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1 Introduction

Quantum computing is little by little turning into a realistic technology. Huge advances started to
take place toward the so-called quantum advantage in the 2000s, departing mainly from the first
5-qbit nuclear magnetic resonance computer [1], Shor’s theorem proof using photonic qbits [2] and
quantum entanglement [3], and the implementation of Deutsch’s algorithm in a clustered quantum
computer [4]. Today, there are quantum processors such as superconducting system Rigetti-19Q [5],
with 19 qbits, capable of performing unsupervised learning [6]; superconducting chip Intel Tangle
Lake [7], with 49 qbits; Bristlecone [8], from Google, with 72 qbits, which follows the physics of
Google’s previous 9 qbits linear array technology; 127-qbit quantum processor IBM Eagle [9]; or,
from the University of Science and Technology of China (USTC), we find photonic quantum pro-
cessor Jiuzhang [10], which reached quantum advantage by implementing gaussian boson sampling
on 76 photons; later with Jiuzhang 2.0 [11] achieving 66 qbits, in which gaussian boson sampling
is implemented to detect 113 photons from a 144-mode optical interferometer; or superconducting
quantum processor Zuchongzi, with a system scale of up to 60 qbits [12], among others. We are
nevertheless on the NISQ (noisy intermediate-scale quantum) era [13], in which one of the goals of
the scientific community is to find algorithms which are realistic and show quantum advantage over
classical schemes (the often called quantum supremacy [14] in some contexts), as well as to achieve
experimental practicability. See, for instance, the paper [15] as a relevant step towards quantum
advantage in training deep generative models by using quantum annealers.

Our main objects of analysis, algorithms, can be briefly defined as recipes for performing specific
tasks, with its corresponding degree of complexity. Historically and formally, one of the fundamental
models for them are the so-called Turing machines, due to Alan M. Turing, who proposed the famous
question Can Machines Think? in his famous paper [16]. Some years before, in 1936, he published
[17], responding the 1900 Hilbert problems. In such a paper he described the well known universal
computing machines, later known as the aforementioned Turing machines. In 1980, P. Benioff [18]
used Turing’s work to analyze the theoretical feasibility of quantum computing. In the cited paper,
we find the first attempt to demonstrate that reversible nature of quantum computing, as long as
dissipated energy is arbitrarily small, is possible. In 1982, R. Feynman [19] proved that quantum
mechanics cannot be simulated on classical computers. Soon after that, D. Deutsch [20] described
a quantum Turing machine and created an algorithm thought to run on a quantum computer. Fur-
thermore, it is reasonable to locate one of the main turning points of quantum computing history,
as we know it today, in 1994, when Peter Shor provided an efficient quantum algorithm for primes
factorization [21]. One year later, C. Monroe and D. Wineland, among others, published a work [22]
which marked the first demostration of a quantum logic gate, namely the two-qbit controlled-NOT
or CNOT. In 1996, L. Grover had a great contribution to the sub-field of search problems, with the
design of the so-called Grover’s algorithm [23]. In fact, after such a publication, a remarkable interest
in fabricating a quantum computer was put into motion.

From all this background, quantum computing has matured, namely its sub-field of quantum al-
gorithms, with direct applications in simulation, optimization and search, machine learning, and
cryptography (see overview from [24]). For instance, today’s algorithms have reached a high degree
of implementation in the study of statics and dynamics of chemical and physical systems, e.g. by
obtaining molecular energies via quantum phase estimation on a quantum computer [25], or through
the construction of electronic Hamiltonians [26]. On the other hand, the field of machine learning
has found a great advantage within the quantum algorithms, either supervised (e.g., quantum Kernel
estimation [27], or supervised quantum learning without measurements [28]), unsupervised (e.g., for
clustering [29] [30] or generative modelling [31]), reinforcement learning (e.g., Markov decision process
[32]), or genetic algorithms [33]. With regard to statistical learning theory and quantum computing,
there have been also remarkable advances in hybrid quantum-classical algorithms, such as quantum-

1



assisted machine learning in near-term quantum computers [34], or generative modelling approachs
[35]. Furthermore, we find relevant applications in singular value decomposition [36], or linear system
solving [37]. In [38] and [39], deeper reviews of quantum algorithms and its applications are presented.

However, there is a need of realization and interpretation of new algorithms that provide new points of
view, or even new algorithmic structures, for well-known physical systems whose dynamics, in or out
of equilibrium, yields interesting properties, and from which new applications can be developed. In
this context, we focus on quantum many-body physical algorithms, namely in open systems; and our
goal is to provide a new and feasible algorithm which could be included in the aforementioned list [38].

Our approach links to a family of quantum algorithms based on the evolution in imaginary time.
Imaginary time evolution is a powerful tool to study numerous systems, in particular quantum sys-
tems. In turn, in the context of quantum systems, it has been used to study finite temperature
properties and dissipative dynamics [40, 41, 42], finding the ground state wavefunction [43], and for
real time dynamics [44, 45]. On the other hand, it is a well known issue in quantum algorithms that
only unitary operators can be implemented as quantum gates [46]. Once said that, note that for
a quantum system with propagator Ut = exp[−iHt/ℏ] the corresponding propagator in imaginary
time, τ = it, is Uτ = exp[−Hτ/ℏ]. While the first one is unitary, the second one is not. As we have
just pointed out, since the latter is non-unitary, it cannot be written in terms of unitary gates, and
thus directly realized with a quantum circuit (see some strategies, like hybrid classical-quantum, e.g.
[48, 47, 49, 50, 51, 53, 52, 54, 55]; and see also [56]). One option would be then to consider that the
evolution takes place in imaginary time, and use the results for the dissipative system. This is not
the path we follow in the rest of this work given that, instead, we will pursue to use quantum kinetic
Ising models as in [57], as we discuss below.

On the other hand, our algorithm also links to a family of procedures related to the diagonalization
of standard strongly correlated Hamiltonians, departing from previous works mainly related to Ising
Hamiltonians [58] [59], in order to give a quantum extension, in terms of density matrices [57], of
such a diagonalization setting. Here is where a relevant mathematical object, essential in our work,
shows up: quantum Master’s equation. This is the approach we study in this work.

As a central element of our study, Master equations are mathematical tools used to study out-of-
equilibrium dynamics of stochastic systems [60]. They fulfill the so-called detailed balance condition,
which provides us with a specific symmetry in terms of the transition probabilities of the correspond-
ing states in the corresponding lattice sites. A traditional approach has been to write its quantum
counterpart, known as quantum Master equations [61] [62], and to use them to study Markovian dy-
namics of open systems, mainly, in two directions: to model actual quantum systems; and as a trick
to solve the associated classical out-of-equilibrium dynamics. Such quantum Master equations have
turned into a guideline for the design of new open systems for quantum simulations and quantum
state engineering. See [57] as an example.

In terms of implementation, we provide a simulation scheme of one-dimensional antiferromagnetic
Ising model with transverse external magnetic field, providing a quantum circuit which performs
Hamiltonian diagonalization based on [58]. Furthermore, we carry out the analytical development
that drives us to diagonalization implementation from [58] or [59], but adapted to the scenario of
Glauber Master equation [63]. With those objectives in mind and before implementation, we firstly
focus the diagonalization approach on the classical 1D Glauber model, and then we extend it through
[57], in order to provide the quantum simulation with the Master operator that results from one-
dimensional Glauber’s formulation and its density matrix version. In other words, we look for the
quantum gates that disentangle Ising Hamiltonian from [59] and [58], Glauber Master operator from
[63] and [64], and Master operator, extended through density matrices, from [57], finding at the end
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the whole energies spectra.

All in all, we have two objectives: on the one hand, to implement in a quantum algorithm two
possible ways of diagonalizing an Ising Hamiltonian with two different contexts (with external mag-
netic field, like in [58], and with thermal out-of-equilibrium dynamics, like in [64]); and, on the other
hand, to explore to which extent we are capable of using the aforementioned quantum kinetic model,
with its corresponding algorithm, to solve out-of-equilibrium complex problems within a context of
classical dynamics. This last point is the one which we intend to include in the list of NISQ algo-
rithms implemented with current quantum computers.

The structure of the present work goes as follows: in section 2, we formulate 1D Glauber-Ising
model, departing from the original formulation from Glauber [63] and considering later Pauli matri-
ces algebra, in order to provide, in next subsections, an analytical diagonalization which drives us to
a interpretation of the system states through fermionic occupation in the corresponding momentum
modes, once we reached the diagonalized Hamiltonian; in section 3, with a similar approach with
regard to the diagonalization procedure, we apply the extension of the previous model towards the
description in terms of density matrices using a Lindblad formulation, so that we do not only study
populations of the quantum system but also coherences; section 4 is devoted to the implementation
of the diagonalization quantum circuit and the analysis of simulation results, with the focus on the
Ising model from [58], in which external magnetic field is considered; and section 5 consists of a
summary of the conclusions and the outlook from our work. At the end of the document, there are
several appendices which include computations from the aforementioned analytical diagonalizations,
quantum gates decomposition for the implemented quantum circuit, and a final appendix in which
some relevant codes of our simulations and calculations are exposed.

We must mention that the present approach, as pointed out in [59], can be interpreted as an exten-
sion of the renormalization group method given by Wilson in 1975 [65]. In such an approach, simple
effective Hamiltonians describing low energy states from a given model are obtained through several
transformations in which high energy states are removed. In our case, on the other hand, we aim to
find a unitary operator which transforms a given Hamiltonian into a diagonalized or non-interacting
Hamiltonian, and from it we obtain the whole desired spectrum. As it is said in [59], with the
approach we propose here:

(...) We do not loose the physics of the high energy modes in the way; (...) it can be implemented
experimentally. Of course, our method only works exactly for the small set of integrable problems, but
very similar approximate transformations can in principle be found for any system whose effective
low energy physics is well described by quasi-particles.

More generally, strongly correlated quantum many-body systems in the context of quantum sim-
ulation are nowadays deeply studied since it is not hard to find immediate and practical benefit from
it: finding the whole spectrum of certain correlated many-body models let us study arbitrary thermal
states, at any temperature, as well as the dynamics of such states at any time instant. That is, it
has physical relevance in its own right. Therefore, finding the quantum circuit which transforms the
original Hamiltonian into a diagonalized Hamiltonian with non-interacting terms will lead us to such
a desired situation in which we know the entire energy spectrum, in rather simple computational
terms. We find references looking for this scheme with the transverse Ising model [58], as well as the
Kitaev’s Hamiltonian on the honey-comb lattices and the Hamiltonians corresponding to stabilizer
states [59], among others. We go further, and extend their studies to non-equilibrium states, through
the corresponding one-dimensional Glauber Master equation.
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2 One-dimensional Glauber-Ising model

In this section we review the kinetic Ising model or Glauber-Ising model, following closely R.
Glauber’s seminal paper [63]. For that reason, let us consider a set of N particles arranged in a
regularly spaced one dimensional array with periodic boundary conditions (PBC), i.e., an N -particle
ring. We can assume that each i-th particle interacts with a reservoir at temperature T which
causes its spin to flip randomly between two values, σi = ±1, at a known constant rate. Also it
has a tendency to align with its neighbors. That is, each variable with two values, at each site i,
is not statistically independent from the neighbors. This can be done assuming that the transition
probabilities of the individual spins depend on the values of its neighbors spins, as we shall see below.

There are 2N possible configurations of the system, σ = (σ1, . . . , σN). Let us call P (σ, t) the proba-
bility to find the system in configuration σ at time t. Let us call ωi(σi) or ωi(σ) the rate (probability
per unit time) that spin i-th flips from ±1 to ∓1 while the rest are fixed. Glauber dynamics only
consider one-spin flip at a time. There are generalizations which consider multiple spin flips, but
which we do not consider here. Anyhow, it will be interesting for future research, see e.g. [66] [67]
[68]. To avoid misunderstanding, we emphasize already here that we are still not using Pauli matrices
representation, but later on we will use the z-Pauli matrix as that which has as eigenvectors spin up
or down, and x-Pauli matrix the one that flips from one to the other.

Only from considerations of stochastic processes, for this system one can write the Master equa-
tion for the evolution of the probability of the system to be at configuration σ at time t, P (σ, t),
as

d

dt
P (σ, t) = −

[∑
i

ωi(σi)

]
P (σ, t) +

∑
i

ωi(−σi)P (σ1, . . . ,−σi, . . . , σN , t). (2.1)

The assumption introduced above, i.e., that the spins have a tendency to align, is accomodated if
the transitions rates are

ωi(σi) =
1

2
α

[
1− 1

2
γσi(σi−1 + σi+1)

]
. (2.2)

Then, this gives ωi(σi) = α/2 if the neighbors are antiparallel, ωi(σi) = α(1− γ)/2 if the neighbors
are parallel and σi parallel to them two, and ωi(σi) = α(1 + γ)/2 if the neighbors are parallel and σi
antiparallel to them two. For γ positive, parallel neighbors configurations, in turn antiparallel to σi,
favour spin flips at i-th site. Here, α only gives a time scale.

The original classical Lenz-Ising Hamiltonian is [69, 70]:

H(σ) = −J
N∑
i=1

σiσi+1, (2.3)

where J is an interaction parameter, which can be positive or negative. Notice that H(σ) is simply a
function which takes different values for each configuration, depending on such a parameter J . So far,
σi are the same variables introduced above, i.e., components of a vector describing a N spins 1/2 ring.

As described in [63], one can establish a relationship between the dynamics described up to know
and the Ising model in the following way. The equilibrium probabilities for the Ising model, when in
contact with a large reservoir a temperature T , are given by the Maxwell-Boltzman distribution

Peq(σ) = exp[−H(σ)/kT ]/ZN(β), (2.4)

with k Boltzman constant, β = 1/kT , and ZN(β) the partition function, given by

ZN(β) =
∑
σ

exp[−H(σ)/kT ]. (2.5)
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Now, we impose that the equilibrium final state is that given by the Ising model in equilibrium with
a reservoir at temperature T . That justifies that such equilibrium final states in the studied Ising
model are states Peq(σ) given in (2.4).

The equilibrium for the Glauber dynamics described by the Master equation (2.1) requires by defi-
nition that d

dt
P (σ, t) = 0. This implies that

Peq(σ1, . . . ,−σi, . . . , σN)ω(−σi) = Peq(σ1, . . . , σi, . . . , σN)ω(σi), (2.6)

or
Peq(σ1, . . . ,−σi, . . . , σN)
Peq(σ1, . . . , σi, . . . , σN)

=
ω(σi)

ω(−σi)
=

1− 1
2
γσi(σi−1 + σi+1)

1 + 1
2
γσi(σi−1 + σi+1)

, (2.7)

where we used (2.2). This is the detailed balance condition (DBC) in this system, which is central
for out-of-equilibrium dynamics. On the other hand, note that ratios of probabilities of equilibrium
configurations which differ only in one spin are

Peq(σ1, . . . ,−σi, . . . , σN)
Peq(σ1, . . . , σi, . . . , σN)

=
exp[−(J/kT )σi(σi−1 + σi+1)]

exp[(J/kT )σi(σi−1 + σi+1)]
. (2.8)

Let us use that exp[±x] = cosh(x)± sinh(x) to write

exp[±(J/kT )σi(σi−1 + σi+1)] = cosh((J/kT )(σi−1 + σi+1))± σi sinh((J/kT )(σi−1 + σi+1)), (2.9)

where we have taken into account that cosh(−x) = cosh(x) and that sinh(−x) = − sinh(x) for any
x ∈ C, and then, if σi is negative (σi = −1) the sign of the sinh has to change, while if it is possitive
it does not change. Thus, we can write:

exp[±(J/kT )σi(σi−1 + σi+1)] = cosh((J/kT )(σi−1 + σi+1))[1±
1

2
σi(σi−1+σi+1) tanh(J/kT )], (2.10)

after noticing that σi−1+σi+1 can only be +2, −2 or 0, and using that tanh(−x) = − tanh(x). To get
the correspondence between the dynamics as described by Glauber and the equilibrium described by
the Lenz-Ising model, it suffices to substitue expression (2.10) in (2.8), and take into consideration
(2.7). Therefore, one should take γ = tanh(2J/kT ) = tanh(2βJ) [63]. With all this we have estab-
lished the relation between J , temperature T , and parameter γ, by just identifying gamma with the
other two. To sum up, transition rates, and therefore the whole model, depend on parameters T and
J through γ.

A note on following steps: Now we will consider equation (2.1) as an equation of motion. Before
this we note the following: the diffusion equation which describes for example the probability density
function associated with the position x of a single particle at time t is

∂P (x, t)

∂t
= D∇2P (x, t), (2.11)

with D the diffusion constant and ∇2 the Laplacian differential operator. This is a parabolic partial
differential equation, similar to the heat equation. On the other hand, the Schrödinger equation for
the wave function ψ can be written as

∂ψ(x, t)

∂t
=

iℏ
2M
∇2ψ(x, t). (2.12)

There is a well known and old formal analogy between both equations, with the identification P → ψ
and D → iℏ

2M
. Note that one can also observe this analogy D → ℏ

2M
and t→ it, that is, the evolution

occurs in imaginary time. As pointed out before, we do not follow this approach in the present work.
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2.1 Kinetic Ising model

During this subsection, all considerations are made in a classical context, following [64]. In next
section we will discuss a quantum Master equation which generalizes the classical kinetic models.
Particularly they will have as stationary states the thermal (Boltzmann-Gibbs) states of the related
classical model. These states are of the form

|ψ⟩ =
∑
σ

Peq(σ)|σ⟩ =
1

Z
∑
σ

exp[−βH(σ)]|σ⟩, (2.13)

with |σ⟩ stands for a vector in the Hilbert space representing the configuration of N spins, σ =
(σ1, σ2, · · · , σN). Here H(σ) is the Ising (classical) Hamiltonian. These states are associated to a
classical Kinetic Ising model, and describe the approach to a thermal equilibrium state obeying de-
tailed balance, see equation (2.7).

Let us now rewrite the Master equation, equation (2.1), as a Schrödinger equation. To this end
we write P (σ, t) =

√
Peq(σ)ϕ(σ, t). Then equation (2.1) can be written as

ϕ̇(σ, t) =
∑
i

Peq(σi)
−1/2ω(−σi)Peq(−σi)1/2ϕ(−σi, t)− ω(σi)ϕ(σi, t). (2.14)

We need then to compute, for an arbitrary i ∈ {1, . . . , N}, the expression

Peq(σi)
−1/2ω(−σi)Peq(−σi)1/2 =

[
exp(βJσi(σi−1 + σi+1))

ZN(β)

]−1/2

× α

2
(1 +

γ

2
σi(σi−1 + σi+1))

[
exp(−βJσi(σi−1 + σi+1))

ZN(β)

]1/2
. (2.15)

Observe that, as discussed above,

exp(±βJσi(σi−1 + σi+1)) = cosh(βJ(σi−1 + σi+1))± σi sinh(βJ(σi−1 + σi+1)) (2.16)

= cosh(βJ(σi−1 + σi+1))[1± σi tanh(βJ(σi−1 + σi+1))], (2.17)

where

1± σi tanh(βJ(σi−1 + σi+1)) = 1± σi
(
σi−1 + σi+1

2

)
tanh(2βJ) = 1± γ

2
σi(σi−1 + σi+1), (2.18)

where we have used that γ = tanh(2βJ). Therefore, from (2.15), we obtain that

Peq(σi)
−1/2ω(−σi)Peq(−σi)1/2 =

α

2
(1− γ

2
σi(σi−1 + σi+1))

1/2(1 +
γ

2
σi(σi−1 + σi+1))

1/2 (2.19)

=
α

2

√
1− γ2

4
σ2
i (σi−1 + σi+1)(σi−1 + σi+1) =

α

2

√
1− γ2

4
(2 + 2σi−1σi+1)

=


α
2

if σi−1 = −σi+1

α
2

√
1− γ2 if σi−1 = σi+1.

(2.20)

Note that, since γ = tanh(2βJ), and sech2(x)+tanh2(x) = 1 for any x ∈ R, we have that
√

1− γ2 =
sech(2βJ), just for not losing what are the involved constants about. For this reason, if we define
the system constants

A = A(γ) =

√
1− γ2 + 1

2
, B = B(γ) = 1− A(γ), (2.21)
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thus, we can write Master’s operator as

Wβ =
α

2

N∑
i=1

{[A−Bσi−1σi+1]σ
x
i − [1− γ

2
σi(σi−1 + σi+1)]} =

α

2

N∑
i=1

Wi,β(σ), (2.22)

where we included a σx
i in the first terms since (2.14) is described in terms of ϕ(−σi, t) with regard to

such first term. At this point, such σx
i only means flipping from σi to −σi, and later, when entering

quantum context, this reading will be natural in terms of the corresponding Pauli matrices. This
Master operator can be understood as a classical Hamiltonian (σx and σz are not yet taken as Pauli
matrices, where used notation so far for σz omits its superindex unless it is confusing), in which we
already considered the symmetry given by the Detailed Balance condition. All in all, it yields the
equation:

ϕ̇(σ, t) = Wβϕ(σ, t). (2.23)

Notice that, according to this equation (2.23), diagonalization of this Hamiltonian is equivalent to
solving the Master equation.

2.2 Analytical diagonalization of 1D Glauber’s Master operator

The full diagonalization of the Ising Hamiltonian is possible. This was first introduced by B. U.
Felderhof, and it is an important success on condensed matter physics. For that reason and for its
usefulness in our approach, here we review such results from [64]. Moreover, we are also guided by
work [71], in which practical techniques about diagonalizations of this kind are given.

In order to perform the desired diagonalization of Wβ, we get into a quantum context. In other
words, from now, σj

i in each lattice site i will be the corresponding j-Pauli matrix, for j ∈ {x, y, z}.
We carry out such a diagonalization in three phases: Jordan-Wigner transformation to transform
ladder Pauli operators into fermionic operators, Fourier transform to get into momentum space, and
Bogoliubov rotation between opposite momenta operators in order to give a fully diagonalized Master
operator.

2.2.1 Jordan-Wigner tranformation

Before proceeding, we express (2.22) in terms of raising and lowering spin-1/2 operators. Such raising
and lowering spin operators at site j are

σ±
j =

σy
j ± iσz

j

2
, (2.24)

from which

σy
j = σ+

j + σ−
j , σz

j = −i(σ+
j − σ−

j ), (2.25)

σ−
j σ

+
j =

1

4
((σz

j )
2 + (σy

j )
2 + i[σy

j , σ
z
j ]) =

1

4
(1 + 1 + i(2i)σx

j ) =
1

2
− 1

2
σx
j =⇒ σx

j = 1− 2σ−
j σ

+
j , (2.26)

where we denote 1 as the identity operator (and we will use this notation, unless it is confusing), and
where we used the well-known Pauli matrices commutation relation [σy

j , σ
z
j ] = 2iσx

j . Note that, from
this definition of ladder operators (2.24) before Jordan-Wigner transformation, the physical meaning
is not standard: σ±

j refers to raising and lowering core boson modes (see [71] to get deep in such a
nomenclature) in lattice site j, in X-spin direction.
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Thus, we can now express (2.22) in terms of σ+
j and σ−

j :

Wβ =
α

2

N∑
j=1

{A(1− 2σ−
j σ

+
j ) +B(σ+

j−1 − σ−
j−1)(σ

+
j+1 − σ−

j+1)(1− 2σ−
j σ

+
j )

− (1 +
γ

2
(σ+

j − σ−
j )(σ

+
j+1 + σ+

j−1 − σ−
j+1 − σ−

j−1))}. (2.27)

Now, we express Jordan-Wigner (JW) transformation, which establishes a direct link between spin-
1/2 σ+

j ,σ
−
j and fermionic c†j,cj raising and lowering operators (once clarified Jordan-Wigner formula-

tion we are using from [64], remaining calculations are standard JW computations):

cj = −iKjσ
+
j , c†j = iKjσ

−
j , (2.28)

where

Kj = exp

(
iπ

j−1∑
s=1

σ−
s σ

+
s

)
, K†

j = exp

(
−iπ

j−1∑
s=1

σ−
s σ

+
s

)
= Kj. (2.29)

Last equality in (2.29) follows directly from operator Kj definition. Indeed,

Kj = K†
j ⇐⇒ exp

(
iπ

j−1∑
s=1

σ−
s σ

+
s

)
exp

(
−iπ(

j−1∑
s=1

σ−
s σ

+
s )

†

)
= 1

⇐⇒ exp

(
iπ

j−1∑
s=1

σ−
s σ

+
s

)
exp

(
iπ

j−1∑
s=1

σ−
s σ

+
s

)
= 1, (2.30)

where we have used that (σ+
s )

† = σ−
s and (σ−

s )
† = σ+

s for any s ∈ {1, . . . , N}. Moreover, last equality
in (2.30) is straightforward. Some useful relations from (2.28) are:

1. Simplification of Kj operator in terms of ns operators. Since [ni, nk] = 0 for any i, k ∈
{1, . . . , N}, i ̸= k; and nm

s = ns for any m ∈ N, it follows that

Kj =

j−1∏
s=1

exp
(
iπσ−

s σ
+
s

)
=

j−1∏
s=1

∞∑
m=0

(iπ)m

m!
nm
s =

j−1∏
s=1

[
1 +

(
∞∑

m=1

(iπ)m

m!

)
ns

]
(2.31)

=

j−1∏
s=1

[
1 + (eiπ − 1)ns

]
=

j−1∏
s=1

[1− 2ns]. (2.32)

2. σ+
j = iKjcj and σ−

j = −iKjc
†
j for any j ∈ {1, . . . , N}. It is important to notice that Kj =

K†
j = K−1

j .

3. Occupation number operators are invariant against JW tranformation:

σ−
j σ

+
j = c†j(K

†
jKj)cj = c†jcj = nj, j ∈ {1, . . . , N}. (2.33)

Observe that, from PBC on σ±
j ’s, it follows PBC on cj’s. Moreover, from a general perspective of our

setting, JW transformation procedure lies on the fact that, to pass from a tensor product of Hilbert
spaces in terms of spin-1/2 states in each of them, to spinless fermion states which describe fermionic
occupation, in one dimension we only need to have parity considerations, that is, we only need to
take into account the lattice site of the corresponding fermionic spinless operator with respect to the
origin lattice site, and regarding that fact, we must add the corresponding sign if necessary.
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Moreover, it is relevant to express anti-commutation relations of fermionic raising and lowering
operators, in order to use them in computations below:

{ci, ci′} = 0, {c†i , c
†
i′} = 0, {c†i , ci′} = δi,i′ , i ∈ {1, . . . , N} (2.34)

All in all, applying computations carried out in appendix (A) in terms of fermionic operators, we
can express operator (2.27) in a way such that

Wβ =
α

2

N∑
j=1

Wj,β =
α

2

N∑
j=1

{A(1− 2c†jcj)−B(c†j−1 − cj−1)(c
†
j+1 + cj+1)− 1 + γ(c†j − cj)(c

†
j+1 + cj+1)}.

(2.35)

Now, we make boundary conditions considerations. Assume, by now, that N could be even or odd,
and that boundary conditions are periodic. Therefore,

σNσN+1 = σNσ1 = −(σ+
N − σ

−
N)(σ

+
1 − σ−

1 ) = −σ+
Nσ

+
1 + σ+

Nσ
−
1 + σ−

Nσ
+
1 − σ−

Nσ
−
1

= KN [cNc1 + cNc
†
1 + c†Nc1 + c†Nc

†
1] = −(−1)N [−cNc1 − cNc†1 + c†Nc1 + c†Nc

†
1]

= −(−1)N (c†N − cN)(c
†
1 + c1), (2.36)

where N =
∑N

j=1 c
†
jcj is the total fermionic number operator, and where we took into account

properties such that

σ+
Nσ

+
1 = i2KNcNc1 = −KNcNc1, σ+

Nσ
−
1 = −i2KNcNc

†
1 = KNcNc

†
1,

KNcN = exp

(
iπ

N−1∑
s=1

c†scs

)
cN = exp

(
iπ

N∑
s=1

c†scs

)
cN = (−1)N cN ,

KNc
†
N = exp

(
iπ

N−1∑
s=1

c†scs

)
c†N = − exp

(
iπ

N∑
s=1

c†scs

)
c†N = −(−1)N c†N , (2.37)

and relations (2.26). Similarly,

σN−1σN+1 = σN−1σ1 = −(σ+
N−1 − σ

−
N−1)(σ

+
1 − σ−

1 ) = −σ+
N−1σ

+
1 + σ+

N−1σ
−
1 + σ−

N−1σ
+
1 − σ−

N−1σ
−
1

= KN−1[c
†
N−1c

†
1 + c†N−1c1 + cN−1c

†
1 + cN−1c1] = −KN [c

†
N−1c

†
1 + c†N−1c1 − cN−1c

†
1 − cN−1c1]

=⇒ σN−1σ
x
NσN+1 = −KN(1− 2c†NcN)(c

†
N−1 − cN−1)(c

†
1 + c1)

= −(−1)N (c†N−1 − cN−1)(c
†
1 + c1), (2.38)

where we used that KN−1cN−1 remains the same, that

KN−1c
†
N−1 = −KNc

†
N−1, (2.39)

and the corresponding relation in (2.26) for σx
N . In a very similar way, we obtain

σNσ
x
1σ2 = −(−1)N (c†N − cN)(c

†
2 − c2), (2.40)

where factor 1 − 2c†1c1 disappearing through (1 − 2c†1c1)
2 = 1 from KNK2 in σNσ2, reappears when

considering σx
1 , which is equal to 1− 2c†1c1. Then, master’s operator turns into

Wβ =
α

2

N−1∑
j=2

{A(1− 2c†jcj)−B(c†j−1 − cj−1)(c
†
j+1 + cj+1)− 1 + γ(c†j − cj)(c

†
j+1 + cj+1)}

+ αA(1− c†1c1 − c
†
NcN)− α− γ

α

2
(−1)N (c†N − cN)(c

†
1 + c1) +

α

2
B(−1)N (c†N−1 − cN−1)(c

†
1 + c1)

+
α

2
B(−1)N (c†N − cN)(c

†
2 + c2) + γ

α

2
(c†1 − c1)(c

†
2 + c2). (2.41)
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All in all, with this periodic boundary considerations, if we define, when N is an even operator

cN+1 = −c1, cN+2 = −c2; (2.42)

and, when N is odd,

cN+1 = c1, cN+2 = c2; (2.43)

therefore, we can express Wβ as in (2.35), taking into consideration that the fact that N is an
even or an odd operator determines cN+1 and cN+2. Generalizing these statements, for an arbitrary
k ∈ {1, . . . , N}, we will consider Wβ as in (2.35) by considering

cN+k = −ck, (2.44)

when N is an even operator; and

cN+k = ck, (2.45)

when N is odd.

2.2.2 Fourier Transform

In order to continue with our diagonalization process of Master’s operator (2.22), we pass our
fermionic operators cj to momentum space, denoting the new operators dk, with adjoint counterparts

d†k. We assume that the number of spins N is even. Otherwise, when labelling momentum space
fermionic operators, we must take a different range of values depending on N . Their inverse version,
to directly make substitutions in (2.35), are

cj =
1√
N

N
2∑

k=−N
2
+1

eijkdk, c†j =
1√
N

N
2∑

k=−N
2
+1

e−ijkd†k, j = 1, . . . , N. (2.46)

If we assume periodic boundary conditions, we should take into account that, for any j ∈ {1, . . . , N},

cj = cN+j =⇒
N
2∑

k=−N
2
+1

eikjdk =

N
2∑

k=−N
2
+1

eik(N+j)dk =⇒ eikN = 1. (2.47)

This implies that k = 2πl/N , for l ∈ {−N/2 + 1, . . . , N/2}, so k = 0,±2π/N,±4π/N, . . . This
consideration let us consider the same PBC on fermionic momentum-space operators, i.e., dj+N = dj
for any j ∈ {1, . . . , N}.
On the other hand, and just as a remark since so far we are considering PBC, if we assume
antiperiodic boundary conditions (ABC), we would have, for any j ∈ {1, . . . , N},

cj = −cN+j =⇒
N
2∑

k=−N
2
+1

eikjdk = −
N
2∑

k=−N
2
+1

eik(N+j)dk =⇒ eikN = −1, (2.48)

that is, k = (2l + 1)π/N , for l ∈ {−N/2 + 1, . . . , N/2}, so k = ±π/N,±3π/N, . . .

Then, we proceed with the computations on product terms in (2.35). For these calculations, we
use that

N∑
j=1

eij(p−l) = Nδl,p, (2.49)
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where δl,p is the Kronecker’s Delta function. Exact computations of this transformation are included
in appendix (B), where we have used the core equality (2.49). We define l-dependent constants
Cl = 2[−A − B cos(2l) + γ cos(l)], Dl = Be2il + γe−il, and El = A − 1 − 2γ cos(l), for l = 2πk/N ,
k ∈ {−N/2 + 1, . . . , N/2}, what implies l = −π + 2π/N, . . . ,−2π/N, 0, 2π/N, . . . , π − 2π/N, π.

Now, we use the symmetry of this l-momenta domain, in order to express all undetermined co-
efficients in terms of real values. First of all, denote

Wβ =
α

2
(I1 + I2 + I3), (2.50)

for each of the three different sums that appear in (B.27), in the order expressed (the one with
coefficients El, the one with coefficients Cl, and finally the one with coefficients Dl). We will employ
indifferently index notation with k’s or l’s, in order to provide the reader with a not heavy reading.
Observe that

I2 =

N/2∑
k=−N/2+1

Ckd
†
kdk = C0d

†
0d0 + Cπd

†
πdπ +

−1∑
k=−N/2+1

Ckd
†
kdk +

N/2−1∑
k=1

Ckd
†
kdk

= C0d
†
0d0 + Cπd

†
πdπ +

N/2−1∑
k=1

C−kd
†
−kd−k +

N/2−1∑
k=1

Ckd
†
kdk =

π∑
l=0

Cl(d
†
ldl + d†−ld−l), (2.51)

where we redefined C0 = −A− B + γ, Cπ = −A− B − γ, and considered Cl = C−l, given the even
condition of the cosine function. We used as well that the periodic boundary condition d−π = dπ.
On the other hand, taking into account such PBCs, and relations derived from fermionic anti-
commutation relations which have the form d0d0 = 0, d†0d

†
0 = 0, d†πd

†
π = 0, d†ld

†
−l = −d

†
−ld

†
l , and

dld−l = −d−ldl, we have

I3 =

N/2∑
k=−N/2+1

Dk(d
†
−kd

†
k + d−kdk) =

−1∑
k=−N/2+1

Dk(d
†
−kd

†
k + d−kdk) +

N/2∑
k=1

Dk(d
†
−kd

†
k + d−kdk)

=

N/2∑
k=1

D−k(d
†
kd

†
−k + dkd−k) +

N/2−1∑
k=1

Dk(d
†
−kd

†
k + d−kdk) =

π∑
l=0

[d†ld
†
−l(D−l −Dl) + dld−l(D−l −Dl)].

(2.52)

Given that

D−l −Dl = i2(−B sin(2l) + γ sin(l)) = iFl, (2.53)

then

I3 =
π∑

l=0

iFl[d
†
ld

†
−l + dld−l], (2.54)

where we denoted Fl = 2(γ sin(l)−B sin(2l)). Regarding the first sum I1, if we denote

E0 = A− 1− 2γ, Eπ = A− 1 + 2γ,

El = A− 1− 2γ cos(l) = E−l, (2.55)

then,

I1 =
π∑

l=0

Gl, (2.56)

11



where Gl = 2El for l ̸= 0, π, and G0 = E0, Gπ = Eπ. All in all, one obtains

Wβ =
α

2

π∑
l=0

[Gl + iFl(d
†
ld

†
−l + dld−l) + Cl(d

†
ldl + d†−ld−l)]. (2.57)

Note that Wβ, as expressed in (2.57), is hermitian since Gl, Fl and Cl are real, and

W †
β =

α

2

π∑
l=0

[Gl − iFl(d−ldl + d†−ld
†
l ) + Cl(d

†
ldl + d†−ld−l)]

=
α

2

π∑
l=0

[Gl + iFl(d
†
ld

†
−l + dld−l) + Cl(d

†
ldl + d†−ld−l)] = Wβ, (2.58)

where fermionic anti-commutation relations have been used.

2.2.3 Bogoliubov transformation

In this section, we aim to remove products from (2.58) of operators with opposite momenta such
as dld−l, in order to obtain a completely diagonalized Hamiltonian. With that purpose, we apply
Bogoliubov transformation. It consists of a rotation of opposite momenta, exectuted in the momen-
tum space, with a priori two degrees of freedom. This let us, by imposing some conditions on them,
to remove non-diagonal terms from the Hamiltonian. In practical terms, following formulation from
[64], we are going to express Wβ as a sum of cross-products of operators ξs given by

ξs = usds + ivsd
†
−s, ξ†−s = ivsds + usd

†
−s, s ∈ {0, . . . , π}, (2.59)

where us, vs ∈ R are coefficients to specify. Equivalently, their adjoint counterparts are

ξ†s = usd
†
s − ivsd−s, ξ−s = −ivsd†s + usd−s, s ∈ {0, . . . , π}. (2.60)

To preserve anti-commutation relations, observe that

{ξ†s, ξs} = {usd†s − ivsd−s, usds + ivsd
†
−s} = u2s{d†s, ds}+ v2s{d−s, d

†
−s} = u2s + v2s , (2.61)

for any s ∈ {0, . . . , π}, and where we used the established anti-commutation relations of operators
ds, d−s. Then, we impose u2s + v2s = 1. Furthermore, from this observation we can infere that there
is at least one θs ∈ (−3π/2, π/2] such that

us = cos(θs/2), vs = sin(θs/2), (2.62)

from which it is straightforward that u−s = us and v−s = −vs. Apart from this, the other anti-
commutation relations with these new operators are:

{ξ†s, ξ
†
t} = {usd†s − ivsd−s, utd

†
t − ivtd−t} = 0,

{ξ−s, ξ−t} = {−ivsd†s + usd−s,−ivtd†t + utd−t} = 0, (2.63)

where we have used the already known anti-commutation relations of ds, dt d−s and d−t, for any
s, t ∈ {0, . . . , π}.

This Bogoliubov transformation is unitary (namely, it is a rotation), which can be expressed in
the following way: 

ξs
ξ†−s

ξ†s
ξ−s

 =


us ivs 0 0
ivs us 0 0
0 0 us −ivs
0 0 −ivs us



ds
d†−s

d†s
d−s

 . (2.64)
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Thus, in order to express ds terms as linear combinations of ξs terms, we take the rotation’s inverse,
which from its unitary condition takes the following form:

ds
d†−s

d†s
d−s

 =


us −ivs 0 0
−ivs us 0 0
0 0 us ivs
0 0 ivs us



ξs
ξ†−s

ξ†s
ξ−s

 . (2.65)

In order to not having cross-product terms with opposite momenta, using the computations provided
in appendix (C), and since we have still one degree of freedom in our Bogoliubov rotation, we impose
the following, for any l:

Fl cos(θl) + Cl sin(θl) = 0. (2.66)

Therefore, we take the Bogoliubov coefficients as

cos(θl) =
Cl√

C2
l + F 2

l

, sin(θl) = −
Fl√

C2
l + F 2

l

. (2.67)

This implies that the coefficient of the final diagonalized Master operator of ξ†l ξl + ξ†−lξ−l is, for any
l,

−Fl sin(θl) + Cl cos(θl) =
F 2
l√

C2
l + F 2

l

+
C2

l√
C2

l + F 2
l

=
√
C2

l + F 2
l . (2.68)

For the independent terms in (C.4), using the equality sin2(x/2) = (1− cos(x))/2, we have

Gl + Fl sin(θl) + 2Cl sin
2(θl/2) = Gl + Cl + Fl sin(θl)− Cl cos(θl) = Gl + Cl −

C2
l√

C2
l + F 2

l

− F 2
l√

C2
l + F 2

l

= Gl + Cl −
√
C2

l + F 2
l . (2.69)

Thus, for any l, we have that

Wl,β = Gl + Cl −
√
C2

l + F 2
l +

√
C2

l + F 2
l (ξ

†
l ξl + ξ†−lξ−l). (2.70)

In fact, regarding implementation and to give one of the most relevant parts of the Bogoliubov
transformation, we have that, for any momentum l:

θl = − arcsin
Fl√

C2
l + F 2

l

, (2.71)

so, for l ̸= 0, π,

θl = arcsin
2(B sin(2l)− γ sin(l))√

4(γ sin(l)−B sin(2l))2 + 4(−A−B cos(2l) + γ cos(l))2

= arcsin
B sin(2l)− γ sin(l)√

(γ sin(l)−B sin(2l))2 + (−A−B cos(2l) + γ cos(l))2
(2.72)

and, for l = 0, π,

θ0 = 0 = θπ. (2.73)
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Therefore, we express, in general for any l = 2kπ/N , where k = −N/2 + 1, . . . , N/2 (recall that we
are considering PBCs),

θk = arcsin
B sin(4kπ/N)− γ sin(2kπ/N)√

(γ sin(2kπ/N)−B sin(4kπ/N))2 + (−A−B cos(4kπ/N) + γ cos(2kπ/N))2
. (2.74)

We could carry out the simplification even further [64] in order to obtain, for any momentum l ̸= 0, π,

Wl,β = −(1− γ cos(l))(ξ†l ξl + ξ†−lξ−l − 1)− 1, (2.75)

along with the direct expressions obtained from (2.70) (F0 = Fπ = 0):

W0,β = G0 + 2C0ξ
†
0ξ0 = A− 1− 2γ − 2(A+B − γ)ξ†0ξ0,

Wπ,β = Gπ + 2Cπξ
†
πξπ = A− 1 + 2γ − 2(A+B + γ)ξ†πξπ. (2.76)

Following again formulation from [64], and once clarified simplification of Master’s operator Wβ, we
can easily find the complete set of eigenvectors and eigenvalues. First of all, vacuum state |0⟩ (i.e., no

Figure 1: Bogoliubov rotation angles for the diagonalization of
Master operator Wβ given finally in terms of (2.70), considering
momenta determined by k = 0, k = 2, k = 1 and k = −1, versus
1D Glauber-Ising model parameter γ.

fermionic occupation at any momentum mode) is an eigesntate of transformed Wβ with eigenvalue
0. This can be determined through

ξl|0⟩ = 0, for any momentum l. (2.77)

In general, states with an even (odd) number of ξ-quasi-particles imply an even (odd) number
of d-quasi-particles, which in turn imply an even (odd) number of c-quasi-particles. Then, ξ-quasi-
particles are subject to fermionic modes algebra obtained after Jordan-Wigner transformation. Thus,
eigenstates of Wβ are

|q1, . . . , qN⟩ = ξ†q1 . . . ξ
†
qN
|0⟩, (2.78)

which for N even q-momenta are obtained from (2.47), and for N odd they are obtained from (2.48).
Let’s understand, by now, the qi’s ordered in a way such that (q1 < · · · < qN), what is allowed given
that permutation of q-values merely change the phase.
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All in all, the complete set of eigenvectors of Wβ are the |q1, . . . , qN⟩’s just described. In partic-
ular, this means that there are 2N possible eigenstates of Wβ, for N the number of spins considered.
From all this algebra, the eigenvalue of Wβ for eigenstate |q1, . . . , qN⟩ is determined by

Wβ|q1, . . . , qN⟩ = −Λ(q1, . . . , qN)|q1, . . . , qN⟩, (2.79)

where

Λ(q1, . . . , qN) =
N∑
i=1

λqi , λq = 1− γ cos(q), (2.80)

also valid for q = 0, π. This solves Master’s equation explicitly, and concludes the analytical procedure
through which we express the original Hamiltonian (i.e., the original Master operator (2.22)) in a
diagonalized form, in terms of fermionic momentum modes which, under a Bogoliubov rotation, do
not admit operators products with different momenta.

2.2.4 Example of energy eigenvalues computations

Following the just derived (2.80) and (2.78), we show now an example of eigenvalues computation
for N = 4 spins, that is, for 4 possible fermionic momentum modes. Since we are considering
N even and PBC, we know that the exact momenta qi defining our eigenstates are obtained from
q = 2πk/N , for k ∈ {−1, 0, 1, 2}, that is, in increasing order, q1 = −π/2, q2 = 0, q3 = π/2 and q4 = π.

Let |rq1 , rq2 , rq3 , rq4⟩ be an arbitrary eigenstate of Master’s operator defined in terms of (2.75), where
rqi is 0 or 1 depending on whether there is a fermionic quasi-particle with momentum qi or not. Unlike
we did in the theoretical deduction, in order to write the corresponding eigenstates, we consider the
order of momenta in which we later express the quantum circuit, in terms of qbits. Then, momenta
order is q1 = 0, q2 = π, q3 = π/2 and q4 = −π/2. In order to compute energy eigenvalues (2.80)

Figure 2: Energy eigenvalues for transformed Master operatorWβ

given in terms of (2.70), considering eigenstates |1100⟩, |0011⟩,
|1111⟩, |1010⟩, |1000⟩ and vacuum state |0000⟩ (given in order of
momenta determined by k = 0, k = 2, k = 1 and k = −1), versus
1D Glauber-Ising model parameter γ.

from the general considered eigenstate, we first compute all λqi from (2.80) for the cases in which
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rqi = 1, and then we sum all the obtained values like in the first expression of (2.80), adding a minus
sign at the end. This yields the energy eigenvalue of eigenstate |rq1 , rq2 , rq3 , rq4⟩. Note that, from this
procedure, energy eigenvalue of vacuum state |0000⟩ is 0. First of all, we compute all λqi values:

λq1 = 1− γ cos(0) = 1− γ, λq2 = 1− γ cos(π) = 1 + γ,

λq3 = 1− γ cos(π/2) = 1, λq4 = 1− γ cos(−π/2) = 1. (2.81)

Now, we select the eigenstates |1100⟩, |0011⟩, |1111⟩, |1010⟩ and |1000⟩ to proceed with the example.
With all we have exposed, it suffices to sum λqi values taking into account which momentum modes
are present in the state. For instance, energy eigenvalue of state |1100⟩ is

E1100 = −(λq1 + λq2) = −(1− γ + 1 + γ) = −2. (2.82)

Similarly,

E0011 = −(λq3 + λq4) = −(1 + 1) = −2,
E1111 = −(λq1 + λq2 + λq3 + λq4) = −(1 + 1 + 1− γ + 1 + γ) = −4,
E1010 = −(λq1 + λq3) = −(1− γ + 1) = γ − 2,

E1000 = −λq1 = −(1− γ) = γ − 1; (2.83)

and, as we said, E0000 = 0. In figure 2 we represent the obtained energies with respect to external
field strength parameter γ. Note from γ = tanh(2βJ) that, for the non-constant energies, parameter
J from Ising Hamiltonian (2.3), and temperature T (which is inside the temperature parameter
β) determine the slope of the corresponding eigenvalue as a function of γ. Recall that tanh is an
increasing function. Thus, for E1000 and E1010, the larger J or the lower T get, the larger slope is
reached.
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3 Open quantum dynamics

So far we have been concentrated on the diagonalization of the quantum version of the Hamiltonian
(2.22) using standard techniques. However, equation (2.23) involves a dissipative dynamics. There-
fore, in order to achieve a consistent description, we need to make use of the formalism of open
quantum systems, so as to derive a fully quantum Master equation, in which the state of the system
will be written in terms of a density operator. As we will show later, equation (2.23) just corresponds
to the diagonal part (in the σz eigenstates basis) of this quantum Master equation. We base the
upcoming work on the formulation from [57].

3.1 Lindblad formulation. Division into 2N subsystems

First, we consider as basis the 2N vectors |σ⟩ = |σ1⟩|σ2⟩ · · · |σN⟩; these states belong to the Hilbert
space (C2)⊗N . Each |σi⟩ is an eigenstate of the operator σz. Notice that notation here has to be
distinguished from previous sections: the state |σ⟩ is a quantum state, though it shares notation with
previous classical state; the quantum Pauli operators σz and σx shares notation with the objects σz

and σx, used in the classical context above. With this notation we simply write the following Master
equation:

∂ρ(t)

∂t
=
∑
i

{σx
i [wi(σ

z)]1/2ρ(t)[wi(σ
z)]1/2σx

i −
1

2
{wi(σ

z), ρ(t)}}, (3.1)

where {·, ·} is the anticommutator and wi(σ
z) are the transition rate operators obtained when in the

classical transition rates on substitute the matrix σz by the corresponding operator (Ising variables
replaced by σz). Note the operator wi is diagonal in the basis we are using. Here the density operator
is explicitly

ρ(t) =
∑
σ,σ̃

[ρ(t)]σ,σ̃|σ⟩⟨σ̃|. (3.2)

One can prove now that the diagonal part of this equation reproduces the Master equation (2.1),
upon identification of states modulus with probabilities, as we will do later. Equation (3.1) can be
written as a Master Linblad equation as

∂ρ(t)

∂t
=
∑
i

{Liρ(t)L
†
i −

1

2
{L†

iLi, ρ(t)}}, (3.3)

with the Lindblad operator Li = σx
i [wi(σ

z)]1/2.

We now proceed as follows. The density operator, given in equation (3.2), is a matrix of dimen-
sion 2N × 2N . The space of matrices of this dimension, M2N (C) can be mapped into the vector space
C2N ⊗ C2N , thus representing in this space the density operator as [57]

|ρ(t)⟩ =
∑
σ,σ̃

[ρ(t)]σ,σ̃|σ⟩|σ̃⟩. (3.4)

Then we can write equation (3.3), again from [57], as

|ρ̇(t)⟩ =
∑
i

{σx
i σ̃

x
i [wi(σ

z)wi(σ̃
z)]1/2 − 1

2
[wi(σ

z) + wi(σ̃
z)]}|ρ(t)⟩, (3.5)

where bar operators act on bar kets and non-bar operators act on non-bar kets. The matrix on the
right hand side is not Hermitian. To make it Hermitian we use the following transformation:

|ρ(t)⟩ = exp

[
−β
4
(H(σz) +H(σ̃z))

]
|ψ(t)⟩, (3.6)
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with H(σz) the quantum version of the Ising Hamiltonian, equation (2.3). Now, passing the expo-
nential operator from (3.6), corresponding to the derivative |ρ̇(t)⟩, to the right member, and using
that, for each term in the right hand of (3.5), σx

i and σ̃x
i exchange 1’s and −1’s in the corresponding

entries of the state |σz
1, . . . , σ

z
n⟩, then, from the aforementioned (3.5), we have that

|ψ̇(t)⟩ = exp

[
β

4
(H(σz) +H(σ̃z))

] N∑
i=1

{σx
i σ̃

x
i [wi(σ

z)]1/2[wi(σ̃
z
i )]

1/2 exp

[
−β
4
(H(σz) +H(σ̃z))

]

− 1

2
[wi(σ

z
i ) + wi(σ̃

z
i )]}|ψ(t)⟩ =

N∑
i=1

{σx
i σ̃

x
i [wi(σ

z) exp
[
−βJσz

i (σ
z
i+1 + σz

i−1))
]
]1/2

× [wi(σ̃
z
i ) exp

[
−βJσ̃z

i (σ̃
z
i+1 + σ̃z

i−1))
]
]1/2 − 1

2
[wi(σ

z
i ) + wi(σ̃

z
i )]}|ψ(t)⟩ (3.7)

where we used that

exp

[
−β
4
(H(σz) +H(σ̃z))

]
(3.8)

and wi(σ
z
i ) commute. With this, the final equation of motion reads

|ψ̇(t)⟩ =
∑
i

{σx
i σ̃

x
i [vi(σ

z)]1/2 [vi(σ̃
z)]1/2 − 1

2
[wi(σ

z) + wi(σ̃
z)]}|ψ(t)⟩, (3.9)

with vi(σ
z) = wi(σ

z) exp
[
−(βJ)σz

i (σ
z
i−1 + σz

i+1)
]
. Now, σx

i and vi(σ
z) commute. This is because the

action of σx
i operator on states given in σz

i -eigenstates basis is swapping from −1 to 1 and from 1 to
−1 in each component. Therefore:

σx
i vi(σ

z) = σx
i [wi(σ

z) exp
(
−βJσz

i (σ
z
i−1 + σz

i+1)
)
] = [wi(−σz) exp

(
βJσz

i (σ
z
i−1 + σz

i+1)
)
]σx

i

= [wi(σ
z) exp

(
−βJσz

i (σ
z
i−1 + σz

i+1)
)
]σx

i . (3.10)

Thus, we have a Schrödinger equation for 2N spins. So far, we have obtained an Hermitian trans-
formed Master operator Wβ (which we will also call Hamiltonian when there is no confusion with
Ising Hamiltonian (2.3)) given by

Wβ =
∑
i

Hi, (3.11)

where

Hi = σx
i σ̃

x
i [vi(σ

z)]1/2 [vi(σ̃
z)]1/2 − 1

2
[wi(σ

z) + wi(σ̃
z)] . (3.12)

This Master equation can be further simplified. In particular, if we identify operators that commute
with Ising Hamiltonian H, we can split the equation to a series of 2N Schrödinger equations. Notice
that H commute with σz

i σ̃
z
i , for any i ∈ {1, . . . , N}. Then, we introduce new spin variables τi = σz

i σ̃
z
i ,

which are constants of motion given the aforementioned commutation with Wβ, and since their time
derivatives are the zero operator. With that, we can splitWβ into a group of 2N Schrödinger equations
by considering vectors of operators τ = (τ1, . . . , τn) and σ̃

z
i = τiσ

z
i , for any i ∈ {1, . . . , N}. Thus, we

can write Hamiltonian Wβ in terms of the 2N Hamiltonians

Hτ = −
∑
i

{σx
i σ̃

x
i [vi(σ

z)]1/2[vi(τσ
z)]1/2 − 1

2
[wi(σz) + wi(τσz)]} = −

∑
i

Hτ,i, (3.13)

where τσz denotes the vector with components τiσ
z
i . This implies 2N possible configurations for the

τ ’s, i.e., 2N Hamiltonians. We label them through natural numbers τ = 0, . . . , 2N − 1, with the con-
vention of τ = 0 for all τ -spins up (all equal eigenvalues and eigenvectors of σ and σ̃), and τ = 2N−1
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for all τ -spins down (all equal eigenvalues between σ and σ̃, with the eigenvectors exchanged).

From our equation (3.4), let’s see now diagonal elements of the vector |ρ(t)⟩, what in practice means
equal eigenvalues for σ and σ̃ in (3.13) (τ = 0 from our convention). Each of them is applied in
a different space, i.e., although the operators act in the same way, the first ones act on the i-th
quasi-particle corresponding to σ, and the second ones on the i-th quasi-particle corresponding to σ̃.
That is:

Hτ=0 = −
N∑
i=1

{σx
i σ

x
i vi(σ

z)1/2vi(σ
z)1/2 − 1

2
[wi(σ

z) + wi(σ
z)]}

= −
N∑
i=1

{σx
i σ

x
i wi(σ

z)1/2 exp
(
−βJσz

i (σ
z
i−1 + σz

i+1)/2
)
wi(σ

z)1/2 exp
(
−βJσz

i (σ
z
i−1 + σz

i+1)/2
)

− 1

2
[wi(σ

z) + wi(σ
z)]}, (3.14)

where it must be clear that, although the notation is the same (since they act in the same way),
their spaces of action are different. Note that action of Hτ=0 on the corresponding eigenstates are
equivalent to the classical Master’s equation when we take the latter with Pauli matrices instead
of in classical terms, what makes this formulation a natural extension from the notions of previous
sections. That is to say, expression (3.14) is exactly our Master equation given in terms of σz and
σx matrices, recovering the kinetic equations (2.14). Going back to the general case, we have the
following operator:

Wβ = −
2N−1∑
τ=0

Hτ . (3.15)

To sum up, taking N operators that commute with Ising Hamiltonian H, we translate the solution
of the extended Master equation (3.1) to the diagonalization of 2N Hamiltonians which are 2N × 2N -
dimensional.

Now, we take our particular transition rates:

wi(σ
z) =

α

2
[1− γ

2
σz
i (σ

z
i−1 + σz

i+1)]. (3.16)

From (3.13), (3.16) and the expression of vi(σ
z), we have that, for any τ ∈ {0, . . . , 2N − 1}, and

omitting α/2:

Hτ = −
∑
i

{σx
i σ̃

x
i [(1−

γ

2
σz
i (σ

z
i−1 + σz

i+1)) exp
(
−βJσz

i (σ
z
i+1 + σz

i−1)
)
]1/2

× [(1− γ

2
σ̃z
i (σ̃

z
i−1 + σ̃z

i+1)) exp
(
−βJσ̃z

i (σ̃
z
i+1 + σ̃z

i−1)
)
]1/2

− 1

2
[1− γ

2
σz
i (σ

z
i−1 + σz

i+1) + 1− γ

2
σ̃z
i (σ̃i− 1z + σ̃z

i+1)]}. (3.17)

To make the computations more clear, denote, for a fixed and arbitrary i ∈ {1, . . . , N},

I1 = σx
i σ̃

x
i [(1−

γ

2
σz
i (σ

z
i−1 + σz

i+1)) exp
(
−βJσz

i (σ
z
i+1 + σz

i−1)
)
]1/2

× [(1− γ

2
σ̃z
i (σ̃

z
i−1 + σ̃z

i+1)) exp
(
−βJσ̃z

i (σ̃
z
i+1 + σ̃z

i−1)
)
]1/2 = σx

i σ̃
x
i I

1/2
11 I

1/2
12 ,

(3.18)

I2 =
1

2
[1− γ

2
σz
i (σ

z
i−1 + σz

i+1) + 1− γ

2
σ̃z
i (σ̃

z
i−1 + σ̃z

i+1)]. (3.19)
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Firstly, recalling that σ̃z
i = τiσ

z
i , by extending the expressions we obtain:

I2 = 1− γ

4
σz
i [σ

z
i−1 + τiτi−1σ

z
i−1 + σz

i+1 + τiτi+1σ
z
i+1]. (3.20)

On the other hand, for I1, let’s first assume that τi−1 = τi+1. Thus, since exp(x) = sinh(x)+ cosh(x)
for any x ∈ C,

I11 = (1− γ

2
σz
i (σ

z
i−1 + σz

i+1)) exp
(
−βJσz

i (σ
z
i−1 + σz

i+1)
)
= (1− γ

2
σz
i (σ

z
i−1 + σz

i+1))[cosh
(
βJ(σz

i−1 + σz
i+1)
)

− σz
i sinh

(
βJ(σz

i−1 + σz
i+1)
)
] = (1− γ

2
σz
i (σ

z
i−1 + σz

i+1)) cosh
(
βJ(σz

i−1 + σz
i+1)
)

× (1− σz
i

(
σz
i−1 + σz

i+1

2

)
tanh(2βJ)) = cosh

(
βJ(σz

i−1 + σz
i+1)
)
(1− γ

2
σz
i (σ

z
i−1 + σz

i+1))
2, (3.21)

where we used the odd condition of sinh and tanh, the even condition of cosh, and the fact that
tanh(2βJ) = γ, since detailed-balance condition remains the same. Analogously,

I12 = cosh
(
βJ(σ̃z

i−1 + σ̃z
i+1)
)
(1− γ

2
σ̃z
i (σ̃

z
i−1 + σ̃z

i+1))
2 (3.22)

Therefore, given again that σ̃z
i = τiσ

z
i ,

I
1/2
11 I

1/2
12 = (1− γ

2
σz
i (σ

z
i−1 + σz

i+1))(1−
γ

2
σ̃z
i (σ̃

z
i−1 + σ̃z

i+1)) cosh
1/2(βJ(σ̃z

i−1 + σ̃z
i+1)) cosh

1/2(βJ(σz
i−1 + σz

i+1))

= (1− γ

2
σz
i (σ

z
i−1 + σz

i+1))(1−
γ

2
σ̃z
i (σ̃

z
i−1 + σ̃z

i+1)) cosh
(
βJ(σz

i−1 + σz
i+1)
)
, (3.23)

where we used τi−1 = τi+1, and the even condition of cosh (what let us omit factors τi−1 out of its
argument). Note that

cosh
(
βJ(σz

i−1 + σz
i+1)
)
=

(
1 + σz

i−1σ
z
i+1

2

)
(cosh(2βJ)− 1) + 1, (3.24)

which implies that

I
1/2
11 I

1/2
12 = (1− γ

2
σz
i (σ

z
i−1 + σz

i+1))(1− τiτi−1
γ

2
σz
i (σ

z
i−1 + σz

i+1)) · [
(
1 + σz

i−1σ
z
i+1

2

)
(cosh(2βJ)− 1) + 1]

= [1 +
γ2τiτi−1

2
(1 + σz

i−1σ
z
i+1)−

γ(1 + τiτi−1)

2
σz
i (σ

z
i−1 + σz

i+1)] · [
(
1 + σz

i−1σ
z
i+1

2

)
(cosh(2βJ)− 1) + 1].

(3.25)

Recall that we are applying on the left of I
1/2
11 I

1/2
12 the operators product σx

i σ̃
x
i . Furthermore, 1 +

τiτi−1 = 0 or 1 + τiτi−1 = 2, so before or after applying σ̃x
i over the third term of the first bracket in

the last expression of (3.25) , we obtain 0 in such a term, for any i ∈ {1, . . . , N}. Then, we restrict
our analysis to

I
1/2
11 I

1/2
12 = [1 +

γ2τiτi−1

2
(1 + σz

i−1σ
z
i+1)] · [1 +

(cosh(2βJ)− 1)

2
(1 + σz

i−1σ
z
i+1)]

= 1 + (γ2τiτi−1 + cosh(2βJ)− 1)

(
1 + σz

i−1σ
z
i+1

2

)
+ γ2τiτi−1(cosh(2βJ)− 1)

(
1 + σz

i−1σ
z
i+1

2

)
= 1 + Pi

(
1 + σz

i−1σ
z
i+1

2

)
=

(
1 +

Pi

2

)
+
Pi

2
σz
i−1σ

z
i+1 (3.26)

where

Pi = cosh(2βJ)(1 + γ2τiτi−1)− 1 =
1 + τiτi−1γ

2√
1− γ2

− 1, (3.27)
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where we used that cosh2(x) = 1/(1 − tanh2(x)) for any x ∈ C, and γ = tanh(2βJ). Now, observe
that applying σ̃x

i σ
x
i over states |σ⟩ ⊗ |σ̃⟩ is equivalent to applying σx

i to |σ⟩ ⊗ |σ⟩ including the
corresponding τi’s. Therefore, for τi−1 = τi+1:

I1 = {
[
1 +

Pi

2

]
−
(
−Pi

2

)
σz
i−1σ

z
i+1]}σx

i . (3.28)

Then, for this case τi−1 = τi+1 we have already obtained a more treatable form of Hτ , including again
parameter α:

Hτ = −α
2

N∑
i=1

{[Ãi(γ)− B̃i(γ)σ
z
i−1σ

z
i+1]σ

x
i − 1 +

γ

4
[σz

i−1 + τi−1τiσ
z
i−1 + σz

i+1 + τiτi+1σ
z
i+1]σ

z
i }, (3.29)

where

Ãi(γ) =
1 + γ2τiτi−1

2
√

1− γ2
+

1

2
,

B̃i(γ) = 1− Ãi(γ) = −
1 + γ2τiτi−1

2
√

1− γ2
+

1

2
. (3.30)

Analogously, if we consider τi−1 = −τi+1, following a similar procedure we have that

I
1/2
11 I

1/2
12 = (1− γ

2
σz
i (σ

z
i−1 + σz

i+1))(1−
γ

2
τiτi−1σ

z
i (σ

z
i−1 − σz

i+1)) cosh
1/2(βJ(σz

i−1 + σz
i+1))

× cosh1/2(βJ(σz
i−1 − σz

i+1)) = [1 +
γ2

4
((σz

i−1)
2 − (σz

i+1)
2)− γ

2
σz
i (σ

z
i−1 + σz

i+1)−
γ

2
τiτi−1σ

z
i (σ

z
i−1 − σz

i+1)]

× [(cosh
(
βσz

i−1

)
cosh

(
βσz

i+1

)
+ sinh

(
βσz

i+1

)
sinh

(
βσz

i−1

)
) · (cosh

(
βσz

i−1

)
cosh

(
βσz

i+1

)
− sinh

(
βσz

i+1

)
sinh

(
βσz

i−1

)
)]1/2 = {1− γ

2
σz
i [σ

z
i−1(1 + τiτi−1) + σz

i+1(1− τiτi−1)]}
√
cosh4(βJ)− sinh4(βJ),

(3.31)

where we used even condition of cosh and odd condition of sinh. Now, through the same reasoning
about the application of σ̃x

i σ
x
i and the fact that 1+ τiτi−1 and 1− τiτi−1 take 0 values before or after

its application, we can restrict to

I
1/2
11 I

1/2
12 =

√
1− tanh2(βJ)

√
1 + tanh2(βJ) cosh2(βJ) = cosh(βJ)

√
sinh2(βJ) + cosh2(βJ)

cosh2(βJ)

=

√√√√ 1√
1− tanh2(2βJ)

=
1

(1− γ2)1/4
, (3.32)

where we took advantage of hyperbolic cosine and sine standard relations. This implies that, for the
case τi−1 = −τi+1, we have (3.34) with

Ãi(γ) =
1

(1− γ2)1/4
, B̃i(γ) = 0, (3.33)

for any i ∈ {1, . . . , N}.

Imitating their notation, this leads us to the following general quantum kinetic Hamiltonians from
[57], taking δ = 0 in their general model for each τ ∈ {0, . . . , 2N − 1} (see their equation (22)):

Hτ = −α
2

N∑
i=1

{[Ãi(γ, 0)− B̃i(γ, 0)σ
z
i−1σ

z
i+1]σ

x
i − 1 +

γ

4
[σz

i−1 + τi−1τiσ
z
i−1 + σz

i+1 + τiτi+1σ
z
i+1]σ

z
i }.

(3.34)
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3.2 Diagonalization of the 2N Hamiltonians from our Quantum Kinetic
Ising model

We proceed now to give the corresponding diagonalization, though the well-known three transforma-
tions (Jordan-Wigner transformation, discrete Fourier transformation, and Bogoliubov transforma-
tion) of each of the 2N Hamiltonians (3.34), and considering N even and PBC when necessary. We
fix τ ∈ {0, 1}2N . From the same development of the model above, recall that

σz
j−1σ

z
j+1σ

x
j = (c†j−1 − cj−1)(c

†
j+1 + cj+1),

σz
j+1σ

z
j = (c†j − cj)(c

†
j+1 + cj+1),

σz
j−1σ

z
j = σz

jσ
z
j−1 = (c†j−1 − cj−1)(c

†
j + cj), (3.35)

where cj = −iKjσ
+
j , and c

†
j = iKjσ

−
j , for Kj = exp

(
iπ
∑j−1

s=1 σ
−
s σ

+
s

)
. Then,

Hτ = −α
2

N∑
j=1

{Ãi(γ)(1− 2c†jcj)− B̃i(γ)(c
†
j−1 − cj−1)(c

†
j+1 + cj+1)− 1

+
γ

4
[1 + τi−1τi](c

†
j−1 − cj−1)(c

†
j + cj) +

γ

4
[1 + τiτi+1](c

†
j − cj)(c

†
j+1 + cj+1)}. (3.36)

Similarly with respect to previous computations, it is straightforward that

γ

4

n∑
j=1

(1 + τiτi+1)(c
†
j − cj)(c

†
j+1 + cj+1) +

γ

4

n∑
j=1

(1 + τi−1τi)(c
†
j−1 − cj−1)(c

†
j + cj)

=
γ

2

n∑
j=1

(1 + τiτi+1)(c
†
j − cj)(c

†
j+1 + cj+1). (3.37)

Therefore, from (3.36),

Hτ = −α
2

N∑
j=1

{Ãj(γ)(1− 2c†jcj)− B̃j(γ)(c
†
j−1 − cj−1)(c

†
j+1 + cj+1)− 1

+
γ

2
(1 + τjτj+1)(c

†
j − cj)(c

†
j+1 + cj+1)}. (3.38)

Reached this point, it is straightforward that we can write Ãj(γ) and B̃j(γ) as

Ãj(γ) =

(
1 + τj−1τj+1

2

)
A1 +

(
1− τj−1τj+1

2

)
A2,

B̃j(γ) =

(
1 + τj−1τj+1

2

)
B1 +

(
1− τj−1τj+1

2

)
B2, (3.39)

where A1 and B1 are the values Ãj(γ) and B̃j(γ) take when τi−1 = τi+1, and A2 and B2 the values
it takes when τi−1 = −τi+1 (see (3.30) and (3.33)).

In order to apply a Fourier transformation, we take the Hτ ’s by pairs, taking each τ and its op-
posite version −τ , yielding operators such that H|τ | = Hτ +H−τ . Reordering the terms so as to have
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all positive τj+1τj−1 and all negative τj+1τj−1 together, we obtain

H|τ | = −
α

2

N∑
j=1

{A1

(
1 + τj−1τj+1

2

)
(1− 2c†jcj)−B1

(
1 + τj−1τj+1

2

)
(c†j−1 − cj−1)(c

†
j+1 + cj+1)− 1}

− α

2

N∑
j=1

{A2

(
1− τj−1τj+1

2

)
(1− 2c†jcj)−B2

(
1− τj−1τj+1

2

)
(c†j−1 − cj−1)(c

†
j+1 + cj+1)− 1}

− α

2

N∑
j=1

{γ
2
(1 + τjτj+1)(c

†
j − cj)(c

†
j+1 + cj+1)} −

α

2

N∑
j=1

{γ
2
(1 + (−τj)(−τj+1))(c

†
j − cj)(c

†
j+1 + cj+1)}

= −α
2

N∑
j=1

{A1(1− 2c†jcj)−B1(c
†
j−1 − cj−1)(c

†
j+1 + cj+1)− 1}

− α

2

N∑
j=1

{A2(1− 2c†jcj)−B2(c
†
j−1 − cj−1)(c

†
j+1 + cj+1)− 1}

− α

2

N∑
j=1

{γ(1 + τjτj+1)(c
†
j − cj)(c

†
j+1 + cj+1)}

= −α
2

N∑
j=1

{(A1 + A2)(1− 2c†jcj)− (B1 +B2)(c
†
j−1 − cj−1)(c

†
j+1 + cj+1)− 2

+ γ(c†j − cj)(c
†
j+1 + cj+1)} −

αγ

2

N∑
j=1

{τjτj+1(c
†
j − cj)(c

†
j+1 + cj+1)}. (3.40)

Therefore, redefining c̃j = τjcj, we must also apply DFT on these other spinless fermionic operators,
because H|τ | takes the form

H|τ | = −
α

2

N∑
j=1

{(A1 + A2)(1− 2c†jcj)− (B1 +B2)(c
†
j−1 − cj−1)(c

†
j+1 + cj+1)− 2

+ γ(c†j − cj)(c
†
j+1 + cj+1)} −

αγ

2

N∑
j=1

{(c̃†j − c̃j)(c̃
†
j+1 + c̃j+1)}

= −α
2

N∑
j=1

{(A1 + A2)(1− 2c†jcj)− (B1 +B2)(c
†
j−1 − cj−1)(c

†
j+1 + cj+1)− 1

+ γ(c†j − cj)(c
†
j+1 + cj+1)} −

αγ

2

N∑
j=1

{(c̃†j − c̃j)(c̃
†
j+1 + c̃j+1)}+

αN

2
. (3.41)

The first sum, which we denote h1, has already been diagonalized in the studied 1D Glauber-Ising
scenario, so we use the well-known result. Regarding the second sum, we denote it by h|τ | and
compute it with an analogous procedure. With respect to the constant term, we can omit it. Note
that we are interested in energy eigenvalues differences, given that global phases will not play a
relevant role in our setting.
We now apply the following discrete Fourier transformations, for N even, as in the already studied
scheme:

cj =
1√
N

N
2∑

k=−N
2
+1

eijkdk, c†j =
1√
N

N
2∑

k=−N
2
+1

e−ijkd†k, j = 1, . . . , N. (3.42)
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For the first sum, we obtain:

h1 = −
α

2

π∑
l=0

[gl + ifl(d
†
ld

†
−l + dld−l) + cl(d

†
ldl + d†−ld−l)], (3.43)

where

gl = 2(A1 + A2 − 1− 2γ cos(l)) (l ̸= 0, π), g0 = A1 + A2 − 1− 2γ, gπ = A1 + A2 − 1 + 2γ,

fl = 2[γ sin(l)− (B1 +B2) sin(2l)], for any l,

cl = 2[−A1 − A2 − (B1 +B2) cos(2l) + γ cos(l)] (l ̸= 0, π),

c0 = −A1 − A2 −B1 −B2 + γ, cπ = −A1 − A2 −B1 −B2 − γ. (3.44)

Applying a Bogoliubov rotation analogous to (2.65), we obtain

h1 = −
α

2

π∑
l=0

{gl + cl −
√
c2l + f 2

l +
√
c2l + f 2

l (ξ
†
l ξl + ξ†−lξ−l)}. (3.45)

Namely, Boliubov rotation angle, for l = 0, π, turns into

θ0 = 0 = θπ; (3.46)

while, for any l = 2kπ/N , where k = −N/2 + 1, . . . , N/2, is

θk = arcsin{[(B1 +B2) sin(4πk/N)− γ sin(2πk/N)]

/[
√

((B1 +B2) sin(4πk/N)− γ sin(2πk/N))2 + (−A1 − A2 − (B1 +B2) cos(4πk/N) + γ cos(2πk/N))2]},
(3.47)

where the whole expression inside the keys is the argument of function arcsin. Now, for h|τ |, we apply

same transformations (3.42), but with fermionic operators in momentum space d̃l. We obtain that

h|τ | = −
αγ

2

∑
l

[2 cos(l)d̃†l d̃l − e
−il(d̃†l d̃

†
−l + d̃ld̃−l)− eil]. (3.48)

Now, recall that we consider PBC and N even. This implies that l = 2πk/N , for k ∈ {1 −
N/2, . . . , N/2}. Furthermore, given the even nature of the cosine and the equality 2 cos(x) = eix+e−ix

for any x ∈ C, then, following a procedure very similar to the one carried out in the already studied
kinetic Ising model:

⋆
∑
l

2 cos(l)d̃†l d̃l = 2d̃†0d̃0 − 2d̃†πd̃π +

− 2π
N∑

l=−π+ 2π
N

2 cos(l)d̃†l d̃l +

π− 2π
N∑

l= 2π
N

2 cos(l)d̃†l d̃l

= 2d̃†0d̃0 − 2d̃†πd̃π +

π− 2π
N∑

l= 2π
N

2 cos(l)(d̃†l d̃l + d̃†−ld̃−l).

(3.49)

⋆
∑
l

e−il(d̃†l d̃
†
−l + d̃ld̃−l) =

− 2π
N∑

l=−π+ 2π
N

e−il(d̃†l d̃
†
−l + d̃ld̃−l) +

π− 2π
N∑

l= 2π
N

e−il(d̃†l d̃
†
−l + d̃ld̃−l) + (d̃†0d̃

†
0 + d̃0d̃0)

+ (d̃†πd̃
†
−π + d̃πd̃−π) = −2i

π− 2π
N∑

l= 2π
N

sin(l)(d̃†l d̃
†
−l + d̃ld̃−l) = −2i

π∑
l=0

sin(l)(d̃†l d̃
†
−l + d̃ld̃−l).

(3.50)

⋆
∑
l

eil = 2
π∑

l=0

cos(l). (3.51)
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In the first and second sums, we put together the sums with opposite momenta l and −l. In the
second one, we used as well fermionic anti-commutation relations, in order to obtain d̃0d̃0 = d̃†0d̃

†
0 = 0

and d̃πd̃π = d̃†πd̃
†
π = 0, using the boundary condition d̃π = d̃−π for the latter. All in all, we obtain

h|τ | = −
αγ

2

π∑
l=0

{2 cos(l)(d̃†l d̃l + d̃†−ld̃−l)− 2i sin(l)(d̃†l d̃
†
−l + d̃ld̃−l) + 2 cos(l)} − 2d̃†0d̃0 + 2d̃†πd̃π.

(3.52)

Now, we are in position of applying a Bogoliubov rotation of the form (2.65). From such expressions,
and for each term of the sum in (3.52), we have, denoting by φl the angle of the Bogoliubov rotation:

2 cos(l)(d̃†l d̃l + d̃†−ld̃−l)− 2i sin(l)(d̃†l d̃
†
−l + d̃ld̃−l) + 2 cos(l)

= 2(ξ̃†ξ̃l + ξ†−lξ̃−l)[cos(l) cos(φl) + sin(l) sin(φl)]

+ 2i(ξ̃†l ξ
†
−l + ξ̃lξ̃−l)[cos(l) sin(φl)− sin(l) cos(φl)]

+ [4 cos(l) sin2(φl/2)− 2 sin(l) sin(φl) + 2 cos(l)]. (3.53)

From the same transformation, terms d̃†0d̃0 and d̃†πd̃π can be expressed as

d̃†0d̃0 = cos(φ0)ξ̃
†
0ξ̃0 + sin2(φ0/2), d̃†πd̃π = cos(φπ)ξ̃

†
π ξ̃π + sin2(φπ/2), (3.54)

where we used again d̃0d̃0 = d̃†0d̃
†
0 = 0 and d̃πd̃π = d̃†πd̃

†
π = 0, PBC on ξ−π = ξπ, as well as (C.2) from

appendix (C). Now, we select Bogoliubov angle in order to make zero terms with coupled opposite
momenta. We select, for all l:

sin(φl) = sin(l), cos(φl) = cos(l). (3.55)

In other words, taking φl = l for all l, we obtain

h|τ | = −
αγ

2

π∑
l=0

{2(ξ̃†ξ̃l + ξ†−lξ̃−l) + 2(2 cos(l)− 1)} − 2ξ̃†0ξ̃0 − 2ξ̃†π ξ̃π + 2, (3.56)

where we used that, from (3.55),

⋆ 4 cos(l) sin2(φl/2)− 2 sin(l) sin(φl) + 2 cos(l) = 4 cos(l)

(
1− cos(l)

2

)
− 2 + 2 cos2(l) + 2 cos(l)

= 2(2 cos(l)− 1),

(3.57)

⋆ sin2(θ0/2) =
1− cos(0)

2
= 0, sin2(θπ/2) =

1− cos(π)

2
= 1,

⋆ cos(φ0) = cos(0) = 1, cos(φπ) = cos(π) = −1. (3.58)

Therefore, from (3.56), (3.45) and (3.41), we obtain, for each τ ∈ {0, . . . , 2N − 1},

H|τ | = −
α

2

π∑
l=0

{gl + cl −
√
c2l + f 2

l +
√
c2l + f 2

l (ξ
†
l ξl + ξ†−lξ−l)}

− αγ

2

π∑
s=0

{2(ξ̃†s ξ̃s + ξ̃†−sξ̃−s) + 2(2 cos(s)− 1)} − 2ξ̃†0ξ̃0 − 2ξ̃†π ξ̃π + 2 +
αN

2
, (3.59)

where we denote by s the momentum for the fermionic particles with occupation number operators
ξ̃†s ξ̃s, so that we can distinguish both kinds of momentum: from operator h1, and from operator h|τ |.

25



Omitting operator-independent terms from (3.59), we have the following quantum master opera-
tor:

H|τ | = −
α

2

π∑
l=0

√
c2l + f 2

l (ξ
†
l ξl + ξ†−lξ−l)− αγ

π∑
s=0

(ξ̃†s ξ̃s + ξ̃†−sξ̃−s)− 2ξ̃†0ξ̃0 − 2ξ̃†π ξ̃π. (3.60)

Therefore, we obtain the following eigenvalues, each corresponding to each element of the basis of
Master’s operator eigenstates expressed in terms of fermionic occupation after Bogoliubov rotation:

wl,s =


−α

2

√
c2l + f 2

l − αγ if s ̸= 0, π (s ̸= 0, π)

−α
2

√
c2l + f 2

l − (2 + αγ) if s = 0 (k = 0 and k = N/2).

(3.61)

where l and s are momenta for the first (h1) and the second (h|τ |) fermionic particles in H|τ |, respec-
tively. Note that, since cl = c−l and fl = −f−l, these eigenvalues are equal for each l ̸= 0, π and its
counterpartner −l. This statement is also applicable to s and −s, for s ̸= 0, π.

Following the approach from [57], we find a feasibly computational approach, as we are about to see,
for this kind of analytical diagonalization: we could interpret ξ†l ξl and ξ̃

†
s ξ̃s operators, respectively, as

different kinds of quasi-particles occupation number operators. This is an important consideration
when departing from specific initial states when applying our circuit, since we must take into account
fermionic occupation of both types of quasi-particles.

4 Quantum simulation: implementation and numerical re-

sults

In this section, we provide the structure of the quantum circuit that yields a proper diagonalization
for the studied Master equations, both from original Glauber-Ising model and for the extended quan-
tum Master version, understanding Wβ (after the corresponding hermitization) as the Hamiltonian
whose eigenvalues and eigenstates we are interested in. Simulation and computations in this work are
focused in a more simple operator: Ising Hamiltonian with external transverse magnetic field. We
base the present implementation approach on the analytical diagonalization provided so far, following
the same steps from [59] and [58]. Nevertheless, our ultimate objective regarding implementation is
to diagonalize each of the H|τ | from (3.41), varying τ ∈ {0, . . . , 2N − 1}, although such calculations
are not included in this work, but in its outlook.

Once the diagonalization circuit, represented by a unitary operator Udis, is clear, we proceed to
compute expectation value of a relevant physical property: spin along the z-direction. Such operator
Udis let us consider fermionic occupation of mometum modes in a first instance, in order to obtain
the corresponding state expressed in the basis of eigenstates of z-Pauli matrices, which in turn let
us compute the aforementioned expectation values more easily. The way we decompose quantum
gates is summarized in appendix (D), and some highlighted codes for the following computations are
included in appendix (E). In particular, the code we represent in the aforementioned appendix for
the quantum circuit we use for diagonalization corresponds to Master’s operators considered so far,
and thus to its corresponding Bogoliubov angles, all of them given in similar terms. Note that, when
applying such a circuit to a different Hamiltonian, all we need is changing the Bogoliubov angle to
the one obtained after the corresponding diagonalization.

4.1 Implementation of Udis

In this section, we give a brief exposure of how the quantum circuit is constructed following the same
steps from [59]. That is, our immediate goal is to identify the quantum circuit that disentangles
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(3.41) for each of the τ ∈ {0, . . . , 2N − 1} or, as we will see explicitly, Hamiltonian (4.16). For N
spins (which is going to correspond exactly to the number of qbits), from the aforementioned refer-
ence, we know that the circuit consists of a number of gates that scales as N2 and a depth which
scales as N log(N).

The analytical path which guides us to build such Udis consists, as we saw, in three main parts:
Jordan-Wigner map of spins into fermions, discrete Fourier transform to locate fermions in momen-
tum space, and Bogoliubov rotations to express the operator in terms of free fermions.

According to the first part, it is all about relabeling the degrees of freedom of the physical sys-
tem. Fermionic operators cj, in each of the lattice sites j ∈ {1, . . . , N}, are useful for translating the
degrees of freedom which, at the end, will pass through the filter of a Fourier transform. In more
algebraic terms, we use the maps from (2.28), which are thought to transform spin operators into
fermionic operators ci, c

†
i , i.e., fermionic annihilation and creation operators acting on the vacuum

|Ωc⟩ in a way such that

{ci, cj} = 0, {ci, c†j} = δij, ci|Ωc⟩ = 0. (4.1)

In short, Jordan-Wigner transform takes states of spin 1/2 particles, given by

|ψ⟩ =
∑

i1,...,iN=0,1

ψi1,...,iN |i1, . . . , iN⟩, (4.2)

into fermionic states of the form

|ψ⟩ =
∑

i1,...,iN=0,1

ψi1,...,in(c
†
1)

i1 . . . (c†N)
iN |Ωc⟩. (4.3)

It is straightforward that, during the transformation, there is no effect on the coefficients ψi1,...,iN .
This means that, for Jordan-Wigner transformation, we do not have to include any explicit gate in
the circuit, as long as we do not forget to swap the corresponding degrees of freedom with minus
sign. In general terms, when performing U †

dis, Jordan-Wigner transformation let us depart from
states which can be read as fermionic states, whose simplicity is due to Pauli exclusion principle. In
computational terms, it thus does not need any intervention in the system, apart from the fermionic
analogous version of SWAP gate (fSWAP), needed every time we swap qbits. Such an operator is
given by

fSWAP =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

 . (4.4)

Unlike Jordan-Wigner transformation, Fourier and Bogoliubov maps do act on the original spin
σ degrees of freedom, giving to Udis its main structure:

Udis = UBogUFT, (4.5)

where UFT and UBog refer to the unitary operators for Fourier transform and Bogoliubov rotation. The
following scheme, extracted from [59], gives a clear image of what is happening in our diagonalization
circuit, starting from an initial Hamiltonian H:

H = H1[σ]← H1[c]← H2[d]← H4[ξ] = H̃, (4.6)
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where H = H1[σ], H1[c], H2[d], and H4[ξ] = H̃ refer, respectively from left to right, to the original
(Ising or Master operator in our study) Hamiltonian, and the Hamiltonian after Jordan-Wigner map,
after Fourier transform, and after Bogoliubov rotation, with the corresponding degrees of freedom
denoted between brackets (as it was denoted in previous sections). Namely, for N even and PBC,
recall that the Fourier tranformation acting on the fermionic modes is given by

dk =
1√
N

N∑
j=1

ei
2πjk
N cj, k = −N

2
+ 1, . . . ,

N

2
. (4.7)

From previous notation, when going from H2[c] to H3[d], we are getting profit of translational invari-
ance and putting the Hamiltonian into momentum space. In particular, we limit the construction to
a circuit given in terms of two-body local gates for N = 2p, for some p ∈ N, which is exactly the con-
text in which classical fast Fourier transform can be performed. Note that for a matrix of dimension

Figure 3: Quantum circuit which implements U †
dis for Fourier

tranform and Bogoliubov rotation, yielding both U †
FT and

U †
Bog along with the necessary fSWAPS, for N = 4 spins.

Image from [59]. Note that, for N = 4 spins, and apart from
fSWAP gates, we only need 6 gates. In fact, we only need 5
gates, as we see in the figure, if we do no count the identity
obtained from Bogoliubov rotation B4

0 when departing from
|00⟩ or |11⟩ in qbits corresponding to momenta k = 0 and
k = 2. In such a context, B = B4

1 .

d ∈ N, classical Fourier transform complexity scales as d2, while, as we will see schematically, fast
Fourier transform complexity scales as d log(d). This lies on the fact that the latter consists on two
parallel Fourier transformations over N/2 lattices sites (for N the number of spins), the even and
the odd sites, given in the form [72]:

N−1∑
j=0

e
2πikj
N c†j =

N
2
−1∑

j′=0

e
2πikj′
N/2 c†2j′ + e

2πik
N e

2πikj′
N/2 c†2j′+1. (4.8)

To implement such an operation, we can understand it as a combination of a two-qbit gate, the
so-called beam splitter, and one-qbit gate, the phase-delay wk

N . The latter applies the so-called
twiddle-factor. Namely,

F2 =


1 0 0 0
0 1√

2
1√
2

0

0 1√
2
− 1√

2
0

0 0 0 −1

 , wk
N =

(
1 0

0 e
2πik
N

)
, (4.9)
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where fermionic anti-commutation has been considered in F2 with its last entry. With all that in
mind, the Fourier transform gate is

FN
k =


1 0 0 0

0 1√
2

e
2πik
N√
2

0

0 1√
2
− e

2πik
N√
2

0

0 0 0 −e 2πik
N

 . (4.10)

To illustrate the method in which we implement fast Fourier transform, let’s consider the case of
N = 4 spins (see figure 3). Modes are transformed into the momentum space, from (4.7), as

dk = (c0 + e2πi
2k
4 c2) + e2πi

k
4 (c1 + e2πi

2k
4 c3), (4.11)

that is, firstly modes 0 and 2, and modes 1 and 3 are mixed in the same way, and then another
mixing takes place. The first step of the method would be

c′0 = c0 + c2, c′1 = c! + c3,

c′2 = c0 + eiπc2, c′3 = c1 + eiπc3. (4.12)

As we can see in figure 3, there are two identical Fourier gates in the first part of U †
FT ; and then,

more mixtures take place along with some fermionic swaps. The explicit form of F2 can be discovered
by writing down the tranformation from, e.g., modes 0 and 2:

|ψ⟩ =
∑

i,j=0,1

A′
ij(c

′
0
†)i(c′2

†)j|00⟩ =
∑

i,j=0,1

Aij(c
†
0 + c†2)

i(c†0 + e−iπc†2)
j|00⟩. (4.13)

By expanding this last expression, the coefficients of the resulting state, in the basis |00⟩, |01⟩, |10⟩,
|11⟩, can be obtained through the operation A′ = F2A, what gives us (4.9).

Figure 4: Quantum circuit of U †
dis for Fourier tranform and Bo-

goliubov rotation, yielding both U †
FT and U †

Bog along with the
necessary fSWAPS, for N = 8 spins. Image from [59]. We are
denoting B8

k = Bk.

This fast Fourier transformation (4.10) has depth N log(N) for N spins and, along with the nec-
essary fSWAPS, gates number scales as N2 (see [59] to go further with this complexity analysis).
For N = 2p spins, our circuit requires 2p−1(2p − 1) local quantum gates, for which pN are lattice
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site-dependent interacting gates. The rest consists of the aforementioned fSWAPS.

As we know, the final transformation of the diagonalization process is a Bogoliubov rotation given as
(2.65), with the coefficients determined by the form of the Hamiltonian as a sum of operators defined
on the momentum space, and obtained after Fourier transformation. In other words, the Bogoliubov
angle θk that let us finish our disentanglement depends also on such Hamiltonian. The mixing of
pairs of modes performed by this Bogoliugov rotation is given by an operator like

BN
k =


cos(θk/2) 0 0 i sin(θk/2)

0 1 0 0
0 0 1 0

i sin(θk/2) 0 0 cos(θk/2),

 (4.14)

where θk is the Bogoliubov angle of the pair of modes correspoding to k,−k ∈ {−N/2+1, . . . , N/2}.

All in all, this yields the Hamiltonian in the following diagonalized form:

H4[ξ] =

N/2∑
k=−N/2+1

wkξ
†
kξk. (4.15)

This H4[ξ] is equivalent to the original form of the Hamiltonian H =
∑

iwiσ
z
i , for σ

z
i the z-Pauli ma-

trix in the i-th lattice site, and wi the corresponding eigenvalue when such a Pauli matrices eigenstates
basis is selected. This is the analytical procedure whose operations we aim to reproduce in a quantum
circuit. In appendix E we represent the code we use for the U †

dis derived from the one-dimensional
Glauber-Ising model whose analytical diagonalization we have developed in detail during the doc-
ument. For that purposed, we use Qiskit (see https://qiskit.org/documentation/) library in
programming language Python (see https://www.python.org/downloads/release/python-397/

for the specific version we use).

4.2 Analysis of an Ising Hamiltonian

In this section, we provide the reader with some relevant and useful results and procedures in the
quantum simulation from [58] and [59], which let us illustrate the described circuit directly on an
Ising Hamiltonian, instead of a one-dimensional Master operator extracted from Glauber’s model.
The analytical diagonalization resolution is the same, apart from a determinant key: the operator
to diagonalize is different, what is translated, in terms of circuit implementation, in a different
Bogoliubov angle. The methodology for the computation of expectation values is based on [58] as
well.

4.2.1 Diagonalization of an Ising Hamiltonian

We must note that here the entire diagonalization is based on an antiferromagnetic Hamiltonian with
transverse external magnetic field, given by

Ha =
N∑
i=1

σx
i σ

x
i+1 + σy

1σ
z
2 . . . σ

z
n−1σ

y
n + λ

N∑
i=1

σz
i , (4.16)

where λ is the transverse field strength. In the setting we have been studying so far, in terms of
the Master’s operator, we have always restricted the analysis to λ = 0, since we avoided external
magnetic field considerations. Moreover, the second term let us cancel the periodic boundary term
σx
Nσ

x
1 after the corresponding Jordan-Wigner transformation. This, as it is pointed out in [58], let

us solve the system as it was infinite, and has finite size effects that will become negligible for N
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Figure 5: Energy eigenvalues for Hamiltonian (4.16) eigenstates
|1100⟩, |0011⟩, |1111⟩, |1010⟩, |1000⟩ and vacuum state |0000⟩
(given in order of momenta determined by k = 0, k = 2, k = 1
and k = −1), versus external field strength parameter λ.

large. We consider PBC and N even in the form N = 2p for some p ∈ N (this let us perform fast
Fourier transformation). In this context, we are in position of providing, from [58], the expression of
Ha after the different stages of the diagonalization process:

Jordan-Wigner: Ha =
1

2

N∑
i=1

(c†ici+1 + c†i+1ci + cici+1 + c†ic
†
i+1) + λ

N∑
i=1

c†ici,

Fourier: Ha =

N/2∑
k=−N/2+1

[2(λ− cos(2πk/N)))b†kbk + i sin(2πk/N)(b†−kb
†
k + b−kbk)],

Bogoliubov: Ha =

N/2∑
k=−N/2+1

wka
†
kak, (4.17)

where a†kak are the corresponding number operators, for lattice site k in the momentum space, and
with eigenvalue

wk =
√

(λ− cos(2πk/N))2 + sin2(2πk/N). (4.18)

In figure 5 we represent the evolution of energy eigenvalues for different λ’s and for several fixed
Hamiltonian eigenstates, expressed with the same considerations and momenta order than section
(2.2.4). Due to its key role in the circuit implementation, we represent the corresponding Bogoliubov
rotation angle, recalling that such a rotation is implemented in the same way than (4.14):

θk = arccos

 λ− cos
(
2πk
N

)√
(λ− cos

(
2πk
N

)
)2 + sin2(2πk

N
)

 , k = −N
2

+ 1, . . . ,
N

2
. (4.19)

In figure 6 we represent how Bogoliubov angle changes in this scheme with respect to external field
strength λ for all possible momenta in the case of N = 4 spins.
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Figure 6: Bogoliubov rotation angles from (4.19) versus external
field strength parameter λ, for each possible momentum, deter-
mined by k = 0, k = 2 and k = 1 or k = −1 (N = 4 spins). Note
that red and blue lines (k = 0 and k = 2 respectively) coincide
for, approximately, |λ| > 1.5.

4.2.2 Computation of ⟨σz⟩ with an antiferromagnetic Ising Hamiltonian

With regard to thermal simulation, we present two methods following the methodology in [58].
Firstly, note that the model we are now analyzing from such a paper responds to a Boltzmann
thermal equilibrium. This means that we understand that model as a quantum system exposed to
a heat bath through thermally distributed populations of states following a Boltzmann distribution,
given by

ρ(β) =
e−βH

ZN(β)
=

1

ZN(β)

∑
i

e−βEi |Ei⟩⟨Ei|, (4.20)

where β = 1/(kBT ) (the so-called temperature parameter), T is the temperature, kB the Boltzmann
constant, N the number of spins, and ZN(β) is the partition function expressed as

ZN(β) =
∑
i

e−βEi . (4.21)

This let us compute the expectation value of some observable O at finite temperature T as

⟨O(β)⟩ = Tr[Oρ(β)] =
1

ZN(β)

∑
i

e−iβEi⟨Ei|O|Ei⟩. (4.22)

Thermal simulation is direct through the operator Udis we implement in a quantum circuit, given
that the latter transforms states in the H4[ξ] into states in the σz-eigenstates basis. Since |Ei⟩ are
elements of the computational basis, expressed in terms of eigenstates of the Hamiltonian (namely,
through fermionic occupation in momentum modes), qbits initialization in order to perform thermal
simulation are not needed, apart from the necessary X gates.
With all this description of the present framework, thermal simulation in [58] is carried out through
either exact simulation or sampling. The former consists of considering all possible initial states
from the computational basis, compute the corresponding expectation value, and average the values
obtained with their energies. The latter is performed by sampling among Hamiltonian eigenstates,
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according to the aforementioned Boltzmann distribution (4.20), and then running the circuit and
computing the expectation value from the randomly generated state, initially given in the Hamilto-
nian eigenstates basis, and finally in the σz eigenstates basis.

According to computational complexity (see [58]), we must make the following remark: the first
method demands K × 2N runs, for K the number of repetitions in order to do the average, since we
are computing the expectation value for each element of the computational basis, with no statistical
error. For the second method, maintaining notation, only K runs are needed, with a statistical error
of 1/

√
K.

We use only the second approach, since it let us take into account temperature considerations (Boltz-
mann distribution depends on the temperature parameter β). This would let us more easily establish
the comparison with this setting and an out-of-equilibrium setting, which explicitly depends on the
temperature. We implement, for N = 4 spins, the Boltzmann distribution sampling just described
among all possible initial Hamiltonian eigenstates, given that we know the whole spectrum. We
focus now on the analysis of ⟨σz⟩ versus λ and β, for fixed β’s and λ’s, respectively. To illustrate
the computational procedure followed, in appendix E we represent the code used for a ⟨σz⟩ versus
β simulation, for a specific fixed λ. In figures 7 and 8, we provide the plots of computed ⟨σz⟩ after

Figure 7: ⟨σz⟩ versus temperature parameter β, for fixed external
field parameters λ = 0, 0.5, 2.

simulated diagonalization, versus β and λ, respectively. The implementation of these computations
goes as follows: first of all, as mentioned above, we sample with Boltzmann distribution among all
Hamiltonian eigenstates determined, as pointed out, through fermionic occupation in 4 momentum
space modes; secondly, we perform circuit Udis to pass from Hamiltonian eigenstates basis to σz
eigenstates basis, in which computation of σz eigenvalues is straightforward through standard com-
putations; then, we compute such eigenvalues, which in practice reduce to a product of 1’s and −1’s;
and we repeat the approach just described as many times as desired (we carried out computations
with 1000 samples), in order to provide a final estimation of ⟨σz⟩ with the corresponding average.

Note that physical implication [73] of the plots we have just mentioned serve us as sanity check
for the computed simulation. On the one hand, dependence of ⟨σz⟩ with respect to temperature
parameter β shows that for low temperatures (β → ∞), the ground state, given by ⟨σz⟩ = 1, tends
to put on top of the other states; while for large temperatures (β → 0), we find a probabilistically
uniform situation in which, since all eigenstates are equally probable, ⟨σz⟩ tends to 0. Moreover, we
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Figure 8: ⟨σz⟩ versus external field parameter λ, for fixed tem-
perature parameters β = 2, 0.5, 10.

note that such a behaviour is more pronounced for higher values of λ.

On the other hand, regarding dependence of ⟨σz⟩ with respect to transverse external field strength
λ, averaged spin (in z-direction) state transition around λ = 1 is visualized, going from −1 average
spin for λ < 1, to 1 average spin for λ > 1, as it is expected for an antiferromangetic Ising model
described by a Hamiltonian like (4.16).

5 Conclusions and outlook

We now summarize the most relevant points reached in the present document:

1. First of all, following [63] and [64], we carried out a formalization of Glauber-Ising model for
a N -ring of spins 1/2, in terms of the corresponding Master equation, which permitted us
to manage such an equation, primarily, through Pauli matrices. Then, we have developed
three standard transformations (Jordan-Wigner, Fourier and Bogoliubov) in order to express
the Master’s operator that determines the aforementioned equation by free-fermion operators
located in lattice sites of the momentum space. We have restricted the analysis to PBC and N
even, when concreteness was required.

2. From the previous setting, following [57], we have extended the analytical diagonalization from
populations to every entry of the corresponding density matrix of the system (populations and
coherences) through a Lindblad formulation. Moreover, by performing some algebra over the
operators, we have reached a very similar setting to the one obtained in the only-populations
version, by dividing the original Master’s operator into 2N Hamiltonians. That allowed us to
go ahead with an analogous analytical diagonalization, on each of the 2N Hamiltonians, by
considering two different kinds of fermionic quasi-particles.

3. In both procedures just described, indispensable parameters for quantum circuit implementa-
tion, which can only be obtained once the whole diagonalization process is considered, were
determined: the Bogoliubov rotation angles. This is our first result.

4. Furthermore, we obtained, for all studied systems (quantum kinetic Glauber-Ising model, its
extended version in terms of density matrices, and antiferromagnetic Ising model) the whole
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energy spectrum, as well as the description of the corresponding eigenvectors. A computa-
tionally efficient and easy to interpret management of the latter algebra is essential for the
implementation of the corresponding diagonalization quantum circuit.

5. Once established the theoretical approach for diagonalization, we set up a quantum circuit that
let us pass states and operators from σz eigenstates basis, to the corresponding Hamiltonian
eigenstates basis (included the case in which the Hamiltonian consists of a Master’s operator);
and in the other way round. This made necessary the study of quantum gate decompositions
for the three aforementioned transformations. In particular, we provided such a quantum
circuit for N = 4 spins and PBC. For such a quantum simulation, we must note that we did
not implement it in any quantum computer, since given the computational level we reached,
it made no remarkable difference. However, we implemented directly the circuit with Qiskit
library in programming language Python in order to simulate our quantum circuit without
taking considerations of circuit architectures.

6. Getting profit of the quantum circuit we implemented, we applied it to a more practical scheme:
the computation of σz expectation values for the antiferromagnetic Hamiltonian studied in
[58]. Indeed, we analyzed the behaviour of such ⟨σz⟩’s values against β and λ, which are the
prefixed parameters of the considered Ising model. That served us as sanity checks for the
diagonalization quantum circuit.

As outlook of this work, the logical immediate continuation could be, firstly, the repetition of
the implemented quantum simulation for larger multiples of 2 (i.e., N = 8, 16, . . . spins); secondly,
to simulate the diagonalization for the studied Master’s operators, either from the original Glauber
model or for the H|τ | Hamiltonians obtained from the extended setting with density matrices; and
thirdly, it would be highly interesting to implement all these algorithms in a quantum computer.
All these points would let us, in terms of numerical simulations, properly compare both ways of
diagonalizing an Ising Hamiltonian: with external magnetic field like in [58], and with thermal out-
of-equilibrium dynamics through a Master equation. Furthermore, Master’s operators computational
diagonalization would also let us explore to which extent we are capable of using such a quantum
kinetic model to solve out-of-equibilibrium complex problems, in a context of classical dynamics. As
pointed out before, the latter is the point through which we intend to include an algorithm to the
current list of NISQ algorithms.
In the future, we will study the possibility of using this or related strategies to Machine Learning
problems. We notice that there is a close relationship between Ising models with arbitrary couplings
and e.g. Boltzmann machines, which is well known in the traditional literature. See [74] [75] as
examples of these approaches. Some techniques or physical contexts not studied in the present work
may be necessary for this new perspective, such as the extension to more dimensions in the Ising
models, or the use of variational quantum eigensolvers [76] [77].

35



A Jordan-Wigner computations

In this appendix, we show all necessary computations, with regard to the part based on the classical
Glauber model (before extending its notion to the density matrix), related to the transformation from
core-boson operators, given in terms of raising and lowering Pauli matrices, to spinless fermionic
operators, and which did not fit, due to limited space, in the main part of this document. The
Jordan-Wigner transformation acting on product terms of raising and lowering spin-1/2 operators
appearing in Wβ (see equation (2.27)) goes as we express below, for the crossed products in such a
Master’s operator. Given any j ∈ {1, . . . , N}, and recalling that, when not expressing superindex x,
y or z, we assume superindex is z:

⋆σx
j = (1− 2c†jcj). (A.1)

⋆ σj−1σj+1 = −(σ+
j−1 − σ−

j−1)(σ
+
j+1 − σ−

j+1) = −σ+
j−1σ

+
j+1 + σ+

j−1σ
−
j+1 + σ−

j−1σ
+
j+1 − σ−

j−1σ
−
j+1

= cj−1(1− 2nj−1)(1− 2nj)cj+1 + cj−1(1− 2nj−1)(1− 2nj)c
†
j+1 + c†j−1(1− 2nj−1)(1− 2nj)cj+1

+ c†j−1(1− 2nj−1)(1− 2nj)c
†
j+1 = −cj−1cj+1(1− 2nj)− cj−1c

†
j+1(1− 2nj) + c†j−1cj+1(1− 2nj)

+ c†j−1c
†
j+1(1− 2nj). (A.2)

where, to illustrate one of the calculations just developed, observe that, using anti-commutation
relations:

cj−1(1− 2nj−1) = cj−1(1− 2 + 2cj−1c
†
j−1) = −cj−1. (A.3)

Now, we use that, since n2
j = nj, then (1− 2nj)

2 = 1. Therefore, regrouping terms,

σj−1σj+1σ
x
j = −cj−1cj+1 − cj−1c

†
j+1 + c†j−1cj+1 + c†j−1c

†
j+1 = (c†j−1 − cj−1)(c

†
j+1 + cj+1). (A.4)

On the other hand,

σjσj+1 = −(σ+
j − σ−

j )(σ
+
j+1 − σ−

j+1) = −σ+
j σ

+
j+1 + σ+

j σ
−
j+1 + σ−

j σ
+
j+1 − σ−

j σ
−
j+1

= cj(1− 2nj)cj+1 + cj(1− 2nj)c
†
j+1 + c†j(1− 2nj)cj+1 + c†j(1− 2nj)c

†
j+1

= −cjcj+1 − cjc†j+1 + c†jcj+1 + c†jc
†
j+1 = (c†j − cj)(c

†
j+1 + cj+1). (A.5)

Similarly, considering commutation relations and taking different indices in (A.5), we have

σjσj−1 = σj−1σj = (c†j−1 − cj−1)(c
†
j + cj). (A.6)

Observe that, assuming PBC conditions,

γ

2

N∑
j=1

(c†j + cj)(c
†
j−1 − cj−1) +

γ

2

N∑
j=1

(c†j+1 + cj+1)(c
†
j − cj) = γ

N∑
j=1

(c†j+1 + cj+1)(c
†
j − cj). (A.7)

B Discrete Fourier Transform computations

In this section, we provide the reader with all computations related to discrete Fourier transformation
that did not fit in the main part of the present document, regarding the part which goes before
extending Glauber model’s notion to the density matrix. We express the computations for all possible
combinations of cj, with and without dagger, and for all combinations of indices j appearing in Wβ,
although many of these computations are redundant, for two reasons: firstly, because there are
operators which are adjoint counterparts of other ones already computed; and because rewriting
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indices j (e.g., taking cj−1cj and summing 1 to their indices, we obtian cjcj+1), we directly obtain
different combinations. Omitting the initial and the final values of the following sums we have that

⋆ c†j−1cj =
1

N

∑
l,p

e−i(j−1)peijld†pdl j ∈ {1, . . . , N} (B.1)

=⇒
N∑
j=1

c†j−1cj =
1

N

∑
l,p

eipd†pdl

(
N∑
j=1

eij(l−p)

)
=

N
2∑

l=−N
2
+1

eild†ldl. (B.2)

⋆ cj−1c
†
j =

1

N

∑
l,p

ei(j−1)pe−ijldpd
†
l j ∈ {1, . . . , N} (B.3)

=⇒
N∑
j=1

cj−1c
†
j =

1

N

∑
l,p

e−ipdpd
†
l

(
N∑
j=1

eij(p−l)

)
=

N
2∑

l=−N
2
+1

e−ildld
†
l . (B.4)

⋆ c†j−1c
†
j =

1

N

∑
l,p

e−i(j−1)pe−ijld†pd
†
l j ∈ {1, . . . , N} (B.5)

=⇒
N∑
j=1

c†j−1c
†
j =

1

N

∑
l,p

eipd†pd
†
l

(
N∑
j=1

e−ij(p+l)

)
=

N
2∑

l=−N
2
+1

e−ild†−ld
†
l . (B.6)

⋆ cj+1c
†
j =

1

N

∑
l,p

ei(j+1)pe−ijldpd
†
l j ∈ {1, . . . , N} (B.7)

=⇒
N∑
j=1

cj+1c
†
j =

1

N

∑
l,p

eipdpd
†
l

(
N∑
j=1

eij(p−l)

)
=

N
2∑

l=−N
2
+1

eildld
†
l . (B.8)

⋆ cj−1cj =
1

N

∑
l,p

ei(j−1)peijldpdl =
∑
l,p

e−ipeij(l+p)dpdl j ∈ {1, . . . , N} (B.9)

=⇒
N∑
j=1

cj−1cj =
1

N

∑
l,p

e−ipdpdl

(
N∑
j=1

eij(p+l)

)
=

N
2∑

l=−N
2
+1

eild−ldl. (B.10)

⋆ cj+1cj =
1

N

∑
l,p

ei(j+1)peijldpdl =
∑
l,p

eipeij(l+p)dpdl j ∈ {1, . . . , N} (B.11)

=⇒
N∑
j=1

cj+1cj =
1

N

∑
l,p

eipdpdl

(
N∑
j=1

eij(p+l)

)
=

N
2∑

l=−N
2
+1

e−ild−ldl. (B.12)

⋆ c†j+1cj =
1

N

∑
l,p

e−il(j+1)eipjd†ldp =
∑
l,p

e−ileij(p−l)d†ldp j ∈ {1, . . . , N} (B.13)

=⇒
N∑
j=1

c†j+1cj =
1

N

∑
l,p

e−ild†ldp

(
N∑
j=1

eij(p−l)

)
=

N
2∑

l=−N
2
+1

e−ild†ldl. (B.14)
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⋆ c†j+1c
†
j =

1

N

∑
l,p

e−il(j+1)e−ipjd†ld
†
p =

∑
l,p

e−ile−ij(p+l)d†ld
†
p j ∈ {1, . . . , N} (B.15)

=⇒
N∑
j=1

c†j+1c
†
j =

1

N

∑
l,p

e−ild†ld
†
p

(
N∑
j=1

e−ij(p+l)

)
=

N
2∑

l=−N
2
+1

e−ild†ld
†
−l. (B.16)

⋆ c†j+1c
†
j−1 =

1

N

∑
l,p

e−i(j+1)pe−i(j−1)ld†pd
†
l =

∑
l,p

ei(l−p)e−ij(l+p)d†pd
†
l j ∈ {1, . . . , N} (B.17)

=⇒
N∑
j=1

c†j+1c
†
j−1 =

1

N

∑
l,p

ei(l−p)d†pd
†
l

(
N∑
j=1

e−ij(p+l)

)
=

N
2∑

l=−N
2
+1

e2ild†−ld
†
l . (B.18)

⋆ cj+1c
†
j−1 =

1

N

∑
l,p

ei(j+1)pe−i(j−1)ldpd
†
l =

∑
l,p

ei(l+p)eij(p−l)dpd
†
l j ∈ {1, . . . , N} (B.19)

=⇒
N∑
j=1

cj+1c
†
j−1 =

1

N

∑
l,p

ei(l+p)dpd
†
l

(
N∑
j=1

eij(p−l)

)
=

N
2∑

l=−N
2
+1

e2ildld
†
l . (B.20)

⋆ cj+1cj−1 =
1

N

∑
l,p

ei(j+1)pei(j−1)ldpdl =
∑
l,p

ei(p−l)eij(p+l)dpdl j ∈ {1, . . . , N} (B.21)

=⇒
N∑
j=1

cj+1cj−1 =
1

N

∑
l,p

ei(p−l)dpdl

(
N∑
j=1

eij(p+l)

)
=

N
2∑

l=−N
2
+1

e2ildld−l. (B.22)

⋆ c†j+1cj−1 =
1

N

∑
l,p

e−i(j+1)pei(j−1)ld†pdl =
∑
l,p

e−i(l+p)eij(l−p)d†pdl j ∈ {1, . . . , N} (B.23)

=⇒
N∑
j=1

c†j+1cj−1 =
1

N

∑
l,p

e−i(l+p)d†pdl

(
N∑
j=1

eij(l−p)

)
=

N
2∑

l=−N
2
+1

e−2ild†ldl. (B.24)

⋆ c†jcj =
1

N

∑
l,p

e−ijleijpd†ldp (B.25)

=⇒
N∑
j=1

c†jcj =
1

N

∑
l,p

d†ldp

(
N∑
j=1

eij(p−l)

)
=

N/2∑
l=−N/2+1

d†ldl. (B.26)

Furthermore, these momentum space fermionic operators fulfill the same anti-commutation relations
than cl, c

†
l . All in all, Hamiltonian (2.35) can be written as

Wβ =
α

2

∑
l

{A(1− 2d†ldl) +Be2ild†−ld
†
l +Be2ildld

†
l −Be

−2ild†ldl −Be
2ildld−l − 1

− γeildld†l − γe
−ild†ld

†
−l + γe−ild†ldl + γe−ild−ldl} =

α

2

∑
l

{[A− 1 +Be2il − γeil − γe−il −Be2il]

+ d†ldl[−2A− 2B cos(2l) + 2γ cos(l)] + d†−ld
†
l [Be

2il + γe−il] + d−ldl[Be
2il + γe−il]} = α

2

∑
l

{[A− 1

− 2γ cos(l)] + 2d†ldl[−B cos(2l)− A+ γ cos(l)] + d†−ld
†
l [Be

2il + γe−il] + d−ldl[Be
2il + γe−il]}

=
α

2

∑
l

{El + Cld
†
ldl +Dl(d

†
−ld

†
l + d−ldl)}, (B.27)
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where Cl = 2[−A−B cos(2l)+γ cos(l)], Dl = Be2il+γe−il, and El = A−1−2γ cos(l), for l = 2πk/N ,
for k ∈ {−N/2 + 1, . . . , N/2}, what implies l = −π + 2π/N, . . . ,−2π/N, 0, 2π/N, . . . , π − 2π/N, π
(recall that we are considering PBC).

C Bogoliubov transformation computations

Now, we show the computations related to Bogoliugov rotations carried out throughout our exposure,
regarding the original Glauber model. Expanding the corresponding sums from (2.65), we have that

ds = usξs + ivsξ
†
−s, d†−s = usξ

†
−s + ivsξs,

d−s = usξ−s − ivsξ†s, d†s = usξ
†
s − ivsξ−s. (C.1)

From the terms of the sum (B.27), we must compute the following in terms of the rotated operators,
taking into account anti-commutation relations:

⋆ d†ldl = (ulξ
†
l − ivlξ−l)(ulξl + ivlξ

†
−l) = cos2(θl/2)ξ

†
l ξl − sin2(θl/2)ξ

†
−lξ−l

+ i
sin(θl)

2
ξ†l ξ

†
−l + i

sin(θl)

2
ξlξ−l + sin2(θl/2).

⋆ d†−ld−l = (ulξ
†
−l + ivlξl)(ulξ−l − ivlξ†l ) = cos2(θl/2)ξ

†
−lξ−l − sin2(θl/2)ξ

†
l ξl

+ i
sin(θl)

2
ξlξ−l + i

sin(θl)

2
ξ†l ξ

†
−l + sin2(θl/2)

⋆ d†−ld
†
l = (ulξ

†
−l + ivlξl)(ulξ

†
l − ivlξ−l) = − cos2(θl/2)ξ

†
l ξ

†
−l + sin2(θl/2)ξlξ−l

− isin(θl)
2

ξ†l ξl − i
sin(θl)

2
ξ†−lξ−l + i

sin(θl)

2
,

⋆ d−ldl = (ulξ−l − ivlξ†l )(ulξl + ivlξ
†
−l) = − cos2(θl/2)ξlξ−l + sin2(θl/2)ξ

†
l ξ

†
−l

− isin(θl)
2

ξ†−lξ−l − i
sin(θl)

2
ξ†l ξl + i

sin(θl)

2
. (C.2)

From (2.57), we need to express in terms of the new operators the following, using some elementary
trigonometric equalities:

d†ldl + d†−ld−l = cos(θl)ξ
†
l ξl + cos(θl)ξ

†
−lξ−l + i sin(θl)ξ

†
l ξ

†
−l + iWl, sin(θl)ξlξ−l + 2 sin2(θl/2).

d†ld
†
−l + dld−l = cos(θl)(ξlξ−l + ξ†l ξ

†
−l) + i sin(θl)(ξ

†
l ξl + ξ†−lξ−l)− i sin(θl). (C.3)

Now, if we write Wβ = (α/2)
∑

lWl,β, regrouping terms we obtain:

Wl,β = Gl + iFl[cos(θl)(ξlξ−l + ξ†l ξ
†
−l) + i sin(θl)(ξ

†
l ξl + ξ†−lξ−l)− i sin(θl)]

+ Cl[cos(θl)(ξ
†
l ξl + ξ†−lξ−l) + i sin(θl)(ξ

†
l ξ

†
−l + ξlξ−l) + 2 sin2(θl/2)]

= [Gl + Fl sin(θl) + 2Cl sin
2(θl/2)] + (ξlξ−l + ξ†l ξ

†
−l)[iFl cos(θl) + iCl sin(θl)]

+ (ξ†l ξl + ξ†−lξ−l)[−Fl sin(θl) + Cl cos(θl)]. (C.4)

D Gates decomposition for Udis operators

Following [58] and [78], we briefly explain and represent gates decompositions for the transformations
involved in our diagonalizations. Given that images represented come from [58], there is a slight
change in notation in such figures: number of spins, in this appendix, is denoted by n instead of N .
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D.1 Fermionic SWAP

As we know, Jordan-Wigner transformation, in which we go from spin operators in terms of Pauli
matrices σj, to fermionic modes cj, do not require specific operators, apart from a fermionic SWAP
every time we exchange two occupied modes, since the latter should carry a minus sign. In figure 9
we express the way we implement such a special swap, from [58].

Figure 9: Quantum gates necessary to implement a fermionic SWAP, taking
into account the fermionic anticommutativity. Image from [58].

D.2 Fourier transform

In (4.10) we express the general fast Fourier transformation gate which let us place the fermionic
modes in the momentum space. Again from [58], we use the gates decomposition expressed in

Figure 10: Quantum gates necessary to implement the fast Fourier
transformation from (4.10). Image from [58].

figure 10. We start by adding 2πk/n-phases in the first qbit, followed by controlled-NOT (CNOT),
controlled-Hadamard gate, and again CNOT, to end up with a controlled-Z. All these operators locate
its control qbit in the first qbit, apart from controlled-Hadamard, which locate it in the second one.

D.3 Bogoliubov rotation

Figure 11: Quantum gates in which we decompose the Bogoliubov rotation
from (4.14). Image from [58].

The last transformation consists of the operator Bn
k represented in (4.14). Following [78], we

decompose these operations in the gates represented in figure 11. Operator RX(θk) refers to a
rotation, with respect to X-axis in the Bloch sphere, with an angle corresponding to the Bogoliubov
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Figure 12: Quantum gates in which we decompose the controlled x-rotation
needed for Bogoliubov rotation (4.14), where A = RZ(π/2)RY (θk/2), B =
RY (−θk/2), and C = RZ(−π/2). Image from [58].

angle θk. In figure 12 we show the exact decomposition of such a controlled rotation: we alternate
π/2 and −π/2-rotations with respect to Z-axis with the corresponding Y -axis rotations with angles
θk/2 and −θk/2, along with two CNOTs.

E Relevant codes

We summarize some important codes through which we implemented the diagonalization quantum
circuit and performed some highlighted computations for our simulations.

E.1 Code for quantum circuit

We provide in this section the main codes used to implement the diagonalization quantum circuit for
the Master’s operator from original kinetic Ising model (2.22). As pointed out before, to implement
this code for another Hamiltonian or Master’s operator, it suffices to change the corresponding
Bogoliubov angle properly. We use Qiskit in programming language Python. We limit our example
here to N = 4 spins. Note that methodology here presented consists of departing from states in
the eigenstates basis of σz

i ’s, in order to express them in terms of the Hamiltonian eigenstates basis.
That is, in the notation used above, we are implementing U †

dis. Before giving the quantum circuit
code, we need to compute constants A and B from the aforementioned model, as well as Bogoliubov
rotation angles for the correpsonding momentum 2πk/N :

from numpy import sqrt , s in , cos
de f Agamma(gamma) :

r e turn ( sq r t (1−gamma∗∗2)−1)/2
de f Bgamma(gamma) :

r e turn 1 − Agamma(gamma)

from numpy import a rc s in , s in , cos , p i
de f angbog f e ld (k , gamma,N) :

A = Agamma(gamma)
B = Bgamma(gamma)
re turn a r c s i n ( (B∗ s i n (4∗ pi ∗k/N) − gamma∗ s i n (2∗ pi ∗k/N) ) /

( sq r t ( (B∗ s i n (4∗ pi ∗k/N) − gamma∗ s i n (2∗ pi ∗k/N))∗∗2 +
( gamma∗ cos (2∗ pi ∗k/N) − A − B∗ cos (4∗ pi ∗k/N) )∗∗2) ) )

Once we know Bogoliubov angle function, we are in position to write the described diagonalization
circuit (i.e., unitary operator U †

dis) for the present setting:

import numpy as np
from numpy import arccos , cos , sqrt , s i n
from math import p i
from q i s k i t import QuantumCircuit , QuantumRegister , C l a s s i c a lR e g i s t e r
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from q i s k i t import t r an sp i l e , Aer , assemble
from q i s k i t . v i s u a l i z a t i o n import p lo t h i s tog ram

def UdisM inv ( i n i t , fswap ,gamma) :
#i n i t i s a l i s t o f 4 f l o a t numbers l i s t s
#y i e l d i n g i n i t i a l s t a t e components
#in s igma z e i g e n s t a t e s ba s i s .
#fswap i s 1 i f we apply fswap gate s
#between i nv e r s e f o u r i e r trans ,
#and 0 otherw i se .

N=4
qq = QuantumRegister (N)
qa = QuantumCircuit ( qq )

# Apply i n i t i a l i z a t i o n on a l l qb i t s :
qa . i n i t i a l i z e ( i n i t [ 0 ] , 0)
qa . i n i t i a l i z e ( i n i t [ 1 ] , 1)
qa . i n i t i a l i z e ( i n i t [ 2 ] , 2)
qa . i n i t i a l i z e ( i n i t [ 3 ] , 3)

#Bogoliubov r o t a t i o n s :

k=1
ang bog1 = angbog f e ld (k , gamma,N)
qa . x (1 )
qa . cx (1 , 0 )
#qa . crx ( ang bog , 0 , 1 )
#We can be more s p e c i f i c f o r c on t r o l l e d x−r o t a t i o n s :
qa . rz ( p i /2 ,1)
qa . cx (0 , 1 )
qa . ry ( ang bog1 /2 ,1)
qa . cx (0 , 1 )
qa . ry(−ang bog1 /2 ,1)
qa . rz (−pi /2 ,1)
#End o f c on t r o l l e d x−r o t a t i on with Bog . ang le
qa . cx (1 , 0 )
qa . x (1 )

k=0
ang bog0 = angbog f e ld (k , gamma,N)
qa . x (3 )
qa . cx (3 , 2 )
#qa . crx ( ang bog , 2 , 3 )
#We can be more s p e c i f i c f o r c on t r o l l e d x−r o t a t i o n s :
qa . rz ( p i /2 ,3)
qa . cx (2 , 3 )
qa . ry ( ang bog0 /2 ,3)
qa . cx (2 , 3 )
qa . ry(−ang bog0 /2 ,3)
qa . rz (−pi /2 ,3)
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#End o f c on t r o l l e d x−r o t a t i on with Bog . ang le
qa . cx (3 , 2 )
qa . x (3 )

qa . b a r r i e r ( )

#Now, 4 i nv e r s e Four i e r s :

k=1
qa . cz (0 , 1 )
qa . cx (0 , 1 )
qa . ch (1 , 0 )
qa . cx (0 , 1 )
qa . p(−2∗pi ∗k/N, 0 )

k=0
qa . cz (2 , 3 )
qa . cx (2 , 3 )
qa . ch (3 , 2 )
qa . cx (2 , 3 )
qa . p(−2∗pi ∗k/N, 2 )

i f fswap == 1 :
qa . cz (1 , 2 )
qa . swap (1 , 2 )

k=0
qa . cz (0 , 1 )
qa . cx (0 , 1 )
qa . ch (1 , 0 )
qa . cx (0 , 1 )
qa . p(−2∗pi ∗k/N, 0 )

k=0
qa . cz (0 , 1 )
qa . cx (0 , 1 )
qa . ch (1 , 0 )
qa . cx (0 , 1 )
qa . p(−2∗pi ∗k/N, 0 )

i f fswap == 1 :
qa . cz (1 , 2 )
qa . swap (1 , 2 )

re turn qa

To go deeper in Qiskit implementation, see https://qiskit.org/documentation/.

E.2 Code for some important simulations

Now, we provide the reader with the code used for simulation and computation of ⟨σz⟩ versus β for
the Ising model with external magnetic field, with strength parameter λ. We only consider λ = 0
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in the presented example, although computations have been carried out for different λ’s. Output
expect0 is the corresponding list whose entries are σz estimated averages, one per β.

from math import exp
from numpy import argmax
from sc ipy . cons tant s import k
import numpy as np
from numpy . random import mult inomial
import matp lo t l i b . pyplot as p l t

fswap = 1
lamb = 0 #External f i e l d parameter
N = 4 #Number o f f e rmions
Lbeta = [ 1 , 2 , 3 , 4 , 5 , 6 , 1 0 ] #beta ’ s cons ide r ed
Nsamples = 1000 #Number o f samples to es t imate average
expect0 = [ ] #L i s t f o r computed expec ta t i on va lue s
T = [ ] #L i s t to s t o r e a l l temperatures

f o r beta in Lbeta :
p a r t i t i o n = 0
T. append (1/( k∗beta ) )
f o r i in range (2∗∗N−1):

p a r t i t i o n += exp(−beta ∗ e n e r g i e s [ i ] )
probs = [ ]
f o r i in range (2∗∗N−1):

probs . append ( exp(−beta ∗ e n e r g i e s [ i ] ) / p a r t i t i o n )
expaux = 0
f o r i in range (Nsamples −1):

d i s t = mult inomial (1 , probs , s i z e =1)
ind = argmax ( d i s t )
i n i t = s t a t e s [ ind ]
qa = Udis ( i n i t , fswap , lamb )
[ pp , amps ] = i s i n g s t a t e ( qa )
expaux += sigmaz (pp ,N)

expect0 . append ( expaux/Nsamples )
p r i n t ( expect0 )

Function isingstate takes as input the corresponding diagonalization quantum circuit, and yields
probabilities and amplitudes for each of the 2N eigenstates of the Hamiltonian eigenstates basis, in
the order expressed below. Such a function is given by:

from q i s k i t . quantum info import Statevector , random statevector
from q i s k i t import QuantumCircuit
from q i s k i t . v i s u a l i z a t i o n import p lot h i s togram , p l o t b l o ch mu l t i v e c t o r

de f i s i n g s t a t e ( qa ) :
#We always i n i t i a l i z e from l a b e l with 0000 ,
#and do the cor re spond ing proper change to r e a l
#i n i t i a l i z a t i o n through the i n i t argument
#in our quantum c i r c u i t func t i on .
i n i t = ’0000 ’
sv = Sta t evec to r . f r om labe l ( i n i t )
sv = sv . evo lve ( qa )
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sv prob = sv . p r o b a b i l i t i e s d i c t ( [ 0 , 1 , 2 , 3 ] )
r e turn sv prob , sv

Note that energy spectrum is previously computed from (4.18), and that the states string list is also
previously given, determined in terms of 0’s and 1’s, and in the order given by default in Qiskit for
4 qbits:

s t a t e s = [ ’ 0000 ’ , ’ 0 001 ’ , ’ 0 010 ’ , ’ 0 011 ’ , ’ 0 100 ’ , ’ 0 101 ’ , ’ 0 110 ’ , ’ 0 111 ’ , ’ 1 000 ’ ,
’ 1 001 ’ , ’ 1 010 ’ , ’ 1 011 ’ , ’ 1 100 ’ , ’ 1 101 ’ , ’ 1 110 ’ , ’ 1 111 ’ ] .

In turn, function σz performs the computation of the quantum-mechanical expectation value of σz
for a certain state, given in dict format, expressed in σz eigenstates basis:

de f sigmaz ( s ta te ,N) :
s i g = 0
keys = l i s t ( s t a t e . keys ( ) )
probs = l i s t ( s t a t e . va lue s ( ) )
f o r i in range ( l en ( probs ) − 1 ) :

s i g += probs [ i ] ∗ s igmazind ( keys [ i ] )
r e turn s i g

where state is a dict object with the aforementioned basis elements as keys, and the probabilities as
values; and sigmazind is the function yielding the direct calculus of averages for σz given an element
of such a basis in string format.
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