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Abstract—Acoustic sensor networks (ASNs) are an effective so-
lution to implement active noise control (ANC) systems by us-
ing distributed adaptive algorithms. On one hand, ASNs provide
scalable systems where the signal processing load is distributed
among the network nodes. On the other hand, their noise reduction
performance is comparable to that of their respective centralized
processing systems. In this sense, the distributed multiple error
filtered-x least mean squares (DMEFxLMS) adaptive algorithm
has shown to obtain the same performance than its centralized
counterpart as long as there are no communications constraints
in the underlying ASN. Regarding affine projection (AP) adaptive
algorithms, some distributed approaches that are approximated
versions of the multichannel filtered-x affine projection (MFxAP)
algorithm have been previously proposed. These AP algorithms
can efficiently share the processing load among the nodes, but
at the expense of worsening their convergence properties. In this
paper we develop the exact distributed multichannel filtered-x AP
(EFxAP) algorithm, which obtains the same solution as that of
the MFxAP algorithm as long as there are no communications
constraints in the underlying ASN. In the EFxAP algorithm each
node can compute a part or the entire inverse matrix needed by the
centralized MFxAP algorithm. Thus, we propose three different
strategies that obtain significant computational saving: 1) Gauss
Elimination, 2) block LU factorization, and 3) matrix inversion
lemma. As a result, each node computes only between 25%–60%
of the number of multiplications required by the direct inversion
of the matrix. Regarding the performance in transient and steady
states, the EFxAP exhibits the fastest convergence and the highest
noise level reduction for any size of the acoustic network and any
projection order of the AP algorithm compared to the DMEFxLMS
and two previously reported distributed AP algorithms.

Index Terms—Active noise control, acoustic sensor networks,
affine projection algorithm, distributed algorithms, adaptive filters.

I. INTRODUCTION

THE use of acoustic sensor networks (ASNs) [1] as an
alternative to fixed multi-channel sound systems is an
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emerging topic that has attracted significant attention from
the signal processing community over the past years due to
the scalability and versatility of the ASNs. One of the ben-
efits of ASNs is their ability to obtain acoustical information
from the environment to perform different tasks such as source
monitoring [2]–[4], localization [5], [6] or detection [7] in a
distributed way. Examples of a large variety of applications
as well as the inherent challenges that need to be addressed
can be found in the recent literature, such as multiple sound
source location [8]–[10], speech enhancement [11], [12] or blind
synchronization [13] among others. It is generally considered
that the nodes of the network are capable of monitoring the
environment and therefore they are equipped with one or more
microphones and a processor with limited processing and net-
working capabilities. However, in the particular case of sound
field control applications, and more specifically for Active Noise
Control (ANC), the acoustic nodes must also be equipped with
an actuator in order to interact with their surrounding zone and
emit the signals needed to control the sound field [14]–[17].
Moreover, every node should communicate with the rest of the
nodes to exchange information such that they can manage and
process their own signals in a proper way. The aim is to exchange
updated system information, but no signals, so the computational
burden is distributed throughout the nodes by means of ad-hoc
distributed adaptive algorithms [14], [15].

It is well known that ANC systems are devoted to reduce
the undesired, or primary, noise by the addition of a secondary
sound specifically designed to cancel the first one. Feedforward
adaptive controllers estimate the signals that will feed the sec-
ondary sources based on a reference noise, which is assumed to
be available at the controller. Assuming as well that the acoustic
path between the secondary source and the error microphone
is known, the adaptive algorithm tries to compensate the effect
of the secondary path by means of the widely used filtered-x
structure [18].

Regarding the adaptive algorithms proposed for a multi-
channel ANC system comprised of J loudspeakers and K
microphones, solutions for a single centralized controller can
be found in the literature for the particular case of the affine
projection (AP) algorithm [19]. The different AP methods pro-
posed in [20]–[26] improve the convergence performance of
the well-known least-mean-square (LMS) algorithm [27] at
the expense of increasing the computational complexity. AP
algorithms using the filtered-x scheme, known as filtered-x AP
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(FxAP) algorithms [28]–[34], have shown to be robust and stable
and have been proposed as a suitable alternative to the filtered-x
LMS (FxLMS) algorithm [18].

Consider now the same multichannel ANC system comprised
of J loudspeakers and K microphones but supported by an
acoustic sensor network with one processing unit per node.
ASNs are usually designed to waste as less energy as possible
and their computational capacity per node is also limited. Several
adaptive algorithms have been proposed for the implementation
of ANC systems over ASNs. Two decentralized ANC systems
were introduced in [35], [36], where the nodes shared the com-
putational load of an equivalent centralized system, but did not
collaborate in order to reach the same solution as in the central-
ized case, thus compromising the stability of the ANC system
when the transducers were acoustically coupled. On the other
hand, [14], [37], [38] present decentralized ANC schemes that
include cooperation among subsystems or nodes. The control
model in [37] compensates for the interference of the primary
sound at each location of interest by exchanging run-time data
amongst the control units. In [38] the control method shapes the
eigenvalues of a matrix that models the two-channel secondary
paths for each frequency bin. In [14], a distributed multiple error
filtered-x LMS (DMEFxLMS) algorithm over ASNs based on
incremental communication among the nodes [39] was intro-
duced. The incremental communication is carried out over a
ring network where the updating of the adaptive algorithm is
performed sequentially: Node k receives some data from node
k − 1, partially updates the global adaptive filter with the help of
the received data and its local information, and passes some new
data to node k + 1. Assuming perfect network synchronization,
the DMEFxLMS in [14] obtained the same performance as its
corresponding centralized multichannel system.

Recently, and motivated by the good trade-off between con-
vergence speed and computational cost of the AP algorithms,
two approaches that address the distribution of the AP processing
over ASNs have been presented [15], [16]. However, they are ap-
proximated distributed versions of the centralized multichannel
FxAP (MFxAP) algorithm [31]–[34] and, from their analysis,
it is not assured that they can obtain the same performance as
the MFxAP.

In this paper, we introduce an exact multichannel FxAP
(EFxAP) algorithm that gives the same solution as the MFxAP,
but it can be computed in a distributed way over ASNs. As
we will show in Section III, to evolve the centralized MFxAP
algorithm into the distributed EFxAP algorithm could be done
somehow straightforwardly by computing at each node the same
inverse matrix that the MFxAP computes once. However, it
would be very inefficient since most of the computational cost
carried out once by the MFxAP would have to be computed as
many times as the number of nodes in the network. Therefore this
straightforward solution would be inefficient for most practical
cases where the distributed processors at the nodes have a limited
computational capacity [40].

In this work we propose three robust strategies that reduce
the computational requirements of the EFxAP at each node.
These approaches are the Gauss elimination (GE), the block
LU factorization, and the matrix inversion lemma methods [41],

which efficiently decrease the computational cost at each node
but obtain the same good performance as the centralized MFxAP
algorithm. Simulations using real acoustic channel responses
have been carried out in order to assess the performance of the
proposed EFxAP over ASNs with incremental communication.
Comparisons with previous distributed LMS-type and AP-type
adaptive algorithms have been provided showing a faster con-
vergence and a higher noise reduction for all the scenarios. The
effect of network latency and computation time of the different
strategies on the EFxAP performance has also been discussed,
concluding that EFxAP can bear a latency of a few sampling
times at the cost of degrading its performance, similar to the
observed effect on other distributed adaptive algorithms [14].

The remainder of the paper is structured as follows. In
Section II we formulate the multichannel sound control problem
and the MFxAP algorithm [31] is also motivated and described.
Section III presents the EFxAP algorithm over an acousti-
cally coupled sensor network with incremental communication
among the nodes. Three different strategies to improve the
computational efficiency of EFxAP are proposed in Section IV
whereas Section V studies their corresponding computational
costs. Section VI evaluates the performance of the EFxAP
compared to the DMEFxLMS [14] and the two approximated
distributed filtered-x AP algorithms in [15], [16]. The main
conclusions are summarized in Section VII.

The following notation is used throughout the paper: boldface
upper-case letters denote matrices (e.g. A), boldface lower-case
letters denote vectors (e.g., a), and italics denote scalars, (e.g. a
or A). The Euclidean norm is denoted by ‖ · ‖, (·)T stands for
matrix or vector transpose, Ia is an a× a identity matrix and
0a×b is an a× b matrix of 0’s respectively. The most frequent
symbols, signals, vectors and matrices used throughout the paper
can also be found in Table I.

II. MULTICHANNEL SOUND CONTROL PROBLEM

Let us consider a generic linear multichannel ANC system
comprised of J secondary sources (loudspeakers) and K error
sensors (microphones). In order to cancel the undesired noise
signal dk(n) originated from one or several noise sources cap-
tured by sensor k, the following equation must be fulfilled at the
kth microphone, k = 1, . . . ,K,

dk(n) =

J∑
j=1

[−yj(n) ∗ hjk(n)], (1)

where ∗ denotes the discrete linear convolution, hjk(n) is the
impulse response of the M -length FIR filter that models the
acoustic channel between the jth loudspeaker and the kth micro-
phone, and yj(n) is the signal generated by the jth loudspeaker.
The impulse response hjk(n) can be written in vector form as
hjk = [hjk(0), hjk(1), . . . , hjk(M − 1)]T .

The output signal of the jth loudspeaker, j = 1, . . . , J , is
obtained as

yj(n) = wT
j (n)x(n) , (2)

where x(n) is an L× 1 vector formed by the most recent L
samples of the reference signal x(n) at time n. It is assumed
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TABLE I
FREQUENTLY-USED SYMBOLS, SIGNALS, VECTORS, AND MATRICES USED THROUGHOUT THE PAPER

that x(n) is correlated with the unwanted noise captured by the
sensors,dk(n). TheL× 1vectorwj(n) contains the coefficients
of the adaptive filter associated to the jth actuator. Consequently,
we can form the JL× 1 vector w(n) by stacking all the filters
wj(n) in a single column vector:

w(n) =
[
wT

1 (n) w
T
2 (n) . . . w

T
J (n)

]T
. (3)

Consider now that a certain adaptive algorithm obtains a
solution of (1)–(2) denoted by w0 =

[
wT

01 wT
02 . . . wT

0J

]T
,

then the undesired signal at the kth microphone (1) can be
expressed as

dk(n) =

J∑
j=1

[−vT
jk(n)w0j

]
, (4)

where vjk(n) denotes an L× 1 vector obtained by filtering the
most-recent samples of the reference signal through:

vjk(n) = X(n)ĥjk , (5)

where the L×M Toeplitz matrix X(n) is defined as

X(n) =
[
x(n) x(n− 1) · · · x(n−M + 1)

]
, (6)

and ĥjk is an accurate estimation of the acoustic channel hjk

between jth loudspeaker and kth microphone defined in (1), that
is, ĥjk ≈ hjk.

Notice that the perfect filtering equation (4) could be fulfilled
at the K microphones by more than one solution w0 since
the number of equations is K, the number of unknowns is
JL, and the system is commonly underdetermined (K < JL).
Therefore, the perfect filtering equation (4) can be extended up
to (N − 1) past samples of the desired signals,

dk(n− i) =

J∑
j=1

[−vT
jk(n− i)w0j ], 0 ≤ i < N , (7)

and can be fulfilled by more than one filter vector w0 as long as
KN < JL, being N the projection order.

We can express (7) in compact form for N ≥ 1 as

d(n) = −VT (n)w0, (8)

where d(n) =
[
dT
1 (n), d

T
2 (n), . . . , d

T
K(n)

]T
is a KN × 1

vector formed by blocks dk(n) containing the last N samples

of the undesired signal dk(n) at the kth microphone, and V(n)
is a JL×KN matrix defined as

V(n) =

⎡⎢⎢⎢⎢⎣
V11(n) V12(n) · · · V1K(n)

V21(n) V22(n) · · · V2K(n)
...

...
. . .

...

VJ1(n) VJ2(n) · · · VJK(n)

⎤⎥⎥⎥⎥⎦ , (9)

where Vjk(n) is an L×N matrix obtained by filtering the
reference signal x(n) through the secondary acoustic path ĥjk

such that

Vjk(n) =
[
vjk(n),vjk(n− 1), . . . ,vjk(n−N + 1)

]
.

(10)

A. Centralized Multichannel Filtered-x AP Solution

The adaptive filter w(n) defined in (3) can be calculated by
solving a constrained optimization problem derived from the
minimum perturbation principle [32], [42], and whose solution
was presented in [29] as an extension of the single channel to
the multiple channel filtered-x AP (MFxAP):

min
w(n)

‖w(n)−w(n− 1)‖2, (11)

subject to the perfect filtering equation system (8)

d(n) +VT (n)w(n) = 0KN×1. (12)

Using the method of Lagrange multipliers [42] to solve (12),
the cost criterion becomes

J(n) = ‖Δw(n)‖2 + [d(n) +VT (n)w(n)]Tλ(n), (13)

where λ(n) is the KN × 1 vector that comprises the KN
Lagrange multipliers corresponding to the KN constraints at
the K microphones and Δw(n) = w(n)−w(n− 1).

To solve (13), we calculate the gradient of J(n) with respect
to the weight vector w(n) as

∇wJ(n) =
∂J(n)

∂w(n)
= 2Δw(n) +V(n)λ(n), (14)

and the minimum of J(n) is obtained by

w(n) = w(n− 1)− 1

2
V(n)λ(n). (15)
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Substituting (15) in the constraint relation (12) yields

d(n) = −VT (n)w(n− 1) +
1

2
[VT (n)V(n)]λ(n). (16)

Thus, solving (16) for the Lagrange vector, we obtain

λ(n) = 2[VT (n)V(n)]−1e(n), (17)

where

e(n) = d(n) +VT (n)w(n− 1) (18)

is the a priori error vector of length KN expressed as e(n) =
[eT1 (n), e

T
2 (n), . . . , e

T
K(n)]T , where each N × 1 vector ek(n)

corresponds to the a priori error signal recorded by the kth
microphone. Finally, substituting (17) into (15) and introducing
both an step size parameter μ to control the convergence speed
and a regularization factor δ, the adaptation rule of the MFxAP
algorithm is given by

w(n) = w(n− 1)

− μV(n)[VT (n)V(n) + δIKN ]−1e(n). (19)

The filter updating equation in (19) can be rewritten as

w(n) = w(n− 1)− μV(n)B(n)e(n) , (20)

where B(n) = [VT (n)V(n) + δIKN ]−1.

III. DERIVATION OF THE EXACT DISTRIBUTED FILTERED-X

AP ALGORITHM

In this section we extend the MFxAP algorithm for distributed
ANC over ASNs under the assumption of no rate or latency
constraints in the network communication system. This “ideal”
case can be assumed if all the communication and processing
times required for one iteration of the adaptive algorithm are
shorter than the sampling time. A discussion on the case that
this condition is not fulfilled is provided in Section VI.

For the sake of clarity, we will consider from now on an
homogeneous network of single-channel acoustic nodes, that
is, each acoustic node is formed by one microphone, one
loudspeaker and one unit with processing and communication
capabilities [14]. Therefore, we assume an acoustic network
of K single-channel nodes with ring topology and incremental
communication that supports the ANC system composed of K
error sensors and K secondary sources (J = K), as shown in
Fig. 1 [16]. The aim is to distribute the computational burden
among the different nodes so that each node performs its corre-
sponding processing relying only on its local signal and on some
data from the rest of the nodes, avoiding any signal exchange
between them. We also assume that the reference signal x(n)
is available at each node, as it is commonly assumed in the
literature of ANC over acoustic networks [17], [38], [43].

In order to properly distribute the processing among the
network nodes while ensuring the exactly same solution as the
one provided by the MFxAP algorithm, the full error vector e(n)
in (20) must be decoupled for each microphone. Let us define
matrices

A(n) = VT (n)V(n), (21)

Fig. 1. Acoustic network for active noise control using ring topology and
incremental communication.

and

B(n) = A−1(n) = (VT (n)V(n))−1, (22)

where we have omitted the regularization term δIKN in the
definition of B(n) for the sake of clarity. This term is usually
included in affine projection methods in order to avoid the
inversion of ill-conditioned matrices [44]. In this sense, we have
omitted the explicit reference to the regularization term in (22),
but we consider that a value of δ can be added to the elements
of the diagonal of matrix A(n) in (21). Both matrices A(n) and
B(n) have dimensions KN ×KN and, since their structure is
block-wise, they can be split intoK ×K submatrices ofN ×N
size such that

A(n) =

⎡⎢⎢⎢⎢⎣
A11(n) A12(n) · · · A1K(n)

A21(n) A22(n) · · · A2K(n)
. . .

AK1(n) AK2(n) · · · AKK(n)

⎤⎥⎥⎥⎥⎦ , (23)

and

B(n) =

⎡⎢⎢⎢⎢⎣
B11(n) B12(n) · · · B1K(n)

B21(n) B22(n) · · · B2K(n)
. . .

BK1(n) BK2(n) · · · BKK(n)

⎤⎥⎥⎥⎥⎦ . (24)

where the diagonal elements of matrices Akk(n) in (23) in-
clude the regularization term such that akk,jj + δ, ∀j, ∀k. The
proposed EFxAP can be derived from (20) decoupling the terms
involving their local signals as

w(n) = w(n− 1)− μV(n)

K∑
k=1

Bk(n)ek(n), (25)

where the KN ×N matrix Bk(n) corresponds to the block-
wise kth column of B(n) in (24):

B(n) = [B1(n) B2(n) . . . BK(n)]. (26)
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To calculate the adaptive filter coefficients w(n) in a dis-
tributed way over a ring topology with incremental communi-
cation, the kth node must add its own term to the summation
in (25). Let us assume that at time n the first node of Fig. 1
has available the updated global vector obtained at time n− 1,
w(n− 1). Then the first node computes

w(1)(n) = w(n− 1)− μV(n)B1(n)e1(n), (27)

where w(1)(n) can be considered as the local version of the
KL× 1 global vector w(n) at node k = 1. Once w(1)(n) is
calculated at the first node, it is transmitted to the second node
which computes its local version as:

w(2)(n) = w(1)(n)− μV(n)B2(n)e2(n). (28)

By simple induction, the updating equation of the global
adaptive filter at the kth node can be expressed as

w(k)(n) = w(k−1)(n)− μV(n)Bk(n)ek(n). (29)

Once the last node is updated, the exactly same solutionw(n)
of the centralized MFxAP in (20) is obtained since

w(K)(n) = w(K−1)(n)− μV(n)BK(n)eK(n)

= w(K−2)(n)− μV(n)BK−1(n)eK−1(n)

− μV(n)BK(n)eK(n) = · · ·

= w(n− 1)− μV(n)
K∑

k=1

Bk(n)ek(n), (30)

that is, w(K)(n) = w(n). Then, the final value of w(n) will
be shared with the rest of the nodes throughout a second com-
munication round through the network, or through any other
communication procedure established by the acoustic network.
As said before, assuming no rate or latency constraints, the
convergence properties of the EFxAP are equal to that of the
centralized MFxAP algorithm since their global solution w(n)
at time n is coincident. On the other hand, although all the nodes
have to cooperate to calculate the global solution w(n), node k
will only need the L× 1 block wk(n) from (3) to calculate its
local output signal yk(n) as in (2).

Regarding the local calculation of the second term of (29), it
should be noted that the whole matrix V(n) has to be available
at the kth node. In this sense, since a setup stage of the acoustic
network must be provided to estimate the acoustic paths ĥjk

for j, k = 1, . . . ,K, once the estimation process is finished, the
network could spread the estimated acoustic channels to the rest
of the nodes. If all the acoustic paths ĥjk are available at each
node, matrix V(n) in (9) can be locally computed by means of
vjk(n) in (5) since the reference signal x(n) is also available at
each node.

The second term in (29) involves the computation of vector
Bk(n)ek(n) where Bk(n) is the block-wise kth column in (26)
and B(n) = A−1(n) as defined in (22). Although matrix A(n)
can be computed at each node as in (21), its direct inversion
would cost O((KN)3) operations. Therefore, we present in the
next section three strategies to compute Bk(n)ek(n) that avoid
the direct inversion of A(n).

As a final remark, we want to notice that matrix A(n)
can also be computed in a distributed way since A(n) =∑J

j=1 V
T
j (n)Vj(n) being Vj(n) the block-wise jth row of

V(n) in (9). In this case, the acoustic network should also
provide an extra round to compute and distribute the whole
matrix A(n) before computing the updating of the filter (29).
On the other hand, each product VT

jk(n)Vjp(n) is a symmetric
Toeplitz matrix, which provides additional computational saving
in the calculation of A(n).

IV. STRATEGIES TO DISTRIBUTE THE PROCESSING

In this section, we propose three methods to calculate the
updating equation at node k given by (29). Once the adaptive
filter coefficients w(k−1)(n) arrive from the previous node, the
local processor can compute matrix V(n) based on the most
recent samples of reference signal x(n), and it can also update
its error signal ek(n). To compute the KN ×N block-wise
column Bk(n), we propose in the following three strategies,
which significantly reduce the number of required operations per
node. To simplify the notation, the dependence on the discrete-
time index n has been removed for the first and second strategy.
As said before, we have assumed for all the strategies that each
node can compute matrix A(n) from the knowledge of matrix
V(n).

A. S1: Strategy Based on Gaussian Elimination

Considering the particular structure of matrices A and B
given by (23) and (24) respectively, and that AB = IKN , Bk

can be obtained solving

ABk = I′k, k = 1, . . . ,K, (31)

where I′k is a KN ×N matrix of zeros except for the kth block
of size N ×N that contains the identity matrix, IN .

Without loss of generality, we apply in the following the
Gaussian elimination (GE) method for block matrices [41] to
calculate (31) for the particular case of k = 1:⎡⎢⎢⎢⎢⎣

A11 A12 · · · A1K

A21 A22 · · · A2K

. . .

AK1 AK2 · · · AKK

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
B11

B21

...

BK1

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
IN

0N×N

...

0N×N

⎤⎥⎥⎥⎥⎦ . (32)

The aim of GE is to reduce the full equation system of (32) to
a lower triangular form. For this purpose, we consider matrix A
formed by K block-wise rows of K submatrices of dimensions
N ×N and the GE operations will be applied on symmetric
matrices Aij on a block-wise rows basis. Let us call the initial

matrix A(K) such that A(K) = A, and denote by A
(K)
ij their

ij-th submatrices. As we want to obtain a lower triangular
reduction of A, in the first iteration we take submatrix A

(K)
KK

as the pivot element. Therefore, the first iteration computes the
ij-th components of the reduced matrix as

A
(K−1)
ij = A

(K)
ij −A

(K)
iK (A

(K)
KK)−1A

(K)
Kj , (33)
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with 1 ≤ i, j ≤ K − 1. After the first iteration, the last block-
wise column ofA(K−1) is formed byK − 1matricesA(K−1)

iK =

0N×N , 1 ≤ i ≤ K − 1, and A
(K−1)
KK = IN .

Further reduction is carried out in consecutive iterations ap-
plying (33) such that

A
(k−1)
ij = A

(k)
ij −A

(k)
ik (A

(k)
kk )

−1A
(k)
kj , (34)

from k = K to k = 2 and with 1 ≤ i, j ≤ k − 1 at each itera-
tion. After the last iteration, the only non-zero submatrix in the
first block-wise row is given by

A
(1)
11 = A

(2)
11 −A

(2)
12 (A

(2)
22 )

−1A
(2)
21 . (35)

At this point, we can solve A(1)
11 B11 = IN from (32), obtain-

ing the solution for the first block of B1 as

B11 = (A
(1)
11 )

−1. (36)

The remaining blocksBk1 in (32) can be recursively obtained
for 2 ≤ k ≤ K by:

Bk1 = −(A
(k)
kk )

−1
k−1∑
p=1

A
(k)
kp Bp1, (37)

and the full matrix B1 is finally computed by the first node. The
calculation of Bk, for nodes k = 2, . . . ,K is straightforward
just using its corresponding matrix I′k as defined in (31). Al-
ternatively, every node k can use the same steps shown above
just previously performing a row-wise ordering of matrix A(n)
such that blocks A1i and Aki are exchanged.

B. S2: Strategy Based on LU Factorization

This strategy is based on the calculation of the matrix Bk

by using LU factorization [41], [45]. Alternatively to the GE
method, the matrices Bk can be obtained by computing the LU
factorization of matrixA in (23) such thatA = LUwhereL and
U are lower and upper triangular KN ×KN matrices, respec-
tively. This computation involves (2/3)(KN)3 multiplications
per iteration or (1/3)(KN)3 in case we consider the symmetry
property of A and the Cholesky decomposition is applied [41].
From (31) we derive

ABk = LUBk = I′k, (38)

that can be rewritten as

UBk = L−1I′k = Mk, (39)

where Mk is a KN ×N matrix comprised of block-wise col-
umn k of matrix L−1. By considering the block partition of
L using submatrices of dimensions N ×N , we can derive the
following relationship at the kth node⎡⎢⎢⎢⎢⎣

L11 0N×N · · · 0N×N

L21 L22 · · · 0N×N

...
...

. . .
...

LK1 LK2 · · · LKK

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
M1k

M2k

...

MKk

⎤⎥⎥⎥⎥⎦ = I′k, (40)

being the diagonal blocks Lkk, k = 1, . . . ,K, lower triangular
matrices. Applying forward elimination in (40), we obtain

� Mkk = (Lkk)
−1

� Mjk = 0N×N , for j < k

� Mjk = −(Ljj)
−1

j−1∑
p=k

LjpMpk, for j > k.

It should be noted that the inverse matrices needed to compute
Mjk can be calculated in a similar way: taking into account that
the inverse of a lower triangular matrix is also lower triangular,
the inverse of matrix Lkk for k = 1, . . . ,K, is computed by
means of

Lkk(Lkk)
−1 =

⎡⎢⎢⎢⎢⎣
Lkk,11 0 · · · 0

Lkk,21 Lkk,22 · · · 0
...

...
. . .

...

Lkk,N1 Lkk,N2 · · · Lkk,NN

⎤⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎣
Mkk,11 0 · · · 0

Mkk,21 Mkk,22 · · · 0
...

...
. . .

...

Mkk,N1 Mkk,N2 · · · Mkk,NN

⎤⎥⎥⎥⎥⎦ = IN ,

(41)

resulting in
� Mkk,jj = 1/Lkk,jj ,

� Mkk,ij = − 1

Lkk,ii

i−1∑
p=j

Lkk,ipMkk,pj , for i > j.

The values of Bk can be recursively calculated taking into
account that U is an upper triangular matrix. Thus, from (39)
the following system is solved at the kth node⎡⎢⎢⎢⎢⎣

U11 U12 · · · U1K

0N×N U22 · · · U2K

...
...

. . .
...

0N×N 0N×N · · · UKK

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
B1k

B2k

...

BKk

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
M1k

M2k

...

MKk

⎤⎥⎥⎥⎥⎦ , (42)

where
� BKk = U−1

KKMKk,
� Bpk = U−1

pp

(
Mpk −∑K

j=p+1 UpjBjk

)
, for p < K.

Notice that the computation of matrices Bk through this
strategy involves the inversion of lower and upper triangular
matrices of dimensions N ×N . We will analyze in Section V
the total number of operations per node involved, but at a first
glance we can state that will depend on O(N3). In this sense,
this method will be efficient for small projection orders of the
AP algorithm.

C. S3: Strategy Based on Matrix Inversion Lemma

Although in the two previous methods each node has to
calculate only its corresponding block-wise column of matrix
B, this last strategy consider the calculation of the entire matrix
B at each node. The way that matrixA is formed at each iteration
allows for the use of the matrix inversion lemma, reducing the
computation cost of inverting A and, consequently, the cost
of obtaining B. In the following we will use the discrete-time
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TABLE II
SUMMARY OF THE NUMBER OF MULTIPLICATIONS TO OBTAIN B OR Bk DEPENDING ON THE STRATEGY. DI STANDS FOR DIRECT INVERSION OF MATRIX B.

A TYPICAL CASE WITH N = 5 AND K = 4 IS CONSIDERED FOR COMPARISON

index n since this third strategy is recursive. Following A(n) =
VT (n)V(n), we can express A(n) from A(n− 1) as

A(n) = A(n− 1)

+V′(n)[V′(n)]T −V′(n− L)[V′(n− L)]T

= A(n− 1)

+
[
V′(n) V′(n− L)

]
D

[
V′(n) V′(n− L)

]T
= A(n− 1) + F(n)DFT (n), (43)

where

F(n) =
[
V′(n) V′(n− L)

]
, (44)

and V′(n) is a matrix of dimensions KN ×K defined as

V′(n) =

⎡⎢⎢⎢⎢⎣
v′

11(n) v′
21(n) · · · v′

K1(n)

v′
12(n) v′

22(n) · · · v′
K2(n)

...
...

. . .
...

v′
1K(n) v′

2K(n) · · · v′
KK(n)

⎤⎥⎥⎥⎥⎦ , (45)

wherev′
jk(n) =

[
vjk(n), vjk(n− 1), . . . , vjk(n−N + 1)

]T
,

that is, v′
jk(n) is the same vector as vjk(n) in (5) but of length

N instead of L, and whose elements can be computed at each
node as said before. D is a 2K × 2K matrix defined as:

D =

[
IK 0K×K

0K×K −IK

]
. (46)

Therefore, we can use the matrix inversion lemma on expres-
sion (43) and compute B(n) from B(n− 1) as follows:

B(n) = B(n− 1)

−B(n− 1)F(n)[D+ F(n)TB(n− 1)F(n)]−1

× F(n)TB(n− 1), (47)

where the dimensions of the matrix to invert are 2K × 2K and
do not depend on the projection order, N . Notice that the whole
matrix B is computed at each node in a similar way that could
be computed once by the centralized MFxAP algorithm, thus,
this cannot be considered a specific computation of Bk at each
node. However, we propose this method because it is an efficient
solution when the number of nodes K is small, as we will show
in Section V.

V. COMPUTATIONAL COMPLEXITY

In this section we will evaluate the computational complexity
of the three proposed strategies in terms of the number of

multiplications per time iteration n at each node. Since the only
difference among them is the calculation of the specific block
Bk or the whole matrix B, depending on the strategy, we will
consider only the number of multiplications to obtain Bk or B.
The details on how the number of multiplications have been
obtained for each method are given in the Appendix.

The computational cost of the three strategies in terms of mul-
tiplications per iteration is summarized in Table II, together with
the cost to obtain matrix B by direct inversion (DI) of A, which
needs O((KN)3) multiplications. When O(n3) multiplications
are involved, a practical number of 2n3 is considered. For ease
of comparison, a typical case has been added in the third column
with projection order N = 5 and K = 4 single-channel nodes.

Since the complexity of the three strategies depends on bothN
and K, Fig. 2 and 3 illustrate their impact on the computational
burden of the distributed controller. Fig. 2 shows the number
of multiplications required for a projection order ranging from
N = 1 to N = 10 over an acoustic network formed by (a)
K = 2 nodes and (b)K = 8 nodes. For projection orders higher
than N = 3, a computational saving with respect to the direct
inversion is achieved by all the strategies. Moreover, for large
values of N and a small ASN (Fig. 2(a)), the computation cost
required by S3 is significantly lower than for strategies S1 and S2.
However, for medium size ASNs (Fig. 2(b)), the three strategies
show a comparable number of operations, but significantly lower
than the direct inversion.

Fig. 3 illustrates the number of multiplications required for
different sizes of the acoustic network, ranging from K = 1 to
K = 10 nodes for projection orders (a) N = 2 and (b) N = 5.
For a small projection order (Fig. 3(a)), it can be noticed that
strategy S3 has a computational requirement higher than that of
the direct inversion method. On the contrary, for high projection
orders, Fig. 3(b) shows that all the proposed approaches provide
a significant computational saving with respect to the direct
inversion method.

In summary, for N ≥ 3, the three proposed strategies have
lower computational requirements than the DI method, whereas
for N = 2, strategy S3 is not a good option. On the other hand,
strategy S3 exhibits the best performance for high values of N .
Strategies S1 and S2 always achieve a better performance than
the DI method, but the cost of S2 is always smaller than that of
S1 for all the combinations of K and N considered.

VI. SIMULATION RESULTS

In this section we present the numerical simulations carried
out to evaluate the performance of the proposed EFxAP algo-
rithm compared to two previous approximated versions of the
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Fig. 2. Computational complexity in terms of multiplications per iteration at each node for the three strategies and the direct inversion versus the projection order
N over (a) a two-node ASN and (b) an eight-node ASN.

Fig. 3. Computational complexity in terms of multiplications per iteration at each node for the three strategies and the direct inversion versus the number of
nodes, K, for projection orders (a) N = 2 and (b) N = 5.

distributed AP algorithm, the DFxAP [16] and the DFxAPL [15],
and to the distributed multiple error FxLMS (DMEFxLMS) [14].
Since the three strategies, S1, S2 and S3, achieve the same
mathematical solution, the fastest strategy S2 has been imple-
mented in the simulations. Three different ASNs have been
simulated comprising one node (K = 1), two nodes (K = 2),
and four nodes (K = 4). Their setting of loudspeakers and
sensors is similar to that described in [14], [16], and a sketch
of the transducers is represented in Fig. 4. All the simulated
ASNs use real acoustic responses measured inside the listening
room of the Audio Processing Laboratory of the Institute of
Telecommunications and Multimedia Applications (iTEAM).
These responses have been modeled as FIR filters of M = 256
coefficients with a sampling rate of 2 kHz.

The ASN is deployed following a ring topology and makes use
of incremental communication as shown in Fig. 1. The reference
signal (unwanted noise) of the ANC system is a Gaussian noise

of zero mean and unit variance that is generated by a loudspeaker
located 2 meters away from both the secondary loudspeakers
and the error microphones. The adaptive filters at each node
have a length of L = 150 coefficients. The step size for each
configuration and adaptive algorithm has been set by trial and
error as the value that gives the fastest convergence.

A. Performance of the EFxAP Algorithm

We assume in this subsection that the underlying commu-
nication network does not suffer from any data rate or latency
constraint. We also assume that the processing units of each node
are powerful enough to run all the distributed algorithms in real
time. The performance of the EFxAP and the other adaptive
algorithms used for comparison is evaluated in terms of the
instantaneous relative residual sound level at each node,SLk(n),
defined as the ratio in dB between the instantaneous estimated
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Fig. 4. Sketch of the nodes used in the experiments. Nodes selected for each
ASN are indicated.

Fig. 5. Relative residual sound level obtained using a one-node ASN for the
four algorithms considered with N = 2.

error power with and without the application of the active noise
controller [16],

SLk(n) = 10 log10

[
e2k(n)

d2k(n)

]
, (48)

where dk(n) is the signal measured by the microphone of the
kth node when the ANC system is off, and ek(n) is the signal
measured at the same microphone when the ANC system is on.
In all the figures, the SLk(n) is depicted versus the number
of iterations providing the learning curves for each node, which
have been averaged over 30 independent runs for each algorithm.

The first set of simulations is carried out considering only
one node, K = 1, that is, one microphone and one loudspeaker,
and can be seen as a baseline system for the other two network
configurations. Fig. 5 shows the SL obtained by the four al-
gorithms for this system and a small projection order, N = 2.
As it might be expected, the EFxAP and the DFxAP exhibit
equal performance since both algorithms are equivalent in a
single node system. Furthermore, they exhibit a convergence
behavior comparatively faster than both the DMEFxLMS and
the DFxAPL, and a slightly lower final residual noise as well.

A second simulation using the two-node ASN of Fig. 4 has
been carried out. Fig. 6 plots the average ofSL1(n) for projection

orders (a)N = 2 and (b)N = 5. The results obtained by the four
algorithms in the two nodes of the network are very similar, thus
only the results corresponding to the first node are shown. It can
be appreciated that the EFxAP algorithm outperforms the other
three algorithms in the transient state for both projection orders,
although its improvement in the transient state for order N = 5
is even more relevant (Fig. 6(b)). Regarding the noise reduction
achieved at the steady state by the four algorithms, the DFxAP
shows a similar value to the EFxAP, whereas the DFxAPL and
DMEFxLMS algorithms exhibit a much lower performance.

Finally, the SL curves for the first and fourth node of a four-
node ASN are depicted in Fig. 7 forN = 2 and Fig. 8 forN = 5.
The behavior is very similar to that observed for the two-node
ASN in the sense that the EFxAP outperforms the rest of the
algorithms for all the nodes in both transient and steady state
states. It is worth mentioning that the DMEFxLMS performance
worsens compared to the two-node ASN curve shown in Fig. 6.
On the other hand, the learning curves of the DFxAPL fall close
to the EFxAP at the first node of the network (Fig. 7(a) and
Fig. 8(a)). However, the opposite occurs at the fourth node where
it is the other approximated method (DFxAP) which exhibits a
performance close to the EFxAP. Therefore, we can conclude
that both DFxAP and DFxAPL are not as robust as the proposed
EFxAP, since their performance not only depend on the network
size and the projection order, but also on the particular acoustic
scenario.

B. Discussion on the Conditions for Real Time Processing

As said before, all the previous results have been obtained
in the case of an “ideal” scenario where the data rate and
latency of the underlying network fulfill the conditions for the
EFxAP to work in real time. In this subsection we discuss the
effect of the network latency, understood as the required time to
communicate between two adjacent nodes, on the algorithm’s
performance. For this purpose, the sequence of operations to
run the EFxAP algorithm over ASNs composed by K nodes
is described in Algorithm 1. The number of multiplications
required for each step is indicated as a comment at the end of
the respective line.

Note that A(n) computation in line 17 can be recursively
computed as in (43), and that although strategy S3 does not
needA(n) to computeB(n) recursively, it must compute matrix
F(n) defined in (44). The number of multiplications in line 17
are calculated from (43) taking into account that most of the data
of matrixV′(n) in (45) are available from the previous iteration.
The number of multiplications for the rest of the operations in
Algorithm 1 are straightforwardly estimated from the matrix-
vector or matrix-matrix products involved.

The operations carried out by each node at one iteration start
in line 7 (lines 5 and 6 are only assignments) and finish in line 25.
After line 25, node k transmits its locally updated global weight
vector w(k)(n) to node k + 1. Once all the nodes have updated
their local version of the global weight vector and k = K, the
for loop of lines 29–32 describes the dissemination of the global
weight vectorw(n) from nodeK to the rest of the nodes through
incremental communication.



FERRER et al.: AFFINE PROJECTION ALGORITHM OVER ACOUSTIC SENSOR NETWORKS FOR ACTIVE NOISE CONTROL 457

Fig. 6. Relative residual sound level obtained using a two-node ASN for the four algorithms considering only the first node with (a) N = 2 and (b) N = 5.

Fig. 7. Relative residual sound level obtained using a four-node ASN with N = 2 at the first node (a) and at the fourth node (b).

Fig. 8. Relative residual sound level obtained using a four-node ASN for the four algorithms considered with N = 5 at the first node (a) and at the fourth
node (b).
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Algorithm 1: EFxAP Algorithm.

1: Initialize: w(0) = w(k)(0) = [0, . . . , 0]T , ∀k;
X(0) = 0L×M

2: n = 1 � Start sample time
3: repeat
4: for all Node 1 ≤ k ≤ K do
5: Read sample x(n)
6: wk(n) = [w(n− 1)](L(k−1)+1:Lk)

7: yk(n) = wT
k (n)x(n) � L

8: for all 1 ≤ j ≤ K do
9: for all 1 ≤ k′ ≤ K do

10: vjk′(n) = X(n)ĥjk′ � KM
11: Vjk′(n) = [vjk′(n) [Vjk′(n− 1)](:,1:(N−1))]
12: end for
13: end for
14: Obtain sample ek(n) from the kth microphone
15: ek(n) = [ek(n) ek(n− 1) · · · ek(n−N + 1)]T

16: V(n) =

⎡⎢⎢⎢⎢⎣
V11(n) V12(n) · · · V1K(n)

V21(n) V22(n) · · · V2K(n)
...

... · · · ...)

VK1(n) VK2(n) · · · VKK(n)

⎤⎥⎥⎥⎥⎦
17: A(n) = [VT (n)V(n) + δIKN ] � (1 + 2K)(KN)2

18: if S1 or S2 then
19: Compute Bk(n) � Multipl.: see Table II
20: else � S3 or DI cases
21: Compute B(n) � Multipl.: see Table II
22: end if
23: � Update global weight vector at node k
24: � Assume w(0)(n) = w(n− 1) for k = 1
25: w(k)(n) = w(k−1)(n)− μV(n)Bk(n)ek(n)
26: � L(KN + (KN)2)
27: end for
28: w(n) = w(K)(n) � Global weight vector
29: for all Node 1 ≤ k ≤ (K − 1) do
30: � Disseminate w(n) throughout the network
31: w(k)(n) = w(n)
32: end for
33: n = n+ 1 � Update sample time
34: until convergence is achieved

In order to analyze the conditions for real time processing,
we have measured the execution times of the operations carried
out at each node from lines 7 to 25 of Algorithm 1, without
considering the communication time. Notice that the execution
times will strongly depend on the hardware and software used.
As an example, Table III shows the execution times Tl in μs for
the same combinations of number of nodes and projection orders
that have been used in Section VI-A. Sub-index l refers to the op-
eration in the lth line of Algorithm 1. They have been measured
in a personal computer running Windows 7 Enterprise (SP 1)
equipped with an Intel Core i7 @ processor 2.8GHz and 8GB
of RAM, and using Matlab software version 2018b. Execution
times have been averaged over 100,000 iterations, discarding

TABLE III
EXECUTION TIMES (µS) OF THE EFXAP ALGORITHM. SUB-INDEX l IN Tl

REFERS TO THE OPERATION IN THE lth LINE OF ALGORITHM 1

those 5,000 that exhibit higher values, as they were considered
to be due to unwanted interruptions from the operating system.

The first row in Table III shows the execution time T7−17 to
carry out operations from lines 7 to 17 as a whole. The next four
rows show the execution times taken by S1 and S2 strategies
to compute Bk(n), and the execution times taken by S3 and
the DI method to compute B(n), respectively. The last row of
Table III shows the execution time T25 of the filter updating
carried out in line 25 of Algorithm 1. As it can be seen, for a
particular combination of number of nodes K and projection
order N (comparisons along a column), the DI method always
requires the highest computation time compared to S1-S3, except
for the case ofK = 1 (one node), which is equal to the other three
methods. Additionally, S3 usually requires a higher computation
time compared to S1 and S2 strategies. On the other hand, notice
that the times T19 and T21 taken by a particular strategy for dif-
ferent values ofK andN (comparisons along a row), do not vary
accordingly to the required number of operations calculated in
Table II. As said before, the execution times extremely depend on
the hardware and software used, thus the only valid comparison
in Table III is between strategies for a same value of K and N .

Finally, we have grouped the executions times due to oper-
ations that a node can perform with local signals and data as
Tproc, as shown in the first column of Table III. Note that its
value will depend on K, N and the adopted strategy (lines 19
or 21). We have also denoted by Tup the execution time of line
25 where the filter is updated, separated from Tproc, because
at this point current node k needs the value w(k−1)(n) from
the previous node to perform the operation. At this point, we
introduce the effect of the network latency as a third execution
time denoted by Ttx, which is the time required to communicate
the data between adjacent nodes.

To better understand the sequencing of operations at each node
as well as the sequencing of the whole network, Fig. 9 shows the
time diagram of Algorithm 1 of an acoustic network composed
of k nodes, where times Tproc, Tup and Ttx are depicted in
blue, red and green color respectively. We assume that all the
nodes in the network have similar characteristics, thus Tproc,
Tup and Ttx are depicted of the same duration independently
of the node. As shown in Fig. 9, the total execution time of
the distributed EFxAP algorithm can be computed as TTotal =
Tproc +K(Tup + Ttx) + (K − 1)Ttx. Considering the execu-
tion times shown for example in Table III for the case of K = 4
and N = 5, Tproc = 19.3 μs if the S2 strategy is adopted. To
estimate Ttx, consider that the adaptive filters have L = 150
coefficients, so the global vector has LK = 600 elements that
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Fig. 9. Time diagram of Algorithm 1 for an ASN composed of k nodes.

have to be transmitted between consecutive nodes. If any element
is coded with 16 bits and a 100Mbits/s network is used, then
Ttx = 600 · 16/108 = 96μs. Therefore, the total execution time
for each iteration would be TTotal = 19.3 + 4 · (4.7 + 96) + 3 ·
96 = 710.1 μs.

If TTotal ≤ Ts, being Ts the sampling time, the EFxAP algo-
rithm will run in real time and the initial hypotheses assumed
in terms of latency and data-rate constraints will be fulfilled.
For the example above where TTotal = 710.1 μs, this could be
accomplished using a sampling rate below 1408 Hz, which is
usually enough for ANC applications. Otherwise, if TTotal >
Ts, the EFxAP algorithm would be forced to perform the filter
updating every two, three or more sampling times. Taking the
same approach as in [14] and assuming homogeneous nodes,
the latency can be modeled through a constant parameter p such
that pTs is the time to transmit data between two consecutive
nodes, that is, Ttx = pTs, where p is a small positive integer
(p = 1, 2, 3, . . .). Therefore, a node receives the information
from its precedent node every KpTs s as it can be seen from
Fig. 9, i.e., KpTs is the time required to complete a whole
round of the incremental network. It was shown in [14] that
the convergence speed of the DMEFxLMS algorithm decreased
with the value of p, or that even it diverged when p was large
enough. With this approach in mind, we have tested the EFxAP
and the rest of the distributed AP algorithms of Section VI-A
assuming the global weight vectorw(n) is updated everyKpTs s
instead of every Ts s, and we have obtained similar results to
those shown in [14]: all the algorithms degraded in a similar way
showing a slower convergence, or even diverging, as p increases.
However, it can be stated that strategies S1-S3 proposed in this
work will obtain better performance than the direct inversion of
A(n) for the same experienced latency since their Tproc values
will always be shorter.

Summarizing the influence of the network latency on the
distributed EFxAP algorithm, for a given combination of K,
N and adopted strategy, if the communication time between
nodes is such that the total execution time TTotal ≤ Ts, the
EFxAP algorithm will run on real time and it will achieve
the performance results shown in Section VI-A. Otherwise, its
convergence will become slower, or even will be put at risk, but

the same effect would experience any distributed AP-type and
LMS-type adaptive algorithm running over the same ASN.

VII. CONCLUSION

In this paper, an exact distributed version of the centralized
multichannel filtered-x AP algorithm for ANC over acoustic
networks has been presented. Denoted by EFxAP, this algorithm
achieves the same solution as the centralized algorithm over
ASNs with a ring topology and incremental communication,
providing that there are no latency or data rate constraints in
the underlying network. We have also presented three different
strategies to reduce the computational burden of the EFxAP at
each node: the Gauss elimination (S1), the block LU factoriza-
tion (S2) and the matrix inversion lemma (S3). The first two
strategies, S1 and S2, distribute the computational burden due
to a matrix inversion of size KN ×KN among the network
nodes, whereas the S3 strategy reduces the number of operations
required at each node to compute the full inverse matrix. We
have detailed the computational cost of every strategy and we
have concluded that for projections orders such that N ≥ 3, all
the strategies require a significant lower number of operations
compared to the direct matrix inversion. In order to evaluate
the performance of the EFxAP for ANC applications, we have
carried out numerical experiments comparing the sound level re-
duction obtained by the EFxAP to that achieved by two previous
approximated distributed AP algorithms and by the distributed
LMS solution. It has been shown that the proposed EFxAP
exhibits the best performance in transient and steady states for
ASNs with 1, 2 and 4 nodes, and for low and high projection
orders as well. Finally, we have discussed the effect of the
network latency, understood as the required communication time
between consecutive nodes, on the EFxAP algorithm concluding
that, for the same latency constraints, the proposed strategies will
perform better than the direct inversion of a full matrix.

APPENDIX

The number of operations required by each strategy is derived
in the following.

A. Computations Required by S1

In the case of the EFxAP solution obtained by Gaussian
elimination, the number of multiplications is derived from the
method developed in Section IV-A:
� Block matrix reduction: each lower block needs 2N3 mul-

tiplications and one matrix inversion of sizeN ×N , which
means 2N3(k − 1)2 +O(N3) multiplications. However,
since the same matrix multiplication is repeated at each
column or row, its cost is halved resulting inN3(k − 1)2 +
O(N3) multiplications.

� Considering all the reductions from K to 2 yields:

(K − 1)O(N3) + 2N3
K∑

k=2

(k − 1)2
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� The computation of the matrices Bk requires the follow-
ing number of operations: B1k requires O(N3) multipli-
cations, B2k requires O(N3) + 2N3 and so on. Conse-
quently Bpk requires O(N3) + (p− 1)2N3. Thus, for the
K matrices Bpk we need KO(N3) + 2N3

∑K
k=2(k − 1)

multiplications.
Summing up all the above operations, we can state the fol-

lowing number of multiplications for strategy S1:

(2K − 1)O(N3) + 2N3
K∑

k=2

(
(k − 1)2 + (k − 1)

)
.

The sum term is equivalent to
∑K−1

k=1 (k(k + 1)), which once
summed up simplifies the above formula as

(2K − 1)O(N3) +
2

3
N3K(K2 − 1).

B. Computations Required by S2

Considering now strategy S2, its computational cost at each
node is derived from Section IV-B:
� LU decomposition: (1/3)(KN)3 using Cholesky.
� Mk matrix calculation: considering the multiplications

needed by the node with the highest computational cost
requirements (first node):

K

[
1 +

1

2

N∑
m=2

(m(m+ 1))

]
+ ((K − 1)(K + 2)/2)N3

� Bk matrix calculation requires

K

[
1 +

1

2

N∑
m=2

(m(m+ 1))

]
+ (K(K + 1)/2)N3

multiplications.
Therefore, the total number of multiplications required at each

node for strategy S2 is given by

1

3
(KN)3 + 2K

[
1 +

1

2

N∑
m=2

(m(m+ 1))

]

+
1

2
N3((K − 1)(K + 2) +K(K + 1)),

and after executing the sum term, it can be expressed as

1

3
(KN)3 +

1

3
KN(N + 1)(N + 2) +N3(K2 +K − 1).

C. Computations Required by S3

In the case of the EFxAP solution based on strategy in
Section IV-C, each node calculates the whole inverse matrix
B(n) using the matrix inversion lemma. This method seems
convenient for small networks with only a few nodes and an AP
algorithm with high projection order as it computes the inverse
of a 2K × 2K matrix instead of a matrix of size KN ×KN .
On the other hand, a precise computation of the first value of
B(n) is required since it is a recursive method.

Derived from equations in Section IV-C, the cost of this
method is given by O((2K)3) +O(2K3N2) +O(4K3N)

where the second term corresponds to the matrix product of
FT (n)B(n− 1) and the third term to the product of the resulting
2K ×KN matrix with F(n).
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