search (VNS)
method is proposed. We use the insertion operator to change
the sequences, e.g., the operator I(a, b), (1 < a < n, 1 <
b < n, a 6= b, b − 1) removes the task in position a and
inserts it into position b in the sequence. Let the original
task allocation sequence be s̄ and the new one be s̄′ . The r-
insertion neighborhood Nr(s̄) is a set in which each element
means performing the insertion operator r times on s̄. In this
paper, the maximum number of insertions are set to K, i.e.,
1 ≤ r ≤ K. This implies neighborhoods of increasing size
and therefore the variable neighborhood search schema.

Based on the initial sequence s obtained by SC, λ new
sequences are generated for each neighborhood Nr(s̄). Once
the new sequence is obtained, SC is invoked again to construct
a new schedule. The cost of the new schedule is calculated and
compared with the previous one. The new schedule is kept if
the cost improves. After the K-insertion, if no better schedule
can be found, the algorithm stops. If an improvement is found,
the search starts from the first neighborhood. Algorithm 5
shows the details of the VNS process. The time complexity is
O(Kλn3) to obtain a new task allocation sequence.

E. Schedule reconstruction (SR)

After VNS, the schedule is reconstructed by schedule recon-
struction (SR). SR destroys the schedule by allocating some
tasks to cheaper reserved resources. Tasks with on-demand
resources are selected and reallocated with probability ω to the
reserved ones. The current schedule is replaced by the new one
if a lower cost is obtained and the SR procedure stops. The SR
procedure gets a higher probability to obtain better solutions
by increasing the diversification of the search process. Details
about the SR algorithm are shown in Algorithm 6. The time
complexity is O(Hn3) to reconstruct the current schedule.

Algorithm 4: Schedule improvement (SI)

1 begin
2 LB ← Sort tasks in π by non-increasing order of

finish times, πc ← π;
3 repeat
4 v[1] ← L

[1]
B , π′ ← π, s′[1] ← lst[1], t′ ← s[1];

5 repeat
6 if v[1] ∈M then
7 h← on-demand resources of v[1];
8 repeat
9 Calculate estn;

10 if estn > D then
11 break;

12 h← h− 1;
13 until h = 0;

14 π
′ ← Call SC;

15 Calculate the cost C(π
′
) using Formula 1;

16 if C(π′) ≤ C(π) then
17 C(π)← C(π′), t′ ← s′[1];

18 s′[1] ← s′[1] − 1;
19 until s′[1] < s[1];

20 s[1] ← t′, Remove L[1]
B from LB ;

21 until Lenth(LB) = 0;
22 if C(πc) < C(π) then
23 C(πc)← C(π), πc ← π;
24 else
25 Go to step 50;

26 LF ← Sort tasks by non-decreasing order of start
times;

27 repeat
28 v[1] ← L

[1]
F , π′ ← π, s′[1] ← est[1], t′ ← s[1];

29 repeat
30 if v[1] ∈M then
31 h← on-demand resources of v[1];
32 repeat
33 Calculate estn;
34 if estn > D then
35 break;

36 h← h− 1;
37 until h = 0;

38 π
′ ← Call SC;

39 Calculate the cost C(π
′
) using Formula 1;

40 if C(π′) ≤ C(π) then
41 C(π)← C(π′), t′ ← s′[1];

42 s′[1] ← s′[1] + 1;
43 until s′[1] > s[1];

44 s[1] ← t′, Remove L[1]
F from LF ;

45 until Lenth(LF ) = 0;
46 if C(πc) < C(π) then
47 C(πc)← C(π), πc ← π, Go to Step 2;

48 if C(πc) < C(πbest) then
49 πbest ← πc, C(πbest)← C(πc);

50 return πbest;
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Algorithm 5: Multiple sequences generation (MSG)

1 Input: task sequence s̄.
2 Output: task sequence s̄′ .
3 begin
4 r ← 0;
5 repeat
6 r ← r + 1;
7 for (i = 0;i < λ;i← i+ 1) do
8 Randomly select s̄′ from Nr(s̄);
9 π

′ ← Call schedule construction method
(SC);

10 Calculate the cost C(π
′
) using Formula 1;

11 if (C(s̄′) < C(s̄)) then
12 s̄← s̄′ ;
13 r ← 0;
14 break;

15 until r 6 K;
16 return s̄′ ;

Algorithm 6: Schedule resconstruction (SR)

1 Input: the current schedule π, the reconstruction
probability ω.

2 Output: the new schedule π.
3 begin
4 for (h = 1;h ≤ H;h← h+ 1) do
5 if (yh = 0) then
6 Randomly generate a number ω

′
, ω

′ ∈ [0, 1];
7 if (ω

′ ≤ ω) then
8 yh = 1;
9 π

′ ← Call schedule construction method
(SC);

10 Calculate the cost C(π
′
) using Formula 1;

11 if (C(π
′
) < C(π)) then

12 π ← π
′
;

13 break;

14 return π;

F. Illustration example

Figure 5 is taken as an example to illustrate the process of
the proposed MEFT. The first step is to determine the amount
of reserved resources. According to Equations (13) and (14),
Hr

min = d14/9e = 2 and Hr
max = d14/9/0.8e = 2. MEFT

starts with the lower bound (Hr = 2). The priorities of the
tasks are calculated using the TASI procedure and the result is
(9, 7, 8, 6, 4, 2, 2) which results in the task allocation sequence
(1, 3, 2, 4, 5, 6, 7) for this example. v1 is allocated first. Since
there is only one whole free time block, v1 is allocated to
virtual machine 1 during time periods 1, 2, 3. v3 is allocated
next. The earliest free time block is time periods 1, 2, 3 on
virtual machine 2. v3 and the next task v2 are allocated to
time periods 1, 2 and time period 3 on virtual machine 2

respectively. Since v4 is a malleable task, it can be allocated
to multiple virtual machines at the same time. The time slot
4 on virtual machines 1 and 2 is used for the execution of v4.
Task v5, v6, v7 are allocated in the same way. Figure 5 shows
the details of the allocation process. The SR operation is not
invoked since no on-demand resources are used.

1 2 3 4 5 6 7 8

1

2

3

time

1

3 2
4 5 6

7

1 2 3 4 5 6 7 8

1

2

3

time

1

3

1 2 3 4 5 6 7 8

1

2

3

VM

time

1

VM

VM

Fig. 5. Example for task scheduling using MEFT.

After several iterations of VNS, a new sequence (1, 3, 2,
4, 5, 7, 6) is found. Tasks are reallocated according to this
sequence. The result is shown in Figure 6. While allocating
v6, time slots 6 and 7 on virtual machine 2 are free which
forms a new free time block.
v6 is a rigid task requiring 2 virtual machines and the free

time block meets the demands of v6. If the free time block
is not used, V = 2 workload is wasted. The workload of
v6 is also wi = 2. Since V ∗ discount > wi − V , the on-
demand resource (new virtual machine 3) is rented for v6. v6
is processed on virtual machines 2 and 3 at the same time.

1 2 3 4 5 6 7 8

1

2

3

Time

1

3 2

4 5

6

7

Long term reserved 

resources

Short term on-

demand resources

VM

Fig. 6. The schedule of the example by using local search in MEFT.

V. EXPERIMENTAL RESULTS

The considered hybrid resource provisioning problem with
malleable and rigid tasks has not been studied yet, to the
best of our knowledge. The best algorithm BTS for the
similar reserved resource provisioning problem [31] is adapted
and compared. BTS was proposed to estimate the minimum
number of computing hosts. However, BTS only considers the
number of virtual machines for each task without considering
the allocation of tasks to specific virtual machines. BTS is
adapted to BTS-IRPD by adding the Incremental Renting
Plan Decision (IRPD) procedure [32] to the schedule of
BTS. The best algorithm CPIS-LHCM for the similar on-
demand resource provisioning problem [9] is also considered.
Two heuristics: Critical Path based Iterative heuristic with
Shortest services (CPIS) and List based Heuristic considering
Cost minimization and Match degree maximization (LHCM)
are developed for the two sub-problems: task-mode (service)
mapping and task tabling on renting instances. The LHCM
procedure is designed for on-demand resource provisioning



9

only, so we adapt CPIS to ACPIS to make it suitable for hybrid
resource provisioning. Two new aspects are added to CPIS. In
order to determine the specific virtual machines for a task, the
task with the longest processing time is allocated to virtual
machines with the smallest index. The utilization of a virtual
machine is calculated to determine the renting alternative of
this virtual machine. If it is less than discount, the on-demand
strategy is used to rent this virtual machine. Otherwise, the
reserved alternative is used. In total, four algorithms BTS,
BTS-IRPD, CPIS-LHCM and ACPIS are compared to the
proposed MEFT. All algorithms are coded in Java and run
on a computer with an Intel i5-3470 CPU (4 cores, 3.1GHz)
and 6GBytes of RAM memory.

The Relative Percentage Deviation (RPD) is calculated to
evaluate the effectiveness of the compared algorithms. For
an instance i, let the final schedule obtained by the current
algorithm be πi and its corresponding cost C(πi). If π∗i is
the best schedule for instance i obtained by the compared
algorithms, the RPD of the current algorithm for instance i
is calculated as follows:

RPDi =
C(πi)− C(π∗i )

C(π∗i )
× 100% (15)

A. Parameter calibration

There are six parameters in the proposed MEFT which need
calibration. In the resource initialization (RSI) procedure, two
different alternative methods are used to calculate the maxi-
mum amount of resources: not considering discount (without)
or considering discount (with). In the task allocation sequence
initialization (TASI) procedure, four task allocation rules are
compared: minimal processing time (1), maximum number of
successors (2), minimal slack time (3) and maximum upward-
rank value (4). In the schedule improvement (SR) phrase, two
alternative methods are considered: not considering schedule
procedure (without) and considering schedule improvement
(with). In the multiple sequence generation (MSG) procedure,
the maximum number of neighborhoods K ∈{3, 6, 9, 12,
15} and the number of solutions λ ∈ {6, 10, 14, 18, 22} are
calibrated. Finally, we calibrate the reconstruction probability
ω ∈ {0, 0.2, 0.4, 0.6, 0.8, 1} in the schedule reconstruction SC
phrase.

We use Rangen [33],[34] to obtain different random work-
flow instances. The number of tasks n takes values from
{10, 20, 50, 100, 200}. For each value n, 20 instances are
generated. The network complexity of the workflow is set
as 1.8 according to [34]. The processing time of each task
takes a value randomly from a uniform distribution U(1, 100)
as the on-demand virtual machines are usually charged for
by the hour. Only homogeneous virtual machines (the same
configuration) are considered, as computing hosts with dif-
ferent configurations (CPU cores, memory and bandwidth)
can be virtualized to the same. The discount of the reserved
instance is set as 0.3 according to the ordinary discount of
a virtual machine on Amazon EC2 [10]. The deadline for
each workflow is supposed to be D = Estn × θ, in which
θ is a deadline factor and takes a value randomly from
{1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0}.

We use the multi-factor analysis of variance (ANOVA)
technique to calibrate the values of the different parameters.
ANOVA takes RPD as the response variable. First, the three
main hypotheses (normality, homoscedasticity, and indepen-
dence of the residuals) are checked from the residuals of the
ANOVA. All three hypotheses are acceptable within the usual
margins. Since all the p-values in the experiments are very
close to zero, they are not reported in this paper due to space
considerations. Instead, we directly report the means plots
resulting from the multiple pairwise tests in order to check
which levels or variants of the studied factors are statistically
better than the others. Interactions between (or among) any two
(or more than two) factors are not considered as the observed
F -Ratios are small in comparison with single factors.

Figure 7 shows the means plot with 95% Tukey HSD
confidence intervals for the resource initialization method,
the improvement method and the task allocation rules. The
RPD of the method with discount is less than that of the
non-discount case. Moreover, the difference is statistically
significant as the intervals do not overlap. We use the Re-
served Resource Initialization procedure with discount in the
following algorithm comparisons. We observe that the RPD
of MEFT with improvement is statistically better than that
of MEFT with non-improvement. The average difference is a
significant 15%. Therefore, we use the improvement method
in the following algorithm comparisons. The average RPD of
the fourth rule maximum upward-rank value is about 2%. It is
better than the minimal slack time rule, the minimal processing
time rule and the maximum number of successors rule. We use
the maximum upward-rank value rule to obtain the initial task
allocation sequence in the following algorithm comparisons.

The plots in figure 8 show the means plots with 95%
Tukey HSD confidence intervals for the three parameters K,
λ and ω in MEFT. It can be observed that differences in
RPDs are statistically significant when K < 12 and λ < 14
whereas RPD differences are not statistically significant when
K ≥ 9 or λ ≥ 14. However, the RPD of MEFT decreases
with an increase of K and λ because more solutions are
searched for. Additionally, more CPU time is required for
large values of these factors. To reach a balance between
the CPU time and the RPD value, we set K = 12 and
λ = 14 in the following comparisons. When ω takes value 0,
there is no reconstruction and MEFT does not perform well.
The remaining cases are statistically and significantly different
from 0. In addition, differences are not statistically significant
among the non-zero ω cases. When ω = 0.6, MEFT obtains
the best RPD. Therefore, we use ω = 0.6 in the following
algorithm comparisons.

B. Comparison with existing methods
To simulate resource scheduling problems in real clouds,

The CloudSim toolkit [35] is used. The toolkit is extended to
support on-demand and reserved resources. The VM instances
(m4.large) from Amazon EC2 are modeled. The processor
speed of the cores of the VM instance is set to 2000 MIPS.
Each VM requires 1GByte of RAM and 10 GBytes of storage
while the bandwidth is set as 500 Mbps. The price of on-
demand and reserved virtual instances are set according to
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Fig. 7. Means plot with 95% Tukey HSD confidence intervals for the resource initialization method, the improvement method and the task allocation rules
in the MEFT calibration.
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Fig. 8. Means plot with 95% Tukey HSD confidence intervals for the parameters K, λ and ω in the MEFT calibration.

Amazon EC2 [10] with the average discount value 0.3. The
times required for starting a host and creating a VM are as
they are negligible in comparison to the execution time of a
task. The virtual machine instances are assumed to be reserved
with no upfront cost.

The three scientific workflow instances Montage, LIGO and
Epigenomics [1] are adopted to analyze the effectiveness of
the proposed MEFT in real environments. Montage has been
created by NASA/IPAC as an open source toolkit that can be
used to stitch multiple input images together to create custom
mosaics of the sky. The Laser Interferometer Gravitational
Wave Observatory (LIGO) is used to generate and analyze
gravitational waveforms from data collected during the co-
alescing of compact binary star systems. The Epigenomics
workflow created by the USC Epigenome Center and the Pe-
gasus Team is used to automate various operations in genome
sequence processing. Figure 1, Figure 9 and Figure 10 show
an example of Montage, LIGO and Epigenomics workflow ap-
plications. The nodes mProjectPP, mDiffFit and mBackground
in Figure 1 are regarded as the malleable tasks while other
nodes are rigid tasks. The nodes TrigBank in Figure 9 are
rigid tasks and the other nodes are malleable tasks. The nodes
fastQSplit, mapMerge, mapIndex and pileup in Figure 10
are rigid tasks and the other nodes are malleable tasks. The
average ratio of rigid tasks in Montage is 30%, while that of
LIGO and Epigenomics is 11.1% and 20%, respectively. The
instance size of each type of workflow application is set to
n ∈ {50, 100, 200, 300, 400}. The deadline factors are set in
the same way as in the previous sections. For each size and

discount value 10 instances are generated. In total, there are
5× 10× 10 = 500 instances for performance comparisons.

TmpltBank Inspiral Thinca TrigBank

Fig. 9. LIGO workflow application.

For Montage instances, the average CPU times (in millisec-
onds) of the compared algorithms are shown in Table II. We
observe that among all the algorithms ACPIS is the fastest
one while MEFT is the slowest algorithm in the comparison.
The proposed MEFT takes more time to find suitable new
sequences. The other algorithms only find one or several
new sequences to obtain a new schedule. Although, MEFT
can construct a schedule in O(n3) time for each sequence,
with the increase of the n, the procedure MSG in MEFT
takes more time to generate new sequences. However, this
paper considers long term workflow scheduling problems and
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Fig. 10. Epigenomics workflow application.

the workflow applications usually reserve resources for long
periods. Compared to the resource rental time, the computing
times of the scheduling algorithms are negligible as are about
30 seconds in the worst case for the proposed approach.
Therefore, we focus on performance comparisons in this paper.

TABLE II
AVERAGE CPU TIMES (MS.) OF THE COMPARED ALGORITHMS FOR

MONTAGE INSTANCES.

n BTS BTS-IRPD CPIS-LHCM ACPIS MEFT

50 147.24 158.83 318.93 226.37 1106.33
100 450.10 466.34 479.19 387.86 3902.74
200 949.73 988.43 697.75 620.59 11643.14
300 1298.22 1400.48 823.25 782.50 23265.48
400 2075.48 2129.67 1020.03 982.49 39164.22

Average 984.15 1028.75 667.83 599.96 15816.38

For Montage instances, the interaction plot between n
and the compared algorithms is shown in Figure 11. MEFT
outperforms the other algorithms in all the instances regardless
of n values. Compared to the on-demand only algorithm CPIS-
LHCM and the reserved only algorithm BTS, MEFT saves
about 40% and 20% in cost respectively. As the value of
n increases, the performance of MEFT and other algorithms
are almost the same. As n values increase, the cost of the
other algorithms increases faster than that of MEFT. This
implies that the proposed MEFT is much more suitable for
the Montage application with bigger instances.Interactions and 95.0 Percent Tukey HSD 
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Fig. 11. Interactions between the tested algorithms and the different n values
on Montage instances.

For Montage instances, the interaction plot between the
deadline factor and the compared algorithms is shown in
Figure 12. MEFT outperforms all the other algorithms with
different deadline factors. With an increase in the deadline fac-
tor, the RPD of all the algorithms does not vary significantly.
This implies that the deadline factor has little influence on the
performance on the compared algorithms.
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Fig. 12. Interactions between the tested algorithms and the deadline factor
on Montage instances.

For LIGO instances, the average CPU times (in millisec-
onds) of the compared algorithms are shown in Table III.
MEFT is the also the slowest one with the average CPU
time 10138.71 ms. ACPIS is the fastest one with an average
CPU time 384.59 ms. We also just focus on the performance
comparisons while the computing times of the scheduling
algorithms are negligible compared to the resource rental time.

TABLE III
AVERAGE CPU TIMES (MS.) OF THE COMPARED ALGORITHMS FOR LIGO

INSTANCES.

n BTS BTS-IRPD CPIS-LHCM ACPIS MEFT

50 94.38 101.82 204.44 145.11 709.18
100 288.53 298.93 307.18 248.63 2501.76
200 608.80 633.61 447.28 397.82 7463.55
300 832.19 897.74 527.73 501.60 14913.77
400 1330.43 1365.18 653.87 629.80 25105.27

Average 630.87 659.46 428.10 384.59 10138.71

For LIGO instances, the corresponding plots are shown in
Figure 13. MEFT also outperforms all other algorithms in
all instances. On average, MEFT saves about 35% and 25%
in costs compared to the on-demand only algorithm CPIS-
LHCM and the reserved only algorithm BTS. As n increases,
the cost of MEFT increases whereas that of other algorithms
has no similar tendency. This implies that the proposed MEFT
is much more suitable for the LIGO application with smaller
instances.

For LIGO instances, the comparison results with different
deadline factors are shown in Figure 14. MEFT outperforms
all the other algorithms with different deadline factors. With an
increase in the deadline factor, the RPDs of all the algorithms
have no monotone increase or decrease trend. Deadline factor
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Fig. 13. Interactions between the tested algorithms and the different n values
on LIGO instances.

also has little influence on the performance of the compared
algorithms.
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Fig. 14. Interactions between the tested algorithms and the deadline factor
on LIGO instances.

For Epigenomics instances, the average CPU times (in
milliseconds) of the compared algorithms are shown in Ta-
ble IV. MEFT is the slower than the competing algorithms
with the increase of n. However, since the computing times
of the scheduling algorithms are negligible compared to the
resource rental time, we also just focus on the performance
comparisons.

TABLE IV
AVERAGE CPU TIMES (MS.) OF THE COMPARED ALGORITHMS FOR

EPIGENOMICS INSTANCES.

n BTS BTS-IRPD CPIS-LHCM ACPIS MEFT

50 102.04 110.07 221.02 156.87 766.68
100 311.92 323.17 332.08 268.78 2704.60
200 658.16 684.98 483.54 430.07 8068.70
300 899.67 970.53 570.51 542.27 16122.99
400 1438.31 1475.86 706.88 680.86 27140.83

Average 682.02 712.92 462.81 415.77 10960.76

For Epigenomics instances, the comparison results with
different n values are shown in Figure 15. MEFT is better
than all the other compared algorithms for all the instances.
On average, the RPD of MEFT is about 50% and 40% less

than the on-demand only algorithm CPIS-LHCM and the
reserved only algorithm BTS. As n increases, the RPD of
different algorithms has no clear tendency. This implies that
different n values have little influence on the performance of
the compared algorithms.
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Fig. 15. Interactions between the tested algorithms and the different n values
on Epigenomics instances.

For Epigenomics instances, the comparison results with
different deadline factors are shown in Figure 16. MEFT
outperforms all the other algorithms with different deadline
factors. With an increase in the deadline factor, the RPDs of
MEFT decreases with some fluctuations while other algorithm-
s have no monotone increase or decrease trend. This implies
that MEFT is more suitable for Epigenomics instances with a
large deadline factor.
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Fig. 16. Interactions between the tested algorithms and the deadline factor
on Epigenomics instances.

However, there are some limitations of the proposed MEFT.
The CPU time of MEFT grows with the instance size n. For
very large values of n, the execution time of MEFT is close to
the execution time of the workflow application. In these cases
MEFT would not be recommended. For example, for Montage
instances, the average execution time of a task is about 10s,
the schedule time of a montage instance is about (n/50)2.
If n > 25000, the scheduling time will be bigger than the
execution time.

The above comparisons of Montage, LIGO and Epige-
nomics instances all show that the proposed MEFT algorithm
takes much more CPU time but at the same time it obtains



13

much better results than other compared algorithms. MEFT
takes less CPU time to schedule LIGO than Epigenomics and
Montage instances. The reason lies in that there are less rigid
tasks in the LIGO instances, the network complexity of LIGO
instances is smaller than that of Epigenomics and Montage
instances. For the three types of workflow applications with
the same instance size, MEFT performs better on LIGO and
Epigenomics instances than on the Montage instances. The
reason lies in than the schedule improvement (SI) procedure
reducing the amount of on-demand instances for malleable
tasks and the ratio of malleable tasks in LIGO and Epige-
nomics instances is larger than that of the Montage instances.
The deadline factor has little influence on the performance
of the compared algorithms. The reason lies in that as all
the algorithms construct a schedule based on the allocation
sequences, and the deadline factor influences the performance
of different algorithms similarly. Therefore, the RPD value
with different deadline factor does not vary significantly.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a more realistic workflow scheduling problem
with both reserved and on-demand instances is considered.
A mathematical model with rigid and malleable tasks was
established according to the two resource rental strategies.
A new multiple sequence-based earliest finish time algorithm
is proposed and compared with other adapted state-of-the-art
methods from the literature. The experimental and statistical
analyses reveal that MEFT is much more suitable for Montage
applications with bigger sizes and saves about 40% and 20%
in costs compared to the on-demand only and reserved only
algorithms. MEFT is also much more suitable for LIGO
applications with smaller sizes and saves about 35% and 25%
in costs compared to the on-demand only and reserved only
algorithms.

For future research, workflow scheduling considering mul-
tiple types of virtual machines with hybrid provisioning strate-
gies is a promising topic. More realistic scenarios including
multi-clouds with different data transfer times are also worth
considering.

ACKNOWLEDGMENT

This work is supported by the National Key Research
and Development Program of China (No. 2017YFB1400801),
the National Natural Science Foundation of China (Nos.
61572127, 61872077, 61832004) and Collaborative Innovation
Center of Wireless Communications Technology. Rubén Ruiz
is supported by the Spanish Ministry of Economy and Com-
petitiveness, under the project “SCHEYARD-Optimization of
scheduling problems in container yards” (No. DPI2015-65895-
R) partly financed with FEDER funds.

REFERENCES

[1] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H. Su, and
K. Vahi, “Characterization of scientific workflows,” in the Third Work-
shop on Workflows in Support of Large-Scale Science. IEEE, 2008, pp.
1–10.

[2] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good et al., “Pegasus: A
framework for mapping complex scientific workflows onto distributed
systems,” Scientific Programming, vol. 13, no. 3, pp. 219–237, 2005.

[3] M. Wieczorek, R. Prodan, and T. Fahringer, “Scheduling of scientific
workflows in the ASKALON grid environment,” ACM SIGMOD Record,
vol. 34, no. 3, pp. 56–62, 2005.

[4] Q. Chen, L. Wang, and Z. Shang, “Mrgis: A mapreduce-enabled high
performance workflow system for gis,” in IEEE Fourth International
Conference on eScience (eScience 2008). IEEE, 2008, pp. 646–651.

[5] G. Juve, E. Deelman, K. Vahi, G. Mehta, B. Berriman, B. P. Berman,
and P. Maechling, “Scientific workflow applications on amazon EC2,”
in 2009 5th IEEE International Conference on E-Science Workshops.
IEEE, 2009, pp. 59–66.

[6] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud com-
puting: Vision, hype, and reality for delivering it services as computing
utilities,” in the 10th IEEE International Conference on High Perfor-
mance Computing and Communications (HPCC’08). IEEE, 2008, pp.
5–13.

[7] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-driven scheduling
of grid workflows using partial critical paths,” IEEE Transactions on
Parallel and Distributed Systems, vol. 23, no. 8, pp. 1400–1414, 2012.

[8] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-constrained
workflow scheduling algorithms for infrastructure as a service clouds,”
Future Generation Computer Systems, vol. 29, no. 1, pp. 158–169, 2013.

[9] Z. Cai, X. Li, and J. N. Gupta, “Heuristics for provisioning services to
workflows in xaas clouds,” IEEE Transactions on Services Computing,
vol. 9, no. 2, pp. 250–263, 2016.

[10] AmazonEC2, “Amazon elastic compute cloud (Amazon EC2),”
http://aws.amazon.com/ec2/pricing, 2014.

[11] E. K. Byun, Y. S. Kee, J. S. Kim, E. Deelman, and S. Maeng,
“BTS: Resource capacity estimate for time-targeted science workflows,”
Journal of Parallel and Distributed Computing, vol. 71, no. 6, pp. 848–
862, 2011.

[12] L. Chen, X. Li, and R. Ruiz, “Resource renting for periodical cloud
workflow applications,” IEEE Transactions on Services Computing,
2017.

[13] S. Chaisiri, B. S. Lee, and D. Niyato, “Optimization of resource
provisioning cost in cloud computing,” IEEE Transactions on Services
Computing, vol. 5, no. 2, pp. 164–177, 2012.

[14] L. Chen, Y. Guo, X. Li, and R. Ruiz, “Hybrid resource provisioning for
workflow scheduling in cloud computing,” in International Conference
on Human Centered Computing. Springer, 2016, pp. 34–46.

[15] J. Yu and R. Buyya, “Scheduling scientific workflow applications with
deadline and budget constraints using genetic algorithms,” Scientific
Programming, vol. 14, no. 3, pp. 217–230, 2006.

[16] E. Demeulemeester, W. S. Herroelen, and S. E. Elmaghraby, “Optimal
procedures for the discrete time/cost trade-off problem in project net-
works,” European Journal of Operational Research, vol. 88, no. 1, pp.
50–68, 1996.

[17] E. Demeulemeester, B. De Reyck, B. Foubert, W. S. Herroelen, and
M. Vanhoucke, “New computational results on the discrete time/cost
trade-off problem in project networks,” Journal of the Operational
Research Society, vol. 49, no. 11, pp. 1153–1163, 1998.
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