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Abstract

Personal Sound Zones (PSZ) systems deliver different sounds to a number
of listeners sharing an acoustic space through the use of loudspeakers to-
gether with signal processing techniques. These systems have attracted a
lot of attention in recent years because of the wide range of applications
that would benefit from the generation of individual listening zones, e.g.,
domestic or automotive audio applications. A key aspect of PSZ systems,
at least for low and mid frequencies, is the optimization of the filters used
to process the sound signals. Different algorithms have been proposed in
the literature for computing those filters, each exhibiting some advantages
and disadvantages. In this work, the state-of-the-art algorithms for PSZ
systems are reviewed, and their performance in a reverberant environment
is evaluated. Aspects such as the acoustic isolation between zones, the
reproduction error, the energy of the filters, and the delay of the system
are considered in the evaluations. Furthermore, computationally efficient
strategies to obtain the filters are studied, and their computational com-
plexity is compared too. The performance and computational evaluations
reveal the main limitations of the state-of-the-art algorithms. In particular,
the existing solutions can not offer low computational complexity and at
the same time good performance for short system delays. Thus, a novel
algorithm based on subband filtering that mitigates these limitations is
proposed for PSZ systems. In addition, the proposed algorithm offers more
versatility than the existing algorithms, since different system configura-
tions, such as different filter lengths or sets of loudspeakers, can be used
in each subband. The proposed algorithm is experimentally evaluated and
tested in a reverberant environment, and its efficacy to mitigate the limi-
tations of the existing solutions is demonstrated. Finally, the effect of the
target responses in the optimization is discussed, and a novel approach
that is based on windowing the target responses is proposed. The proposed
approach is experimentally evaluated in two rooms with different reverber-
ation levels. The evaluation results reveal that an appropriate windowing
of the target responses can reduce the interference level between zones.

Keywords: personal sound zones, least squares, weighted pressure match-
ing, subband filtering.
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Resumen

Los sistemas de zonas de sonido personal (o sus siglas en inglés PSZ) uti-
lizan altavoces y técnicas de procesado de señal para reproducir sonidos
distintos en diferentes zonas de un mismo espacio compartido. Estos sis-
temas se han popularizado en los últimos años debido a la amplia gama de
aplicaciones que podŕıan verse beneficiadas por la generación de zonas de
escucha individuales. El diseño de los filtros utilizados para procesar las
señales de sonido es uno de los aspectos más importantes de los sistemas
PSZ, al menos para las frecuencias bajas y medias. En la literatura se han
propuesto diversos algoritmos para calcular estos filtros, cada uno de ellos
con sus ventajas e inconvenientes. En el presente trabajo se revisan los
algoritmos para sistemas PSZ propuestos en la literatura y se evalúa ex-
perimentalmente su rendimiento en un entorno reverberante. Los distintos
algoritmos se comparan teniendo en cuenta aspectos como el aislamiento
acústico entre zonas, el error de reproducción, la enerǵıa de los filtros y el
retardo del sistema. Además, se estudian estrategias computacionalmente
eficientes para obtener los filtros y también se compara su complejidad com-
putacional. Los resultados experimentales obtenidos revelan que las solu-
ciones existentes no pueden ofrecer una complejidad computacional baja y
al mismo tiempo un buen rendimiento con baja latencia. Por ello se pro-
pone un nuevo algoritmo basado en el filtrado subbanda, y se demuestra
experimentalmente que este algoritmo mitiga las limitaciones de los algo-
ritmos existentes. Asimismo, este algoritmo ofrece una mayor versatilidad
que los algoritmos existentes, ya que se pueden utilizar configuraciones dis-
tintas en cada subbanda, como por ejemplo, diferentes longitudes de filtro o
distintos conjuntos de altavoces. Por último, se estudia la influencia de las
respuestas objetivo en la optimización de los filtros y se propone un nuevo
método en el que se aplica una ventana temporal a estas respuestas. El
método propuesto se evalúa experimentalmente en dos salas con diferentes
tiempos de reverberación y los resultados obtenidos muestran que se puede
reducir la enerǵıa de las interferencias entre zonas gracias al efecto de la
ventana temporal.

Palabras clave: zonas de sonido personal, weighted pressure matching,
mı́nimos cuadrados, filtrado subbanda.
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Resum

Els sistemes de zones de so personal (o les seves sigles en anglés PSZ)
fan servir altaveus i tècniques de processament de senyal per a reproduir
sons distints en diferents zones d’un mateix espai compartit. Aquests sis-
temes s’han popularitzat en els últims anys a causa de l’àmplia gamma
d’aplicacions que podrien veure’s beneficiades per la generació de zones
d’escolta individuals. El disseny dels filtres utilitzats per a processar els
senyals de so és un dels aspectes més importants dels sistemes PSZ, par-
ticularment per a les freqüències baixes i mitjanes. En la literatura s’han
proposat diversos algoritmes per a calcular aquests filtres, cadascun d’ells
amb els seus avantatges i inconvenients. En aquest treball es revisen els
algoritmes proposats en la literatura per a sistemes PSZ i s’avalua experi-
mentalment el seu rendiment en un entorn reverberant. Els distints algo-
ritmes es comparen tenint en compte aspectes com l’äıllament acústic entre
zones, l’error de reproducció, l’energia dels filtres i el retard del sistema.
A més, s’estudien estratègies de còmput eficient per obtindre els filtres i
també es comparen les seves complexitats computacionals. Els resultats
experimentals obtinguts revelen que les solucions existents no poder oferir
al mateix temps una complexitat computacional baixa i un bon rendiment
amb latència baixa. Per això es proposa un nou algoritme basat en el fil-
trat subbanda que mitiga aquestes limitacions. A més, l’algoritme proposat
ofereix una major versatilitat que els algoritmes existents, ja que en cada
subbanda el sistema pot utilitzar configuracions diferents, com per exem-
ple, distintes longituds de filtre o distints conjunts d’altaveus. L’algoritme
proposat s’avalua experimentalment en un entorn reverberant, i es mostra
com pot mitigar satisfactòriament les limitacions dels algoritmes existents.
Finalment, s’estudia la influència de les respostes objectiu en l’optimització
dels filtres i es proposa un nou mètode en el que s’aplica una finestra tempo-
ral a les respostes objectiu. El mètode proposat s’avalua experimentalment
en dues sales amb diferents temps de reverberació i els resultats obtinguts
mostren que es pot reduir el nivell d’interferència entre zones gràcies a
l’efecte de la finestra temporal.

Paraules clau: zones de so personal, weighted pressure matching, mètode
dels mı́nims quadrats, filtrat subbanda.
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Politècnica de València, and Dr. Pedro Vera from Universidad de Jaén.

I can not forget all my colleagues at the Audio and Communications
Signal Processing Group with whom I shared my days in the last four
years. Thank you for making my workplace a very pleasant and rewarding
environment. Special thanks to Dr. Pablo Gutiérrez, Dr. Juan Estreder,
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les matemàtiques. A ma güela Teresa, per estimar-nos incondicionalment
i per ser un referent de bona persona. Per últim i en especial, a Maŕıa
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∆̃k Matrix of the decimated analysis filter for subband k

Ek Matrix of exponential terms for subband k

Fk Matrix of exponential terms for subband k

P Matrix of the decimated prototype filter
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Chapter 1

Introduction

Personal Sound Zones (PSZ) systems, as proposed by Druyvesteyn and
Garas [1], aim to deliver different sounds to a number of listeners sharing
an acoustic space through the use of loudspeakers together with signal pro-
cessing techniques. This thesis deals with the development and performance
evaluation of PSZ systems based on arrays of loudspeakers in real acoustic
environments. Next, we discuss the motivation, the main objectives, and
the structure of this work.

1.1 Motivation

Nowadays, due to the fast-paced development of technology, audio-visual
contents can be accessed in a growing number of devices, e.g., smartphones,
tablets, laptops, televisions, sound systems, smart speakers, etc. Thus, it
is likely that a number of users accessing different audio-visual contents
coexist in a shared space. For example, a typical living room may comprise
several users watching television while others access a different content via
their laptops or smartphones. Similarly, a driver may be listening to the
navigation information in a car cabin whereas the other passengers listen
to music or talk with a hands-free system. Moreover, other shared spaces
that typically include many users, as museums or exhibition centers, may
benefit from delivering different sounds to different regions of space. In all
these situations, the users want to listen to the specific audio content that
they are interested in without interferences from the sounds delivered to
the other users. Therefore, the generation of individual listening zones, in
which personalized audio content is delivered to each user, is a timely and
interesting topic with a wide range of applications.
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An obvious solution to provide independent audio programs to different
users in shared spaces is the use of headphones. However, this solution
presents several disadvantages. The main drawback is that headphones
isolate the listener from the surrounding environment to some extent. For
example, in the transportation context, the use of headphones may impede
the driver to react to events on the road [2], which could originate dan-
gerous situations. Also, the use of headphones may prevent the users to
interact with each other, which is an important limitation in a social con-
text. Moreover, headphones listening tends to be more uncomfortable than
loudspeaker listening, leading to a higher fatigue from prolonged listening
times [3, 4]. Thus, reproduction systems making use of loudspeakers may
be preferred to generate individual listening zones, since these systems do
not produce as much fatigue as systems using headphones and do not isolate
the listeners from the surrounding environment (if moderate reproduction
levels are selected).

Druyvesteyn and Garas [1] first proposed using loudspeakers to gen-
erate individual listening zones in their pioneer work on Personal Sound
Zones (PSZ) systems in 1997. In particular, they proposed using a set
of loudspeakers together with a signal processing stage to create regions
of high and low acoustic pressure inside a shared space. A key aspect of
PSZ systems, at least for low and mid frequencies, is the design of the
filters used in the signal processing stage. In recent years, PSZ systems
have attracted a lot of attention due to the large number of applications
that would benefit from the generation of individual listening zones, and
consequently, many different optimization algorithms have been proposed
for computing the filters of the system, each presenting some advantages
and disadvantages. The most suitable algorithm for a PSZ system depends
on its specific application, since each application presents different require-
ments. For example, for PSZ systems in which the users are moving, the
filters should be frequently recalculated, thus, a suitable algorithm for these
systems should require low computational effort. Likewise, PSZ systems in
which the sounds delivered to the users must be synchronized with other
multimedia content require low latency, consequently, a suitable algorithm
should provide filters that introduce short delays. This thesis focuses on the
optimization of the filters required by PSZ systems operating in realistic
acoustic environments. In particular, we aim to study the main limitations
of the state-of-the-art algorithms and to propose novel approaches that
overcome these limitations.
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1.2 Objectives

Taking into account the context introduced previously, the main objectives
of this thesis are the following:

• To identify and evaluate the main limitations of the state-of-the-art
optimization algorithms to compute the filters for PSZ systems in
realistic acoustic environments. Aspects such as the level of acoustic
isolation between zones, the reproduction error, the energy of the
filters, the computational complexity, and the system delay will be
taken into consideration.

• To analyse and evaluate efficient solvers to compute the filters for
those algorithms that are more computationally challenging. In par-
ticular, the accuracy of the solvers and their computational complex-
ity will be considered.

• To develop, propose, and test novel algorithms to compute the filters
for PSZ systems in realistic acoustic environments that overcome the
main limitations of the state-of-the-art algorithms.

1.3 Structure of the thesis

The rest of this work is structured as follows:

• Chapter 2: This chapter provides necessary background on PSZ
systems. Special focus is given to the state-of-the-art optimization
algorithms for computing the filters of the system and to the per-
formance metrics used to evaluate those filters. Furthermore, novel
experimental results in a reverberant environment are presented to
compare the performance of the time and frequency domain formula-
tions of the weighted Pressure Matching (wPM) algorithm. Aspects
such as the filter length, the system delay, and the regularization level
are taken into account in this comparison.

• Chapter 3: This chapter focuses on the Least Squares (LS) problem
associated with the time-domain formulation of the wPM algorithm.
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First, different solvers that can be used to compute the optimal so-
lution for the LS problem are reviewed and discussed. Then, experi-
mental results are presented to evaluate the accuracy of those solvers
and to show how this accuracy influences the performance of a PSZ
system. Finally, the computational complexity of the solvers is com-
pared.

• Chapter 4: This chapter presents a novel formulation for PSZ sys-
tems based on subband filtering. The presented formulation makes
use of the subband decomposition of the Room Impulse Responses
(RIR) by means of a Generalized Discrete Fourier Transform (GDFT)
filter bank. Also, the novel weighted Pressure Matching with Subband-
Domain Formulation (wPM-S) algorithm is proposed to compute the
subband filters for the system. The proposed algorithm is experimen-
tally evaluated in a reverberant environment, and its performance and
computational complexity are compared with those for the time and
frequency formulations of wPM. Finally, the versatility of wPM-S to
deal with different configurations in each subband is evaluated.

• Chapter 5: This chapter presents a novel approach for selecting the
target responses for the wPM algorithm. The proposed approach is
based on windowing the target impulse responses, such that certain
reverberation components are suppressed. The efficacy of the pro-
posed approach to improve the acoustic isolation between zones is
experimentally evaluated in two rooms with different reverberation
levels.

• Chapter 6: This chapter summarizes the main conclusions of this
work and proposes further research questions arising from this thesis.

• Appendix A: This appendix presents an in-depth analysis of the
computational complexity of the algorithms discussed throughout this
work.

• Appendix B: This appendix presents a novel method to design the
prototype filters for GDFT filter banks.
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Chapter 2

Background

This chapter provides some background on Personal Sound Zones (PSZ)
systems that is necessary for the understanding of this dissertation. First,
PSZ systems are described, including their main goal, their requirements,
and the different approaches that can be used for these kind of systems. Af-
terwards, PSZ systems using arrays of loudspeakers together with a filtering
stage, i.e., loudspeaker array processing, are discussed. In particular, the
model for a PSZ system using loudspeaker array processing is presented,
followed by a description of the time and frequency domain formulations of
this model. Also, a detailed review of the state-of-the-art algorithms used
to compute the filters for PSZ systems and a description of the control
metrics used to evaluate their performance are included. Later, experi-
mental evaluation results in a reverberant environment are presented to
compare the performance of the time and frequency domain formulations
of the weighted Pressure Matching (wPM) algorithm. Aspects such as the
filter length, the modelling delay, and the regularization level are taken
into account in this comparison. Experimental results show that the filters
obtained with the time-domain formulation outperform the filters obtained
with the frequency-domain formulation when either short modelling delays
or short filters are considered.
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2.1 Personal Sound Zones (PSZ) systems

2.1.1 Description and problem definition

Personal Sound Zones (PSZ) systems, also known as Personal Audio sys-
tems, aim to render different sounds to a set of spatially confined regions,
where the users of the system are located, making use of loudspeakers [1, 5].
Then, PSZ systems aim to create individual listening regions without re-
quiring the use of headphones. In the last years, PSZ systems have drawn
more attention due to the need of creating individual listening regions in
shared spaces (such as cars, museums, or shared offices) [6]. Also, PSZ
systems can be used to generate independent listening zones in the ears of
a single user, which offer the possibility of delivering binaural sound signals
without the use of headphones [7].

To exemplify the fundamental idea behind PSZ systems, let us consider
two users, Ua and Ub, which are located in a shared space in zones Za and
Zb, respectively. In this scenario, user Ua wants to listen to sound Sa, and
user Ub to sound Sb. To obtain a good listening experience, the interference
produced by sound Sa in zone Zb and by sound Sb in zone Za should be
ideally 0 (or at least very low). Then, we aim to render sound Sa with

(a) Soundfield control problem for Ua (b) Soundfield control problem for Ub

(c) Superposition

Figure 2.1: Schematic to illustrate the superposition of two soundfield
control problems to create PSZ for two users Ua and Ub.
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high level in zone Za and with low level in zone Zb, and similarly, sound
Sb with high level in zone Zb and with low level in zone Za, as shown in
Fig. 2.1. Consequently, PSZ systems can be seen as a superposition of sev-
eral soundfield control problems, since for each user we want to synthesize
a soundfield that exhibits high acoustic energy in the region where he/she
is located, and low acoustic energy in the regions where the other users
are located. The different soundfield control problems can be considered
independent as long as the sound signals are independent [8], and then,
the PSZ related works usually study a single soundfield control problem in
which high acoustic energy is desired in one region, denoted as bright zone,
and low acoustic energy in another region, denoted as dark zone [9].

2.1.2 Requirements

The requirements of a PSZ system, as the number of loudspeakers, the
computational capabilities or the system delay, are specific for each appli-
cation. For example, PSZ systems in which a high number of individual
listening zones are desired, as in museums and shared offices, require the
use of a high number of loudspeakers. Also, systems in which the sound
rendered in the listening zones must be synchronized with other multime-
dia content, as video, can require very low latency. This aspect is studied
in detail in [10], in which a PSZ system is used to enhance the audio sig-
nal rendered to the hearing impaired from a television. Similarly, systems
used for two-way telecommunication applications, as individual hands-free
systems, must also present very low delay [11]. Finally, low computational
requirements are desired for domestic PSZ systems due to the limited com-
putational capabilities of the processors that are usually employed in this
kind of systems.

2.1.3 Approaches for creating PSZ

To create regions of high and low acoustic energy, PSZ systems must be able
to focus sound in certain directions. The capacity of a loudspeaker to focus
sound in certain directions is governed by its directivity [12]. Conventional
piston-like loudspeakers present a frequency-dependent directivity that is
determined by the size of its driver compared to the wavelength of the sound
being produced. For frequencies in which the size of the driver is small
compared to the wavelength, the driver operates approximately as a single
point source of pressure, i.e., it radiates sound uniformly in all directions
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[12]. On the contrary, for frequencies in which the size of the driver is bigger
than the wavelength, the pressure distribution is not uniform over all the
surface of the driver, and then, constructive and destructive interferences
are created in the far-field, which leads to a narrow directivity towards
the axis of the loudspeaker [13]. Thus, we can assume that a loudspeaker
has high directivity, i.e., it only radiates sound in a specific direction, for
frequencies in which the wavelength is small compared to the size of the
driver. Consequently, the ability of a single loudspeaker to focus sound
is restricted to high frequencies, as very big drivers are required for lower
frequencies.

The directivity of a single loudspeaker can be improved at low frequen-
cies by using parabolic reflectors [14]. In this case, the source is located
close to the focal point of the parabolic reflector, as shown in Fig. 2.2. The
effective aperture of the loudspeaker is increased by the parabolic reflector,
and then, the directivity at lower frequencies is improved even if the driver
is not very big. In this case, the lowest frequency at which a narrow beam
can be generated depends on the aperture of the parabolic reflector [14]. A
commercial example of parabolic loudspeaker is the Meyer SB-1 Parabolic
Sound Beam, which uses a parabolic structure with aperture 1.37 m that
can generate a beam of width 10 degrees in the frequency range 500 Hz
to 15 kHz [15]. This frequency range is acceptable for reproduction of
intelligible speech signals [16], so these kind of speakers have been used
in museums and exhibitions to generate PSZ in which speech is rendered.
However, this operation range is not suitable for other audiovisual applica-
tions where we want to play music and other sounds that have important
energy components below 500 Hz.

Figure 2.2: Diagram of a parabolic loudspeaker, in which the source is
located in the focal point and radiating towards the vertex of the parabola.
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As an alternative, directive patterns can be generated with parame-
tric loudspeakers [17]. This kind of loudspeakers are based on using the
non-linear interaction of waves to generate a secondary wave with a dif-
ferent frequency [18]. In particular, parametric loudspeakers use an ar-
ray of ultrasound transducers to radiate primary waves in the ultrasound
frequency spectrum, whose interaction generates a secondary wave in the
audible spectrum (if the primary waves are properly designed) [17]. The
radiated ultrasonic waves are highly directive, so the audible wave gener-
ated by the non-linear interaction is also highly directive. Originally, this
kind of loudspeakers presented high levels of harmonic distortion in the
audible spectrum, but the development of new signal processing techniques
led to distortion levels similar to those for conventional loudspeakers [19].
However, high sound pressure levels can not be generated with parametric
loudspeakers at low and mid frequencies. In particular, frequency response
decays of 40 dB/decade for frequencies below 1 kHz where reported in
[19, 20]. Then, similarly to the case of parabolic loudspeakers, parame-
tric loudspeakers are not suitable for the reproduction of music and other
sounds that have important low frequency components. The Focusonics
Model A [21] and the Audio Spotlight 16iX [22] are examples of commer-
cial parametric loudspeakers.

At low and mid frequencies, higher directivity and sound pressure lev-
els can be obtained if an array of conventional loudspeakers is used. This
is because the signals played by the loudspeakers of the array can be de-
signed such that constructive and destructive interferences are created in
some specific directions. The technique used to design the signals radiated
by the elements of the array is commonly called loudspeaker array process-
ing, which is based on using a set of filters to process the signals that are
fed to the loudspeakers. The frequency range in which an array of loud-
speakers can obtain high directivity depends on its dimensions. The first
practical demonstration of PSZ system using arrays of loudspeakers was
presented by Droppo et al. [23] at Microsoft Research TechFest 2007, in
which a linear array of 16 loudspeakers was used to enhance sound in one
area and cancelling sound in another area within the same physical space.
Also, researchers from the University of Southampton and Audioscenic Ltd.
demostrated at the Consumer Electronics Show (CES) 2019 the use of a
linear array of 7 loudspeakers to generate individual listening zones in the
ears of a user to deliver binaural sound signals [24].
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One of the early works on PSZ systems was presented by Druyvesteyn
and Garas [1]. In this work, the authors discussed the fundamental theory
for PSZ reproduction. Due to the directivity properties of loudspeakers,
Druyvesteyn and Garas determined that different approaches must be used
in different frequency bands to achieve high isolation levels between zones.
In particular, they showed that an array of loudspeakers must be used
for low and mid frequencies, while individual directional loudspeakers for
higher frequencies. The specific frequency limits in which each of these
approaches must be used depend on the number of elements and the size
of the array, and on the properties of the directional loudspeaker. Then,
PSZ systems in which broadband signals (e.g., music) are rendered must
combine different loudspeaker setups. In this work, we focus on the filter
optimization required for PSZ systems using loudspeaker array process-
ing, i.e., for low and mid frequencies. Next, we review the fundamental
theoretical framework related to loudspeaker array processing.

2.2 Loudspeaker array processing

Loudspeaker array processing can be considered as a subset of the broader
discipline of array signal processing, which is based on using multiple spa-
tially distributed sensors/transmitters together with a signal processing
stage to modify the properties of the received/transmitted signals [25]. Ar-
ray signal processing has been extensively used in a wide range of applica-
tions, e.g., arrays of antennas are used to focus the radiation in certain di-
rections in mobile communications systems [26], and arrays of microphones
are used in voice recognition systems to increase the Signal-To-Noise ratio
for certain directions of arrival [27]. The terms beamforming and spatial
filtering are also used to refer to array signal processing techniques.

Signal processing

Input signal

Figure 2.3: Model of a loudspeaker array processing system.
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Following the principles of array signal processing, loudspeaker array
processing is based on using an array of loudspeakers together with a set
of filters to focus sound in certain directions and cancel sound in other
directions. We show in Fig. 2.3 the basic model of a system using loud-
speaker array processing. The fundamental idea behind these systems is
that the signals radiated by the loudspeakers can be designed such that
the superposition of the acoustic waves radiated by each element creates
constructive and destructive interferences in certain positions. Wolff and
Malter [28] first studied the radiation properties of arrays of loudspeakers,
and showed that directional patterns can be obtained by combining multi-
ple sources even if the individual sources are not directional. Thus, arrays
of loudspeakers can obtain high directivity at low frequencies, even if the
loudspeakers are not very big, but at the cost of increasing the number of
loudspeakers of the system. It is important to mention that loudspeaker
array processing can be used for other soundfield control applications such
as, for example, wavefield synthesis [29] or room equalization [30].

Different geometries have been considered for the arrays of loudspeakers
used in PSZ systems. A circular geometry has been considered in many
works [31, 32, 33]. The motivation is that this geometry is convenient for
certain formulations of the PSZ model that are based on harmonic decom-
positions. However, a circular array is not practical in many scenarios due
to the limited space where the array of loudspeakers can be placed. Alter-
natively, linear arrays also offer good performance [34, 35, 36, 37], but they
are much easier to integrate in a reproduction space. Other geometries have
been considered in the literature. Choi and Kim [9] employed two linear
arrays arranged on the same plane with a shape of X. Shin et al. [38] used a
spherical array of loudspeakers. Simón Gálvez et al. [39] used a planar ar-
ray of loudspeakers, which offers improved vertical directivity with respect
to the linear array. House et al. [40] proposed a geometry in which the con-
secutive elements of a line array are vertically displaced from each other
to obtain lower spacing between the drivers, and consequently, to extend
the frequency range in which the array offers directional radiation. Olivieri
et al. [41] used a cylindrical array of loudspeakers, which offers higher con-
trol of the soundfield. In general, the most suitable array geometry for a
PSZ system depends on the available space for the installation of the array.
In this work, we consider linear arrays of loudspeakers, which in general
offer a good compromise between performance and compactness. However,
the algorithms discussed next can be used with any arbitrary geometry.
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2.2.1 Superposition of sources

Arrays of loudspeakers can focus sound towards an specific direction thanks
to the superposition of the signals radiated by the elements of the array.
In order to understand this phenomenon, let us consider a point source
radiating in a scenario with free-field propagation. The pressure produced
by the point source in a point r = [x, y] when radiating a signal of amplitude
A(f) ∈ C at frequency f can be defined using Green’s function [12] as

pmo(t, f, r) = A(f)
ej2πf(t−

1
c
‖r−rmo‖)

‖r− rmo‖
, (2.1)

where c is the sound speed and rmo = [xmo, ymo] are the coordinates of the
point source. We can see from (2.1) that the magnitude of the pressure
produced by the point source in a certain position only depends on the
distance between this position and the point source, which indicates that it
radiates equal energy in all directions. Now, let us consider an array of L
point sources. The pressure produced by the array in a point r = [x, y] when
all the elements of the array are radiating a signal of constant amplitude
A(f) ∈ C at frequency f is given by [42]

par(t, f, r) = A(f)
L−1∑

l=0

ej2πf(t−
1
c
‖r−rl‖)

‖r− rl‖
, (2.2)

where rl = [xl, yl] are the coordinates of the l-th element in the array. We
can interpret (2.2) as the superposition of the individual contributions of
all the elements of the array. In this case, we can see that constructive in-
terferences appear for those points of the space in which the contributions
arrive with the same phase (in the far-field). On the contrary, when the
phase of the different contributions is different, destructive interferences can
appear. Now, we show in Fig. 2.4a and 2.4b the magnitude of the pressure
produced by a point source and by a linear array of L = 8 point sources at
a frequency f = 400 Hz, respectively. We can see that the point source has
an omnidirectional radiation, i.e., it radiates the same energy in all direc-
tions. However, the array radiates higher energy towards the perpendicular
direction of the array, while low energy is radiated towards other directions.
Then, these results exemplify how an array of non-directional loudspeakers
can focus sound thanks to the superposition of the waves generated by each
element of the array. From now on, we will refer to the direction that is
perpendicular to the linear array as the on-axis direction.
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2.2. Loudspeaker array processing

(a) Point source (b) Array of point sources

Figure 2.4: Magnitude of the pressure produced at a frequency f = 400 Hz
by: a point source (a); a linear array of 8 point sources spaced by 18 cm
radiating the same amplitude and phase (b). Free-field propagation is as-
sumed with a sound speed of c = 343 m/s.

Array limitations

The frequency range for which an array of loudspeakers can focus sound is
limited. The distance d between consecutive elements of the array and its
total length D= (L−1)d, which are also known as inter-element distance
and aperture, respectively, influence the frequency range for which the array
offers high directivity. For frequencies in which the wavelength is smaller
or similar than the inter-element distance, i.e., λ . d, high energy sec-
ondary lobes appear in the radiation pattern of the array. This is produced
by the spatial aliasing, which appears when sound waves are emitted by
equidistant sources [43]. For frequencies in which the wavelength is larger
or similar than the aperture of the array, i.e., λ & D, the array can not
generate narrow beams [43]. To exemplify these phenomena, we show in
Fig. 2.5 the magnitude of the pressure at 80 and 1750 Hz produced by a
linear array of L = 8 point sources with inter-element distance d = 0.18 m
and aperture D = 1.26 m. This array can not generate a narrow beam at
80 Hz, and secondary lobes appear in multiple directions at 1750 Hz due
to spatial aliasing. Then, arrays of loudspeakers are suitable for focusing
sound at low and mid frequencies, as arrays with reasonable inter-element
distances and apertures can be designed for these bands. However, very
small inter-element distances are required for high frequencies, leading to
non-realizable size requirements for the drivers of the array.
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(a) f = 80 Hz (b) f = 1750 Hz

Figure 2.5: Magnitude of the pressure produced by a linear array of 8
point sources spaced by 18 cm radiating the same amplitude and phase at 2
different frequencies. Free-field propagation is assumed with a sound speed
of c = 343 m/s.

Digital steering

Previously, we assumed that the same amplitude and phase was radiated
by all the elements of the array. Now, we assume that the amplitude and
the phase of the l-th element of the array is modified with a filter with
frequency response Gl(f) ∈ C. In this case, the pressure produced by the
array in a point r = [x, y] is given by

par(t, f, r) = A(f)

L−1∑

l=0

Gl(f)
ej2πf(t−

1
c
‖r−rl‖)

‖r− rl‖
. (2.3)

We can see in (2.3) that the filters Gl(f) influence the positions for which
constructive and destructive interferences are produced. For example, let us
assume that Gl(f) = e−j2πflτ , i.e., a phase difference of φf = 2πfτ radians
is applied between consecutive sources in the array. This is equivalent
to apply a delay lτ to the signals fed to the l-th element of the array. In
Fig. 2.6, the magnitude of the pressure produced at a frequency f = 400 Hz
by an array of L = 8 point sources is shown for two delays τ . It is clear
from these results that the delay between sources directly influences the
directional properties of the array. When all the elements are radiating
without any delay between them, i.e., with τ = 0, a narrow beam is created
towards the on-axis direction of the array (as shown in Fig. 2.6a). However,
the beam generated by the array is shifted when a delay is applied between
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(a) τ = 0 µs (b) τ = 310 µs

Figure 2.6: Magnitude of the pressure produced at a frequency f = 400 Hz
by a linear array of 8 point sources spaced by 18 cm radiating with a phase
difference of φf = 2πfτ between consecutive elements in the array for
two values of τ . Free-field propagation is assumed with a sound speed of
c = 343 m/s.

the sources. This effect can be seen in Fig. 2.6b, where we can see how a
delay of 310 µs steers the beam towards a direction of approximately π/4
radians with respect to the on-axis direction. Then, the direction towards
which an array of loudspeakers focuses sound can be changed digitally by
applying different sets of filters Gl(f). This is a great advantage with
respect to directional loudspeakers, as they can only focus sound towards
one direction and physical steering is required to change it. Moreover,
thanks to the digital steering capabilities of the array, sound can be focused
in multiple directions of the space using only one array of loudspeakers.

In the previous example we assumed that Gl(f) = e−j2πflτ , which cor-
responds to the delay-and-sum beamformer [44] used by Druyvesteyn and
Garas [1] for mid frequencies in their work on PSZ systems. This is the
simpler method for focusing sound with an array of loudspeakers, as it
only requires to apply a delay to the signal radiated by the elements of the
array. It achieves good directivity when free-field propagation and point
sources are assumed. However, for practical systems the directivity can be
degraded by the effect of the electro-acoustic response of the loudspeakers
and the reverberation of the room where the system is placed [45]. Then,
alternative methods that take into account these factors in the design of
the filters are required to obtain good performance for PSZ systems.
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2.2.2 System model and formulation

Next, we study the system model proposed by Choi and Kim [9] for PSZ
systems using loudspeaker array processing. This model considers an array
of L loudspeakers and M =Mb+Md control points (as shown in Fig. 2.7),
where Mb and Md are the number of control points used to spatially sample
the bright and dark zones, respectively. The system aims to render a given
audio signal in the bright zone while keeping the interference in the dark
zone as low as possible. To achieve it, the audio signal is filtered through a
filter denoted by gl prior to be fed to the l-th loudspeaker. In most works
related to PSZ systems, gl is defined as a Finite Impulse Response (FIR)
filter, however, Widmark [46] proposed using Infinite Impulse Response
(IIR) filters. In this work we consider FIR filters. It is worth notting
that an alternative model to the one in Fig. 2.7 was presented by So and
Choi [47]. In their model, subband filtering is used rather than broadband
filtering prior to feed the input signal to the loudspeakers. This model will
be discussed in detail in Chapter 4. From now on, we denote B and D as
the sets of control points for the bright and dark zones, respectively.

In order to compute the optimal filters of the PSZ system, the model
shown in Fig. 2.7 can be formulated in time, frequency, and modal do-
mains. The time-domain formulation uses the impulse responses of the

g0 g1 gl gL-1gL-2

s

Bright Zone Dark Zone

hml → m ∈ B hml → m ∈ D

Figure 2.7: Model of a PSZ system using loudspeaker array processing.
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elements of the model [39, 48, 49], the frequency-domain formulation uses
frequency-domain responses [9, 38, 50], and the modal-domain uses the de-
composition in spherical or cylindrical harmonics of the elements of the
model [31, 32, 33]. This last formulation requires the use of spherical or
circular arrays of loudspeakers with high number of elements, e.g, 57, 55,
and 41 loudspeakers are used in [31, 32, 33], respectively. On the contrary,
arrays with arbitrary geometry and lower number of elements can be used
for the time and frequency domain formulations [9, 39, 47, 48, 49]. Then, in
this work we focus on the time and frequency domain formulations, as they
are more suitable than the modal-domain formulation for PSZ systems in
practical scenarios. In this chapter, we review these two formulations.

In general, the design of the filters for the presented model does not
consider the characteristics of the input audio signal, i.e., it is assumed
that the input signal is a unit impulse [9, 39, 50, 51, 52]. The motivation
is that a unit impulse has a flat spectrum, and then, the filters optimized
with this assumption offer the desired directional properties in a broad-
band frequency range. An alternative model that takes into account the
characteristics of the input audio signal in the optimization was proposed
by Møller and Ostergaard [53]. Next, we describe the time and frequency
domain formulations of the PSZ model assuming that the input signal is a
unit impulse, i.e., s(n) = δ(n).

Time-domain formulation

Now, we describe the time-domain formulation of the model in Fig. 2.7,
which was presented by Elliott and Cheer [54]. Let us start by defining
gl as the Ig-length real-valued FIR filter for the l-th loudspeaker. Also,
let us define hml as the Room Impulse Response (RIR) between the l-th
loudspeaker and the m-th control point, which is modelled as a real-valued
FIR filter of length Ih. The RIR includes the electroacoustical response of
the loudspeaker, the propagation delay between the loudspeaker and the
control point, and the effect of the reflections of the room in which the
system is placed. Then, we can define the cascade impulse response for the
m-th control point as

xm(n) =

L−1∑

l=0

hml(n) ∗ gl(n) =

Lg−1∑

l=0

Ig−1∑

r=0

hml(n− r)gl(r). (2.4)
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The cascade impulse response includes the contributions of the filters gl and
the RIRs hml. Now, let us define a column vector of size M×1 containing
the samples of the cascade response in time n for all control points as

xn =
[
x0(n) . . . xM−1(n)

]T
. (2.5)

Also, let us define a vector of size L×1 containing the samples in time n of
the filters for all loudspeakers as

gn =
[
g0(n) . . . gL−1(n)

]T
, (2.6)

and a matrix of size M×L containing the RIR in time n between all loud-
speakers and control points as

Hn =




h00(n) . . . h0(L−1)(n)
...

. . .
...

h(M−1)0(n) . . . h(M−1)(L−1)(n)


 . (2.7)

Then, using (2.5) to (2.7) we can write

xn =

Ig−1∑

r=0

Hn−r gr. (2.8)

Next, let us define a M(Ih+Ig−1)×1 vector containing the cascade impulse
response in all time instants and in all control points as

x =
[
xT0 . . . xTIg+Ih−2

]T
, (2.9)

and a LIg×1 vector containing all the samples of the filters for all loud-
speakers as

g =
[
gT0 . . . gTIg−1

]T
. (2.10)

Similarly, let us define a block-toeplitz matrix of size M(Ih+Ig−1)×LIg

containing shifted versions of Hn as

H =




HT
0 . . . HT

Ih−1 0L×M . . . 0L×M

0L×M
... Toeplitz

0L×M




T

. (2.11)
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Finally, using (2.9) to (2.11) we can write

x = Hg. (2.12)

Frequency-domain formulation

Next, we describe the frequency-domain formulation of the model in Fig. 2.7,
which was presented by Choi and Kim [9]. Let us define Hml(f) as the
Room Frequency Response (RFR) at frequency f between the l-th loud-
speaker and the m-th control point, and Ql(f) as the frequency response
at frequency f of the filter for the l-th loudspeaker1. Then, we can define
the cascade frequency response for the m-th control point as

Xm(f) =

L−1∑

l=0

Hml(f)Ql(f). (2.13)

It can be easily seen that there is a direct relation between the time and fre-
quency domain formulations. In particular, the frequency response Hml(f)
is the Discrete Time Fourier Transform (DTFT) of hml at frequency f .
Let us define a vector of size L×1 containing the frequency responses at
frequency f of the filters for all loudspeakers as

q̄f =
[
Q0(f) . . . QL−1(f)

]T
, (2.14)

and the matrix of size M×L containing the room frequency responses be-
tween all the loudspeakers and all the control points as

H̄f =




H00(f) . . . H0(L−1)(f)
...

. . .
...

H(M−1)0(f) . . . H(M−1)(L−1)(f)


 . (2.15)

Then, we can define the vector of size M×1 containing the cascade fre-
quency responses for all the control points as

x̄f = H̄f q̄f . (2.16)

1Ql(f) is the frequency response of the filter used in the formulation, while Gl(f) is
the practical filter for the system obtained by applying certain transformations to Ql(f).
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2.2.3 Filter optimization

The filters for the PSZ system are obtained by solving certain optimization
problem, which can be defined using either the time or the frequency do-
main formulations presented in Section 2.2.2. Next, we describe these two
types of optimizations.

Optimization using the time-domain formulation

The algorithms that employ the time-domain formulation for computing
the filters of the system, as [39, 48, 49, 55], make use of the expressions
presented in Section 2.2.2 to define a cost function J(g). This cost function
is designed such that certain conditions are fulfilled for the PSZ system.
The optimal filters are then obtained as the ones minimizing J(g), i.e.,

gopt = arg min
g

(J(g)) . (2.17)

It is important to note that by solving this optimization we directly obtain
all the filter coefficients for all loudspeakers, i.e., gl(n) for 0 ≤ l < L and
0 ≤ n < Ig.

Optimization using the frequency-domain formulation

The algorithms that employ the frequency-domain formulation for com-
puting the filters of the system, as [9, 38, 50], make use of the expressions
presented in Section 2.2.2 for this formulation to define a cost function
J(q̄f ). Similarly to the time-domain case, the cost function is designed
such that certain conditions are fulfilled for the PSZ system. The optimal
frequency responses for the filters at frequency f are then obtained as the
ones minimizing J(q̄f ), i.e.,

q̄opt,f = arg min
q̄f

(J(q̄f )) . (2.18)

In this case, solving the optimization provides the optimal coefficients Ql(f)
for a single frequency. To compute the practical time-domain filters, i.e.,
gl(n) for 0 ≤ l < L and 0 ≤ n < Ig, the following steps must be followed
for each loudspeaker l [56, 57]:

1. Define a set of N equispaced control frequencies:

fi = i∆f, −(N/2) + 1 ≤ i ≤ N/2, (2.19)
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where i ∈ Z, and ∆f is the frequency spacing between consecutive
control frequencies. For a digital system operating at a sampling
frequency fs, it is defined as ∆f = fs/N . The number of control
frequencies N must be the same for all loudspeakers.

2. Compute the optimal frequency responses Ql(f) by solving (2.18) for
the control frequencies (2.19).

3. Apply e−j2π(f/fs)τd to Ql(f), being τd a modelling delay. This is
equivalent to apply a circular delay τd to the N -point Inverse Discrete
Fourier Transform (IDFT) of Ql(f). This step is not required for
algorithms in which the target already includes the modelling delay.

4. Compute the N -point IDFT of Ql(f):

ql = F −1
N {Ql} . (2.20)

5. Obtain the Ig-length impulse response gl by windowing ql:

gl(n) = ql(n) w(n), (2.21)

where w(n) = 0 for n < 0 and n ≥ Ig.

Next, we discuss different aspects related to the previous method. An
important point to take into account is that the time-domain optimization
implies that the impulse responses of the filters are causal and of finite
length. However, there is no guarantee that the estimated filters Ql(f)
in the frequency domain correspond to finite length and causal impulse
responses. Indeed, the estimated coefficients Ql(f) usually correspond to
infinite length and non-causal responses because the RIRs are generally
non-minimum phase impulse responses [58, 59]. Sampling the spectrum
of such a response with a finite size IDFT produces that anti-causal com-
ponents of the non-causal response appear at the end of the DFT period
in ql, due to the circularity of the DFT. To illustrate this phenomenon,
we show in Fig. 2.8a an example of a non-causal impulse response, and
in Fig. 2.8b the impulse response obtained after sampling the spectrum of
the non-causal response with an IDFT of size N = Ig. In this case, the
anti-causal components of the original response appear at the end of the
estimated response, which could produce artefacts in the reproduced sig-
nal. One possible solution to solve this limitation is to apply a window to
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(a) Impulse response to estimate

(b) Estimated ql with τd = 0 (c) Estimated ql with τd = Ig/2

Figure 2.8: Schematic to illustrate the effect of sampling the spectrum of
a non-causal impulse response. The non-causal impulse response is shown
in (a). The responses obtained by sampling the spectrum of the non-causal
response with modelling delays τd=0 and τd=Ig/2 are shown in (b) and (c),
respectively. The number of control frequencies for the sampling is N=Ig.

remove these components. However, this would degrade the performance,
as these components have significant energy. A better solution is to add
a circular delay τd = Lg/2 to the estimated response, as in Fig. 2.8c. In
that case, the anti-causal components of the original response are turned
into causal components. Thus, this is the motivation to apply a circular
modelling delay τd to compute the practical filters.

Another important aspect regarding the previous method is the selection
of the number of control frequencies N . This aspect is especially important
when we try to estimate a non-causal impulse response whose significant
anti-causal and causal components can not be fitted in a period of Ig sam-
ples without overlapping, even if a modelling delay is used. In a number
of publications, as [51, 60], the number of control frequencies is selected
equal to the filter length, i.e., N = Ig. However, it is shown in [10] that
this selection requires long filters to achieve good performance. The main
reason is that with N = Ig and low values of Ig, anti-causal components of
significant energy appear in ql in the interval 0 to Ig−1 and overlap with
other causal components of significant energy. This overlapping produces
a notable degradation in the performance. This effect can only be miti-
gated by increasing the filter length, since for long filter lengths the causal
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and anti-causal components that overlap in the 0 to Ig−1 period have low
energy, and then, the degradation is not significant. Alternatively, Simón
Gálvez [10] proposed computing the optimal filters with a much larger num-
ber of control frequencies, i.e., N � Ig, and then truncating the computed
responses to a length Ig. For N � Ig, it is less likely that anti-causal and
causal components of significant energy overlap in ql in the interval 0 to
Ig−1. Then, as the causal and anti-causal components do not overlap, a
window of length Ig can be used to keep the causal components only. To
illustrate this, we present in Fig. 2.9a an example of a non-causal impulse
response. We also show in Fig. 2.9b and Fig. 2.9c the responses ql obtained
when sampling the spectrum of the non-causal response with N = Ig and
N = 2Ig, respectively. We can clearly see that with N = Ig, the anti-causal
components of the original response appear in the interval 0 to Ig−1, and
overlap with some of the causal components. However, when sampling the
spectrum with N = 2Ig, the anti-causal components appear in ql outside
the interval 0 to Ig−1, and do not overlap with causal components of signif-
icant energy. Then, these components can be easily removed by applying
a window of length Ig. Ideally, we would like to keep both, the causal and

(a) Impulse response to estimate

(b) Estimated ql with N = Ig (c) Estimated ql with N = 2Ig

Figure 2.9: Schematic to illustrate the effect of the IDFT size N when
sampling the spectrum of a non-causal impulse response. The non-causal
impulse response is shown in (a), the response obtained by sampling the
spectrum of the original response with a number of points N = Ig and
N = 2Ig in (b) and (c), respectively.
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non-causal components, but this is not possible for the selected filter length
Ig. Simón Gálvez [10] showed that for short filter lengths Ig, the perfor-
mance with N � Ig is notably better than with N = Ig, which indicates
that removing the non-desired anti-causal components is a better option
than using a response where the causal and anti-causal components over-
lap. Then, throughout this work, we will use N = Ig + Ih − 1, which has
been observed to be large enough to achieve good performance, and then,
a window of length Ig will be used to truncate the responses.

2.2.4 Review of algorithms

The design of the filters is a key aspect for a PSZ system, as it determines
its performance. The algorithms used to calculate the optimal filters can be
classified according to different criteria. On the one hand, the algorithms
can be classified according to the aspects that are taken into account in
the optimization: 1) energy cancellation algorithms, in which the energy of
the cascade responses in each zone is controlled but their phase is not; and
2) soundfield synthesis algorithms, in which both the energy and the phase
of the cascade responses are controlled. On the other hand, as discussed in
Section 2.2.3, the algorithms can be classified according to the formulation
used to define the optimization: 1) frequency-domain formulation; and
2) time-domain formulation. Next, we review the most relevant algorithms
proposed in the literature, which are also listed in Table 2.1.

Several energy cancellation approaches that used the frequency-domain
formulation were proposed in the literature. First, Choi and Kim [9] pro-
posed the Acoustic Contrast Control (ACC) algorithm, which finds the
filters that maximize the acoustic contrast. The acoustic contrast is the
ratio between the mean energy of the cascade frequency responses in the
bright and dark zones, and it is an indicator of the level of acoustic iso-
lation between zones. The main drawback of the algorithm proposed by
Choi and Kim [9] is that it requires the inversion of a matrix that might be
ill-conditioned, and then, the computed filters offer poor robustness against
perturbations. To solve this limitation, Shin et al. [38] proposed the En-
ergy Difference Maximization (EDM) algorithm, which finds the filters that
maximize the difference of the mean energies in the bright and dark zones,
rather than their ratio. EDM does not require to compute any matrix in-
version, so the robustness of the filters is not influenced by ill-conditioning
problems. However, the cost function for EDM includes a tuning factor
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Frequency-Domain

Energy cancellation
ACC [9, 61]

EDM [38]

Soundfield synthesis

PM [62]

PC [63]

wPM-F [50]

Time-Domain

Energy cancellation

BACC [54]

BACC-RV [48]

BACC-RD [55]

BACC-RTE [49]

Soundfield synthesis
wPM-T [39]

VAST [64]

Table 2.1: Summary of the most relevant algorithms proposed in the
literature to compute the filters of a PSZ system.

that has limited physical interpretation. It is shown in [61, 65] that EDM
can obtain similar performance to ACC, but it is very sensitive to the se-
lected tuning factor, and there is very little intuition on how to select it.
Later, Elliott et al. [61] proposed a variation of the ACC algorithm, in
which a constraint on the energy of the filters is included in the optimiza-
tion. The energy constraint produces a regularization of the matrix that
must be inverted, which mitigates the effect of the ill-conditioning prob-
lem and makes the filters more robust to perturbations. Furthermore, the
constraint avoids feeding excessive electric power levels to the loudspeakers
of the system [61]. This idea has been adopted in most of the algorithms
proposed afterwards in the literature, in which a constraint on the energy of
the filters is always included to increase their robustness to perturbations.
This is a very important aspect for PSZ systems, as the filters must be
robust enough to offer good performance in positions not explicitly consid-
ered by the algorithms but that are close to the control points. Also, the
filters must be robust to changes in the environment, e.g., the perturbations
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produced by the listeners when located within the zones. The formulation
of ACC proposed by Elliott et al. [61] has been shown to provide very good
isolation between the bright and dark zones. However, it does not offer
control over the phase of the responses in the bright zone. Moreover, it
is shown in [66] that non-uniform energy distributions can appear in the
bright zone when using ACC. All these factors can lead to an uncomfortable
listening experience to the user located in the bright zone.

Alternatively, several energy cancellation algorithms using the time-
domain formulation were proposed in the literature. These algorithms
obtain the filters directly by solving a single optimization, rather than
computing their value for a set of discrete control frequencies. Elliott and
Cheer [54] proposed the Broadband ACC (BACC) algorithm to compute
the filters that minimize the ratio between the mean energy of the cascade
impulse responses in the bright and dark zones (which can be interpreted
as a time-averaged version of the acoustic contrast). Later, it was shown
in [48, 67] that BACC leads to an uneven frequency response in the bright
zone, meaning that the response is far from being flat and only presents
significant energy in a narrow frequency band. Different algorithms were
proposed to mitigate this effect, namely BACC with Response Variation
constraint (BACC-RV) [48], BACC with Response Differential constraint
(BACC-RD) [55], and BACC with Response Trend Estimation (BACC-
RTE) [49]. These methods not only propose to minimize the time-averaged
acoustic contrast, but also a term related to the variation of the responses
across frequency in the bright zone. This additional term forces the filters
to produce a flat response across frequency in the bright zone. A main
drawback of these three algorithms is that the performance is very sensi-
tive to the influence of the variation term in the optimization [51]. Then,
a search must be carried out to find a suitable weighting factor that tunes
the influence of this term in the optimal filters. Also, the performance
of these approaches can be degraded in reverberant scenarios, where the
room frequency responses present fluctuations across frequency due to the
reflections. In these cases, targeting a flat response in the bright zone is a
very restrictive condition that can only be achieved at the cost of degrading
the isolation between zones. Then, ACC is preferred over its time-domain
variations, because it does not target any specific response in the bright
zone, and then, degradations in the acoustic contrast do not appear. For
ACC, the frequency response in the bright zone can be modified by equal-
izing the input signals of the system [68].
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Moreover, different soundfield synthesis algorithms using the frequency-
domain formulation were proposed in the literature. First, Poletti [62] pro-
posed the Pressure Matching (PM) algorithm, which finds the filters that
minimize the Mean Squared Error (MSE) between the cascade frequency
responses and some target frequency responses. In particular, the target
is specified as a null response for the dark zone, and some response that
leads to good listening experience for the bright zone. Then, more uniform
energy distributions and suitable phase distributions can be achieved for
the bright zone than with ACC [66]. However, this is at the cost of increas-
ing the mean energy in the dark zone, which produces a reduction on the
acoustic contrast. Simón Gálvez et al. [34] compared the performance of
ACC and PM under anechoic conditions, and showed that PM can provide
an acoustic contrast that is close to the one for ACC. Also, the authors
concluded from a set of informal listening test that the audio quality of the
sound reproduced in the bright zone was higher with PM than with ACC
thanks to the control of the phase of the responses. Similar results were
presented by Cheer et al. [11], in which the performance of both algorithms
was compared in a car cabin. Moreover, thanks to the control of the phase
and energy distributions in the bright zone, PM can be used to deliver
stereo and other multi-channel programs in the bright zone, which can not
be achieved with ACC. Also, Coleman et al. [63] proposed the Planarity
Control (PC) algorithm, which is a similar approach to PM that aims to
synthesize plane waves arriving from certain directions in the bright zone
while maximizing the acoustic contrast. Chang and Jacobsen [50] proposed
a variation of the PM algorithm called weighted Pressure Matching (wPM).
This algorithm includes a weighting factor in the cost function for the op-
timization that allows to balance the solution. For example, a weighting
factor that puts more effort in minimizing the MSE in the bright zone can
synthesize the desired response for the bright zone with high accuracy at
the cost of lower isolation between zones. On the contrary, a weighting
factor that puts more effort in minimizing the MSE in the dark zone leads
to acoustic contrast levels similar to those for ACC, but at the cost of de-
creasing the accuracy to synthesize the desired response in the bright zone.
Even in this case, wPM still offers, to some extent, control over the energy
and phase distributions in the bright zone [65]. Then, a trade-off between
the interference level in the dark zone and the reproduction error in the
bright zone can be obtained with wPM by properly selecting the weighting
factor.
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Later, Simón Gálvez et al. [39] proposed a variation of the wPM algo-
rithm in which the time-domain formulation is used. This algorithm finds
the filters that minimize the MSE between the cascade impulse responses
and some target impulse responses. It also includes a weighting term that
can be used to balance the solution. From now on, we will use the acronyms
wPM-F and wPM-T to refer to wPM using the frequency and time domain
formulations, respectively. It is shown in [39] that wPM-T outperforms
wPM-F in anechoic room when short filters or modelling delays are con-
sidered, but at the cost of higher computational demands. Recently, Lee
et al. [64] proposed the Variable Span Trade-off (VAST) algorithm, which
is a generalization that has wPM-T and BACC as special cases.

From the previous discussion, it is clear that wPM, either with time
or frequency domain formulations, is a good candidate for PSZ systems
because it offers control over the energy in the dark zone and the response
produced in the bright zone, so it can offer a trade-off between interference
level in the dark zone and audio quality in the bright zone. In the remainder
of this work, we will study and optimize the use of wPM for PSZ systems,
either with time or frequency domain formulations. Later, we will review
the wPM-F and wPM-T algorithms.

Finally, it is important to mention that all the algorithms described pre-
viously require some knowledge of the RIRs in the control points. The best
performance is achieved when full knowledge of the RIRs is available, which
can be obtained by measuring the RIRs between all the loudspeakers and
control points using approaches as the swept-sine technique [69]. In some
occasions, instead of measuring the RIRs, an acoustic model is used to esti-
mate them, avoiding the measurement stage that can not be always carried
out. In the literature, the free-field propagation model together with the
position of the loudspeakers and control points has been considered to esti-
mate the RIRs [7, 70]. Wallace and Cheer [71] compared the performance
using measured RIRs and modelled RIRs with free-field assumption, and
concluded that the performance with both methods is approximately equal
above 1 kHz, but below this frequency the filters computed using measured
RIRs significantly outperform the filters computed with modelled RIRs in
terms of acoustic contrast. Since in this work we focus on filter optimiza-
tions for PSZ in low and mid frequencies, we will thus assume that full
knowledge of the RIRs is available.
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Weighted Pressure Matching with Freq.-Domain formulation (wPM-F)

Next, we review the wPM-F algorithm proposed by Chang and Jacobsen
[50]. First, let us define Dm(f) as the target frequency response at fre-
quency f in the m-th control point. Also, let us define a vector of size
M×1 with the target frequency responses in all control points as

d̄f =
[
D0(f) . . . DM−1(f)

]T
. (2.22)

Then, the wPM-F algorithm aims to find the filters at frequency f that
minimize the following cost function

J(q̄f ) =
∥∥∥W̄f

(
H̄f q̄f − d̄f

)∥∥∥
2

+ β̄f ‖q̄f‖2 , (2.23)

where β̄f ∈ R+ is a regularization parameter that constrains the energy of
the filters, and W̄f = diag {w̄0,f , . . . , w̄M−1,f} is a diagonal matrix of size
M×M whose m-th diagonal element is defined as

w̄m,f =





√
µ̄f
Md

m ∈ D√
1−µ̄f
Mb

m ∈ B
, (2.24)

being µ̄f ∈ R a weighting factor satisfying 0 ≤ µ̄f ≤ 1. We can see that
the cost function (2.23) targets the minimization of the MSE between the
cascade frequency responses and a selected target d̄f . Usually, the elements
of d̄f corresponding to the dark zone are selected as a null response, i.e.,
Dm(f) = 0 for m ∈ D. Hence, the cost function aims to minimize the
MSE with respect to a selected target response for the bright zone, and the
energy of the cascade frequency response in the dark zone. The weighting
parameter µ̄f produces a spatial weighting of the errors in the control points
of the bright and dark zones, and it is used to balance the solution, e.g.,
high values of µ̄f put more effort in minimizing the mean energy in the
dark zone whereas low values of µ̄f put more effort in minimizing the MSE
with respect to the target response in the bright zone. Then, (2.23) offers
a balanced solution between minimizing the mean energy in the dark zone
and the MSE in the bright zone. The cost function (2.23) can be written
as

J(q̄f ) = q̄Hf H̄H
f W̄T

f W̄fH̄f q̄f − 2<
{
q̄Hf H̄H

f W̄T
f W̄f d̄f

}
+ β̄f q̄Hf q̄f ,

(2.25)
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where the term d̄Hf W̄T
f W̄f d̄f has been omitted because it has no effect on

the optimization. Since (2.23) is a quadratic cost function, it has a unique
global minimum for β̄f > 0 at the point in which its gradient equals 0, i.e.,
∇J(q̄f ) = 0. The gradient of the cost function is given by [72]

∇J(q̄f ) = 2 H̄H
f W̄T

f W̄fH̄f q̄f − 2 H̄H
f W̄T

f W̄f d̄f + 2 β̄f q̄f , (2.26)

and then, the expression of the optimal filters can be written as [50]

q̄opt,f =
(
H̄H
f W̄T

f W̄fH̄f + β̄f IL
)−1

H̄H
f W̄T

f W̄f d̄. (2.27)

We can see in (2.27) that the constraint on the energy of the filters pro-
duces a regularization of the matrix that must be inverted to compute the
filters. Then, the energy constraint makes the filters more robust against
ill-conditioning problems. In particular, low regularization levels lead to
high energy filters which obtain good performance in the control points,
but bad performance in positions not controlled by the algorithm. On the
contrary, higher regularization levels lead to filters with lower energy which
do not offer as good performance in the control points, but offer better
performance in positions not controlled by the algorithm.

It is important to mention that (2.23) is the cost function of a Least
Squares (LS) problem. Then, the optimal filters are the solution of the
following linear system of equations

(
H̄H
f W̄T

f W̄fH̄f + β̄f IL
)
q̄f = H̄H

f W̄T
f W̄f d̄f . (2.28)

A regularization factor β̄f > 0 assures the existence of a unique solution,
even if matrix H̄f of size M × L is rank deficient. A in-depth study of LS
problems and their main properties can be found in [72].

Weighted Pressure Matching with Time-Domain formulation (wPM-T)

Now, we review the wPM-T algorithm proposed by Simón Gálvez et al.
[39]. Let us define dm(n) as the real-valued FIR target impulse response of
length Id = Ih+Ig−1 in the m-th control point. Let us also define a vector
of size M×1 containing the target for time n and for all control points as

dn =
[
d0(n) . . . dM−1(n)

]T
. (2.29)

Moreover, let us define a vector of size MId×1 containing the target for all
control points and all time instants as

d =
[
dT0 . . . dTId−1

]T
. (2.30)
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Then, the wPM-T algorithm aims to find the broadband filters g that
minimize the following cost function

J(g) = ‖W (Hg − d)‖2 + β ‖g‖2 , (2.31)

where β ∈ R+ is a regularization factor and W is a weighting matrix. Cost
function (2.31) aims the minimization of the MSE between the cascade
impulse responses and a selected target d. The elements of d corresponding
to the dark zone are usually selected as a null response, i.e., dm = 0 for
m ∈ D. Hence, the cost function aims to minimize the MSE with respect to
a selected target impulse response for the bright zone, and the energy of the
cascade impulse response in the dark zone. The fundamental idea behind
cost function (2.31) is the same as for cost function (2.23) for wPM-F, the
only difference is that impulse responses instead of frequency responses are
used. For the time domain formulation, W can include not only spatial,
but also time and frequency weightings. This is an advantage of wPM-T
with respect to wPM-F, as for example, time weighting can be used to
reduce the pre-ringing levels [52]. However, in this work we only consider
the spatial weighting. Then, let us define W = Ω⊗IId , i.e., a block-diagonal
matrix with diagonal blocks of size M ×M . In particular, let us define the
diagonal blocks as Ω = diag {w0, . . . , wM−1}. It is easy to see that wm is
the weight given in the cost function to the error for the m-th control point,
which can be defined as

wm =





√
µ
Md

m ∈ D
√

1−µ
Mb

m ∈ B
, (2.32)

where µ ∈ R is a weighting factor satisfying 0 ≤ µ ≤ 1. Similarly to
wPM-F, high values of µ put more effort in minimizing the mean energy
in the dark zone while low values of µ put more effort in minimizing MSE
with respect to the target response in the bright zone. The cost function
(2.31) can be written as

J(g) = gTHTWTWHg − 2 gTHTWTWd + β gTg, (2.33)

where the term dTWTWd has been omitted because it has no effect on
the optimization. By analogy with wPM-F, it is straight forward to show
that the optimal filters that minimize (2.31) are given by

gopt =
(
HTWTWH + β ILIg

)−1
HTWTWd. (2.34)
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Again, adding a constraint on the energy of the filters produces a regulariza-
tion of the matrix that must be inverted to compute the filters. It is worth
mentioning that in the presented derivation β is a broadband regularization
factor, i.e., the same regularization is applied to all frequencies. In [39], the
authors propose a frequency-dependent regularization by replacing β ILIg
by βRreg, where Rreg is the correlation matrix of a FIR filter. Then, by
properly designing the spectral shape of the filter a frequency-dependent
regularization can be obtained.

Similarly to wPM-F, (2.31) is the cost function of a LS problem. How-
ever, in this case the number of unknown parameters of the system of
linear equations is significantly larger. In particular, wPM-F has L un-
known parameters for each frequency component whereas wPM-T has LIg

unknown parameters. This is the main drawback of wPM-T, since solv-
ing the LS problem requires significantly higher computational efforts than
for wPM-F. In Chapter 3, we will study different exact and approximate
methods to efficiently compute the optimal solution for wPM-T.

2.2.5 Control metrics

Next, we describe the metrics used in this work to evaluate the performance
of PSZ systems.

First, let us consider the generic model shown in Fig. 2.10, in which s
is the input signal and yl is the signal fed to the l-th loudspeaker. In this
model, the bright and dark zones are spatially sampled using two different
grids of microphones, which represent the control and validation grids. The
RIRs in the points of the control grid (control points) are denoted as hml,
and are used by the presented algorithms to compute the optimal filters
of the system. The RIRs in the points of the validation grid (validation
points) are denoted as hv,ml and are used to evaluate the performance of
the computed filters. Then, two different sets of RIRs are used to compute
and to evaluate the filters. This is a common procedure for evaluating the
performance of PSZ systems, because it allows to evaluate how robust the
system is to perturbations [51].

Now, we present the metrics used to evaluate the performance. First,
let us define Hv,ml(f) as the room frequency response between the l-th
loudspeaker and the m-th validation point, and Yl(f) as the frequency
response of the signal fed to the l-th loudspeaker. Then, let us define the
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PSZ processing
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Figure 2.10: Model used for evaluating the performance of a PSZ sys-
tem. The circle and cross markers denote control and validation points,
respectively.

cascade frequency response in the m-th validation point as

Xv,m(f) =
L−1∑

l=0

Hv,ml(f)Yl(f). (2.35)

Also, we can define the mean energy in the validation points of the bright
and dark zones at frequency f as

Eb(f) =
1

Mb

∑

m∈B
|Xv,m(f)|2 , (2.36)

and

Ed(f) =
1

Md

∑

m∈D
|Xv,m(f)|2 , (2.37)

respectively. Moreover, let us define the Acoustic Contrast (AC) [9] as

C(f) =
Eb(f)

Ed(f)
, (2.38)
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and the Mean Squared Error (MSE) in the validation points of the bright
zone as

ε(f) =
1

Mb

∑

m∈B
|Xv,m(f)− S(f)Dv,m(f)|2 , (2.39)

where Dv,m(f) is the target frequency response for the m-th validation
point (which is indicated in each case), and S(f) is the frequency response
of the input signal. As we previously discussed, the acoustic contrast is a
metric that is related to the level of acoustic isolation between zones, while
the MSE is a metric that is related to the reproduction error and the audio
quality in the bright zone. Then, these two metrics are fundamental for
evaluating PSZ systems, as the acoustic contrast is an indicator of the level
of interferences produced in the dark zone, and the MSE is an indicator
of how good the listening experience is in the bright zone. Finally, let us
define the Array Effort (AE) [61] as

ξ(f) =

∑L−1
l=0 |Yl(f)|2
Ebr(f)

, (2.40)

where Ebr(f) is the energy required by a single reference loudspeaker lr to
produce the same energy in the validation points of the bright zone as the
signals played by all the loudspeakers of the PSZ system, i.e.,

Ebr(f) =
Eb(f)

1
Mb

∑
m∈B |S(f)Hv,mlr(f)|2

. (2.41)

Then, the array effort is an indicator of the energy required by the array
of loudspeakers to produce a certain energy level in the bright zone.

In the model that we discussed in Section 2.2.2, we assumed that the
input signal is a unit impulse, i.e., S(f) = 1, and that the signal fed to
the loudspeakers is obtained by filtering the input signal with a FIR filter
gl, thus Yl(f) = Gl(f)S(f), where Gl(f) is the frequency response of gl at
frequency f . Then, with these assumptions, the frequency content of the
signal fed to the l-th loudspeaker is

Yl(f) = Gl(f), (2.42)

which is used in most of the performance evaluations of this work. However,
we present generic equations for the metrics, which use Yl instead of Gl,
because these definitions are general enough to be used in Chapter 4, where
we will use filter banks (i.e., time-variant systems) to process the signals of
the PSZ system.

34



2.3. Performance evaluation

2.3 Performance evaluation

The performance of wPM with time and frequency domain formulations,
i.e., wPM-T and wPM-F, was previously compared in several works. First,
Simón Gálvez et al. [39] compared the performance of both algorithms in
anechoic chamber for different filter lengths and modelling delays. They
determined that both algorithms perform similarly when long filters and
appropriated modelling delays are used, but wPM-T outperforms wPM-F
for short filters or short modelling delays. Also, Vindrola et al. [60] com-
pared the performance of the algorithms in anechoic chamber for filters
of length 392 samples at a sampling frequency 2450 Hz. They concluded
that both algorithms offer a very similar performance. However, the pre-
sented comparison is not fair, as the effect of the filter length is not taken
into account. Moreover, Møller and Olsen [51] compared the performance
of the algorithms in a reverberant environment with reverberation time
T60 = 0.6 s for filters of length 256 samples at a sampling frequency 1.2 kHz.
They concluded that wPM-T outperforms wPM-F in terms of acoustic con-
trast, but again, the comparison is not fair as they did not study whether
wPM-T outperforms wPM-F for longer filters. To the best of our knowl-
edge, there are no works in the literature that compare the performance of
wPM-T and wPM-F in reverberant environment and that consider in the
comparison the influence of the filter length, the modelling delay, and the
regularization level. Thus, we present in this section such a comparison.

2.3.1 Setup and methodology

Setup

The experimental evaluations have been carried out in an office-like room
at iTEAM-UPV. The room size is 7.2× 11.72× 2.65 m and its reverber-
ation time is T60 = 500 ms. The setup is formed by one bright and one
dark zone, as shown in Fig. 2.11a. In each zone, two different grids of
microphones are used for spatial sampling, such that the RIRs measured
at the control and validation grids are used to compute the filters and to
evaluate their performance, respectively. A linear array of 8 two-way JBL
305P MkII loudspeakers [73] with an inter-element distance of 0.18 m is
used (see Fig. 2.11b). The RIRs were measured using the swept-sine tech-
nique [69] with a sampling frequency of 44100 Hz, and then downsampled
to 6300 Hz, obtaining impulse responses of length Ih = 2330. Two grids of
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4×4 Brüel & Kjær microphones Type 4958 [74], previously calibrated with
a Brüel & Kjær sound calibrator Type 4231 [75], were used to measure
the RIRs at the control/validation points (as shown in Fig. 2.11c). The
distance between the elements of the grid is 0.15 m.

(a)

(b)

(c)

Figure 2.11: Setup used for the evaluations in (a), where and denote
control and validation points, respectively, and denotes a loudspeaker.
The walls are in x = ±3.6 m, y = ±5.86 m, and z = {0, 2.65} m, and the
loudspeakers and microphones are at a height of 1.56 m. The array of 8
loudspeakers is shown in (b). The two grids of 4×4 microphones used for
measuring the RIRs in the control/validation points are shown in (c).
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Methodology for computing the filters

First, let us select the target impulse response in the m-th control point as

dm (n) =

{
hmlr(n− τd) m ∈ B

0 m ∈ D
, (2.43)

i.e., the RIR for the lr-th loudspeaker and null response for the control
points in the bright and dark zones, respectively. In particular, the reference
loudspeaker is chosen as lr = 3 (as shown in Fig. 2.11b). The target (2.43)
includes a modelling delay τd ∈ N whose value is indicated in each case.
Now, we describe the methodology used to compute the optimal filters for
the different algorithms:

• wPM-T: The filters gl of length Ig are computed using (2.34), as-
suming that the target response dm is given by (2.43). The weighting
factor is set to µ = 0.5. The regularization factor is selected as

β = β0uavg, (2.44)

where uavg is the mean of the eigenvalues of matrix HTWTWH in
(2.34), and β0 is the regularization factor relative to uavg. Parameter
β0 is more meaningful than β, since it indicates the amount of regu-
larization added to the matrix that we aim to invert with respect to
the mean of its eigenvalues. The value of β0 is indicated in each case.

• wPM-F The coefficients Ql(f) are computed for a set of N=Ih+Ig−1
control frequencies using (2.27), where Dm(f) is selected as the DFT
of dm(n) in (2.43). The coefficients Ql(f) are set to 0 for control
frequencies below 80 Hz, to reduce the energy at low frequencies where
high directivity can not be achieved. After that, an N -point IDFT
is used to obtain the time-domain responses ql, which are truncated
using a window of size Ig to obtain the filters gl (as described in
Section 2.2.3). The selected window is indicated in each case. It is
important to highlight that additional modelling delay is not added
to ql, as this response already includes the modelling delay τd due to
the specified target. The weighting factor is set to µ̄f = 0.5 for all
frequencies. The regularization factor is selected as

β̄f = β̄0,f ūavg,f , (2.45)
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where ūavg,f is the mean of the eigenvalues of H̄H
f W̄T

f W̄fH̄f in (2.27),

and β̄0,f is the regularization factor relative to ūavg,f . The value of
β̄0,f is indicated in each case.

Methodology for evaluating the filters

For evaluating the filters, the metrics described in Section 2.2.5 are com-
puted for a set of 16384 equispaced frequencies with a resolution of 0.3845 Hz
assuming that the input signal is a unit impulse. The target response for
the m-th validation point used to evaluate the filters is selected as

dv,m (n) =

{
hv,mlr(n− τd) m ∈ B

0 m ∈ D
, (2.46)

where hv,mlr is the RIR from the lr-th loudspeaker to the m-th validation
point. In Fig. 2.12, we show hv,mlr and dv,m for the validation point m = 0
(in the bright zone) and with τd = 256. The target frequency response Dv,m

is computed as the DFT of dv,m. To improve the readability of the results,
1/3-octave band averaging [76] is used for all frequency-domain plots.

Figure 2.12: Room impulse response hv,mlr and target impulse response
dv,m for the validation point m=0 and a modelling delay τd=256 (40.6 ms).

2.3.2 Impulse response truncation for wPM-F

Previous works using wPM-F considered different window types for trun-
cating the impulse responses obtained with the frequency domain optimiza-
tion. In particular, Cheer et al. [11] and Simón Gálvez et al. [39] used a
Hanning window, while Møller and Olsen [51] and Vindrola et al. [60] used
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a rectangular window. However, the performance of the algorithm using
these different windows was not compared in any of these works. This is
an important aspect to study before comparing wPM-F and wPM-T, since
the selected window influences the performance of wPM-F.

Figure 2.13: Impulse responses of rectangular and Hanning windows of
length 2048 samples.

Then, we compare the performance of wPM-F using rectangular and
Hanning windows for truncating ql to obtain gl. First, we show in Fig. 2.13
the impulse responses of rectangular and Hanning windows of length 2048
samples, to exemplify their time-domain properties. Next, we show in
Fig. 2.14 the acoustic contrast, the MSE in the bright zone, and the array
effort for wPM-F using both windows. We study the performance for filter
lengths Ig = 512 and Ig = 2048 in the left and right columns of Fig. 2.14,
respectively. The modelling delay is selected as τd = Ig/2. For the rectan-
gular window, the performance with two regularization factors β̄0,f = 10−3

and β̄0,f = 10−2 is included, while for the Hanning window the performance
with β̄0,f = 10−3 is shown. First, it is interesting to note that increasing the
filter length from 512 to 2048 significantly improves the acoustic contrast
and the MSE at frequencies below 800 Hz for all the studied windows and
regularization factors. Also, we can see that for frequencies above 800 Hz
the three metrics are very similar in all cases. This is because at these
frequencies the wavelength is comparable with the size of the zones, so the
optimization is less sensitive to parameters as the window type, the fil-
ter length and the regularization factor [68]. Moreover, we can clearly see
the effect of the spatial aliasing for frequencies above 1.5 kHz, in which the
acoustic contrast drops to values below 7 dB. Regarding the performance of
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(a) AC (Ig = 512) (b) AC (Ig = 2048)

(c) MSE (Ig = 512) (d) MSE (Ig = 2048)

(e) AE (Ig = 512) (f) AE (Ig = 2048)

Figure 2.14: Acoustic contrast (a, b), MSE (c, d), and array effort (e, f)
as a function of frequency for wPM-F with rectangular and Hanning win-
dows. Filter lengths Ig = 512 and Ig = 2048 are considered with τd = Ig/2.
For the rectangular window we consider regularizations β̄0,f = 10−3 and
β̄0,f = 10−2, and for the Hanning window β̄0,f = 10−3.
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the different windows in Fig. 2.14, the Hanning window offers worst acous-
tic contrast and MSE than the rectangular window at frequencies below
400 Hz for β̄0,f = 10−3. In particular, degradations of up to 4 and 2 dB
can be found for Ig = 512 and Ig = 2048, respectively. However, it is also
important to notice that the Hanning window requires lower array effort
than the rectangular window. For the rectangular window, increasing the
regularization factor from β̄0,f = 10−3 to β̄0,f = 10−2 significantly reduces
the array effort, at the cost of small degradations in the acoustic contrast
and the MSE. For a filter length Ig = 512, the acoustic contrast and the
MSE obtained with the rectangular window with β̄0,f = 10−2 are better
than for the Hanning window with β̄0,f = 10−3, while its array effort is
significantly lower. For Ig = 2048, the acoustic contrast and the MSE with
the rectangular window with β̄0,f = 10−2 and with the Hanning window
with β̄0,f = 10−3 are approximately equal, but again, with significantly
lower array effort for the rectangular window. Then, these results show
that using a rectangular window leads to better acoustic contrast and MSE
than using a Hanning window, particularly at low frequencies. Also, the
results show that increasing the filter length reduces the differences in the
performance between the different windows.

Next, we study the impulse responses of the filters for wPM-F before
and after truncation, i.e., ql and gl, respectively. We show in Fig. 2.15 the
responses ql and gl for the reference loudspeaker, i.e., l = 3, obtained with
β̄0,f = 10−3 and for the cases in which rectangular and Hanning windows
are used to truncate the filters. We include examples with Ig = 512 and
τd = 256, and Ig = 2048 and τd = 1024. First, it is interesting to note that
ql in Fig. 2.15a and 2.15c include some components with significant energy
at the end of the responses. As we discussed in Section 2.2.3, these compo-
nents appear because the responses that we estimate are non-causal, and
therefore, the circularity of the IDFT produces that the anti-causal compo-
nents of these responses appear at the end of the period of the IDFT in ql.
Then, truncating the responses is required not only to obtain the desired
length Ig, but also to remove these components (as they can deteriorate
the quality of the audio rendered to the bright zone). Regarding the filters
obtained after truncation, we can see that the rectangular window trun-
cates the response ql, but it preserves the amplitude of its components. On
the contrary, the Hanning window not only truncates ql, but also modifies
its amplitude. This is the main difference between both windows, and the
reason why the rectangular window outperforms the Hanning window. The
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amplitude of the components of ql for different time instants and loudspeak-
ers is optimized such that their combination leads to high acoustic contrast
and low MSE. However, when modifying the amplitude of the components
of ql with the Hanning window we are deviating from the optimal values,
and the combination of the modified components for different time instants
and loudspeakers leads to worse acoustic contrast and MSE (as shown in
Fig. 2.14). Also, Fig. 2.15 shows that for Ig = 512 the Hanning window
significantly modifies the amplitude of components that are located at least
150 samples away from the main peak, which include components with im-

(a) ql (Ig = 512, τd = 256) (b) gl (Ig = 512, τd = 256)

(c) ql (Ig = 2048, τd = 1024) (d) gl (Ig = 2048, τd = 1024)

Figure 2.15: Impulse responses of the filters for wPM-F before and after
truncation, i.e., ql and gl, respectively, for l = 3. The filters are computed
with Ig = 512 and Ig = 2048, τd = Ig/2, and β̄0,f = 10−3. The impulse
responses truncated with rectangular and Hanning windows are included.

42



2.3. Performance evaluation

portant energy levels. For Ig = 2048, the Hanning window significantly
modifies the components that are located at least 500 samples away from
the main peak, which are components with lower energy. Then, the differ-
ences between the filters truncated with both windows are less significant
for long filters, which agrees with the results presented in Fig. 2.14.

In summary, we showed that better acoustic contrast and MSE can be
achieved when using rectangular windows instead of Hanning windows to
truncate the impulse responses obtained with wPM-F. Also, we showed
that the differences between both windows are especially important when
short filters are considered, while similar performance is obtained for long
filters. In the remainder of this work, rectangular windows will be used to
truncate the filters for wPM-F.

2.3.3 Influence of the regularization factor

The influence of the regularization factor on the performance is also an
important aspect to consider before comparing the performance of the al-
gorithms. Then, we study next the influence of the regularization factor on
the performance of a PSZ system.

The acoustic contrast, the MSE in the bright zone, and the array effort as
a function of the regularization factor β0 for wPM-T are shown in Fig. 2.16,
where a filter length Ig = 2048 and a modelling delay τd = 1024 are consid-
ered. First, we can notice that the regularization factor and the array effort
are directly related, since increasing the regularization factor decreases the
array effort, i.e., the energy of the filters. This agrees with that discussed
in Section 2.2.4, as the regularization factor constrains the energy of the
filters in the cost function (2.31). Also, the results reveal that very low and
very high regularization factors do not lead to the best achievable acoustic
contrast and MSE. The motivation is that very low regularization factors
obtain filters that offer good performance in those spatial positions that are
taken into account in the optimization, i.e., the control points, but present
bad performance in other positions within the zones that are not considered
in the optimization, e.g., the validation points. Then, very low regulariza-
tion factors lead to filters that present poor robustness against mismatches
between the RIRs in the control and validations grids, and also, against
perturbations on the environment, which in practice leads to bad perfor-
mance for the PSZ system. Increasing the regularization factor strengthens
the robustness of the filters to perturbations, and consequently, the perfor-
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(a) AC (b) MSE

(c) AE

Figure 2.16: Acoustic contrast (a, b), MSE (c, d), and array effort (e, f)
as a function of frequency and the regularization factor β0 for wPM-T. A
filter length Ig = 2048 and a modelling delay τd = 1024 are considered.

mance of the system in the validation points is improved. At some point,
increasing the regularization factor does not longer improve the perfor-
mance, and can even degrade it. This is because high regularization factors
provide filters that present very low energy, but at the cost of degrading
the acoustic contrast and the MSE. Then, the regularization factor must
be high enough to obtain filters that are robust to perturbations, but also
low enough to obtain filters with suitable energy levels that can offer good
performance. The results in Fig. 2.16 suggest that regularization factors
β0 in the range 10−4 to 10−1 are adequate for the considered PSZ system.
In particular, a regularization factor β0 = 10−3 offers a good compromise
between acoustic contrast, MSE, and array effort.
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2.3.4 Comparison of wPM-T and wPM-F

Next, we compare the performance of wPM-T and wPM-F in a reverber-
ant environment, taking into account the influence of the filter length, the
modelling delay, and the regularization level. We focus on the comparison
of the performance of the algorithms, while their computational demands
will be evaluated in Chapter 3. In the remainder of this section, a search is
carried out to find the regularization factor β̄0,f for each control frequency
for wPM-F that leads to the same array effort as wPM-T with a regula-
rization factor β0 (with the same Ig and τd). Hence, we make sure that
both algorithms present the same array effort, and then, the comparison
between algorithms is fair, since differences in the acoustic contrast and
the MSE are not produced because the algorithms present different effort
levels.

Average performance per octave band

We compare the average acoustic contrast, MSE, and array effort in three
octave bands for wPM-T and wPM-F. The average performance in the
bands 125-250 Hz, 250-500 Hz, and 500-1000 Hz is shown in Fig. 2.17 to
2.19, respectively, as a function of the filter length. The performance with
two regularization factors β0 = 10−3 and β0 = 10−1 is included in Fig. 2.17
to 2.19, and three modelling delays τd = 64 (10.2 ms) , τd = 256 (40.6 ms),
and τd = 1024 (162.5 ms) are considered. In the evaluations, only the
combinations of modelling delays and filter lengths fulfilling Ig > τd are
considered.

First, we discuss some general considerations that are common to all the
studied octave bands and algorithms. In general, Fig. 2.17 - 2.19 show that
increasing the filter length improves the acoustic contrast and the MSE
for all algorithms, modelling delays and regularizations. Then, PSZ sys-
tems usually need to use long filters to obtain good performance. However,
increasing the filter length increases the computational efforts required to
compute the optimal filters and to filter the input signals, and in some ap-
plications this is a critical aspect because high computational capabilities
are not available. The presented results also show that, at some point,
the performance converges and increasing the filter length does not longer
offer performance improvements. Also, it is interesting to note that the
required array effort is higher for short filters than for longer filters, while
the acoustic contrast and the MSE are worse. This fact suggests that high
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energy is required when using short filters, but still, the performance is not
as good as with longer filters. Furthermore, the results show that, in gen-
eral, increasing the modelling delay improves the acoustic contrast and the
MSE. Then, in order to achieve very good performance a PSZ system must
include a long modelling delay. Besides, it is interesting to note that, even-
tually, increasing the filter length without increasing the modelling delay
or increasing the modelling delay without increasing the filter length does
not lead to performance improvements. However, increasing both, the filter
length and the modelling delay, improves the performance. This suggests
that better performance is obtained when the filters have similar number
of components before and after the main peak, i.e., for τd ≈ Ig/2. Unfor-
tunately, this selection is not always possible because certain applications
require low delay for the system (as discussed in Section 2.1.2). Neverthe-
less, increasing the regularization factor β0 from 10−3 to 10−1 significantly
reduces the array effort, but at the cost of worsening the acoustic contrast
and the MSE.

Now, we focus on the results for the band 125-250 Hz in Fig. 2.17. In
this case, we find very important differences between wPM-T and wPM-F,
especially for short delays or short filters. For β0 = 10−3, wPM-F presents
degradations of up to 4.5 dB for a modelling delay τd = 64, and degrada-
tions of around 1.5 and 0.5 dB for τd = 256 and τd = 1024, respectively.
We can see in Fig. 2.17a and Fig. 2.17c that wPM-T offers significantly
better acoustic contrast and MSE for τd = 64 and all the studied filter
lengths. For τd = 1024, wPM-T offers better performance for short fil-
ters, e.g., it presents 2 dB higher acoustic contrast and 3.5 dB lower MSE
for Ig = 1152. These performance differences are reduced when the filter
length is increased, e.g., the performance of both algorithms is very sim-
ilar for Ig = 2048 and τd = 1024. Also, the results in Fig. 2.17 indicate
that increasing the regularization factor degrades more the performance of
wPM-T than the performance of wPM-F, leading to smaller performance
differences between both algorithms for high regularizations values. How-
ever, the average effort levels obtained for β0 = 10−1 are below 0 dB in
all cases, while there are still significant acoustic contrast and MSE differ-
ences between both algorithms, particularly for short modelling delays or
short filters. Then, all these results clearly indicate that, at low frequencies,
wPM-T outperforms wPM-F when either short modelling delays or short
filters are considered. These conclusions are aligned with those obtained in
[39] for the comparison of both algorithms in anechoic conditions.
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(a) AC (β0 = 10−3) (b) AC (β0 = 10−1)

(c) MSE (β0 = 10−3) (d) MSE (β0 = 10−1)

(e) AE (β0 = 10−3) (f) AE (β0 = 10−1)

Figure 2.17: Average acoustic contrast (a, b), MSE (c, d), and array
effort (e, f) over 125-250 Hz as a function of the filter length for wPM-T
and wPM-F. Three different modelling delays τd and two regularization
factors β0 are considered.
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(a) AC (β0 = 10−3) (b) AC (β0 = 10−1)

(c) MSE (β0 = 10−3) (d) MSE (β0 = 10−1)

(e) AE (β0 = 10−3) (f) AE (β0 = 10−1)

Figure 2.18: Average acoustic contrast (a, b), MSE (c, d), and array
effort (e, f) over 250-500 Hz as a function of the filter length for wPM-T
and wPM-F. Three different modelling delays τd and two regularization
factors β0 are considered.
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(a) AC (β0 = 10−3) (b) AC (β0 = 10−1)

(c) MSE (β0 = 10−3) (d) MSE (β0 = 10−1)

(e) AE (β0 = 10−3) (f) AE (β0 = 10−1)

Figure 2.19: Average acoustic contrast (a, b), MSE (c, d), and array
effort (e, f) over 500-1000 Hz as a function of the filter length for wPM-T
and wPM-F. Three different modelling delays τd and two regularization
factors β0 are considered.
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Likewise, we focus now on the results for the bands 250-500 Hz and
500-1000 Hz in Fig. 2.18 and 2.19, respectively. In these results, we can
see similar trends to the ones in Fig. 2.17, as for example, wPM-T presents
better acoustic contrast and MSE than wPM-F for short delays or short
filters. However, in these bands the performance differences between both
algorithms are much smaller than for the band 125-250 Hz. In particular,
the differences between both algorithms in these bands are lower than 1 dB
in all the studied cases. These results also show that the higher the fre-
quency, the lower the sensitivity of the performance to parameters such as
the filter length, the modelling delay, and the regularization.

Performance as a function of frequency

Next, we compare the performance of wPM-T and wPM-F as a function
of frequency. We show in Fig. 2.20 the acoustic contrast, the MSE, and
the array effort for two regularization factors β0 = 10−3 and β0 = 10−1, and
for three combinations of filter lengths and modelling delays: 1) Ig = 2048
and τd = 1024; 2) Ig = 2048 and τd = 64; 3) Ig = 1300 and τd = 1024.
These results lead to similar conclusions to those previously presented in
Fig. 2.17 to 2.19. First, we can see in Fig. 2.20 that both algorithms of-
fer very similar results for Ig = 2048 and τd = 1024, indicating that both
algorithms offer very similar performance when long filters and modelling
delays are considered. For τd = 1024 and Ig = 1300, wPM-T offers up
to 3 dB higher acoustic contrast and 2 dB lower MSE for β0 = 10−3 at
frequencies below 300 Hz, while similar performance is obtained for higher
frequencies. The differences are reduced when increasing the regularization
factor β0 from 10−3 to 10−1. These results confirm that, at low frequencies,
wPM-T offers better performance than wPM-F for short filters, even if long
modelling delays are considered. Moreover, we can see very significant dif-
ferences between both algorithms for τd = 64 at frequencies below 250 Hz.
In particular, wPM-F leads to degradations of up to 5 dB in the acoustic
contrast and 6 dB in the MSE for β0 = 10−3. Again, the differences between
both algorithms are reduced if the regularization factor is increased, but
still, wPM-T offers up to 2.5 dB higher acoustic contrast and 3 dB lower
MSE than wPM-F for β0 = 10−1. Then, we can confirm that wPM-T sig-
nificantly outperforms wPM-F when short modelling delays are considered.
Furthermore, to exemplify the frequency responses produced in the zones
by both algorithms, we show in Fig. 2.21 the mean energy in the bright
and dark zones as a function of frequency.
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(a) AC (β0 = 10−3) (b) AC (β0 = 10−1)

(c) MSE (β0 = 10−3) (d) MSE (β0 = 10−1)

(e) AE (β0 = 10−3) (f) AE (β0 = 10−1)

Figure 2.20: Acoustic contrast (a, b), MSE (c, d), and array effort (e, f)
as a function of frequency for wPM-T and wPM-F. Three different com-
binations of filter lengths Ig and modelling delays τd, and two different
regularization factors β0 are considered.

51



Chapter 2. Background

(a) β0 = 10−3 (b) β0 = 10−1

Figure 2.21: Mean energy in the bright and dark zones as a function
of frequency for wPM-T and wPM-F with three different combinations of
filter lengths Ig and modelling delays τd, and two different regularization
factors β0.

Impulse response of the filters

Finally, we study the impulse responses of the optimal filters of length
Ig = 2048 for the reference loudspeaker l = 3, computed with modelling
delays τd = 64 and τd = 1024, and with a regularization level β0 = 10−3.
First, the impulse responses ql obtained with wPM-F before windowing are
shown in Fig. 2.22. These results show that several components of signifi-
cant energy appear at the end of ql for τd = 64. This fact indicates that the
frequency responses obtained through wPM-F correspond to time-domain
responses with a high number of anti-causal components. These compo-
nents can not be accommodated and turned into causal components for
a modelling delay τd = 64, so the windowed filters do not include them.
On the contrary, for a modelling delay τd = 1024, the anti-causal compo-
nents of most significant energy are accommodated as causal components
and are included in the windowed filters. Next, we show in Fig. 2.23a and
Fig. 2.23b the impulse response of the filters gl computed with wPM-T
and wPM-F (after windowing). Moreover, we show in Fig. 2.23c the ab-
solute value of the error between the filters for both algorithms. From
these results, it is clear that both algorithms obtain more similar filters
for high delays, while their differences are bigger when short delays are
considered. The differences appear because wPM-T estimates the optimal
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Figure 2.22: Impulse response ql before windowing for wPM-F with
Ig = 2048, l = 3, β0 = 10−3 and modelling delays τd = 64 and τd = 1024.

(a) τd = 64 (b) τd = 1024

(c) Absolute error

Figure 2.23: Impulse response of the filters gl for wPM-F and wPM-T
with Ig = 2048, l = 3, β0 = 10−3 and two modelling delays τd = 64 and
τd = 1024 in (a) and (b), respectively. Absolute error between the filters
for both algorithms in (c).
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causal filters of a given length, while wPM-F does not impose any causal-
ity constraint. This implies that wPM-T does not rely on the anti-causal
components to optimize the performance of the system. However, wPM-F
does rely on the anti-causal components to improve the performance, al-
though these components are later suppressed by the truncation process.
For suitable delays, the energy of the components suppressed by the trun-
cation is very low, so the performance of wPM-F is similar to the one of
wPM-T. For short delays, the energy of the components suppressed can be
significant, which leads to important performance degradations for wPM-F
and causes notable differences between both algorithms (as seen in Fig. 2.17
to Fig. 2.20).

2.4 Summary

In this chapter we reviewed the fundamental theory related to PSZ systems.
First, we described the main goal and the requirements of PSZ systems,
followed by a discussion on different approaches that can be used for these
kinds of systems. Then, we considered the use of loudspeaker array pro-
cessing for PSZ systems, which is the most suitable approach for focusing
sound at low and mid frequencies. In particular, we studied a model in
which a set of FIR filters is used to filter the audio signals that are fed to
an array of loudspeakers. Also, we discussed the time and frequency do-
main formulations of this model, and the procedures required to obtain the
filters of the system when these formulations are used. Later, we reviewed
the most relevant algorithms proposed in the literature for computing the
filters of a PSZ system using loudspeaker array processing. From this re-
view, we concluded that weighted Pressure Matching (wPM), either with
time or frequency domain formulations, is the most suitable algorithm for
PSZ systems, as it allows to balance the interference level between zones
and the audio quality of the signal rendered to the users. Then, we derived
and discussed the expressions required to obtain the optimal filters with
wPM using the time and frequency domain formulations, i.e., wPM-T and
wPM-F, respectively. Finally, we presented novel experimental results for
comparing the performance of wPM-T and wPM-F in a reverberant envi-
ronment. The length of the filters, the modelling delay, and the regulariza-
tion level were taken into account in the comparison. The presented results
indicate that both algorithms show almost equal performance when long
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filters and appropriate modelling delays are considered. However, wPM-T
clearly outperforms wPM-F at low frequencies when either short filters or
too short modelling delays are considered. Also, the effect of the regulariza-
tion seems relevant, as increasing the regularization level leads to smaller
differences between wPM-T and wPM-F, but at the cost of worsening the
performance of both algorithms. In conclusion, wPM-T offers superior per-
formance to wPM-F for systems in which short modelling delays or short
filters are required. Also, it is important to mention that wPM-T requires
higher computational efforts than wPM-F, which can be an important dis-
advantage for systems with limited computational capabilities. This aspect
will be further studied in Chapter 3.
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Least Squares solvers AAAA
for PSZ systemsAA

We discussed and showed in Chapter 2 that wPM-T can outperform wPM-F
for PSZ systems. The filters for wPM-T are computed by solving a Least
Squares (LS) problem, which in some cases might involve a large number of
unknown parameters. Hence, computing the optimal filters can be a com-
putationally challenging task, which can be a serious limitation if the filters
must be recalculated often. In this chapter, we first study the LS problem
for wPM-T, and show that the matrices involved in the optimization have
a block-toeplitz structure. Then, we review the state-of-the-art solvers for
these kind of problems, including the generic solvers that do not consider
the block-toeplitz structure, and the fast and superfast solvers that benefit
from this structure to reduce the computational demands. Later, we show
how to compute the optimal solution with three different solvers, namely:
1) a classic solver based on the Cholesky factorization [77]; 2) the Fast a
Posteriori Error Sequential Technique (FAEST) [78]; and 3) the superfast
solver proposed in [79]. Afterwards, the accuracy of these solvers and how
it influences the performance of a PSZ system is experimentally evaluated.
The evaluations show that the FAEST and superfast solvers are adequate
for computing the filters for wPM-T when medium or high regularizations
levels are used. Finally, the computational demands of the three solvers
are compared. The results clearly indicate that the superfast solver and, to
a lower extent, the FAEST solver can effectively lighten the computational
efforts required by the Cholesky solver when long filters are considered.
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3.1 Least Squares (LS) problem

We studied in Section 2.2.4 that the L optimal filters of length Ig for wPM-T
are obtained by solving the following LS problem:

gopt = min
g

{
‖(Hg − d)‖2 + β ‖g‖2

}
, (3.1)

where gopt is a LIg×1 vector, H is aM(Ih+Ig−1)×LIg block-toeplitz matrix
defined in (2.11), and d is a M(Ih+Ig−1)×1 vector defined in (2.30). It
is relevant to note that the weighting matrix W for wPM-T in (2.31) is
omitted in (3.1). The solvers described in this chapter can be directly used
for the case in which W is considered by replacing dm by wmdm to form
d and hml by wm hml to form H, since the weighting matrix selected for
wPM-T is diagonal, i.e., W = diag {w0, . . . , wM−1}⊗ IId . We omit W here
for the sake of simplicity on the notation. The solution for (3.1) is given by

gopt =
(
HTH + β ILIg

)−1
HTd, (3.2)

which can be alternatively expressed as

gopt = R−1c, (3.3)

where R = HTH + β ILIg is a LIg×LIg matrix, and c = HTd is a LIg×1
vector. Let us note that R is a symmetric block-toeplitz matrix that can
be written as

R =




R0 R1 . . . RIg−1

R −1

...

R −(Ig−1)

Toeplitz



, (3.4)

where Rn is a L×L matrix fulfilling Rn = RT
−n, since R is symmetric. It

is relevant to note that (3.1) can be otherwise expressed as

gopt = min
g

{
Id−1∑

n=0

∥∥∥
(←−

Hng − dn

)∥∥∥
2

+ β ‖g‖2
}
, (3.5)

where dn is defined in (2.29) and
←−
Hn is defined as

←−
Hn =

[
Hn . . . Hn−Ig+1

]
, (3.6)
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i.e.,
←−
Hn is a matrix of size M×LIg containing the RIRs for time instants

n−Ig+1 to n (taking into account that Hn = 0M×L for n < 0). Problems
of the form (3.5) are related to linear systems and arise in many fields, e.g.,
acoustics [80], astronomy [81], and image processing [82].

3.2 Literature review

Computing the solution for (3.1) can be a challenging task when large fil-
ter lengths Ig are considered. In this case, the computational complexity
required to compute the optimal solution can be very high, as the num-
ber of unknown parameters in the system of linear equations, i.e., LIg, is
large. Many solvers with different computational requirements and accu-
racies have been proposed in the literature to solve (3.1), and there is an
extensive literature related to this topic. The interested reader can find
detailed discussions about this topic in [72, 83, 84, 85]. Usually, the term
single-channel LS is used in the literature to refer to (3.1) when M=L=1,
while multi-channel LS is used when M ≥ 1 and L ≥ 1 [72]. In this work,
we are interested in the multi-channel case, since it is the one required to
compute the filters for a PSZ system using wPM-T. An important consid-
eration is that H and R are toeplitz matrices for the single-channel case,
i.e., each descending diagonal from left to right is formed by a constant
scalar value. For the multi-channel case, H and R are block-toeplitz ma-
trices, in which each descending block-diagonal from left to right is formed
by constant blocks of size M×L and L×L, respectively [80]. Then, the
solvers for single-channel LS can be generalized for multi-channel LS by
replacing the scalar operations by their analogue matrix operations. The
solvers are usually classified in three main categories [84]: 1) classic solvers;
2) fast solvers; and 3) superfast solvers.

3.2.1 Classic solvers

The classic solvers do not consider any particular structure for matrices H
and R to solve (3.1), and require about O

(
(LIg)3

)
operations [84]. Some

classic solvers employ factorizations of either H or R to compute the op-
timal solution gopt. Among others, the Cholesky factorization, the QR
factorization, and the LU factorization (which is the matrix form of Gaus-
sian elimination) can be used to compute the optimal solution [77]. Also,
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other classic solvers are based on computing recursively the optimal solu-
tion, e.g., the Recursive Least Squares (RLS) solver [84]. Let us define:

ĝi = min
g

{
i∑

n=0

∥∥∥
(←−

Hng − dn

)∥∥∥
2

+ β ‖g‖2
}
, (3.7)

i.e., the optimal solution in the LS sense when considering
←−
Hn and dn for

times up to i. The process of computing ĝi from ĝi−1 is commonly called

time-updating [86], since the elements
←−
Hi and di for time i are used to

update ĝi−1 to obtain ĝi. The RLS solver uses time-updating for computing
recursively the optimal solution for (3.1), which is clear from (3.5) that is
given by (3.7) when i = Id−1. An explicit set of equations can be derived
for RLS to recursively compute ĝi from ĝi−1 for i = 0, . . . , Id−1 [83], such
that the optimal solution is obtained for the last recursion as gopt = ĝId−1.
Alternatively, the recursive methods in array form, as the square-root RLS
solver [72], compute the recursions using elementary circular and hyperbolic
rotations, which offer higher robustness to round-off errors in finite-size
arithmetic than the explicit expressions for RLS [72].

3.2.2 Fast solvers

The fast solvers are those that consider the structure of matrices H and
R to solve (3.1) [84]. In particular, H is a block-toeplitz matrix and R
is a symmetric block-toeplitz matrix (which is positive-definite for β > 0).
The fast solvers take advantage of the structure of the matrices to reduce
the computational demands of the classic solvers to about O

(
(LIg)2

)
. Let

us point out that due to the block-toeplitz structure of H, the following
shifting property is fulfilled for (3.6):

←−
Hn =

[
Hn . . .

[←−
Hn−1

]
(:,0:L(Ig−1)−1)

]
, (3.8)

i.e.,
←−
Hn can be seen as a shifted version of

←−
Hn−1, in which only L columns of←−

Hn are not present in
←−
Hn−1. Using (3.8), different variations of RLS can be

derived to reduce the computational demands of each iteration [86]. Among
others, the Fast Transversal Filters (FTF) [87] and the Fast a Posteriori
Error Sequential Technique (FAEST) [88] are variations of the RLS solver
that can efficiently time-update ĝi from ĝi−1, leading to a cost O

(
(LIg)2

)
.

Similarly, an efficient variation of the square-root RLS solver, namely, the

60



3.2. Literature review

Fast Array RLS (FARLS) solver [86], can be used to efficiently compute the
recursions using elementary rotations. Again, the robustness to round-off
errors in finite-size arithmetic of the array form FARLS is higher than that
for FTF and FAEST. However, FTF and FAEST require less computations
per iteration than FARLS [72]. So far, we have discussed fixed-order fast
solvers that use time-updating. A conceptually different approach to solve
(3.1) is the use of order-updating instead of time-updating. Order-updating
is based on updating the optimal filters of a certain order I−1 to compute
the optimal filters of order I [72]. For systems of equations involving sym-
metric block-toeplitz matrices, order-updating can be efficiently performed
using the fast Levinson-Durbin solver [85]. This method starts by com-
puting the optimal filters of order 0, and recursively applies order-updating
until the filters of the desired order I are obtained. Then, since R is a
symmetric block-toeplitz matrix, the optimal solution gopt in (3.1) can be
computed with the Levinson-Durbin solver with O

(
(LIg)2

)
operations by

recursively iterating from order 0 to order Ig−1. Alternatively, the optimal
solution can be obtained with a fast solver based on the Schur algorithm
[89, 90], which exploits the block-toeplitz structure of R to compute its
Cholesky factorization with O

(
(LIg)2

)
operations [91].

3.2.3 Superfast solvers

The superfast solvers, also known as asymptotically fast solvers, are those
requiring less than O

(
(LIg)2

)
operations to solve (3.1) [84]. Commonly,

these solvers require O (LIg logu2 Ig), with u ≥ 1, because are based on the
use of the Fast Fourier Transform (FFT). One of these solvers is the Gen-
eralized Schur algorithm [92], which is a variation of the Schur Algorithm,
whose recursions can be efficiently implemented using the FFT. This al-
gorithm requires O

(
LIg log2

2 Ig

)
operations to solve (3.1). An interesting

idea that can be used to relax the computational demands is to reformu-
late (3.2) by using a circulant extension matrix He of matrix H. Based on
this idea, Schneider and Habets [52] proposed the Iterative DFT-Domain
Inverse (IDI) solver, which is a superfast solver that iteratively finds an ap-
proximate solution for (3.1). Each iteration of the IDI solver only involves
FFTs, so it requires O (PLIg log2 Ig) operations to approximately compute
gopt, where P is the number of iterations. Recently, Poletti and Teal [79]
showed that the inverse matrix required to compute gopt can be expressed
as an infinite series if the circulant extention He is used to reformulate (3.2).
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Then, the authors in [79] proposed a superfast solver to approximately com-
pute gopt by approximating the infinite series by its P -th partial sum. The
most relevant aspect of the proposed solver is that each of the elements of
the P -th order partial sum can be computed efficiently using FFTs. Hence,
the superfast solver proposed in [79] requires O (PLIg log2 Ig) operations
to compute the P -th order approximation of the optimal solution.

An important aspect to point out is that the computational reductions
obtained by the fast and superfast solvers with respect to the classic solvers
are at the cost of higher sensitivity to round-off errors in finite-size arith-
metic [72]. Most of the fast and superfast solvers discussed previously
obtain the exact optimal solution gopt if exact arithmetic is considered.
However, their higher sensitivity to round-off errors can make the algo-
rithms diverge in some practical cases (especially when matrix R is ill-
conditioned). Similarly, the approximate superfast solvers [52, 79] may not
converge to the optimal solution gopt if matrix R is ill-conditioned. This is
an interesting point to study, as the lower robustness of the fast and super-
fast solvers could degrade the performance of wPM-T for PSZ system.

In the remainder of this chapter we study and compare three different
solvers, one from each category previously described, for computing the
optimal solution for (3.1). Particularly, we study the classic solver based
on the Cholesky factorization, the fast FAEST solver, and the superfast
solver proposed by Poletti and Teal [79]. These three solvers are described
next. Later, their accuracy and computational demands are compared and
some relevant conclusions are summarized.

3.3 Cholesky solver

Next, we study how to compute the optimal solution for (3.1) using the
Cholesky factorization. Let us note that R = HTH+β ILIg is a symmetric
positive-definite matrix for β > 0. Then, using the Cholesky factorization
[77], we can express matrix R as

R = LLT (3.9)

where L is a LIg×LIg lower triangular matrix. Using (3.9) we can write
the optimal solution (3.3) as

gopt =
(
LLT

)−1
c =

(
LT
)−1

L−1c. (3.10)
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Making use of the previous expression, and by defining the auxiliary vector
y = L−1c, the optimal solution gopt can be computed by solving the two
following systems of linear equations:

Ly = c, (3.11)

LTgopt = y. (3.12)

The systems in (3.11) and (3.12) can be solved using forward and backward
substitution [77], respectively, because L is a lower triangular matrix.

The steps required to compute the optimal solution with the Cholesky
solver are summarized in Algorithm 3.1, and a detailed count of operations
is included in Appendix A.1.1. There, we can see that the dominant op-
eration is the Cholesky factorization, which requires about O

(
(LIg)3/3

)

operations.

Algorithm 3.1: Compute (3.1) with a Cholesky solver.

Compute R = HTH + βILIg ;
Compute c = HTd;
Compute Cholesky factorization R = LLT ;
Solve the triangular linear system Ly = c;

Solve the triangular linear system LTgopt = y;

3.4 Fast a Posteriori Error Sequential Technique

The Fast a Posteriori Error Sequential Technique (FAEST) is a variation
of RLS that was proposed by Carayannis et al. [78] to efficiently compute
the optimal solution of LS problems of the form (3.5) that fulfil (3.8). In
particular, Carayannis et al. [78] proposed the FAEST solver for the single-
channel case, and later, Kalouptsidis et al. [88] extended the FAEST solver
for the multi-channel case. Similarly to RLS, FAEST is based on time-
updating, i.e., computing ĝi from ĝi−1, to solve (3.1). Then, the optimal
solution gopt is obtained with FAEST after Id iterations, i.e., gopt = ĝId−1 .
The main advantage of FAEST is that it exploits the shifting property (3.8)
to reduce the number of operations required by RLS for time-updating the
filters. The steps required to compute the optimal solution with FAEST
are summarized in Algorithm 3.2, where the following elements are used:
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Algorithm 3.2: Compute (3.1) with a FAEST solver.

Initialize:
G−1 = 0LIg×M Ψf

−1 = Ψb
−1 = 0LIg×L ĝ−1 = 0LIg×1

Γ−1 = IM Ωf
−1 = Ωb

−1 = β IL
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for n = 0, ..., Id − 1 do

Update auxiliary variables:

Ef
n = Hn −

←−
Hn−1Ψ

f
n−1;

Rf
n = Γn−1E

f
n;

Ge
n =

[
0L×M(
Gn−1

]
+

[
IL

−
(
Ψf
n−1

)
]
(
Ωf
n−1

)−1 (
Ef
n

)T
;

Gn = [Ge
n](0:LIg−1,:) + Ψb

n−1 [Ge
n](LIg:L(Ig+1)−1,:);

(Γe
n)
−1

= (Γn−1)
−1

+ Ef
n [Ge

n](0:L−1,:);

(Γn)
−1

= (Γe
n)
−1 −Eb

n [Ge
n](LIg:L(Ig+1)−1,:);

Eb
n = β [Ge

n]
T
(LIg:L(Ig+1)−1,:) Ωb

n−1;

Rb
n = ΓnEb

n;

Ωf
n = Ωf

n−1
+
(
Ef
n

)T
Rf
n;

Ωb
n = Ωb

n−1 +
(
Eb
n

)T
Rb
n;

Ψf
n = Ψf

n−1 + Gn−1R
f
n;

Ψb
n = Ψb

n−1 + GnRb
n;

Update estimate:

en = dn −
←−
Hnĝn−1;

rn = Γnen;

ĝn = ĝn−1 + Gnrn;
end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compute the optimal solution: gopt = ĝId−1
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• Gn is the LIg×M normalized gain for time n.

• Ge
n is the L(Ig+1)×M extended and normalized gain for time n.

• Γn is the M×M conversion factor for time n.

• Γe
n is the M×M extended conversion factor for time n.

• Ψb
n and Ψf

n are the LIg×L backward and forward propagation filters,
respectively, for time n.

• Ωb
n and Ωf

n are L×L auxiliary backward and forward variables, re-
spectively, for time n.

• Eb
n and Ef

n are the M×L a priori backward and forward errors, re-
spectively, for time n.

• Rb
n and Rf

n are the M×L a posteriori backward and forward errors,
respectively, for time n.

• en and rn are the M×1 a priori and a posteriori estimation errors,
respectively, for time n.

Detailed derivations of the expressions for FAEST can be found in [72,
93]. The operation count for multi-channel FAEST, which is included in
Appendix A.1.2, indicates that it requiresO

(
L2Ig

)
operations per iteration.

Then, FAEST requires about O
(
(LIg)2

)
operations to solve (3.1).

3.5 Superfast solver

Next, we review the superfast solver recently proposed by Poletti and Teal
[79] to approximately compute the optimal solution for (3.1) when β > 0.
In their work, Poletti and Teal propose the superfast solver for both the
single-channel and the multi-channel case. This solver relates the optimal
filters obtained with the time and frequency domain formulations of the LS
problem, i.e., the filters obtained with wPM-T and wPM-F, and then, an
approximate solution for (3.1) is obtained using this relation. We think that
this relation is very illustrative, and it can be helpful to understand the per-
formance differences between wPM-T and wPM-F shown in Section 2.3.4.
Then, we do include the derivations required to obtain the expressions for
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the superfast solver, as they are useful to show the relation between the
filters obtained with both algorithms.

First, let us consider the following LS problem:

q̄opt,f = min
q̄f

{∥∥(H̄f q̄f − d̄f
)∥∥2

+ β ‖q̄f‖2
}
, (3.13)

where H̄f and d̄f are defined in (2.15) and (2.22), respectively. The LS
problem in (3.13) is based on using the frequency-domain formulation to
compute the optimal frequency responses of the filters for each frequency
individually. In particular, we can see that (3.13) leads to the optimal
filter coefficients at frequency f for wPM-F, i.e., (2.27), if we consider that
β = βf and that no weighting matrix is used. The optimal solution for
(3.13) can be written as

q̄opt,f =
(
H̄H
f H̄f + β IL

)−1
H̄H
f d̄f . (3.14)

We studied in Section 2.2.3 that in order to compute the time-domain filters
of length Ig from the optimal frequency responses obtained with (3.14), the
following steps must be carried out:

1. Compute the optimal frequency responses q̄opt,f for a set of Id equi-
spaced control frequencies. Then, let us define

q̄opt =
[
q̄Topt,f0

. . . q̄Topt,fId-1

]T
, (3.15)

which is a vector of size LId×1 containing q̄opt,f for a set of Id control
frequencies fk, being fk the frequency of the k-th frequency bin for a
Id-point DFT.

2. Obtain the Id-length impulse responses by applying an Id-point IDFT
to the optimal frequency responses in q̄opt. Thus, let us define a
LId×LId matrix FL as

FL =




Φ
(0,0)
Id

IL . . . Φ
(0,Id−1)
Id

IL
...

. . .
...

Φ
(Id−1,0)
Id

IL . . . Φ
(Id−1,Id−1)
Id

IL


 , (3.16)

where Φ
(k,n)
Id

= 1√
Id
e
−j 2πkn

Id is the coefficient for the n-th time index

and the k-th frequency bin of a Id-point DFT. Then, FL and FH
L can
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be used to compute the Id-point DFTs and IDFTs, respectively, of L
signals that are interleaved in a column vector of size LId×1.

3. Truncate the impulse responses of length Id to a length Ig to obtain
the filters. Consequently, let us define

T =
[
ILIg 0LIg×L(Id−Ig)

]
, (3.17)

which is a LIg×LId matrix that can be used to truncate a set of L
impulse responses of length Id to a length Ig.

Hence, we can define the LIg×1 vector gfd containing the estimated filters
using the previous steps as

gfd = TFH
L q̄opt. (3.18)

We showed in Section 2.3.4 that the performance of gfd is degraded with
respect to gopt, especially for short filters or short modelling delays. This
is caused by the truncation of the impulse responses obtained from the
optimal frequency responses. Poletti and Teal [79] showed that the optimal
solution gopt for (3.1) can be related to gfd, and proposed the superfast
solver to approximate gopt from gfd, i.e., to approximate the filters for
wPM-T from the filters for wPM-F. Next, we review this solver.

Let us define a MId×LId block-diagonal matrix H̄ containing the room
frequency responses for Id control frequencies as

H̄ = diag
{

H̄f0 . . . H̄fId−1

}
. (3.19)

Now, let us define a MId×LId matrix He as

He = FH
M H̄ FL, (3.20)

which using (3.16) and (3.19) can be alternatively defined as

He =




H0 0M×L . . . 0M×L HIh-1 . . . H1

...

HIh−1

0M×L

...

0M×L

Toeplitz




. (3.21)
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It is easy to see that He is a circulant extension of H in (2.11), and then,
it can be partitioned as

He =
[
H E

]
, (3.22)

where E is a matrix of size MId×L (Id−Ig). Now, we can express

H = HeT
T , (3.23)

where T is defined in (3.17). Furthermore, using (3.20) and (3.23) we can
express H as

H = FH
M H̄ FLTT . (3.24)

A key aspect for the derivation of the superfast solver is that the optimal
solution for (3.1) can be computed as

gopt =
(
HTH + β ILIg

)−1
HTd, (3.25)

or alternatively as

gopt = HT
(
HHT + β IMId

)−1
d, (3.26)

for any β > 0, since (3.25) and (3.26) are equivalent for β > 0 [79]. Then,
using (3.24) and (3.26), we can write the optimal solution for (3.1) as

gopt = TFH
L H̄H

(
H̄FLTTTFH

L H̄H + β IMId

)−1
FMd, (3.27)

where we took into account that F−1
M = FH

M and HT = HH , since FM is a
unitary matrix and H is a real matrix. The term TTT can be expressed as

TTT = ILId −Ψ, (3.28)

in which Ψ is a LId×LId matrix that is defined as

Ψ =

[
0LIg 0LIg×L(Id−Ig)

0L(Id−Ig)×LIg IL(Id−Ig)

]
. (3.29)

Then, using (3.28) we can write (3.27) as

gopt = TFH
L H̄H

(
H̄H̄H−H̄FLΨFH

L H̄H+β IMId

)−1
FMd. (3.30)
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Now, let us define

A = H̄H̄H + β IMId , (3.31)

B = FLΨ FH
L , (3.32)

U = H̄, (3.33)

V = H̄H , (3.34)

so we can express (3.30) as

gopt = TFH
L V (A−UBV)−1 FMd. (3.35)

We can use Woodbury matrix identity [77] to write (3.35) as

gopt = TFH
L V

(
A−1+A−1U

(
ILId−BVA−1U

)−1
BVA−1

)
FMd. (3.36)

Moreover, let us define

H̄† = VA−1, (3.37)

which from (3.31) and (3.34) can be re-written as

H̄† = H̄H
(
H̄H̄H + β IMId

)−1
, (3.38)

i.e., H̄† is the LId×MId right pseudoinverse matrix of H̄. Since H̄ is a
block-diagonal matrix, H̄† is also a block-diagonal matrix defined as

H̄† = diag
{

H̄†f0 , . . . , H̄
†
fId−1

}
, (3.39)

where H̄†f is the L×M right pseudoinverse of H̄f , i.e.,

H̄†f = H̄H
f

(
H̄fH̄

H
f + β IM

)−1
. (3.40)

The pseudoinverse H̄†f can be alternatively written for β > 0 [79] as

H̄†f =
(
H̄H
f H̄f + β IL

)−1
H̄H
f . (3.41)

Next, using (3.33) and (3.37), we can write (3.36) as

gopt = TFH
L

(
I + H̄†H̄

(
ILId −BH̄†H̄

)−1
B

)
H̄†FMd. (3.42)
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Moreover, we can define a matrix Λ̄ of size LId×LId as

Λ̄ = H̄†H̄ = diag
{

Λ̄f0 , . . . , Λ̄fId−1

}
, (3.43)

where Λ̄f = H̄†fH̄f is a matrix of size L×L. Then, we can write (3.42) as

gopt = TFH
L

(
I + Λ̄

(
ILId −BΛ̄

)−1
B
)

H̄†FMd. (3.44)

Now, from (2.30) and (3.16), we can express FMd as

FMd =
[
d̄Tf0 . . . d̄TfId−1

]T
, (3.45)

where d̄f is defined in (2.22). Then, using (3.39) and (3.45), we can write

H̄†FMd =

[(
H̄†f0d̄f0

)T
. . .

(
H̄†fId−1

d̄fId−1

)T]T
, (3.46)

and taking into account (3.14), (3.15), and (3.41), we can express

q̄opt = H̄†FMd, (3.47)

which holds for β > 0. Next, using (3.47), we can write (3.44) as

gopt = TFH
L

(
I + Λ̄

(
ILId −BΛ̄

)−1
B
)

q̄opt, (3.48)

which using (3.18) can be expressed as

gopt = gfd + TFH
L Λ̄

(
ILId −BΛ̄

)−1
B q̄opt. (3.49)

We can see in (3.49) that the optimal solution gopt for the LS problem
formulated in time-domain can be expressed as the sum of the truncated
filters gfd and a correction term. The correction term compensates for the
degradation that appears for gfd due to the truncation of the filters. Com-
puting the correction term in (3.49) requires the inversion of a matrix of
size LId×LId, which is even more computationally demanding than com-
puting the optimal solution with (3.2). However, the inverse in (3.49) can
be defined using Neumann series [79, 94] as

(
ILId −BΛ̄

)−1
=
∞∑

p=0

(
BΛ̄

)p
. (3.50)
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It is proven in [79] that the summation in the previous expression converges,
since all the eigenvalues of matrix BΛ̄ are less than one. Also, the authors
in [79] showed that the convergence rate for the summation is governed by
the regularization parameter β, and pointed out that higher regularizations
require lower number of iterations to converge. Now, using (3.50), we can
write the optimal solution (3.49) as

gopt = gfd + TFH
L Λ̄




∞∑

p=0

(
BΛ̄

)p


B q̄opt. (3.51)

Next, let us define

r̄p =

{
B q̄opt p = 0

BΛ̄r̄p−1 p > 0
, (3.52)

which is a LId×1 vector that can be computed recursively. Then, we can
write the optimal solution (3.51) as

gopt = gfd + TFH
L Λ̄



∞∑

p=0

r̄p


 . (3.53)

The previous expression to compute the optimal solution is not feasible, as
it includes an infinite series. However, an approximation of (3.53) can be
obtained by replacing the infinite series by its P -th partial sum. Hence,
the P -th order approximation of (3.53) can be written as

gap,P = gfd + TFH
L Λ̄




P∑

p=0

r̄p


 . (3.54)

It is shown in [79] that approximation (3.54) tends monotonically with P
to the optimal exact solution (3.53). Then, the order of the approximation
(3.54) is directly related to the accuracy of the estimation. For low orders
P , the approximation (3.54) is closer to the truncated filters gfd obtained
with the frequency-domain LS problem than to the optimal solution gopt.
For high orders P , the correction term in (3.54) can compensate to a great
degree the degradations that appear for gfd due to truncation, and then, the
approximation is closer to the optimal solution gopt. The main advantage of
(3.54) is that it can be computed very efficiently, because pre-multiplication

71



Chapter 3. Least Squares solvers for PSZ systems

by B = FLΨ FH
L is equivalent to transform L frequency responses to the

time-domain, set to zero their first Ig samples, and transform back to the
frequency domain. This process can be performed with DFTs and IDFTs of
size Id, consequently, pre-multiplication by B can be efficiently computed
using the FFT algorithm.

The steps required to approximate (3.1) with the superfast solver are
summarized in Algorithm 3.3, and a detailed operation count is included in
Appendix A.1.3. Hence, the superfast solver requires aboutO (PLIg log2 Ig)
operations for computing the P -th order approximation of (3.1).

Algorithm 3.3: Compute the P -th order approximation of (3.1)
with the superfast solver [79].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compute the frequency-domain solution:

for k = 0, . . . , Id−1 do

H̄†fk =
(
H̄H
fk

H̄fk+β IL

)−1

H̄H
fk

;

Λ̄fk = H̄†fkH̄fk ;

q̄opt,fk = H̄†fk d̄fk ;

end
Form q̄opt using q̄opt,fk ;
gfd = TFHL q̄opt;
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compute the correction terms:

Form Λ̄ using Λ̄fk ;
for p = 0, . . . , P do

if p > 0 then
r̄p = BΛ̄r̄p−1;

else
r̄p = B q̄opt;

end

end
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Compute the time-domain approximation:

gap,P = gfd + TFHL Λ̄
(∑P

p=0 r̄p

)
;
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3.6 Performance evaluation

Next, we evaluate the performance of the Cholesky, the FAEST, and the
superfast [79] solvers. First, we compare the accuracy of the different solvers
to compute the optimal filters for wPM-T. Later, we study the influence
of the different solvers on the performance of a PSZ system. Finally, we
compare the computational complexity of the three solvers.

3.6.1 Setup and methodology

Setup

The setup described in Section 2.3.1 is used for the evaluations of this
chapter, i.e., a linear array of 8 two-way loudspeakers and single bright and
dark zones in a office-like room with reverberation time T60 = 500 ms. We
consider that the system is operating at a sampling frequency of 6300 Hz.

Methodology for computing the filters

The filters for wPM-T are computed by solving (3.1) with the Cholesky,
the FAEST, and the superfast solvers, which are detailed in Algorithms
3.1 to 3.3, respectively. We select the target impulse response in the m-th
control point for wPM-T as

dm (n) =

{
hmlr(n− τd) m ∈ B

0 m ∈ D
, (3.55)

where lr = 3 is the reference loudspeaker, and τd ∈ N is a modelling delay
whose value is indicated in each case. The regularization factor is selected
as

β = β0uavg, (3.56)

where uavg is the mean of the eigenvalues of matrix HTH, and β0 is the
regularization factor relative to uavg. Different values β0 are evaluated.

Methodology for evaluating the filters

First, the accuracy of the solvers for computing the optimal filters will be
studied. The Cholesky solver has shown the highest accuracy to solve (3.1),
whereas the other two solvers have shown higher sensitivity to factors as the
regularization level. Then, we will focus on evaluating the accuracy of the
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FAEST and the superfast solver. The filters obtained with the Cholesky
solver, which we denote as gref, are taken as a reference to evaluate the
accuracy. The metric used to evaluate the accuracy is the Normalized Mean
Squared Error (NMSE) of the filters computed with either the FAEST or
the superfast solver with respect to the reference filters, which is given by

ε =
‖g − gref‖2

‖gref‖2
. (3.57)

To evaluate how the different solvers influence the performance of a PSZ
system, the metrics described in Section 2.2.5 are computed for a set of
16384 equispaced frequencies with a resolution of 0.3845 Hz. The target
response for the m-th validation point is selected as

dv,m (n) =

{
hv,mlr(n− τd) m ∈ B

0 m ∈ D
. (3.58)

where hv,mlr is the RIR from the lr-th loudspeaker to the m-th validation
point.

3.6.2 Accuracy of solvers

First, we evaluate the accuracy of the FAEST and superfast solvers de-
scribed in Sections 3.4 and 3.5, respectively. For the evaluations, let us
consider four sets of filter lengths and modelling delays: 1) Ig = 512 and
τd = 64; 2) Ig = 512 and τd = 256; 3) Ig = 2048 and τd = 64; and
4) Ig = 2048 and τd = 1024.

FAEST

The NMSE with respect to the reference filters for FAEST is shown in
Fig. 3.1 as a function of the regularization factor. We include results for
the four combinations of filter lengths and modelling delays previously dis-
cussed. In general, we can see that the NMSE is very similar and follows
similar trends for the different filter lengths and delays. It is interesting to
note that the higher the regularization factor, the lower the NMSE. The mo-
tivation is that higher regularization factors make the solver less sensitive
to the round-off errors produced by the finite-size arithmetic. In particu-
lar, the NMSE is below −30 dB for β0 ≥ 10−13 and it is about −280 dB for
β0 = 10−1, which indicates that the solver presents very good accuracy be-
cause this error is very close to the IEEE 754 64-bit floating-point precision
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[95]. For β0 < 10−13, FAEST diverges due to the round-off errors and it can
not obtain a suitable set of filters for wPM-T. Then, FAEST seems a good
option for computing the optimal filters when extremely low regularization
factors are not needed.

Figure 3.1: NMSE for the filters computed with FAEST with respect
to the reference filters as a function of the regularization factor. Four
combinations of filter lengths Ig and modelling delays τd are considered.
The grey area shows the regularization factors for which FAEST diverges.

Superfast

The NMSE with respect to the reference filters for the superfast solver
is shown in Fig. 3.2 as a function of the approximation order P and the
regularization factor β0. The NMSE for the four considered combinations
of filter lengths and modelling delays is shown in Fig. 3.2a to Fig. 3.2d.
Approximation orders P in the range 1 to 105, and regularization factors
β0 in the range 10−8 to 10−1 are evaluated. The results in Fig. 3.2 show
similar trends for the different filter lengths and modelling delays that are
considered. Overall, the results indicate that increasing the regularization
factor reduces the NMSE, i.e., improves the accuracy of the solver. This is
because the initial estimate gfd for the superfast solver is more similar to
gopt for high regularizations levels (as shown in Section 2.3.4), and then,
lower correction levels are required to obtain an accurate approximation.
Also, the results show that increasing the approximation order monotoni-
cally decreases the NMSE, with a decaying rate that is directly related to
the regularization factor. In particular, the higher the regularization factor,
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(a) Ig = 512, τd = 64 (b) Ig = 512, τd = 256

(c) Ig = 2048, τd = 64 (d) Ig = 2048, τd = 1024

Figure 3.2: NMSE for the filters computed with the superfast solver [79]
with respect to the reference filters as a function of the approximation order
and the regularization factor. Four combinations of filter lengths Ig and
modelling delays τd are considered.

the higher the decaying rate. This is motivated by the fact that the infinite
series in (3.53) converges faster for high regularization factors (as shown in
[79]). Then, low approximation orders can accurately estimate the optimal
solution when high regularizations factors are considered. For example, the
NMSE is below −50 dB for β0 = 10−1 and P = 300, and for β0 = 10−2 and
P = 4000. It is relevant that the decaying rate for the NMSE is very low
for β0 ≤ 10−5, leading to values that are generally above −20 dB for all the
studied approximation orders. Then, we can conclude that the superfast
solver is a good option to compute the filters when medium and high regu-
larizations factors are considered, however, it requires large approximation
orders to accurately compute the optimal filters for low regularization lev-
els. Finally, we can note from Fig. 3.1 and Fig. 3.2 that FAEST obtains
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notably higher accuracy than the superfast solver, which follows from the
fact that FAEST is an exact solver while the superfast solver is an approx-
imate solver.

3.6.3 Performance of solvers for PSZ

Next, we evaluate how the accuracy of the solvers influences the perfor-
mance of a PSZ system. The four combinations of filter lengths and mod-
elling delays considered in the previous section are evaluated in this sec-
tion. We present in Fig. 3.3 the average acoustic contrast and MSE in the
band 125-250 Hz for the Cholesky, the FAEST, and the superfast solvers.
We consider regularization factors β0 = 10−1, β0 = 10−3, and β0 = 10−5, in
Fig. 3.3a-b, 3.3c-d, and 3.3e-f, respectively. In Fig. 3.3, the x-axis represents
the approximation order for the superfast solver, which has no influence on
the Cholesky and FAEST solvers. We focus on the band 125-250 Hz be-
cause it is the range where the PSZ system is more sensitive to the design
of the filters (as shown in Section 2.3.4), so we are especially interested on
studying the performance of the solvers for wPM-T in this band.

First, let us note that in Fig. 3.3 the Cholesky and FAEST solvers lead
to the same acoustic contrast and MSE in all cases. Also, it is interesting
to notice that increasing the regularization factor β0 from 10−5 to 10−3

improves the performance, but increasing it from 10−3 to 10−1 degrades the
performance. Then, the PSZ system does not benefit from a regularization
factor significantly lower or higher than β0 = 10−3. These results agree with
those presented in Section 2.3.3, which revealed that the regularization
factor for practical PSZ systems must be selected high enough to make
the filters robust to perturbations, but taking into account that too high
regularization factors also degrade the performance. In Section 3.6.2, we
determined that the FAEST solver diverges for β0 < 10−13, so this solver
is not a good option for very low regularizations. However, in practice the
filters must not be computed with such low regularizations, as they lead to
poor robustness to perturbations. Then, the FAEST solver seems a good
option for computing the wPM-T filters for practical PSZ systems, in which
extremely low regularization factors are not used.

Regarding the superfast solver, we can see in Fig. 3.3 that its perfor-
mance is directly related to the approximation order. In particular, increas-
ing the approximation order approaches its acoustic contrast and MSE to
those for the Cholesky solver. Also, the results show that increasing the
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(a) AC (β0 = 10−1) (b) MSE (β0 = 10−1)

(c) AC (β0 = 10−3) (d) MSE (β0 = 10−3)

(e) AC (β0 = 10−5) (f) MSE (β0 = 10−5)

Figure 3.3: Average acoustic contrast (a, c, e), and MSE (b, d, f) over
125-250 Hz for wPM-T using the Cholesky, the FAEST, and the superfast
[79] solvers. The x-axis represents the approximation order for the superfast
solver. Three different regularization factors β0 and four combinations of
filter lengths Ig and modelling delays τd are considered.
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regularization level reduces the order required by the superfast solver to
converge to the Cholesky solver, which agrees with the accuracy results
presented in Section 3.6.2. Moreover, it is interesting to note that lower
approximation orders are required for Ig = 2048 and τd = 1024 than for the
other configurations. This is because wPM-T and wPM-F offer very sim-
ilar performance when long filters and appropriated modelling delays are
considered, so in this case the approximation obtained with the superfast
solver is accurate even for low orders. However, the use of wPM-T is not
essential in this case, since very similar performance can be achieved with
wPM-F (see Section 2.3.4). Then, we are more interested in the perfor-
mance of the superfast solver for the other configurations involving either
short filters or short modelling delays, i.e., for the cases in which wPM-T
clearly outperforms wPM-F. The results for these configurations show that
the convergence is achieved at about P = 100 for β0 = 10−1, and at about
P = 2000 for β0 = 10−3. For β0 = 10−5, the superfast solver requires very
high orders of about P = 105 to converge. Then, it is clear that good per-
formance is achieved with reasonable approximation orders for moderately
high regularization factors, but very high orders are required for low regu-
larizations levels. However, we discussed in Section 3.6.2 that the filters
for practical PSZ systems must be computed with moderately high regu-
larization factors to assure the robustness of the system. Particularly, the
results in Section 3.6.2 indicated that β0 = 10−3 is an appropriated choice
for the considered PSZ system. Hence, an approximation order P of about
2000 for the superfast solver is a reasonable selection for the considered
PSZ system. Then, the superfast solver can be a good option to compute
the filters in practical systems because it can obtain approximately equal
performance than the Cholesky solver with reasonable approximation or-
ders. It is important to highlight that the required approximation order is
scenario dependent.

3.6.4 Computational complexity

Finally, we evaluate the computational complexity of the studied solvers to
compute the wPM-T filters for a system with 8 loudspeakers. We show in
Fig. 3.4a and 3.4b the number of FLOPs and the computation time, respec-
tively, required by each solver as a function of the filter length. For the
superfast solver, we consider three approximation orders, i.e., P = 2000,
P = 4000, and P = 8000. For comparison purposes, the computational
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(a) FLOPs (b) Computation time

Figure 3.4: Number of FLOPs and computation time in (a) and (b),
respectively, required by the Cholesky, the FAEST, and the superfast [79]
solvers to compute the optimal filters for wPM-T. For comparison purposes,
we also include the computational complexity for wPM-F.

efforts required by wPM-F are also included. The operation count for the
different solvers can be found in Appendix A.1. To measure the computa-
tion time, the solvers were implemented with C language, as described in
Appendix A.1, and ran from MATLAB R2018a using mex functions [96]
on an Intel Core i7-7700 processor at 3.60 GHz. The measurement was
computed as the mean over 50 executions. First, it is relevant to note
that wPM-F is significantly less computationally demanding than wPM-T
(with any of the considered solvers). For short filters, the Cholesky solver
requires similar number of FLOPs to the other solvers, but for longer fil-
ters it requires significanly more FLOPs. FAEST can efficiently reduce the
computational demands of the Cholesky solver for filters longer than about
Ig = 750. For example, for Ig = 2500, FAEST requires about 10 times
less FLOPs than the Cholesky solver. Regarding the superfast solver, the
results reveal that it requires lower number of FLOPs than the Cholesky
and the FAEST solvers for all the considered approximation orders and
filter lengths. In particular, the superfast solver with P = 2000 requires
about 270 and 27 times less FLOPs than the Cholesky and the FAEST
solvers, respectively, for Ig = 2500. The computation time measurements
in Fig. 3.4b show slightly different trends to those in Fig. 3.4a, especially
for the superfast solver. Particularly, the results indicate that the compu-
tational improvements offered by the superfast solver with respect to the
other solvers appear for larger filter lengths than those expected from the

80



3.7. Summary

FLOPs estimation. This may be produced because other computational
aspects than the number of FLOPs have a significant influence on the run-
ning time of the superfast solver, e.g., memory access and displacements. In
any case, for the considered approximation orders, the superfast solver [79]
offers important computational reductions when long filters are considered.
Then, we can conclude that the superfast solver, and to a lower extent the
FAEST solver, can lighten the computational demands required to compute
the filters for wPM-T, especially when long filters are considered.

3.7 Summary

In this chapter, we discussed and evaluated different solvers for computing
the optimal filters for wPM-T. First, we studied the Least Squares problem
related to wPM-T, and reviewed the state-of-the-art solvers for this kind
of problem. Next, we studied how to compute the optimal solution with
three different solvers, which were suitably selected as good representatives
of the main families of solvers: 1) a classic solver based on the Cholesky
factorization; 2) the Fast a Posteriori Error Sequential Technique (FAEST);
and 3) the superfast solver proposed by Poletti and Teal [79]. Later, the
accuracy of the solvers, their influence on the performance of a PSZ sys-
tem, and their computational demands were experimentally evaluated. The
Cholesky solver presents the highest accuracy and the lowest sensitivity to
aspects as the regularization factor or the round-off errors that appear in
finite-size arithmetic. However, it requires very high computational de-
mands to obtain the optimal solution. The presented results show that
FAEST can reduce to a great extent the computational requirements of the
Cholesky solver when long filters are considered. Also, FAEST achieves
great accuracy and leads to the same performance as the Cholesky solver
if reasonable regularization factors for a practical PSZ system are consid-
ered. Still, FAEST diverges when extremely low regularization factors are
used due to the round-off errors. For the superfast solver [79], which is an
approximate solver, the approximation order required to get similar perfor-
mance to the Cholesky solver decreases by increasing the regularization fac-
tor. The evaluation results show that the superfast solver can obtain good
performance with reasonable approximation orders for the regularization
factors typically considered for practical PSZ systems. Still, it is important
to note that the required approximation order is scenario-specific, so it has
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to be determined in each case. The presented results also indicate that
the superfast solver can notably reduce the computational requirements of
the Cholesky and FAEST solvers when reasonable approximation orders
and long filters are considered. Then, the superfast solver seems a good
candidate to compute the wPM-T filters for practical PSZ systems in re-
verberant environments, since it can obtain good accuracy and affordable
computational demands. In any case, we also showed that the computa-
tional complexity for wPM-T with any of the considered solvers is notably
higher than for wPM-F.
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An important aspect of PSZ systems in real-world scenarios is that long
broadband filters must be used due to the room reverberation [97]. This can
be a serious limitation when real-time filtering is needed but the available
computational capabilities in the system are limited [98]. Also, some PSZ
systems present strong latency requirements, e.g., systems used together
with other audiovisual content or systems used for bidirectional telecom-
munication applications. We showed in Chapter 2 that wPM-T is better
suited than wPM-F for these kind of systems, as it leads to significantly
better performance for short system delays (especially at low frequencies).
However, wPM-T requires a high computational effort for computing the
filters of the system, as shown in Chapter 3. This is not a major limi-
tation for static PSZ systems, where the filters can be computed offline.
Nevertheless, for dynamic PSZ systems, the filters must be recalculated
regularly to adapt to changes in the position of the users or in the envi-
ronment, among others [53]. In this case, the high computational demands
of wPM-T can be an important limitation. Then, it seems that neither
wPM-F nor wPM-T are good approaches for dynamic PSZ systems, as one
requires low computational demands for computing the filters but presents
bad performance for short system delays, and the other presents good per-
formance for short system delays but at the cost of high computational
demands. Consequently, PSZ systems would benefit from an alternative
approach that offers good performance for short system delays and that
requires low computational demands.
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The computational demands of a PSZ system can be reduced using fil-
ter bank structures [99], since the signals can be processed independently
in the subbands of the filter bank at a lower sampling rate. Moreover,
PSZ systems may benefit from applying different signal processing tech-
niques in each subband of the filter bank, because the signals and impulse
responses handled by the system do not have the same properties across
all the spectrum. So and Choi [47] proposed using multi-stage Quadrature
Mirror Filters (QMF) for PSZ systems. The proposed approach can ef-
fectively reduce the computational requirements of the system, however, it
presents bad performance in the edges of the subbands. This is caused by
the high aliasing levels of the QMF structure, which is a critically-sampled
filter bank. In this chapter, we propose using a Generalized Discrete Fourier
Transform (GDFT) filter bank [100] together with a set of subband filters
to filter the input signals of the PSZ system. Previous studies showed the
effectiveness of oversampled GDFT filter banks to perform acoustic echo
cancellation [100] and room equalization [101], among others. In addition,
we propose a subband formulation for PSZ that makes use of the subband
decomposition algorithm presented in [102]. The proposed formulation has
the main advantage that allows us to formulate an independent optimiza-
tion for each subband of the filter bank. To compute the subband filters,
we propose the weighted Pressure Matching with Subband-Domain Formu-
lation (wPM-S) algorithm, which applies a wPM criterion in time-domain
in each subband.

In this chapter, we first review the basic filter bank theory that is of
concern for this work. Then, the decomposition of a signal in its subband
components proposed in [102] is studied. In order to reduce the computa-
tional demands of this method, alternative expressions for computing the
subband components are presented. Afterwards, we propose a subband for-
mulation for PSZ systems that employs a GDFT filter bank, which is later
used to propose the wPM-S algorithm. The proposed algorithm is experi-
mentally evaluated in a real room with T60 = 500 ms. First, the influence of
the configuration of the filter bank in the performance of the proposed algo-
rithm is studied. Also, the proposed algorithm is compared with wPM-T,
wPM-F, and with the algorithm proposed in [47]. Afterwards, the versatil-
ity of the proposed algorithm to select different filter lengths, loudspeaker
configurations, and LS solvers in each subband is evaluated. Finally, the
computational complexity of the algorithms is compared.
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4.1 Filter bank theory

A common phenomenon in many signal processing systems is that the sig-
nals handled by the system do not have the same properties across all the
spectrum. Then, it is convenient to apply different signal processing tech-
niques to different portions of the spectrum. This can be achieved with the
use of filter banks. Filter banks are structures which split the input signal
into a set of subbands signals, such that each subband can be indepen-
dently processed, and then, the processed signals are combined to obtain
the output of the system [103]. The subband signals can be decimated be-
fore applying the specific subband processing because each subband signal
only occupies a portion of the spectrum of the broadband signal [104]. This
is one of the main advantages of filter banks, because the subband signals
can be processed at a lower sampling rate, leading to computational and
memory savings. Once the subband signals are processed, they must be
interpolated to preserve the sampling rate of the input signal. Filter banks
have been extensively used in a wide range of applications, e.g., audio cod-
ing [105, 106], image processing [107, 108], pattern recognition [109, 110],
and digital communications [111, 112]. In the context of audio signal pro-
cessing, the computational savings offered by filter banks are of special
interest in applications where the input signal needs to be processed using
high order filters. In that case, the high order filters can be replaced by
a set of shorter subband filters in the subbands of the filter bank. This
approach is usually called subband filtering, and it has been used in appli-
cations such as room equalization [101, 113], echo cancellation [114, 115],
and active noise control [116, 117], among others. In this work, we study
the use of subband filtering for PSZ systems. Systems using filter banks
are usually called multirate systems, as they are formed by components
operating at different sampling rates. Extensive works regarding the main
fundamentals of filter bank theory and multirate signal processing can be
found in [99, 118, 119, 120]. In this section, we briefly review the basic
properties of filter banks that are relevant to this work.

4.1.1 Basic multirate operations

The basic building blocks used in multirate systems are the decimator and
the interpolator, as they can alter the sampling rate of the signals [99]. We
use (·)↓R and (·)↑R to denote decimation and interpolation, respectively.
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↓Rx(n) y(n)

(a) Decimator

↑Rx(n) y(n)

(b) Interpolator

Figure 4.1: Block diagram of a decimator and an interpolator in (a) and
(b), respectively.

The decimator, shown in Fig. 4.1a, reduces the sampling rate of an input
signal by a factor R ∈ N. Then, it only retains in the output signal y(n)
every R-th sample of the input signal x(n), i.e.,

y(n) = (x(n))↓R = x(nR). (4.1)

This operation can be alternatively expressed in the z-domain as [99]

Y (z) =
1

R

R−1∑

i=0

X(z1/RΦi
R), (4.2)

where z= ejω for 0≤ω< 2π, Φi
R = e−j

2πi
R , and X(z) and Y (z) are the

z-transforms of x(n) and y(n), respectively. In (4.2), X(z1/R) represents
the spectrum of X(z) stretched by a factor R. Then, the spectrum of the
decimated signal Y (z) is formed by superimposing R copies of X(z1/R),
each one shifted by multiples of 2π. If the input signal is not properly
band limited, spectral overlapping appears between the different copies of
the input signal. This phenomenon is commonly known as aliasing [119],
which produces an undesired and uncontrolled modification of the original
spectrum. This effect is illustrated in Fig. 4.2, where the left and right
columns present examples of decimation without and with aliasing, respec-
tively. To avoid aliasing, filters are generally used prior to decimation to
make sure that the input signal is band limited. In the following sections,
we will show that the aliasing produced by the decimator is a key aspect
for the design of filter banks.

The interpolator, shown in Fig. 4.1b, increases the sampling rate of an
input signal by a factor R ∈ N. Thus, it inserts R − 1 zeros between
consecutive samples of the input signal, i.e.,

y(n) = (x(n))↑R =

{
x
(
n
R

)
if n = rR

0 otherwise
, r ∈ Z, (4.3)
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Example without aliasing

Spectrum of the input

Stretched and shifted images of the
original spectrum

Spectrum of the decimated signal

Example with aliasing

Spectrum of the input

Stretched and shifted images of the
original spectrum

Spectrum of the decimated signal

Figure 4.2: Schematic to illustrate the effect of the decimation operation
in the spectrum of an input signal. The cases without and with aliasing are
illustrated in the left and right columns, respectively. A decimation factor
R = 2 is considered.

which in the z-domain can be expressed as [99]

Y (z) = X(zR). (4.4)

In the previous expression, X(zR) represents the spectrum of X(z) com-
pressed by a factor R. Due to the compression of the frequency axis and
to the periodicity of the spectrum, undesired copies of X(z) can appear in
the spectrum of Y (z) [119]. These undesired copies can be suppressed by
filtering the signal at the output of the interpolator.

The decimator (4.1) and the interpolator (4.3) are linear time-varying
systems. However, a system formed by a decimator followed by an inter-
polator, both with the same sampling factor R, is a linear R-periodically
time-varying system [118].
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4.1.2 Filter bank analysis

We show in Fig. 4.3 the basic block diagram of a filter bank with K ∈ N
subbands and resampling factor R ∈ N [99]. The filter bank structure is
formed by the analysis and synthesis filter banks, and between them, the
subband processing blocks are placed. In the analysis filter bank, a band-
pass filter uk followed by a decimator is used in each subband to compute
the subband signals x̃k. The band-pass filter assures that the input signal
x is properly band limited and the decimator reduces the sampling rate of
the subband signals. The signals at the output of the analysis filter bank
are processed using the subband filters ck, and then, are fed to the synthesis
filter bank. In the synthesis filter bank, an interpolator followed by a band-
pass filter vk is used in each subband, and then, the outputs of all subbands
are combined to obtain the output signal y. The interpolator increases the
sampling rate of the subband signals to match the original sampling rate,
and the band-pass filter removes any undesired copies of the spectrum of
the subband signals. Usually, the band-pass filters in the analysis and
synthesis filter banks are called analysis and synthesis filters, respectively.
The analysis and synthesis filters can be either FIR or IIR filters, in this
work we focus in the FIR case. Usually, the signal processing required by
the analysis and synthesis filter banks can be efficiently implemented using
polyphase networks [121].

u0

uK-1

↓R

↓R

↑R

↑R

v0

vK-1

+x(n) y(n)

Analysis Synthesis︷ ︸︸ ︷

c0

cK-1

Subband processing

︸ ︷︷ ︸

x̃0(n)

x̃K-1(n)

ỹ0(n)

ỹK-1(n)

︷ ︸︸ ︷

Figure 4.3: Block diagram of a filter bank with subband processing.

Now, we derive the expressions of the signals in the filter bank shown
in Fig. 4.3. First, let us denote x as the input signal to the filter bank, and
X(z) as its z-transform. Also, let us denote x̃k as the k-th subband signal
in Fig. 4.3, i.e., the signal at the output of the k-th subband of the analysis
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filter bank. Using (4.2), we can write the z-transform of x̃k as

X̃k(z) =
1

R

R−1∑

i=0

Uk(z
1/RΦi

R)X(z1/RΦi
R), (4.5)

where Uk is the transfer function of the analysis filter in the k-th subband.
Moreover, let use define the signal after the subband processing stage in
the k-th subband as ỹk(n) = x̃k(n)∗ck(n), where ck is the impulse response
of the subband processing block for the k-th subband. Now, if we denote
the transfer function of ck as Ck(z), we can define the z-transform of ỹk as
Ỹk(z) = X̃k(z)Ck(z), which using (4.5) can be written as

Ỹk(z) =
1

R

R−1∑

i=0

Uk(z
1/RΦi

R)X(z1/RΦi
R)Ck(z). (4.6)

In addition, the signal at the output of the filter bank is denoted as y and
its z-transform can be defined as

Y (z) =
K−1∑

k=0

Ỹk(z
R)Vk(z), (4.7)

which using (4.6) can be re-written as

Y (z) =
1

R

R−1∑

i=0

K−1∑

k=0

Uk(zΦ
i
R)Ck(z

R)Vk(z)X(zΦi
R). (4.8)

Next, we analyse different properties of filter banks that are related to the
previous expressions.

Aliasing in the subbands

We previously defined the subband signal in the k-th subband in (4.5),
where Uk(z)X(z) is the signal at the output of the analysis filter for the
k-th subband and before the decimator. As we discussed in Section 4.1.1,
aliasing can appear after decimation if Uk(z)X(z) is not properly band-
limited. To further study this aspect, let us write (4.5) as

X̃k(z) =
1

R
Uk(z

1/R)X(z1/R) +
1

R

R−1∑

i=1

Uk(z
1/RΦi

R)X(z1/RΦi
R), (4.9)
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where the second term is the aliasing component that appears in the sub-
bands after decimation. Now, we can re-write (4.9) as

X̃k(z) =
Uk(z

1/R)

R

(
X(z1/R) +

R−1∑

i=1

Uk(z
1/RΦi

R)X(z1/RΦi
R)

Uk(z1/R)

)
. (4.10)

Since U−1
k (z) = U∗k (z)/ |Uk(z)|2, (4.10) can be expressed as

X̃k(z) =
Uk(z

1/R)

R

(
X(z1/R) +

R−1∑

i=1

U∗k (z1/R)Uk(z
1/RΦi

R)X(z1/RΦi
R)∣∣Uk(z1/R)

∣∣2

)
.

(4.11)

From (4.11), we can see that the aliasing is completely removed in the
subbands if the analysis filters are designed such that

U∗k (z)Uk(zΦ
i
R) = 0, for

{
0 ≤ k < K

1 ≤ i < R
, (4.12)

i.e., if the spectrum of the analysis filters do not overlap for shifts of 2πi/R.
Then, aliasing can be avoided (or at least minimized) if the analysis filters
are properly designed band-pass filters. From now on, we refer to Uk(zΦ

i
R)

for 1 ≤ i < R as the images of the analysis filter Uk(z).

Input-output relation

Next, we derive the input-output relation for the generic filter bank shown
in Fig. 4.3. The input-output relation is the transfer function that relates
the input and the output of the filter bank when no processing is performed
in the subbands [122], i.e., when Ck(z) = 1∀k. From (4.8), and taking into
account that Ck(z) = 1, we can write the input-output relation as

Y (z) =
1

R

R−1∑

i=0

K−1∑

k=0

Uk(zΦ
i
R)Vk(z)X(zΦi

R). (4.13)

Now, let us define the distortion transfer function of the filter bank [118]
as

T (z) =
1

R

K−1∑

k=0

Uk(z)Vk(z), (4.14)
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and the gain of the i-th aliasing component [122] as

Ai(z) =
1

R

K−1∑

k=0

Uk(zΦ
i
R)Vk(z), for 1 ≤ i < R. (4.15)

Then, using (4.13) to (4.15), we can re-write the input-output relation as

Y (z) = T (z)X(z) +

R−1∑

i=1

Ai(z)X(zΦi
R). (4.16)

From the previous expression, we can see that the input-output relation
gives us an inside about how well the filter bank is able to reconstruct the
input signal when no processing is performed in the subbands. By inspect-
ing (4.16), we can notice that the phase and the amplitude of the input
signal are altered by T (z), and that the aliasing gain terms Ai(z) produce
undesired additive components in the output. For the case without sub-
band processing, the filter bank preserves the magnitude and the phase of
the input signal when the distortion transfer function has constant magni-
tude and linear phase at all frequencies, i.e., T (z) = ρf z

−τf . In addition, for
the case without subband processing, the output of the filter bank is alias
free if Ai(z) = 0, for 1 ≤ i < R. At this point, it is important to clarify
that a filter bank with alias-free input-output relation is not necessarily
a filter bank without aliasing in the subbands [118]. This is because the
analysis and synthesis filters can be designed such that aliasing is cancelled
out at the output of the filter bank, but it is still present in the subbands.
According to the properties of the input-output relation, we classify the
filter banks in two main categories:

• Perfect-Reconstruction (PR): filter banks that have distortion-
less transfer function and alias-free output [118], i.e.,

T (z) = ρf z
−τf ,

Ai(z) = 0, for 1 ≤ i < R, (4.17)

where ρf and τf are arbitrary scaling and delay components, respec-
tively. These filter banks can not achieve very low aliasing levels in
the subbands, however, the analysis and synthesis filters can be de-
signed such that the effect of the aliasing in the subbands is cancelled
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at the output of the filter bank (when no subband processing is con-
sidered). When the PR conditions (4.17) are met and there is not
subband processing, the filter bank is a Linear Time-Invariant (LTI)
system, since Y (z) = ρfX(z) z−τf . Among others, QMF are PR filter
banks [123].

• Near Perfect-Reconstruction (NPR): filter banks in which low
aliasing in the subbands is achieved at the cost of relaxing the perfect
reconstruction conditions [124], i.e.,

T (z) ≈ ρf z
−τf ,

Ai(z) ≈ 0, for 1 ≤ i < R,

U∗k (z)Uk(zΦ
i
R) ≈ 0, for

{
0 ≤ k < K

1 ≤ i < R
. (4.18)

Then, negligible aliasing in the subbands, with low distortion and low
aliasing at the output of the filter bank are obtained. In this case,
the filter bank is a linear R-periodically time-varying system [118].
Properly designed GDFT filter banks are NPR filter banks [125].

Effect of subband processing in the output signal

Now, we study the influence of the subband processing stage in Fig. 4.3
in the output of the filter bank. First, let us assume that the analysis
and synthesis filters are conjugated and delayed versions of each other, i.e.,
Vk(z) = U∗k (z)z−τf . This is a reasonable assumption that is fulfilled by most
filter banks, e.g., QMF, cosine modulated, and GDFT filter banks [122]. If
the previous assumption is considered, the expression for the output of the
filter bank (4.8) can be written as

Y (z) =
1

R

R−1∑

i=0

K−1∑

k=0

Uk(zΦ
i
R)Ck(z

R)U∗k (z)X(zΦi
R)z−τf , (4.19)

which can be re-written as

Y (z) =

(
1

R

K−1∑

k=0

Uk(z)U
∗
k (z)Ck(z

R)

)
X(z)z−τf +

R−1∑

i=1

(
1

R

K−1∑

k=0

U∗k (z)Uk(zΦ
i
R)Ck(z

R)

)
X(zΦi

R)z−τf . (4.20)
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4.1. Filter bank theory

The second term in (4.20) represents the aliasing at the output of the filter
bank when subband processing is considered. In this case, even if the gain
of the aliasing terms is 0, i.e., Ai(z) = 0, the aliasing at the output of
the filter bank may not be suppressed, due to the effect of the subband
processing blocks. In particular, aliasing at the output of the filter bank is
avoided only if (4.12) is fulfilled, i.e., if there is no aliasing in the subbands.
Later on, we will show that (4.12) can not be strictly fulfilled by any set
of finite length analysis filters. Still, some filter banks can approximately
fulfill (4.12), i.e.,

U∗k (z)Uk(zΦ
i
R) ≈ 0, for

{
0 ≤ k < K

1 ≤ i < R
. (4.21)

If the previous assumption is fulfilled, we can assume that the aliasing in
the subbands is negligible, and then, (4.20) can be approximated as

Y (z) ≈
(

1

R

K−1∑

k=0

Uk(z)U
∗
k (z)Ck(z

R)

)
X(z)z−τf . (4.22)

Hence, filter banks with very low aliasing levels in the subbands, i.e., (4.21),
can obtain negligible aliasing at the output of the filter bank, even if sub-
band processing is used. Consequently, filter banks with low aliasing levels
in the subbands are better suited for systems with subband processing [122].
In general, PR filter banks do not offer low aliasing levels in the subbands,
thus, NPR filter banks, which fulfil (4.21), are preferred when subband pro-
cessing is used. Finally, it is important to note that any filter bank with
subband processing and finite length analysis and synthesis filters is not a
LTI system, as (4.22) only holds approximately. In that case, the system
becomes a linear R-periodically time-varying system.

4.1.3 Design considerations

Next, we discuss different aspects regarding the design of filter banks.

Subband types

Filter banks can be designed with uniform and non-uniform subbands. For
the uniform case, the analysis and synthesis filters have the same bandwidth
for all subbands, while different bandwidths are selected for each subband
in the non-uniform case [126]. Filter banks with non-uniform subbands can
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Chapter 4. Subband filtering for PSZ systems

be achieved by appending multiple analysis stages with uniform subbands
in a tree structure [127]. In this work, we focus on filter banks with uniform
subbands, which is the relevant case for this study. According to the portion
of the spectrum assigned to each subband, we can classify the subbands as:

• Single-sided (SS) subbands: The analysis and synthesis filters are
single-sided band-pass filters, i.e., with complex coefficients. Then,
the subband signals are complex signals containing information from
either the positive or negative sides of the spectrum. If ideal filters
are assumed, the magnitude of the frequency response of the analysis
and synthesis filters in the k-th subband is

∣∣Uk(ejω)
∣∣ =

∣∣Vk(ejω)
∣∣ =

{
1 if 2πk

K ≤ ω ≤ 2π(k+1)
K

0 otherwise
, (4.23)

whereK is the number of SS subbands in the filter bank. For example,
SS subbans are used in GDFT filter banks [128].

• Double-sided (DS) subbands: The analysis and synthesis filters
are double-sided band-pass filters, i.e., with real coefficients. Thus, if
the input signal is real, the subband signals are real and contain in-
formation from both, the positive and negative sides of the spectrum.
If ideal filters are assumed, the magnitude of the frequency response
of the analysis and synthesis filters in the k-th subband is

∣∣Uk(ejω)
∣∣ =

∣∣Vk(ejω)
∣∣ =

{
1 if πk

Kds
≤ |ω| ≤ π(k+1)

Kds

0 otherwise
, (4.24)

where Kds is the number of DS subbands in the filter bank. For
example, DS subbans are used in cosine modulated filter banks [99].

(a) Single-sided (b) Double-sided

Figure 4.4: Spectrum of single-sided (SS) and double-sided (DS) analysis
filters in (a) and (b), respectively.
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4.1. Filter bank theory

We show in Fig. 4.4a-b examples of the spectrum of SS and DS analysis
filters, respectively. We assume that the bandwidth of the DS subbands is
equal to the bandwidth of the SS subbands, i.e., Bds = B. Then, each DS
subband can be seen as the combination of two SS subbands. Thus, it is
obvious that the number of DS subbands is half the number of SS subbands,
i.e, Kds = K/2. Moreover, as the portion of the spectrum occupied by a
DS subband is twice the portion occupied by a SS subband, the resampling
factor for the DS case is limited to Rds ≤ Kds = K/2, while for the SS
case to R ≤ K. Also, let us note that if the SS subbands are designed such
that the subbands in the positive and negative sides of the spectrum have
hermitian symmetry, only K/2 subbands must be processed.

We previously studied that aliasing in the subbands is avoided if the
spectrum of the analysis filters does not overlap with its images, i.e., if
(4.12) is fulfilled. An important difference regarding aliasing in the sub-
bands can be found between SS and DS subbands. For SS subbands, (4.12)
is fulfilled if R ≤ K and B ≤ 2π

R (at least, if ideal band-pass filters are
considered). For DS subbands, (4.12) is not fulfilled in all cases, even if
Rds ≤ Kds and Bds ≤ π

Rds
[100]. To exemplify this phenomenon, we show

in Fig. 4.5 the spectrum of the analysis filters and their images for a filter
bank with DS subbands, Kds = 4, Rds = 3, and Bds = π

Kds
. Also, we

show in Fig. 4.6 the spectrum of the analysis filters and their images for
a filter bank with SS subbands, K = 8, R = 6, and B = 2π

K . It is clear
that spectral overlap does not appear in any case for the SS subbands in

(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3

Figure 4.5: Spectrum of the analysis filter Uk(e
jω) in solid lines and its

images Uk(e
jωΦi

Rds
) in dotted lines for each DS subband of a filter bank

with Kds = 4, Rds = 3, and Bds = π
Kds

.
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(a) k = 0 (b) k = 1

(c) k = 2 (d) k = 3

(e) k = 4 (f) k = 5

(g) k = 6 (h) k = 7

Figure 4.6: Spectrum of the analysis filter Uk(e
jω) in solid lines and its

images Uk(e
jωΦi

R) in dotted lines for each SS subband of a filter bank with
K = 8, R = 6, and B = 2π

K .

Fig. 4.6. For the DS subbands in Fig. 4.5, spectral overlap does not occur
for subbands k = 0 and k = 3, but it does for k = 1 and k = 2. Then, high
levels of aliasing appear in these subbands. We showed in Section 4.1.2 that
high aliasing in the subbands is a serious limitation for subband processing
systems, then, single-sided subbands are preferred for these systems.

Figure 4.7: Frequency response of a finite length band-pass filter.
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Resampling factor

The resampling factor R is a key aspect in the design of the filter bank.
Next, we focus on the selection of the resampling factor for filter banks
with SS subbands, which is the case that is relevant to this work.

Previously, we considered that the magnitude of the frequency response
of the analysis filters is given by (4.23), i.e., with a passband with band-
width B = 2π/K and a stopband with infinite attenuation. However,
infinite length filters are required to fulfil (4.23), which is not feasible for
practical systems. Hence, (4.23) must be relaxed for finite length filters as

∣∣Uk(ejω)
∣∣ ≈

{
1 2πk

K − η ≤ ω ≤
2π(k+1)

K + η

0 otherwise
. (4.25)

This response has a passband with bandwidth B = 2π/K, and a transi-
tion bandwidth η between the passband and the stopband (as shown in
Fig. 4.7). Moreover, the passband of the filter is not completely flat and
the attenuation in the stopband is not infinite. Consequently, (4.12) can
not be strictly fulfilled, and then, the aliasing in the subbands can not be
exactly 0. However, (4.21) can be fulfilled if the passband of the analysis
filters only overlaps with the stopband of their images. In this case, we
can assume that the aliasing in the subbands is negligible. To clarify this
aspect, we show in Fig. 4.8 the spectrum of a practical analysis filter and its
images for the second subband of a filter bank with K = 8 and two different
resampling factors. We can see in Fig. 4.8a that, for R = 5, the passband
of the analysis filter only overlaps with the stopbands of its images, then,
very low aliasing levels appear in the subbands. However, the passband of
the analysis filter overlaps with the transition bandwidth of its images for
R = 8 (as shown in Fig. 4.8b), which leads to significant aliasing levels in
the subbands. Then, it is clear at this point that the selected resampling
factor heavily influences the level of aliasing in the subbands of the filter
bank. It can be proven that the aliasing in the subbands is negligible when
R ≤ b2π/ (B + η)c, or equivalently, when R ≤ bK/ (1 + (ηK/(2π)))c [102].
Filter bank configurations that do not fulfil the previous condition present
high aliasing levels in the subbands.

The ratio between the number of subbands and the resampling factor,
i.e., K/R, is defined as the oversampling ratio of the filter bank [122]. Fil-
ter banks with K/R > 1 are oversampled filter banks [128], while filter
banks with K/R = 1 are critically-sampled filter banks [99]. Oversampled
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(a) R = 5

(b) R = 8

Figure 4.8: Spectrum of a finite length analysis filter Uk(e
jω) and its

images Uk(e
jωΦi

R) for the second subband of a filter bank with K = 8
subbands, and for two resampling factors R.

filter banks do not reduce the sampling rate of the subband signals as much
as critically-sampled filter banks, which leads to higher computational re-
quirements to process the subband signals. However, oversampled filter
banks, with a proper selection of R, can assure negligible aliasing in the
subbands, while critically-sampled filter banks usually present higher alias-
ing levels. Then, oversampled filter banks are preferred for systems with
subband filtering.

4.1.4 Generalized Discrete Fourier Transform filter bank

Next, we discuss the main properties of Generalized Discrete Fourier Trans-
form (GDFT) filter banks, which use single-sided subbands [128]. The main
advantage of GDFT filter banks is that the NPR conditions (4.18) can be
fulfilled by properly designing the analysis and synthesis filters, and by se-
lecting a suitable resampling factor [100]. Consequently, negligible aliasing
in the subbands can be obtained. This is the motivation for using GDFT
filter banks in this work for the subband formulation of PSZ systems.

In Fig. 4.9, we show the block diagram of a GDFT filter bank with K
subbands and resampling factor R ≤ K, where uk and vk denote the analy-
sis and synthesis filters for the k-th subband, respectively. In this work, we
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u0

uK-1

↓R

↓R

↑R

↑R

v0

vK-1

+x(n) y(n)

Figure 4.9: Block diagram of a GDFT filter bank.

focus on the case with even number of subbands1. The analysis filters are
single-sided responses (i.e., with complex coefficients), and are obtained by
modulating a real-valued low-pass prototype filter p(n) of length Ip as

uk(n) = p(n)ej
2π
K (k+ 1

2)n, (4.26)

for 0≤n<Ip and 0≤ k <K. The prototype filter p(n), whose frequency
response is denoted as P (ejω), should be designed to fulfil

∣∣P (ejω)
∣∣ ≈

{
1 −

(
π
K + η

)
≤ ω ≤ π

K + η

0 otherwise
. (4.27)

In particular, the aliasing in the subbands is avoided if the prototype filter
fulfills [102]

R ≤
⌊

K

(1 + (ηK/(2π)))

⌋
. (4.28)

The synthesis filters are time-reversed and conjugated versions of the anal-
ysis filters, i.e.,

vk(n) = u∗k(Ip−1−n). (4.29)

Moreover, the analysis and synthesis filters in the positive and negative
spectrum are complex conjugates, i.e.,

uk(n) = u∗K−1−k(n),∀k, (4.30)

vk(n) = v∗K−1−k(n),∀k. (4.31)

Then, if the input signal x is real-valued, only K/2 subbands must be
processed, as the other subbands are their complex conjugates. In that
case, the system in Fig. 4.9 can be simplified to the one shown in Fig. 4.10.

1For a GDFT filter bank, K can be either even or odd. For K even, the K/2 subbands
in the positive and negative spectrum are complex conjugates. For K odd, the (K−1)/2
subbands in the positive and negative spectrum are complex conjugates and the subband
in the center of the spectrum is unique.
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u0

uK
2 -1

↓R

↓R

↑R

↑R

v0

vK
2 -1

+ ℜ{·}x(n) y(n)×2

Figure 4.10: Block diagram of a GDFT filter bank with real inputs.

Finally, an important aspect of GDFT filter banks is that a computa-
tionally efficient implementation using polyphase structures is possible for
any oversampling ratio fulfilling K/R ≥ 1 [125].

4.2 Subband decomposition

In this section, we study how a Finite Impulse Response (FIR) a(n) (as in
Fig. 4.11a) can be approximated by a filter bank with a set of FIR subband
components ak(n) inserted between the analysis and synthesis filter banks
(as in Fig. 4.11b). The set of operations required to compute the subband
components ak that make the systems in Fig. 4.11a and 4.11b equivalent is
called subband decomposition. We review hereafter the algorithm proposed
in [102] to perform the subband decomposition of FIR systems using GDFT
filter banks. Also, we propose a novel expression to compute the subband
components with lower computational demands than those required by the
expression proposed in [102].

ax(n) y(n) = x(n) ∗ a(n)

(a)

u0

uK-1

↓R

↓R

a0

aK-1

↑R

↑R

v0

vK-1

+x(n) yf(n) ≈ ρf x(n) ∗ a(n−τf)

(b)

Figure 4.11: Diagram of a FIR filter a(n) and its subband approximation
using a filter bank in (a) and (b), respectively.
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4.2.1 Sufficient conditions

Next, we review the sufficient conditions, presented in [102], required to
perform the subband decomposition of a FIR system. For an input signal
X(z), we can write the output of the FIR system in Fig. 4.11a as

Y (z) = A(z)X(z), (4.32)

where A(z) is the transfer function of the FIR system. Ideally, we would
like to compute the subband components in Fig. 4.11b that lead to

Yf(z) = ρfA(z)X(z)z−τf , (4.33)

where τf is the delay produced by the filter bank, and ρf is an arbitrary
amplitude scaling. If (4.33) is fulfilled, it means that the output of the
system in Fig. 4.11b is a delayed and scaled version of the output of the
system in Fig. 4.11a, and then, we can consider that both systems are
equivalent. It is shown in [102] that equality (4.33) is only achieved when
ideal analysis and synthesis filters, i.e., with infinite length, are considered.
For finite length filters, the equality can only be assumed approximately.
The authors in [102] showed that the approximation error can be negligible
if the following conditions are fulfilled:

1. Negligible phase and amplitude distortion, i.e.,

T (z) =

K−1∑

k=0

Uk(z)Vk(z) ≈ ρf z
−τf . (4.34)

2. Negligible aliasing level in the subbands, i.e.,

U∗k (z)Uk(zΦ
i
R) ≈ 0, for

{
0 ≤ k ≤ K − 1

1 ≤ i ≤ R− 1
. (4.35)

It is easy to see that the previous conditions are the same as the ones
for Near Perfect-Reconstruction in (4.18), which are fulfilled for properly
designed GDFT filter banks. In particular, (4.34) is fulfilled if the prototype
filter is a root-Nyquist filter [102]. Regarding (4.35), high oversampling
ratios K/R and high values of Ip assure low aliasing levels in the subbands,
but require higher computational efforts to process the subband signals.
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Therefore, a compromise between K/R and Ip must be reached such that
(4.35) is fulfilled while benefiting from a reduction on the computational
complexity.

Finally, we present two metrics that will be used later on to determine
if a specific filter bank configuration fulfils conditions (4.34) and (4.35).
First, let us define the Reconstruction Error (RE) [100] as

RE =
1

2π

∫ 2π

0

∣∣T (ejω)− ρf e
−jωτf

∣∣2 dω, (4.36)

which is a metric that indicates how well a filter bank fulfills condition
(4.34). Next, let us define the Alias-To-Signal Ratio (ASR) as

ASR =

1
R−1

K−1∑

k=0

R−1∑

i=1

∫ 2π

0

∣∣U∗k (ejω)Uk(e
jωΦi

R)
∣∣2 dω

K−1∑

k=0

∫ 2π

0

∣∣Uk(ejω)
∣∣2 dω

, (4.37)

which is the ratio between the energy of the aliasing terms and the energy
of the analysis filters. It is easy to see that the ASR is a metric that is
directly related to condition (4.35). Then, the smaller the RE and ASR,
the better the approximation between the systems in Fig. 4.11a and 4.11b.

4.2.2 Optimal subband components

Next, we review the subband decomposition proposed in [102]. At this
point, it is important to highlight the difference between the subband com-
ponents and the subband signals. On the one hand, the subband component
ak is the FIR filter that is inserted in the k-th subband between the analysis
and the synthesis filter banks, such that the overall response of the filter
bank is approximately equivalent to a FIR system a of length Ia. On the
other hand, the subband signal ãk is the signal present at the output of
k-th subband of the analysis filter bank when it is fed with a, i.e.,

ãk(n) = (uk(n) ∗ a(n))↓R , (4.38)

which is a signal of length Iã,k = d(Ia+Ip−1)/Re. Both ãk and ak are
complex-valued because GDFT filter banks use single-sided subbands.
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The authors in [102] showed that for a GDFT filter bank fulfilling (4.34)
and (4.35), the subband components ak that make the systems in Fig. 4.11a
and Fig. 4.11b approximately equivalent are given by

aopt,k(n) = arg min
ak(n)

{∑

n∈Z

∣∣∣δ̃k(n) ∗ ak(n)− ãk(n)
∣∣∣
2
}
. (4.39)

where δ̃k(n) is the subband signal in the k-th subband when a unit impulse
δ(n) is fed to the filter bank, i.e.,

δ̃k(n) = (uk(n) ∗ δ(n))↓R , (4.40)

which is a signal of length I
δ̃,k

= dIp/Re. In (4.39), the optimal subband

components ak are those that minimize the Mean Squared Error (MSE)
between the subband signal ãk and the convolution of the subband signal δ̃k
and the subband component ak. We can interpret (4.39) as a de-convolution
problem, in which we aim to remove the contribution of δ̃k from ãk to obtain
the optimal subband components ak. As ak results from the de-convolution
of a signal of length Iã,k and a signal of length I

δ̃,k
, its length is

Ia,k = Iã,k − Iδ̃,k + 1 =

⌈
Ia + Ip − 1

R

⌉
−
⌈
Ip

R

⌉
+ 1. (4.41)

Now, in order to obtain the optimal solution (4.39), let us define a Ia,k×1
vector containing all the samples of ak as

ak =
[
ak(0) . . . ak(Ia,k − 1)

]T
. (4.42)

Similarly, let us define a Iã,k×1 vector containing all the samples of ãk as

ãk =
[
ãk(0) . . . ãk(Iã,k − 1)

]T
, (4.43)

and a Iã,k×Ia,k toeplitz matrix containing shifted copies of δ̃k as

∆̃k =




δ̃k(0) . . . δ̃k(Iδ̃,k − 1) 0 . . . 0

0
... Toeplitz

0




T

. (4.44)
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Then, we can re-write the optimization problem(4.39) as

aopt,k = arg min
ak

{∥∥∥∆̃kak − ãk

∥∥∥
2
}
, (4.45)

whose optimal solution is given by [102]

aopt,k =
(
∆̃H
k ∆̃k

)−1
∆̃H
k ãk. (4.46)

Finally, it is important to note that, if a is formed by real coefficients, the
subband components ak only need to be computed for K/2 subbands, due
to the hermitian symmetry of the subbands in the GDFT filter bank.

4.2.3 Efficient computation

If (4.46) is used to compute the subband components, we must compute the
inverse of K/2 complex matrices if a has real coefficients, and the inverse of
K complex matrices if a has complex coefficients. Next, we derive a novel
expression that only requires to compute the inverse of one real matrix. We
start by re-writing ∆k as

∆̃k = TkPEk, (4.47)

where Tk and Ek are diagonal matrices of size Iã,k×Iã,k and Ia,k×Ia,k,
respectively, which are defined as

Tk = diag
([
ej

2πR
K (k+ 1

2)0, . . . , ej
2πR
K (k+ 1

2)(Iã,k−1)
])
, (4.48)

Ek = diag
([
e−j

2πR
K (k+ 1

2)0, . . . , e−j
2πR
K (k+ 1

2)(Ia,k−1)
])
. (4.49)

In (4.47), P is Iã,k×Ia,k toeplitz matrix that is defined as

P =




p↓R(0) . . . p↓R(I
δ̃,k
−1) 0 . . . 0

0
... Toeplitz

0




T

, (4.50)

where p↓R = (p(n))↓R is the decimated prototype filter. Now, we can use
(4.47) to re-write (4.46) as

aopt,k =
(
EH
k PTTH

k TkPEk

)−1
EH
k PTTH

k ãk, (4.51)
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which can be finally expressed as

aopt,k = EH
k

(
PTP

)−1
PTTH

k ãk. (4.52)

Equation (4.52) has the key property that the real matrix
(
PTP

)−1
PT

is common to all subbands, so only one real matrix must be inverted for
computing all the subband components.

In Appendix A.3.1, we present the Floating Point Operations (FLOPs)
count for the expression proposed by [102] and for the novel expression
(4.52) proposed in this work. We show in Fig. 4.12 the FLOPs required by
both approaches to compute the subband components of a real FIR system
a as a function of its length Ia. The computational requirements are shown
for different filter bank configurations, i.e, for different resampling factors
R and prototype filter lengths Ip. The results show that the higher the
resampling factor, the lower the computational demands of the subband
decomposition. This is motivated by the fact that for high values of R the

(a) K = 10, R = 6, and Ip = 100 (b) K = 10, R = 6, and Ip = 500

(c) K = 10, R = 10, and Ip = 100 (d) K = 10, R = 10, and Ip = 500

Figure 4.12: Number of FLOPs required to compute the subband de-
composition of a FIR system a as a function of its length Ia for different
filter bank configurations. The FLOPs required by the original expression
in [102] are plotted with solid lines, and dashed-dotted lines are used for
the proposed expression in (4.52).
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length of the subband components (4.41) is low. Also, the results reveal
that the length of the prototype filter does not have an important influence
on the computational requirements. Finally, we can see that the proposed
expression requires approximately 2K times less FLOPs than the original
expression. Then, the proposed expression can significantly reduce the
computational demands required to compute the subband decomposition.

4.3 Optimization of subband filters for PSZ

In previous chapters, we have considered a system model in which the input
signal is filtered by a FIR broadband filter gl before being fed to the l-th
loudspeaker (as shown in Fig. 4.13). In this section, we study the use of
subband filtering for PSZ systems. Then, rather than using a broadband
filter gl for each loudspeaker, a set of FIR subband filters gl,k is used.

gl
L

hml

M

Figure 4.13: System model for a PSZ system using broadband filtering.

4.3.1 Previous works

The authors in [47] first used subband filtering for PSZ systems. In their
work, they propose to perform the filtering required by the system in the
subbands of structure formed by appending multiple QMF stages. More-
over, they compute the required subband filters by formulating independent
optimization problems for each subband using the subband signals obtained
by feeding the RIRs to the analysis filter bank. The system model proposed
in [47] is shown in Fig. 4.14 for two QMF stages, i.e., with 3 subbands. In
Fig. 4.14, ulp and uhp are the low and high-pass analysis filters, respectively,
and vlp and vhp are the low and high-pass synthesis filters, respectively. In
this structure, the sampling rate at which the k-th subband operates is
Rk ∈ N times lower than at the input of the filter bank, where

Rk =





2(K−1) for 0 ≤ k ≤ 1

2(K−k) for 1 < k < K

. (4.53)
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ulp

uhp

↓2

↓2

↑2gl,0

gl,1

ulp

uhp

gl,2

vlp

vhp

↓2

↓2 ↑2
+ ↑2vlp

vhp ↑2

+
L

hml

M

L

L

L

z−τ0

z−τ1

z−τ2

Figure 4.14: System model proposed in [47] for a PSZ system with multi-
stage QMF structures. A structure with 2 stages is shown.

Also, the multi-stage structure produces a delay in the system of

τf =
(

2(K−1)−1
)

(Ip−1) , (4.54)

where Ip is the length of the analysis and synthesis filters. Since all the
subbands do not operate at the same sampling frequency, a delay τk must
be applied at the output of the subband filters in the k-th subband to
align the signals of all subbands at the output. In particular, this delay is
selected as

τk =





0 for 0 ≤ k ≤ 1

(Rk−1) (Ip−1) for 1 < k < K

, (4.55)

It is important to note that QMF structures are critically-sampled, and
then, high levels of aliasing appear in the subbands. We previously showed
in Section 4.1.2 that aliasing at the output of the filter bank can not be
suppressed if high levels of aliasing are present in the subbands for systems
using subband filtering. Moreover, the independence between the subbands
assumed by the authors in [47] to formulate the optimization problems
can only be assumed when certain conditions, as low aliasing levels in the
subbands, are fulfilled [102]. Then, the proposed model with tree-QMF
structure is not suitable for PSZ systems, as we will show that the aliasing
in the subbands degrades the performance of the system.

4.3.2 System model

Next, we propose to use a GDFT filter bank with K subbands and re-
sampling factor R to perform the filtering operation required by the PSZ
system. We show in Fig. 4.15 the proposed model, where the filtering re-
quired by the PSZ system is performed in the subbands of the filter bank.
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u0

uK
2 -1

↓R

↓R

↑R

↑R

+

v0

vK
2 -1

gl,0

gl,K2 -1

L

L
ℜ{·}

L
hml

M
×2

Figure 4.15: Proposed system model for a PSZ system using subband
filtering with GDFT filter banks.

Since GDFT filter banks can achieve very low aliasing in the subbands, the
proposed model overcomes the limitations of the model presented in [47].
Also, the proposed model is more versatile than the broadband model, since
different configurations can be used for each subband, e.g., different sets of
loudspeakers and filter lengths.

It is important to note that the subband filters gl,k are complex-valued
(contrary to the broadband filters gl, which are real-valued), but the input
signal only needs to be processed in K/2 subbands due to the hermitian
symmetry of the GDFT filter bank (for K even2). Also, a key aspect is
that the GDFT filter bank produces an additional delay in the system of

τf = Ip−1, (4.56)

where Ip is the length of the prototype filter used in the filter bank.

4.3.3 Formulation

Next, we propose a formulation for the model in Fig. 4.15. Let us denote
hml,k as the complex-valued k-th subband component of hml obtained with
the subband decomposition described in Section 4.2. Particularly, we need
to replace the generic response a used in Section 4.2 by response hml, and
use (4.52) to obtain the subband component hml,k of length

Ih,k =

⌈
Ih + Ip − 1

R

⌉
−
⌈
Ip

R

⌉
+ 1. (4.57)

Let us define the alternative system model shown in Fig. 4.16, in which
each subband includes the subband filters gl,k and the subband compo-
nents of the RIR hml,k. The authors in [102] showed that the models in

2For the odd case the signal must be filtered with ((K−1)/2) + 1 subband filters for
each loudspeaker.
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Fig. 4.15 and 4.16 are approximately equivalent if conditions (4.34) and
(4.35) are fulfilled. Hence, the model in Fig. 4.16 can be used to compute
the filters required by the model in Fig. 4.15. The main advantage of the
model in Fig. 4.16 is that the subsystems for each subband can be consid-
ered independent, and then, the optimization problem can be formulated
independently for each subband.

u0

uK
2 -1

↓R

↓R

↑R

↑R

+

v0

vK
2 -1

gl,0

gl,K2 -1

hml,0

hml,K2 -1

L

L

M

M
ℜ{·}

M
×2

Figure 4.16: System model with the subband filters and the subband
components of the RIRs.

In Fig. 4.16, the subsystem in each subband can be formulated in either
time or frequency domains. We focus on the time-domain formulation
because it leads to better performance when either short filters or short
modelling delays are considered (as shown in Section 2.3.4). For the sake
of simplicity on the notation, we assume that all subbands use the same set
of L loudspeakers. Now, let us define gl,k as the Ig,k-length subband filter
for the l-th loudspeaker and the k-th subband. Then, we can define the
cascade impulse response in the m-th control point for the k-th subband as

xm,k(n) =

L−1∑

l=0

hml,k(n) ∗ gl,k(n) =

Lg−1∑

l=0

Ig,k−1∑

r=0

hml,k(n− r)gl,k(r). (4.58)

Also, let us define a M×1 vector of the samples of the cascade impulse
response in time n for the k-th subband and for all control points as

ẋn,k =
[
x0,k(n) . . . xM−1,k(n)

]T
. (4.59)

Similarly, let us define a L×1 vector of the samples of the subband filters
in time n for the k-th subband and for all loudspeakers as

ġn,k =
[
g0,k(n) . . . gL−1,k(n)

]T
, (4.60)
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and a M×L matrix containing the subband components of the RIRs in
time n for the k-th subband and for all loudspeakers and control points as

Ḣn,k =




h00,k(n) . . . h0(L−1),k(n)
...

. . .
...

h(M−1)0,k(n) . . . h(M−1)(L−1),k(n)


 . (4.61)

Then, using (4.59) to (4.61) we can write

ẋn,k =

Ig,k−1∑

r=0

Ḣn−r,k ġr,k. (4.62)

Next, let us define a M(Ih,k+Ig,k−1)×1 vector with the cascade impulse
responses in all time instants and control points for the k-th subband as

ẋk =
[
ẋT0,k . . . ẋTIg,k+Ih,k−1,k

]T
, (4.63)

and a LIg,k×1 vector of the filters for subband k as

ġk =
[
ġT0,k . . . ġTIg,k−1,k

]T
. (4.64)

Also, let us define a M (Ih,k+Ig,k−1)×LIg,k block-toeplitz matrix Ḣk as

Ḣk =




ḢT
0,k . . . ḢT

Ih,k−1,k 0L×M . . . 0L×M

0L×M
... Toeplitz

0L×M




T

. (4.65)

Finally, using (4.63) to (4.65) we can write

ẋk = Ḣk ġk. (4.66)

4.3.4 Weighted Pressure Matching with Subband-Domain For-
mulation (wPM-S)

Now, we propose the weighted Pressure Matching with Subband-Domain
Formulation (wPM-S) algorithm to compute the subband filters gl,k. The
proposed algorithm uses the subband formulation presented in Section 4.3.3,
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gl,k
L

hml,k

M

︷ ︸︸ ︷
xm,k

(a)

dm,k

M

(b)

Figure 4.17: Subsystem and target for the k-th subband in (a) and (b),
respectively.

and it is based on applying the wPM criterion individually to the subsys-
tems in each subband.

First, we need to select the complex-valued FIR target dm,k of length
Id,k = Ih,k+Ig,k−1 for each subband k and for each control point m. In
particular, we propose to define a broadband target dm, and then, use
the subband decomposition described in Section 4.2 to obtain the subband
components dm,k. Now, let us define

ḋn,k =
[
d0,k(n) . . . dM−1,k(n)

]T
, (4.67)

which is M×1 vector containing the target in time instant n for the k-th
subband and all control points. Similarly, let us define a MId,k×1 vector
containing the target for all time instants and all control points as

ḋk =
[
ḋT0,k . . . ḋTId,k−1,k

]T
. (4.68)

Once the target is defined, the aim of wPM-S is to find the subband
filters gl,k that minimize the MSE between the subsystems in Fig. 4.17a
and Fig. 4.17b, i.e., the MSE between the cascade impulse response xm,k
and a selected target dm,k for each control point m. Then, the optimal
subband filters are the ones that minimize the cost function

J (ġk) =
∥∥∥Ẇk

(
Ḣkġk − ḋk

)∥∥∥
2

+ β̇k ‖ġk‖2 , (4.69)

where β̇k ∈ R+ is the regularization factor for the k-th subband, and Ẇk

is a weighting matrix that can include time, frequency, and spatial weight-
ing. However, we only consider the spatial weighting in this work. Then,
let us define the weighting matrix as MId,k×MId,k block-diagonal matrix
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Ẇk = Ω̇k ⊗ IId,k formed by blocks Ω̇k = diag {ẇ0,k, . . . , ẇM−1,k} of size
M×M , where ẇm,k is the weight given in the cost function to the error for
the m-th control point, i.e.,

ẇm,k =





√
µ̇k
Md

m ∈ D√
1−µ̇k
Mb

m ∈ B
, (4.70)

where µ̇k ∈ R is a weighting factor satisfying 0 ≤ µ̇k ≤ 1 for the k-th
subband. Now, let us re-write (4.69) as

J (ġk) = ġHk ḢH
k ẆT

k ẆkḢkġk − 2<
{

ġHk ḢH
k ẆT

k Ẇkḋk

}
+ β̇k ġHk ġk,

(4.71)

in which the term ḋHk ẆT
k Ẇkḋk has been omitted because has not effect

on the optimization. The gradient of (4.71) is given by [72]

∇J (ġk) = 2 ḢH
k ẆT

k ẆkḢkġk − 2 ḢH
k ẆT

k Ẇkḋk + 2 β̇k ġk. (4.72)

Since (4.69) is a quadratic cost function, it has a unique global minimum
for β̇k > 0 at the point in which its gradient equals 0, i.e., ∇J (ġk) = 0.
Then, the optimal filters are given by

ġopt,k=
(
ḢH
k ẆT

k ẆkḢk+β̇kILIg,k

)−1
ḢH
k ẆT

k Ẇkḋk. (4.73)

As the length of the subband filters is approximately R times smaller than
the length of the broadband filters, solution (4.73) requires the inversion of
a matrix that is approximately R times smaller than the matrix that needs
to be inverted with wPM-T, leading to important computational savings
(as we will show in Section 4.4). It is important to mention that wPM-S
requires the subband decomposition of the RIRs, which could require addi-
tional computational load. However, using the proposed expression (4.52),
only one matrix inversion is required to compute the subband components
for all the control points, loudspeakers, and subbands, so its computational
cost is not significant. Moreover, although we have assumed that the same
set of loudspeakers is used in all subbands, different sets of loudspeakers can
be used for each subband. Finally, we have assumed that the same criterion
is used to obtain the optimal filters for all subbands (in our case wPM),
however, the subband formulation allows us to use different algorithms for
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different subbands (as for example ACC, which could be beneficial for very
low frequencies [49]). In conclusion, wPM-S can not only offer a reduc-
tion of the computational cost with respect to wPM-T, but also greater
versatility, as it allows to use different setups for different subbands.

4.4 Performance evaluation

Next, the proposed wPM-S algorithm is experimentally evaluated and com-
pared with wPM-T, wPM-F, and with the approach proposed in [47].

4.4.1 Setup and methodology

Setup

The setup described in Section 2.3.1 is used for the evaluations of this
chapter, i.e., a linear array of 8 two-way loudspeakers and single bright and
dark zones in a office-like room with reverberation time T60 = 500 ms. We
consider that the system is operating at a sampling frequency of 6300 Hz,
and that the length of the RIRs is Ih = 2330.

Methodology for computing the filters

In order to compute the optimal filters, let us select the target impulse
response in the m-th control point as

dm (n) =

{
hmlr(n− τd) m ∈ B

0 m ∈ D
, (4.74)

where lr = 3 is the reference loudspeaker, and τd ∈ N is a modelling delay
whose value is indicated in each case. Now, we describe the methodology
used to compute the optimal filters for the different algorithms:

• wPM-T: The filters gl of length Ig are computed using (2.34) and
assuming that the target response dm is given by (4.74). The regu-
larization factor is selected as

β = β0uavg, (4.75)

where uavg is the mean of the eigenvalues of HTWTWH in (2.34),
and β0 is the regularization factor relative to uavg. The value of β0 is
indicated in each case.
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• wPM-F: The optimal filter coefficients Ql(f) are computed for a
set of N = Ih+Ig−1 control frequencies using (2.27), where Dm(f)
is selected as the DFT of dm(n) in (4.74). The coefficients Ql(f) are
set to 0 for control frequencies below 80 Hz. After that, an N -point
IDFT is used to obtain the time-domain responses ql, which are trun-
cated using a rectangular window of size Ig to obtain the filters gl
(as described in Section 2.2.2). A search is carried out to find the
regularization factor β̄f for each control frequency that leads to the
same array effort as the other algorithms with which it is compared.

• wPM-Q: The subband filters gl,k are computed using the model pro-
posed in [47]. It is worth noting that a frequency-domain ACC crite-
rion is used in [47] in each subband, however, we use a time-domain
wPM criterion to make a fair comparison between the different algo-
rithms. The target in the m-th control point for the k-th subband is
selected as the output of the k-th subband of the analysis filter bank
in Fig. 4.14 when it is fed with dm in (4.74). The regularization factor
in the k-th subband is selected as β̇k = β/R2

k, where Rk is defined in
(4.53) and β is obtained using (4.75) for a given β0. When a broad-
band filter of length Ig is considered, we assume that the length of
the equivalent subband filters for the k-th subband is selected as

Ig,k =

⌈
Ig

Rk

⌉
, for 0 ≤ k < K, (4.76)

The analysis and synthesis filters of the QMF structure are computed
with firpr2chfb MATLAB’s function with a passband edge of 0.46.

• wPM-S: The subband filters gl,k are computed using (4.73). The
target dm,k is obtained by computing the subband decomposition of
dm in (4.74), as described in Section 4.2. The regularization factor in
the subbands is selected as β̇k = β, where β is obtained using (4.75)
for a given β0. When a broadband filter of length Ig is considered, we
assume that the length of the equivalent subband filters for the k-th
subband is selected as

Ig,k =

⌈
Ig

R

⌉
, for 0 ≤ k < K/2. (4.77)

The prototype filter for the GDFT filter bank is computed with the
method described in Appendix B.
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Moreover, equal effort is used in all cases to minimize the error in the bright
zone and the energy in the dark zone, i.e., µ = µ̄f = µ̇k = 0.5. For the sake
of simplicity, in some cases we will indicate Ig rather Ig,k in the evaluations
for wPM-S and wPM-Q. The interested reader can obtain Ig,k using (4.76)
and (4.77) for wPM-Q and wPM-S, respectively.

Methodology for evaluating the filters

Up to this point, we have considered that the PSZ system is fed with a unit
impulse δ(n) for computing the metrics in Section 2.2.5. However, filter
banks are linear R-periodically time-varying systems, and then, using a unit
impulse for evaluating their performance is not a good choice. To compute
the metrics in this section, we feed the PSZ system with a signal s of length
6300 samples (i.e., 1 second) from a gaussian sample distribution with mean
µs = 0 and variance σ2

s = 1. By using this signal instead of the unit impulse,
we evaluate the time-variability of the filter bank. The metrics described
in Section 2.2.5 are computed for a set of 32768 equispaced frequencies
with a resolution of 0.1923 Hz. Finally, it is important to consider that
the filter bank introduces an additional delay τf in the system. Then, the
target response for the m-th validation point used to evaluate the filters is
selected as

dv,m (n) =

{
hv,mlr(n− τ) m ∈ B

0 m ∈ D
. (4.78)

where hv,ml is the RIR from the lr-th loudspeaker to the m-th validation
point, and τ ∈ N is the total system delay. For wPM-T and wPM-F
we use τ = τd, while τ = τd + τf is used for wPM-Q and wPM-S. If not
stated otherwise, a 1/3-octave band averaging [76] is used for the frequency-
domain plots to improve the readability of the results.

4.4.2 Influence of the filter bank configuration

Next, we study the influence of the configuration of the GDFT filter bank
on the performance of a PSZ system using wPM-S. In particular, we evalu-
ate configurations with different number of subbands K, resampling factors
R, and prototype filter lengths Ip. We show in Fig. 4.18, as an example,
the magnitude of the spectrum of the analysis filters for two configura-
tions whose prototype filter is computed using the method described in
Appendix B.
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(a) Oversampled, R = 10 (b) Critically-sampled, R = 16

Figure 4.18: Magnitude of the frequency response of the analysis filters
in the positive spectrum for a GDFT filter bank with Ip = 45, K = 16, and
resampling factors R = 10 and R = 16 in (a) and (b), respectively.

First, we present in Fig. 4.19 the Reconstruction Error (RE) and the
Alias-To-Signal Ratio (ASR) for a number of filter bank configurations.
The results show that the higher the prototype filter length Ip and the
oversampling ratio K/R, the lower the RE and the ASR. Then, long pro-
totype filters and high oversampling ratios assure minor magnitude and
phase distortions, and negligible aliasing in the subbands. Also, we can see
that for the same prototype filter length and similar oversampling ratio,
a smaller number of subbands K leads to lower RE and ASR. It is worth
noting that long prototype filters lead to high delay τf for the filter bank.
Moreover, high values of K/R do not reduce the sampling frequency in the

(a) Reconstruction Error (RE) (b) Alias-To-Signal Ratio (ASR)

Figure 4.19: RE and ASR for different GDFT filter bank configurations
in (a) and (b), respectively. The gray dash-dotted line indicates a reference
of -35 dB.
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subbands as much as values of K/R close to 1, and then, higher compu-
tational demands are needed for subband filtering. Hence, it is important
to find a balance such that low enough RE and ASR are obtained for the
filter bank, as well as reasonable computational demands and delays.

Next, we study the performance of wPM-S with different filter bank
configurations. For computing the filters, we consider Ig = 1024, τd = 512,
and β0 = 10−3, and (4.77) is used to compute Ig,k for each configuration.
In Fig. 4.20, the average acoustic contrast and MSE over 125-1500 Hz for

(a) AC (K = 8) (b) MSE (K = 8)

(c) AC (K = 16) (d) MSE (K = 16)

(e) AC (K = 24) (f) MSE (K = 24)

Figure 4.20: Average acoustic contrast and MSE over 125-1500 Hz
for wPM-S with different GDFT filter bank configurations, considering
Ig = 1024, τd = 512, and β0 = 10−3. The thick black line represents
the performance for wPM-T with Ig = 1024, τd = 512, and β0 = 10−3.
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wPM-S are shown for the different configurations. Also, we include in
Fig. 4.20 the performance of broadband filters computed with wPM-T for
Ig = 1024, τd = 512, and β0 = 10−3, which is used here as reference. By
inspecting Fig. 4.20, and comparing it with Fig. 4.19, we can see a direct
relation between the performance of wPM-S and the RE and ASR of the
filter bank. Particularly, the performance of wPM-S converges to the one
for wPM-T when configurations with low values of RE and ASR are used.
This was expected, as we studied in Section 4.3.3 that the model used to
formulate the wPM-S algorithm is a good approximation of the broadband
model if conditions (4.34) and (4.35) are fulfilled, and the RE and the ASR
are directly related to these conditions. We can see that the MSE does
not completely converge to the reference for the critically-sampled cases,
i.e., K = R. This is produced because these configurations present high
RE and ASR, so critical sampling is not a good choice for a PSZ system.
In general, the results in Fig. 4.20 show that the performance of wPM-S
converges to the one for wPM-T when the RE and the ASR are below
-35 dB. Then, we can assume that conditions (4.34) and (4.35) are fulfilled,
and consequently, that wPM-S obtains good performance, if the RE and
the ASR of the filter bank are upper-bounded to -35 dB. This is a very
important finding, since it indicates that we can improve aspects such as
the computational demands or the delay of the filter bank at the cost of
higher RE and ASR, as long as the -35 dB upper-bound is met.

In order to further study the influence of the configuration of the filter
bank on the performance of wPM-S, we present in Fig. 4.21 the acoustic
contrast and the MSE as a function of frequency for two different configu-
rations. Specifically, we study an oversampled configuration with Ip = 45,
K = 16, and R = 10, that meets the -35 dB upper-bound for the RE and
the ASR, and the critically-sampled configuration with Ip = 45, K = 16,
and R = 16, which does not meet the upper-bound. The bandwidth of
the subbands is 393.75 Hz for both configurations. We consider Ig = 1024,
τd = 512, and β0 = 10−3. The results show that the critically-sampled
configuration presents worst performance than the oversampled one, espe-
cially at frequencies near the transitions between subbands, i.e., 393.75,
787.5, 1181.3, 1575, 1968.8, 2362.5, 2756.3, and 3150 Hz. In particular,
degradations of up to 5 and 7 dB in the acoustic contrast and the MSE,
respectively, appear for the critically-sampled case. Then, we can see that a
filter bank configuration with high RE and ASR degrades the performance
of the PSZ system, especially in the transitions between subbands.
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(a) AC (b) MSE

Figure 4.21: Acoustic contrast and MSE as a function of frequency in (a)
and (b), respectively, for wPM-S with Ip = 45, K = 16, and resampling
factors R = 10 and R = 16, considering Ig = 1024, τd = 512, and β0 = 10−3.
We use 1/10 octave band averaging [76] in the plots.

Finally, we show in Fig. 4.22 the computational demands of a PSZ sys-
tem that uses the studied filter bank configurations, considering Ig = 1024
and L = 8. The number of FLOPs required to compute the optimal wPM-S
filters using a Cholesky solver and to filter a frame of 10 ms (63 samples) are
shown in Fig. 4.22a and 4.22b, respectively, for the different filter bank con-
figurations. The operation counts used to obtain the results in Fig. 4.22 can

(a) Computing the filters for wPM-S. (b) Filtering a frame of 10 ms.

Figure 4.22: Number of FLOPs required to compute the optimal wPM-S
filters and to filter a signal of 10 ms in (a) and (b), respectively, for different
GDFT filter bank configurations. We consider Ig = 1024 and L = 8.
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be found in Appendix A. The results show that the filter bank configuration
has a significant influence in the computational demands of the system. We
can see some similar trends in Fig. 4.22a and 4.22b. For example, the closer
K/R is to 1, the lower the computational demands. Moreover, increasing
the number of subbands reduces the computational requirements. Also, se-
lecting a longer prototype filter increases the computational requirements
for filtering the input signals, but it does not significantly influence the
number of FLOPs required to compute the subband filters.

In conclusion, the configuration of the filter bank has a important in-
fluence on the performance and the computational demands of the PSZ
system. We showed that subband filtering can obtain as good performance
as broadband filtering if the RE and the ASR are upper-bounded to -35 dB.
Furthermore, our findings reveal that very low computational demands are
required if filter banks with short prototype filters, high number of sub-
bands, and values of K/R close to 1 are used. However, low values of RE
and ASR can not be achieved in this case. Then, we need to vary the
filter bank parameters if we want to meet the RE and ASR upper-bound.
For example, increasing the length of the prototype filter can reduce the
RE and the ASR, but at the cost of increasing the delay τf introduced by
the filter bank and the computational efforts required for subband filter-
ing. Then, the configuration of the filter bank must be selected taking into
account the performance and delay requirements of the system, and the
available computational capabilities. From now on, we will use the filter
bank configuration with Ip = 45, K = 16, and R = 10, which fulfils the
upper-bound for the RE and the ASR, and leads to a good compromise
between performance, computational demands and delay.

4.4.3 Comparison of subband filters

Now, we compare wPM-S and wPM-Q, i.e., the algorithms that use sub-
band filters. For wPM-S, we use a GDFT filter bank with Ip = 45, K = 16,
and R = 10, whose spectrum is shown in Fig. 4.18a. For wPM-Q, we use
3 QMF stages, i.e., K = 4 subbands, and analysis and synthesis filters
of length Ip = 100. We select this configuration for wPM-Q because it
presents a maximum resampling factor comparable to the one selected for
wPM-S. The transition between the non-uniform subbands of the multi-
stage QMF structure are located in 393.7, 787.5, and 1575 Hz. The spec-
trum of the analysis filters for a QMF stage are shown in Fig. 4.23.
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Figure 4.23: Magnitude of the frequency response of the low-pass and
high-pass analysis filters of length Ip = 100 for a single QMF stage. The
filters are computed with firpr2chfb MATLAB’s function with a passband
edge of 0.46.

Next, evaluation results showing the acoustic contrast, the MSE, and
the array effort for wPM-S and wPM-Q are presented in Fig. 4.24. For the
evaluations, we consider Ig = 1024, τd = 512, and two regularization factors
β0. The values of Ig,k are obtained with (4.76) and (4.77) for wPM-Q and
wPM-S, respectively. In Fig. 4.24, we use 1/10 instead of 1/3 octave band
averaging to determine with higher precision the frequencies where degra-
dations appear. The results show that the performance of both algorithms
is similar for a number of frequencies, but wPM-Q performs worse than
wPM-S in those frequencies that are close to the transition between the
subbands of the multi-stage QMF structure. For example, for β0 = 10−1,
wPM-Q presents 4 dB worse acoustic contrast and MSE than wPM-S near
400 Hz, and also, 4 dB higher array effort. Similar results can be found
for β0 = 10−3. The degradations for wPM-Q are caused by its high alias-
ing levels in the subbands, as critical sampling is used in this case. The
effect of aliasing in the performance of wPM-Q could be mitigated if longer
analysis and synthesis filters were used, but this would lead to higher delay
for the system. In particular, the multi-stage QMF structure with Ip = 100
produces a delay of τf = 693 samples (110 ms), while the GDFT filter bank
with Ip = 45 produces a delay of τf = 44 samples (6.9 ms), i.e., 15.75 times
shorter. Then, the proposed wPM-S algorithm is preferred to wPM-Q for
PSZ systems, not only because it does not suffer performance degrada-
tion in the transition between the subbands, but also, because it leads to
significantly lower system delay.

121



Chapter 4. Subband filtering for PSZ systems

(a) AC
(
β0 = 10−3

)
(b) AC

(
β0 = 10−1

)

(c) MSE
(
β0 = 10−3

)
(d) MSE

(
β0 = 10−1

)

(e) AE
(
β0 = 10−3

)
(f) AE

(
β0 = 10−1

)

Figure 4.24: Acoustic contrast (a, b), MSE (c, d), and array effort (e, f)
as a function of frequency for wPM-S and wPM-Q. We consider Ig = 1024,
τd = 512, and two values of β0 . We use 1/10 octave band averaging [76]
in the plots.
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4.4.4 Comparison of broadband and subband filters

Next, we evaluate the performance of the subband filters computed with
wPM-S, and the broadband filters computed with wPM-T and wPM-F.
For wPM-S, we consider a GDFT filter bank with Ip = 45, K = 16, and
R = 10.

The performance of wPM-T and wPM-S is compared in Fig. 4.25 to
Fig. 4.27 for β0 = 10−1, β0 = 10−3, and β0 = 10−5, respectively. We include
results for a filter length Ig = 512 with modelling delays τd = 64 and
τd = 256 in the left-column of the figures, and for Ig = 2048 with τd = 64
and τd = 1024 in the right-column. For wPM-S, the length of the equivalent
subband filters is obtained with (4.77). The results in Fig. 4.25 and Fig. 4.26
show that the performance of both algorithms is approximately equal for
β0 = 10−1 and β0 = 10−3, respectively. However, Fig. 4.27 reveals that
wPM-S outperforms wPM-T for β0 = 10−5, especially for short modelling
delays. For example, wPM-S presents about 1.5 dB higher acoustic contrast
and 4 dB lower MSE than wPM-T for frequencies below 200 Hz, Ig = 2048,
τd = 64, and β0 = 10−5. These improvements appear because the subband
decomposition of the RIRs adds some small random errors to the wPM-S
optimization, which makes the filters more robust to perturbations and to
mismatches between the RIRs in the control and validation points. Then,
wPM-S presents higher robustness than wPM-T to perturbations, and it
is less sensitive to the regularization factor selection. Similar trends were
reported by Gaubitch and Naylor [101] in the context of room equalization
using GDFT filter banks. From the presented results, we can conclude that
nearly equal performance is achieved with broadband filters computed with
wPM-T and with subband filters computed with wPM-S for mid and high
regularization levels. Furthermore, wPM-S outperforms wPM-T when low
regularization factors are considered. Finally, it is important to highlight
that the system delay is τ = τd for wPM-T, while it is τ = τd + τf for
wPM-S. As a consequence, even if the same modelling delay is selected
for both algorithms, wPM-S leads to an additional delay for the system,
which for the selected filter bank configuration is τf = 44 samples (6.9 ms).
Consequently, wPM-T is preferred to wPM-S for PSZ system that present
very strong delay requirements, but wPM-S may be beneficial for systems
in which the delay only needs to be moderately short, e.g., between 10 and
20 ms.
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(a) AC (Ig = 512, Ig,k = 52) (b) AC (Ig = 2048, Ig,k = 205)

(c) MSE (Ig = 512, Ig,k = 52) (d) MSE (Ig = 2048, Ig,k = 205)

(e) AE (Ig = 512, Ig,k = 52) (f) AE (Ig = 2048, Ig,k = 205)

Figure 4.25: Acoustic contrast (a, b), MSE (c, d), and array effort (e, f)
as a function of frequency for wPM-S and wPM-T. We include results for
a filter length Ig = 512 with modelling delays τd = 64 and τd = 256 in
the left-column, and for Ig = 2048 with τd = 64 and τd = 1024 in the
right-column. A regularization factor β0 = 10−1 is used. For wPM-S, Ig,k

is computed using (4.77).
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(a) AC (Ig = 512, Ig,k = 52) (b) AC (Ig = 2048, Ig,k = 205)

(c) MSE (Ig = 512, Ig,k = 52) (d) MSE (Ig = 2048, Ig,k = 205)

(e) AE (Ig = 512, Ig,k = 52) (f) AE (Ig = 2048, Ig,k = 205)

Figure 4.26: Acoustic contrast (a, b), MSE (c, d), and array effort (e, f)
as a function of frequency for wPM-S and wPM-T. We include results for
a filter length Ig = 512 with modelling delays τd = 64 and τd = 256 in
the left-column, and for Ig = 2048 with τd = 64 and τd = 1024 in the
right-column. A regularization factor β0 = 10−3 is used. For wPM-S, Ig,k

is computed using (4.77).
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(a) AC (Ig = 512, Ig,k = 52) (b) AC (Ig = 2048, Ig,k = 205)

(c) MSE (Ig = 512, Ig,k = 52) (d) MSE (Ig = 2048, Ig,k = 205)

(e) AE (Ig = 512, Ig,k = 52) (f) AE (Ig = 2048, Ig,k = 205)

Figure 4.27: Acoustic contrast (a, b), MSE (c, d), and array effort (e, f)
as a function of frequency for wPM-S and wPM-T. We include results for
a filter length Ig = 512 with modelling delays τd = 64 and τd = 256 in
the left-column, and for Ig = 2048 with τd = 64 and τd = 1024 in the
right-column. A regularization factor β0 = 10−5 is used. For wPM-S, Ig,k

is computed using (4.77).
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Next, we compare the performance of wPM-S and wPM-F. We showed
in Section 2.3.4 that the performance of wPM-F is good when long filters,
long modelling delays, and high regularization factors are considered, so the
use of wPM-S in those cases is not particularly interesting. Then, we focus
next on the case with short modelling delays, in which wPM-S may be a
good alternative to wPM-F. The performance of both algorithms is shown
in Fig. 4.28 for Ig = 2048, τd = 64, and β0 = 10−3. The results indicate
that wPM-S clearly outperforms wPM-F for frequencies below 300 Hz, e.g.,
wPM-F presents 5 dB worse acoustic contrast and MSE around 180 Hz. To
determine whether wPM-S still outperforms wPM-F when the additional

(a) AC (b) MSE

(c) AE

Figure 4.28: Acoustic contrast (a, b), MSE (c, d), and array effort (e, f)
as a function of frequency for wPM-S and wPM-F. A filter length Ig = 2048,
a modelling delay τd = 64, and a regularization factor β0 = 10−3 are used.
For wPM-S, Ig,k is computed using (4.77). We also include the case with
τd = 64+τf for wPM-F, being τf = 44.
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delay produced by the filter bank is considered, we also include in Fig. 4.28
the performance of wPM-F with τd = 64+τf . Increasing the modelling de-
lay from τd = 64 to τd = 64+τf improves the performance of wPM-F. Still,
it presents worse performance than wPM-S for frequencies below 300 Hz,
e.g., wPM-F presents 3 dB lower acoustic contrast and 2.5 dB higher MSE
around 180 Hz. Then, we can conclude that wPM-S outperforms wPM-F
when short modelling delays are considered.

4.4.5 Subband-dependent configuration for wPM-S

Next, we evaluate the versatility provided by wPM-S to use different con-
figurations in each subband of the filter bank. We consider the cases in
which different filter lengths Ig,k, number of loudspeakers L, and solvers
are considered in each subband. For the evaluations, we consider a GDFT
filter bank with Ip = 45, K = 16, and R = 10, a regularization factor
β0 = 10−3, and a modelling delay τd = 64.

Filter length configuration

The length of the filters of a PSZ system is related, among others, with
the reverberation time of the environment, which is frequency dependent
(being usually higher for lower frequencies [129]). Also, the performance
is not very sensitive to the filter length selection for frequencies whose
wavelength is comparable with the size of the zones. For wPM-T and
wPM-F, the frequencies with strongest filter length requirements determine
the length of the filter that must be used for all the operation bandwidth.
However, the versatility of wPM-S allows us to use different filter lengths
in each subband. Then, the length of the subband filters can be selected
for each subband according to the particular requirements in that subband.

Subband index (k) 0 - 1 2 - 7

Filter length (Ig,k) 205 30

Table 4.1: Filter length Ig,k used in each subband for wPM-S with sub-
band dependent filter-length. This configuration is denoted as Ig,k-SBD.

We show in Table 4.1 the subband-dependent filter length configuration
for wPM-S considered next, which we denote as Ig,k-SBD. This configura-
tion employs a filter length Ig,k = 205 for subbands 0 and 1, and Ig,k = 30
for subbands 2 to 7. The performance of wPM-S is shown in Fig. 4.29
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for: 1) Ig,k = 205 in all subbands; 2) Ig,k = 30 in all subbands; and 3) the
Ig,k-SBD configuration shown in Table 4.1. These results show that reduc-
ing the filter length from Ig,k = 205 to Ig,k = 30 produces an important
degradation for frequencies below 800 Hz, with differences in the acoustic
contrast and the MSE of about 3 dB. Also, Ig,k = 30 requires higher array
effort than Ig,k = 205 in these frequencies. Then, long filters are needed to
obtain good performance at low frequencies in this scenario. It is interesting
to note that decreasing the filter length from Ig,k = 205 to Ig,k = 30 does not
significantly influence the performance for frequencies above 800 Hz, which
indicates that long filters are not required in these frequencies. Moreover,

(a) AC (b) MSE

(c) AE

Figure 4.29: Acoustic contrast (a), MSE (b), and array effort (c) as a
function of frequency for wPM-S with different subband filter lengths Ig,k.
We include two configurations where Ig,k = 205 and Ig,k = 30 are used in
all the subbands, and the configuration Ig,k-SBD shown in Table 4.1. The
filters are computed assuming β0 = 10−3 and τd = 64.
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it is relevant to note that Ig,k = 30 presents a slightly better performance
than Ig,k = 205 for frequencies above 2 kHz, which is produced because the
longer filters are less robust to perturbations at higher frequencies. This
means that Ig,k = 205 performs better than Ig,k = 30 if evaluated in the
control points, but Ig,k = 30 is more robust to the mismatches between the
RIRs in the control and validation points at high frequencies, and then,
it performs better if evaluated in the validation points. Finally, Fig. 4.29
shows that the performance with Ig,k-SBD is almost identical to the per-
formance with Ig,k = 205 in all subbands, since reducing the filter length in
subbands 2 to 7 does not notably influence the performance of the system.
Then, the versatility of wPM-S to select different filter lengths in different
subbands is one of its main advantages, because it allows to use long filters
only in those subbands that have stronger filter length requirements, and
short filters in the other subbands that are less sensitive to the filter length
selection.

Loudspeaker configuration

We noted in Section 2.2.1 that the ability of an array of loudspeakers to
focus sound in certain directions at a given frequency is directly related
to its inter-element distance and its aperture. This indicates that a PSZ
system may benefit from using different configurations of loudspeakers in
different frequencies to obtain good performance. This can be achieved with
wPM-S, since its versatility allows us to use different sets of loudspeakers
in each subband, as studied in Section 4.3.4. We show in Fig. 4.30 the sets
of loudspeakers considered next for the evaluations.

(a) Set Lall of 8 loudspeakers

(b) Subset L1 of 6 loudspeakers (c) Subset L2 of 6 loudspeakers

Figure 4.30: Sets of loudspeakers evaluated with wPM-S.
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Subband index (k) 0 - 1 2 - 7

Set of loudspeakers L1 L2

Table 4.2: Set of loudspeakers used in each subband for wPM-S with
subband-dependent loudspeaker selection, where sets L1 and L2 are shown
in Fig. 4.30b-c, respectively. This configuration is denoted as L-SBD.

We show in Table 4.2 the subband-dependent loudspeaker configuration
for wPM-S considered next, which we denote as L-SBD. This configuration
employs the subset L1 of 6 loudspeakers shown in Fig. 4.30b in subbands
0 and 1, and the subset L2 of 6 loudspeakers shown in Fig. 4.30c in sub-
bands 2 to 7. The performance of wPM-S is shown in Fig. 4.31 using:
1) the set Lall of all available loudspeakers in all subbands; 2) the set L1

in all subbands; 3) the set L2 in all subbands; and 4) the L-SBD config-
uration shown in Table 4.2. In the evaluations, we assume that a filter
length Ig,k = 205 is used in all cases. The results reveal that the overall
best performance is achieved when all the available loudspeakers are used
in all subbands. Even so, L1 can achieve similar performance to Lall for
frequencies below 800 Hz, but noticeable worse performance for higher fre-
quencies. For example, L1 leads to 2.5 dB worse acoustic contrast and MSE
than Lall at frequencies near 1200 Hz. This degradation is produced by the
spatial aliasing, which appears at lower frequencies for L1 due to its longer
inter-element distance (see Fig. 4.30b). On the contrary, the performance
of Lall and L2 is quite similar for frequencies above 500 Hz, with differences
lower than 1 dB. However, L2 presents worse performance for frequencies
below 500 Hz, because it presents a shorter array aperture (see Fig. 4.30c).
Moreover, we can observe in Fig. 4.31 that the performance achieved with
L-SBD is broadly similar to the one with Lall in all the studied frequency
range, with some degradations of up to 1 dB in a small subset of frequen-
cies. Thus, we can conclude that, according to the desired performance
and to the available computational capabilities, the flexibility of wPM-S
allows us to select the most convenient set of loudspeakers for each sub-
band. Finally, it is important to mention that the versatility of wPM-S is
particularly beneficial for cases where multiple arrays of loudspeakers are
used in the system, since each array can be selected to operate only in the
subbands in which it has suitable directional properties.

131



Chapter 4. Subband filtering for PSZ systems

(a) AC (b) MSE

(c) AE

Figure 4.31: Acoustic contrast (a), MSE (b), and array effort (c) as a
function of frequency for wPM-S with different loudspeaker configurations.
We include results for the cases in which the sets of loudspeakers shown in
Fig. 4.30, i.e., Lall, L1, and L1, are used in all subbands, and for the con-
figuration L-SBD shown in Table 4.2. The filters are computed assuming
Ig,k = 205, β0 = 10−3, and τd = 64.

Solver configuration

So far, we have assumed that a Cholesky solver is used to compute the exact
optimal subband filters for wPM-S. However, the PSZ system could benefit
from using different solvers in each subband. In particular, the superfast
solver [79] seems a good option when dealing when long filters in certain
subbands. Next, we evaluate the use of the superfast solver to compute
the subband filters for wPM-S using different approximation orders in each
subband.
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We show in Table 4.3 the subband-dependent solver configuration for
wPM-S, which we denote as P -SBD. This configuration employs the su-
perfast solver to compute the subband filters with an approximation order
P = 2000 in subband 0, and P = 10 in subbands 1 to 7. The performance

Subband index (k) 0 1 - 7

Approximation order (P ) 2000 10

Table 4.3: Approximation order in each subband for wPM-S using the
superfast solver [79]. This configuration is denoted as P -SBD.

(a) AC (b) MSE

(c) AE

Figure 4.32: Acoustic contrast (a), MSE (b), and array effort (c) as
a function of frequency for wPM-S with different solvers. We include the
cases in which the Cholesky solver and the superfast solver [79] with P = 10
are used in all subbands, and the configuration P -SBD shown in Table 4.3.
The filters are computed assuming Ig,k = 205, β0 = 10−3, and τd = 64.
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of wPM-S is shown in Fig. 4.32 using: 1) the Cholesky solver in all sub-
bands; 2) the superfast solver with P = 10 in all subbands; and 3) the
P -SBD configuration shown in Table 4.3. We assume that a filter length
Ig,k = 205 and the L = 8 available loudspeakers are used in all subbands.
In Fig. 4.32, the overall best performance is achieved when the Cholesky
solver is used in all subbands. The superfast solver with P = 10 offers
almost identical performance to the Cholesky solver for frequencies above
350 Hz, but worse performance for lower frequencies, e.g., it presents 4 dB
lower acoustic contrast and higher MSE than the Cholesky solver for fre-
quencies around 200 Hz. This fact indicates that the superfast solver can
accurately approximate the optimal filters with low orders P at mid and
high frequencies, whereas high orders are required for low frequencies. The
motivation is that the initial estimate for the superfast solver is very close
to the optimal solution for mid and high frequencies, but it is quite dif-
ferent for low frequencies. Moreover, we can observe in Fig. 4.32 that the
performance achieved with P -SBD is almost identical to the one with the
Cholesky solver. Then, the versatility of wPM-S allows us to decrease the
approximation order for the superfast solver in the mid and high-frequency
subbands with negligible performance degradations.

4.4.6 Computational complexity

Next, we compare the computational complexity of wPM-T, wPM-F, and
wPM-S for a PSZ system with L = 8 loudspeakers. We show in Fig. 4.33a
and 4.33b the number of FLOPs and the computation time, respectively,
required to compute the optimal filters as a function of the filter length for
the following cases:

1. wPM-T with the Cholesky solver.

2. wPM-T with the superfast solver [79] and P = 2000.

3. wPM-F with the Cholesky solver for each frequency bin.

4. wPM-S with the Cholesky solver (the same filter length and number
of loudspeakers are used in all subbands).

5. wPM-S with the Cholesky solver and config. Ig,k-SBD in Table 4.1.

6. wPM-S with the Cholesky solver and config. L-SBD in Table 4.2.

7. wPM-S with the superfast solver [79] and config. P -SBD in Table 4.3.
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(a) FLOPs (b) Computation time

Figure 4.33: Number of FLOPs and computation time and in (a) and (b),
respectively, required to compute the optimal filters for wPM-T, wPM-F,
and wPM-S as a function of the filter length. In the x-axis, we use the
notation Ig (Ig,k), where Ig is the length of the broadband filters and Ig,k

is the length of the equivalent subband filters (obtained with (4.77)).

In the evaluations, when a specific filter length Ig is considered for wPM-T
and wPM-F, (4.77) is used to obtain the length Ig,k of the equivalent sub-
band filters for wPM-S. Moreover, for Ig,k-SBD the filter length in the
x-axis is only used in subbands 0 and 1, whereas Ig,k = 30 is used in
the other subbands. The operation count for the different algorithms can
be found in Appendix A. In order to measure the computation time, the
different algorithms were implemented with C language, as described in Ap-
pendix A, and ran from MATLAB R2018a using mex functions [96] on an
Intel Core i7-7700 processor at 3.60 GHz. The measurement was computed
as the mean over 50 executions. It is worth mentioning that the number of
FLOPs and the computation time required to compute the subband com-
ponents of the RIRs and the target responses for wPM-S are taken into
account in Fig. 4.33a and 4.33b, respectively.

The results in Fig. 4.33a indicate that wPM-F is less computationally
demanding than wPM-T and wPM-S in all cases. Also, we can see that
wPM-S without subband-dependent configuration requires lower number of
FLOPs than wPM-T for filter lengths smaller than 1000, however, wPM-T
with the superfast solver requires less FLOPs for longer filters. The results
in Fig. 4.33a show that all the subband-dependent configurations can ef-
fectively reduce the number of FLOPs required by wPM-S. Specifically,
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L-SBD reduces by a factor of 2 the number of FLOPs required by wPM-S,
and presents computational savings with respect to wPM-T for filter lengths
smaller than 1500. Similarly, Ig,k-SBD reduces by a factor of 3 the number
of FLOPs required by wPM-S, and presents computational savings with
respect to wPM-T for filter lengths smaller than 1750. Moreover, P -SBD
leads to very significant computational improvements and requires lower
number of FLOPs than wPM-T with any of the considered solvers for all
the studied filter lengths. In particular, wPM-S with P -SBD requires about
4.5 times less FLOPs than wPM-T with the superfast solver. The compu-
tation time measurements in Fig. 4.33b show slightly different trends to
those in Fig. 4.33a, particularly in the cases in which the superfast solver is
involved. This may be produced because other computational aspects than
the number of FLOPs have a significant influence on the running time of
the superfast solver, e.g., memory access and displacements. We can see in
Fig. 4.33b that Ig,k-SBD is the configuration of wPM-S that lowest com-
putation time exhibits. It presents substantially lower computation time
than wPM-T with any of the considered solvers for all the studied filter
lengths. For example, it exhibits about 5.5 and 2.5 times less computation
time than wPM-T with the superfast solver for filter lengths 1000 and 2500,
respectively. Moreover, let us note that the superfast solver with P = 2000
may not be suitable to compute the filters for wPM-T when low regula-
rization factors are considered. For instance, we showed in Section 3.6.3
that values of P of about 105 are required to obtain a good approximation
of the filters for β0 = 10−5. Then, in this case the computational savings
offered by wPM-S with respect to wPM-T are even more significant, since
the computational demands of the superfast solver are approximately 50
times higher for P = 105 than for P = 2000. All these facts indicate that
wPM-S with a proper subband-dependent configuration can offer substan-
tial computational complexity savings with respect to wPM-T.

An important aspect for PSZ systems is the computational complexity
required to filter the input audio signals, as real-time operation is usually
needed. Next, we compare the computational demands of broadband fil-
tering (for wPM-T and wPM-F) and subband filtering with a GDFT filter
bank with Ip = 45, K = 16, and R = 10 (for wPM-S). We show in Fig. 4.34
the number of FLOPs required by a system with L = 8 loudspeakers to
filter an input signal of 63 samples (i.e., a frame of 10 ms). We consider
the broadband filtering based on the FFT [130], and the polyphase im-
plementation of the GDFT filter bank [100] for subband filtering. We also
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Figure 4.34: Number of FLOPs to filter a frame of 10 ms (63 samples)
using broadband and subband filtering as a function of the filter length.
In the x-axis, we use the notation Ig (Ig,k), where Ig is the length of the
broadband filters and Ig,k is the length of the equivalent subband filters
(obtained with (4.77)).

include in Fig. 4.34 the results for subband filtering using the configurations
Ig,k-SBD and L-SBD shown in Table 4.1 and 4.2, respectively. The results
show that subband filtering requires slightly higher number of FLOPs than
broadband filtering when the same configuration is used in all subbands.
However, subband filtering with L-SBD, and specially, with Ig,k-SBD is
capable of reducing the number of FLOPs required by broadband filtering.
Particularly, subband filtering with Ig,k-SBD requires about 2.6 times less
FLOPs than broadband filtering for a filter length of 2500.

From these results, we can conclude that the versatility provided by
wPM-S is a clear advantage for PSZ systems. We showed that reducing
the filter length, the number of loudspeakers, and the approximation order
in certain subbands does not produce noticeable degradations in the per-
formance of wPM-S, and leads to very important computational savings.
Particularly, wPM-S with an appropriated subband-dependent configura-
tion can present significantly lower computational complexity than wPM-T.
Still, wPM-S requires higher computational efforts than wPM-F, although
it notably outperforms wPM-F for short system delays. The suitability
of an algorithm for a PSZ system depends on its specific requirements and
available capabilities. For example, wPM-S is a good candidate for dynamic
systems requiring low latency, as it presents lower computational demands
than wPM-T and better performance than wPM-F for short system delays.
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4.5 Summary

In this chapter, we proposed using subband filtering with a GDFT filter
bank for PSZ systems. In this regard, we presented a novel subband for-
mulation of the PSZ problem that makes use of the subband decomposition
algorithm proposed in [102], which is further optimized in this work to re-
duce the required number of matrix inversions. The main advantage of the
presented subband formulation is that it allows us to formulate independent
optimization problems for each subband of the filter bank. We proposed
the wPM-S algorithm to compute the optimal subband filters, which is
based on formulating a time-domain optimization for each subband using
the wPM criterion. The proposed algorithm was experimentally evaluated
in a room with reverberation time T60 = 500 ms.

First, we studied the influence of the configuration of the filter bank on
wPM-S. We experimentally determined that good performance is achieved
when the RE and the ASR of the filter bank are below -35 dB. In particu-
lar, long prototype filters, low number of subbands, and high oversampling
factors, assure low RE and ASR, but also lead to systems with long de-
lays and high computational demands. Hence, the configuration of the
filter bank must be selected taking into account the performance and delay
requirements of the system, and the available computational capabilities.

Next, we compared wPM-S with the algorithm proposed in [47], which
also makes use of subband filtering. The evaluation results showed that
wPM-S outperforms the algorithm in [47], since this presents bad perfor-
mance in the edges of the subbands due to its high aliasing levels. Also,
the system delay for wPM-S is much shorter than for the algorithm in [47].

Later, we compared the performance of wPM-T, wPM-F, and wPM-S.
The evaluation results indicated that wPM-S and wPM-T offer almost equal
performance for moderately high regularization factors, although wPM-S
presents an additional delay in the system that is introduced by the filter
bank. Also, we showed that wPM-S outperforms wPM-T for low regu-
larization factors. The motivation is that wPM-S offers higher robustness
to perturbations thanks to the small random errors produced by the sub-
band decomposition of the RIRs. Furthermore, we determined that wPM-S
presents better performance than wPM-F when short modelling delays are
considered, even when the additional delay produced by the filter bank is
considered for wPM-F. All these results indicate that, although wPM-T
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is preferred for systems requiring extremely low delays, wPM-S is a good
alternative to wPM-T, and is preferred to wPM-F, for systems with more
relaxed delay requirements, e.g, for system delays between 10 and 20 ms.

Afterwards, we considered the versatility offered by wPM-S to use dif-
ferent configurations in each subband. First, we evaluated wPM-S with
different filter lengths in each subband, and showed that the performance
is not degraded if short filters are used in the high-frequency subbands.
Furthermore, we evaluated the performance of wPM-S with different sets
of loudspeakers in each subband. The results revealed that reducing the
number of loudspeakers in certain subbands may not produce significant
degradations in the performance of the system. Moreover, we investigated
the use of the superfast solver [79] to compute the filters for wPM-S with
different approximation orders in each subband. The results indicated that
good performance is obtained even if low approximation orders are selected
for the high-frequency subbands, however, high orders are required in the
low-frequency subbands. Then, PSZ systems benefit from the versatility
offered by wPM-S, which allows to select shorter filters, lower number of
loudspeakers, and lower approximation orders in certain subbands with
negligible performance degradation.

Finally, the computational complexity of wPM-S was evaluated and
compared with wPM-T and wPM-F. First, we showed that the compu-
tational savings offered by wPM-S are minor when the same filter length,
the same set of loudspeakers, and the same solver are used in all subbands.
However, very important computational savings are obtained when the ver-
satility of wPM-S is exploited to use suitable configurations in each sub-
band. In that case, wPM-S requires substantially lower computational ef-
forts than wPM-T to compute the filters, even when the superfast solver [79]
is used for wPM-T. Still, wPM-S presents higher computational complex-
ity than wPM-F. Moreover, subband filtering requires lower computational
efforts than broadband filtering when proper filter lengths are selected for
each subband. From these results, we can conclude that wPM-S is a good
alternative to wPM-T and wPM-F for PSZ systems, since it presents bet-
ter performance than wPM-F for short system delays and it requires lower
computational efforts than wPM-T.
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Chapter 5

Weighted Pressure Matching
with windowed targets AA

In Chapter 2 we reviewed the state-of-the-art algorithms to compute the
filters for PSZ systems, and concluded that weighted Pressure Matching
(wPM) is a good candidate for these systems because it can offer a trade-
off between reproduction error in the bright zone and acoustic contrast.
The selection of the target responses for the bright zone is a key point for
wPM, since different targets can lead to different levels of acoustic con-
trast. However, this is an aspect that, to the best of our knowledge, has
not been previously studied in the literature. The most usual approach
in reverberant environments is to select the target for the bright zone as
the Room Impulse Response (RIR) produced by one of the loudspeakers of
the system [39, 52, 57, 60, 131]. This approach aims to synthesize all the
direct and reverberant components of the RIR in the bright zone while min-
imizing the energy in the dark zone. The late reverberation components,
however, can be assumed to be diffuse for frequencies above the Schroeder
frequency. We will show that there is no set of filters that can achieve high
energy differences for the diffuse reverberant components in the bright and
dark zones. Therefore, trying to synthesize these components in the bright
zone while minimizing their energy in the dark zone does not give the best
overall performance. Then, we propose a variation of the approach used
to select the targets for wPM, in which the target impulse responses for
the bright zone are windowed. By windowing the targets, we can control
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which reverberant components are synthesized and which are minimized in
the bright zone. We present experimental evaluations that indicate that
windowing the target for the bright zone can lead to acoustic contrast im-
provements with respect to the case without windowing. In general, it
seems that the optimal window length is frequency and scenario depen-
dent, but the improvements that can be obtained are more significant for
mid-high frequencies. Moreover, the results show that the higher the room
reverberation, the higher the performance improvements obtained by win-
dowing the target. The wPM algorithm can be formulated in time-domain
[39], frequency-domain [50], and subband-domain (as proposed in Chap-
ter 4). For the evaluations, because of its simplicity for the comparison
of the different targets, we will use the frequency-domain formulation of
wPM, i.e., wPM-F. Nevertheless, our findings can be generalized to the
other formulations of wPM.

In this chapter, we first review the target selection for wPM, and then,
we propose the novel selection in which the target in the bright zone is win-
dowed. Afterwards, the proposed target selection is experimentally evalu-
ated in a room with reverberation time T60 = 500 ms. Finally, experimental
evaluations for the proposed approach in a damped room with reverbera-
tion time T60 = 180 ms are presented.

5.1 Target selection

The target selected for the bright zone heavily influences the performance
of wPM, however, this is an aspect that has not been extensively studied
in the PSZ related literature. Some works, as [132, 133], proposed selecting
the target in the bright zone as the response produced by a plane wave
arriving from a certain direction. However, this target is very restrictive,
because it not only aims to cancellate all the reverberation components in
the bright zone, but also, it targets the equalization of the response of the
loudspeakers. The performance can be heavily degraded when using such
a restrictive target, especially in reverberant environments, because in this
case low error in the bright zone can only be achieved at the cost of impor-
tant degradations in the acoustic contrast. The most common approach in
reverberant environments is to select the target impulse responses for the
bright zone as the delayed RIRs from one of the loudspeakers of the system
to all of the control points in the bright zone [39, 52, 57, 60, 131]. Next, we
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review this approach, and later, we propose an alternative method in which
the targets for the bright zone are windowed. It is important to mention
that, although we will evaluate the performance of the different targets
using wPM-F, we present expressions for the impulse response of the tar-
gets, i.e., dm(n), rather than their frequency response, i.e., Dm(f). This
is because the expressions for the impulse responses are more meaningful
for our study. In any case, the expressions for the target impulse responses
dm(n) presented next can be directly used with the three formulations of
wPM by applying the following procedures:

• For wPM-F, the vector d̄f in (2.22) is formed using the DFT of dm.

• For wPM-T, the vector dm in (2.29) is formed using dm.

• For wPM-S, the vector ḋm,k in (4.67) is formed using the subband
components of dm.

Also, it is important to mention that in this chapter the target response for
the dark zone is always selected as a null response, i.e., dm(n)=0 for m ∈ D.

5.1.1 Non-windowed targets

Next, we review the approach used in [39, 52, 57, 60, 131] to select the
target response for the bright zone. This approach is based on choosing the
target for the bright zone as the delayed RIRs from one of the loudspeakers
to all of the control points in the bright zone, i.e.,

dm(n) = hmlr(n− τd), for m ∈ B, (5.1)

where lr ∈ {0, . . . , L−1} is the index of the reference loudspeaker, and τd is
the modelling delay. We present in Fig. 5.1 an schematic to illustrate the
main idea behind the target (5.1). In the schematic, we show an example
of the RIRs between the reference loudspeaker and one control point in
the bright and dark zones, and also, the targets that we aim to achieve at
these control points using the target (5.1). It is clear that with (5.1) we
want to synthesize the direct propagation component and all the reverber-
ant components in the bright zone while minimizing the energy of all the
components in the dark zone.
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5.1.2 Windowed targets

Now, we present the proposed approach to select the targets for the bright
zone. First, let us define

wIw(n) =

{
window values for − Iw < n < Iw

0 otherwise
, (5.2)

which is a generic window function of length 2Iw−1 centered on n = 0. For
the sake of simplicity, from now on we are going to refer to the length of
the window as Iw, i.e., the number of positive-time samples of the window.
Next, we alternatively propose to define the target impulse response in the
control points of the bright zone as

dm(n) =




wIw(n−τd−τmlr) hmlr(n−τd) if Iw <∞

hmlr(n−τd) otherwise
, for m ∈ B, (5.3)

in which the window wIw is time-shifted such that its center is located
on n = τd+τmlr , being τmlr the propagation delay corresponding to the
direct propagation component of hmlr . First, it is relevant to note that
the targets in (5.1) and (5.3) are equivalent when Iw =∞. However, (5.3)
has the advantage that, by selecting the window length, we can choose
the reverberant components that we want to synthesize and which should
be suppressed in the bright zone. Then, when selecting a window length
that removes certain reverberant components, we are aiming to achieve de-
reverberation in the bright zone. We present in Fig. 5.2 a schematic to
illustrate this effect. There, we show an example of the RIRs between the
reference loudspeaker and one control point in the dark and bright zones,
and also, the targets that we aim to achieve at these control points using
a window of length Iw. In the schematic we can see that, for time instants
within the window, we seek to synthesize the direct propagation component
and some early reflections in the bright zone while minimizing the energy
in the dark zone. However, for time instants after the end of the window
we want to minimize the energy of the reverberant components both in the
bright and dark zones.

So far, it is not clear whether windowing the target responses in the
bright zone will lead to performance improvements. Next, we give some in-
tuition to better understand why the performance may be improved. First,
let us note that usually the early part of the RIRs is formed by the direct
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Figure 5.1: Schematic to illustrate the target selection used in [39, 52,
57, 60, 131]. The upper plots represent the RIRs between the reference
loudspeaker and one control point in the bright and dark zones, and the
lower plots represent the selected targets at these control points.

Figure 5.2: Schematic to illustrate the proposed target selection. The
upper plots represent the RIRs between the reference loudspeaker and one
control point in the bright and dark zones, and the lower plots represent
the windowed targets at these control points using a window of length Iw.

propagation component and some sparse early reflections [134]. However,
the later part of the RIRs is formed by a large number of contributions from
waves arriving from all directions, so these components can be considered
diffuse, especially above the Schroeder frequency [129]. Now, let us denote
H̄b,f and H̄d,f as the matrices containing the room frequency responses at

145



Chapter 5. Weighted Pressure Matching with windowed targets

frequency f between all loudspeakers and control points in the bright and
dark zones, respectively, which can be decomposed as

H̄b,f = H̄dir
b,f + H̄early

b,f + H̄diff
b,f , (5.4)

H̄d,f = H̄dir
d,f + H̄early

d,f + H̄diff
d,f , (5.5)

where H̄dir
b,f , H̄early

b,f , and H̄diff
b,f , are the frequency responses at frequency

f related to the direct propagation components, the early reflections, and
the late diffuse components of the RIRs in the bright zone, respectively.
Similarly, H̄dir

d,f , H̄early
d,f , and H̄diff

d,f , are the frequency responses at frequency
f related to the direct propagation components, the early reflections, and
the late diffuse components of the RIRs in the dark zone, respectively. From
the ACC algorithm [61], we know that the maximum acoustic contrast that
can be achieved between the diffuse components in the bright and dark
zones is given by the highest eigenvalue of matrix

((
H̄diff

d,f

)H
H̄diff

d,f

)−1 (
H̄diff

b,f

)H
H̄diff

b,f . (5.6)

It is important to note that the diffuse reverberation components can be
assumed to be of similar energy but uncorrelated between the different
control points [129], and then, we can assume that [45]

(
H̄diff

b,f

)H
H̄diff

b,f ≈ σI, (5.7)

(
H̄diff

d,f

)H
H̄diff

d,f ≈ σI, (5.8)

where σ is the energy of the diffuse field in the room. Therefore, using
(5.6) to (5.8), we determine that the maximum acoustic contrast that can
be achieved between the diffuse components in the bright and dark zones
is approximately 1 (in linear units). This is an important fact, since it
reveals that there is no set of filters that is able to provide significant
energy differences between the diffuse components in the bright and dark
zones. Thus, selecting a target that tries to synthesize all of the reverberant
components in the bright zone, including the diffuse components, is not
a wise choice, because the previous derivation indicates that the diffuse
components can not be synthesized in the bright zone and at the same
time suppressed in the dark zone. Then, it seems a better option to select
a target that aims to suppress the diffuse components both in the bright
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and dark zones. This can be achieved with the proposed target (5.3) by
properly selecting the window length Iw. Later, we will present evaluation
results that show that improvements in the performance can be achieved
by windowing the target, i.e., aiming the minimization of the energy of the
late reverberant components in both zones.

Finally, let us point out that windowing has been previously used in
the context of PSZ systems in [37, 66, 135]. In these works, the authors
proposed to window the RIRs used to form matrix H̄f in (2.15) for wPM-F.
The effect of windowing in these cases is similar to regularization, as it
makes the filters more robust to inaccuracies in the RIRs. The approach
previously proposed is conceptually different, since no windowing is applied
to the RIRs used to form matrix H̄f , but windowing is instead applied to
the targets for the bright zone used to form d̄f in (2.22) for wPM-F.

5.2 Kurtosis as a measure of diffuseness

Previously, we discussed that the proposed target selection may lead to
performance improvements because it allows us to minimize the energy of
the diffuse reverberant components in the bright and dark zones. Then, an
important point is to determine when we can consider that the RIRs are
diffuse, since this will allow us to choose a suitable window length Iw to
compute the target (5.3).

The Kurtosis of a Probability Density Function (PDF) of a random
variable x is defined as [136]

Kx =
E
{

(x− µx)4
}

σ4
x

− 3, (5.9)

where µx and σx are the mean value and the standard deviation of x, re-
spectively. The Kurtosis is a measure of the tailedness of the probability
distribution, e.g., the Kurtosis of a Gaussian PDF is 0. Jeong [137] showed
that the diffuseness of the late reverberation is closely related to the Kur-
tosis of the RIRs. Particularly, Jeong [137] demonstrated that the early
part of the RIRs, containing the direct propagation component and strong
deterministic reflections, is unlikely to have a Gaussian distribution, so it
presents high Kurtosis levels. However, the late diffuse components of the
RIRs present Kurtosis values close to 0. The motivation is that the reflec-
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tion density is high for the diffuse part of the RIRs, which makes it more
likely to follow a Gaussian PDF. Then, in this work we use the Kurtosis
of the RIRs to determine their diffuseness. In particular, we estimate the
average Kurtosis of all the RIRs of the system as

Kh(n) =
1

ML

∑

∀m,∀l




1
Is

Is−1∑

r=0

(
hml(n+r)− µ(n)

ml

)4

(
σ

(n)
ml

)4 − 3



, (5.10)

where Is is the segment length used to estimate the Kurtosis of the RIRs in

time n, and µ
(n)
ml and σ

(n)
ml are the mean value and the standard deviation

of hml, respectively, over the interval n, . . . , n+Is−1. Let us note that we
consider that all the RIRs hml are aligned before computing the Kurtosis,
such that their direct propagation component is located at sample index
n = 0. In the following sections, we will show empirically that the Kurtosis
of the RIRs is a good indicator for the selection of the window length for
the target (5.3).

5.3 Performance evaluation in an office-like room

In this section, the proposed target selection is experimentally evaluated in
an office-like room. The room is not acoustically treated, and it includes
common office furniture, e.g., tables, chairs, cabinets, shelves, etc. We
selected this room for the experiments to evaluate the performance of the
proposed approach in a realistic environment.

5.3.1 Setup and methodology

Setup

The setup described in Section 2.3.1 is used for the evaluations of this
section, i.e., a linear array of 8 two-way loudspeakers and single bright and
dark zones in a office-like room with reverberation time T60 = 500 ms. We
consider that the system is operating at a sampling frequency of 6300 Hz,
and that the length of the RIRs is Ih = 2330.
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Methodology for computing the filters

The filters of length Ig = 2048 are computed using wPM-F. In particular,
the frequency responses Ql(f) are computed for a set of N = Ih+Ig−1 con-
trol frequencies using (2.27). The coefficients Ql(f) are set to 0 for control
frequencies below 80 Hz. After that, an N -point IDFT is used to obtain
the time-domain responses ql, which are truncated using a rectangular win-
dow of size Ig to obtain the filters gl (as described in Section 2.2.3). The
weighting factor is set to µ̄f = 0.5 for all frequencies, if not indicated oth-
erwise. The regularization factor β̄f is selected for each control frequency
such that the array effort is upper bounded to a certain maximum value
AEmax, which is indicated in each case.

Figure 5.3: Example of the causal part of a Tukey window with Iw = 76
(12 ms) and cosine fraction α = 0.3.

For computing the filters, the target impulse response dm for the m-th
control point in the bright zone is computed using the proposed approach,
i.e., using (5.3), where the reference loudspeaker is selected as lr=3 and the
modelling delay is τd = 1024. Moreover, in (5.3) we select wIw as a Tukey
window [138] with cosine fraction α=0.3, whose length Iw is indicated in
each case. We show in Fig. 5.3 an example of the causal part of a Tukey
window with Iw=76 (12 ms). We select a Tukey window because it does
not modify the amplitude of the first early-reflections of the target and it
leads to a smooth transition between the reverberant and null components.
Other types of window have also been investigated, but gave similar results.
Furthermore, for Iw <∞ we apply an octave band equalization to the tar-
get to obtain the same energy per octave band in the bright zone as for the
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(a) (b)

Figure 5.4: Target impulse response and target frequency response in (a)
and (b), respectively, in the 0-th control point of the bright zone for two
window lengths. The modelling delay is not considered in (a).

case with Iw =∞. The motivation is that the energy of the targets is not
equal for different window lengths, so the equalization is required to obtain
the same energy for the target no matter which window length is used.
We show in Fig. 5.4a and 5.4b examples of target impulse and frequency
responses, respectively, in the bright zone with Iw = 76 and Iw =∞.

Methodology for evaluating the filters

For evaluating the filters, the metrics described in Section 2.2.5 are com-
puted for a set of 16384 equispaced frequencies with a resolution of 0.3845 Hz
assuming that the input signal is a unit impulse. The target response dv,m

in the m-th validation point is selected using (5.3) but replacing hmlr by
hv,mlr . An important point is that the same criterion is used to compute
and to evaluate the filters, meaning that whenever a window wIw is em-
ployed to obtain the target dm that is used to compute the filters, the same
window wIw is employed to obtain the target dv,m that is used to evaluate
those filters. To improve the readability of the results, 1/3-octave band
averaging [76] is used for all frequency-domain plots.

5.3.2 Kurtosis of RIRs

Before evaluating the performance of the proposed approach, we study
the Kurtosis of the measured RIRs in the office-like room. We show in
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Fig. 5.5 the average Kurtosis of the RIRs, which is computed with (5.10)
considering a segment length Is = 126, i.e., 20 ms, as suggested in [137]. We
can observe that the Kurtosis exhibits high values for the early part of the
RIRs, where the direct propagation component and the early reflections are
located, and drops to values below 3 after about 18 ms. This fact indicates
that the RIRs start to behave randomly following a Gaussian PDF after
18 ms, so the reverberant components for this scenario can be assumed
approximately diffuse after this time.

Figure 5.5: Average Kurtosis of the RIRs in the office-like room.

5.3.3 Evaluation of windowed targets

Next, we evaluate the performance of the windowed targets proposed in
(5.3). In particular, we study the effect on the performance of the window
length Iw used to compute the target. Let us highlight that the proposed
approach is equivalent to the non-windowed target in (5.1) if Iw =∞.

We show in Fig. 5.6 the performance of the proposed approach as a
function of the window length Iw and frequency in terms of: acoustic con-
trast (in Fig. 5.6a-b), MSE in the bright zone (in Fig. 5.6c-d), and array
effort (in Fig. 5.6e-f). In Fig. 5.6, the metrics in the left and right columns
are computed with effort constraints AEmax = 10 dB and AEmax = 0 dB,
respectively. First, we can see that the performance for both effort con-
straints is equal for frequencies above 800 Hz. These results agree with
those in Chapters 2 to 4, which indicated that the optimization is less
sensitive to the regularization factor for frequencies whose wavelength is
comparable with the size of the zones. For frequencies below 800 Hz, the
performance is different for the two effort constraints, however, the effect
of the window length in the performance is similar in both cases. Then, the
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(a) AC (AEmax = 10 dB) (b) AC (AEmax = 0 dB)

(c) MSE (AEmax = 10 dB) (d) MSE (AEmax = 0 dB)

(e) AE (AEmax = 10 dB) (f) AE (AEmax = 0 dB)

Figure 5.6: Performance of the proposed target selection in (5.3) as a
function of the window length and frequency in terms of: acoustic contrast
in (a, b), MSE in the bright zone in (c, d), and array effort in (e, f). For
the left-column figures AEmax=10 dB is selected, and AEmax=0 dB for the
right-column figures.
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following analysis is valid for the two studied constraints. We can see in
Fig. 5.6c-d that very short windows (of 1 ms or less) lead to an MSE that
is at least 10 dB worse than for longer windows, while the acoustic contrast
is similar (in Fig. 5.6a-b). This degradation appears because very short
windows aim to suppress the first early reflections, and also, to equalize
the response of the reference loudspeaker in the bright zone, which is too
restrictive and leads to important errors in the bright zone. Also, we can
see that, in general, short windows of about 6 to 18 ms present a signif-
icantly higher acoustic contrast than longer windows. It is interesting to
note that there exists a close relation between Fig. 5.5 and Fig. 5.6. Partic-
ularly, the acoustic contrast in Fig. 5.6a-b starts to deteriorate for window
lengths greater than about 18 ms and the Kurtosis of the RIRs also drops
18 ms after the arrival of the direct propagation components. Hence, this
reveals that improvements in the acoustic contrast may appear if the se-
lected window removes from the target for the bright zone the reverberant
components that present approximately diffuse behaviour. Furthermore,
these results indicate that the Kurtosis provides a useful metric to select
the window length Iw for computing the windowed target (5.3). Moreover,
Fig. 5.6 shows that the improvements in the acoustic contrast obtained with
short windows are not at the cost of substantially higher MSE for frequen-
cies in the range 150-200 Hz, 400-500 Hz, and 800-1500 Hz. However, the
improvements in the acoustic contrast for short windows are at the cost of
worse MSE for frequencies 200-400 Hz, 500-800 Hz, and 1500-3150 Hz. For
these frequency bands, higher acoustic contrast may be achieved for long
windows by tuning the weighting parameter µ̄f for wPM-F. Therefore, at
this point it is not yet clear if real improvements in the performance are
achieved with short windows in all the studied frequencies.

To fairly determine which window length is able to provide higher acous-
tic contrast, we must compare their performance for the case in which their
MSE is equal. In that case, improvements in the acoustic contrast for one
window length compared to another are not at the cost of higher MSE. With
that aim, we compare next the performance of the following configurations:

• Windowed Target (WT): Iw = 76 (12 ms) and µ̄f = 0.5.

• Full Target (FT): Iw =∞ and µ̄f = 0.5.

• Full Target with Frequency Dependent µ̄f (FT-FD): Iw =∞ and µ̄f
selected as shown in Fig. 5.7 to achieve the same MSE as WT.
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Figure 5.7: Weighting factor µ̄f selected for FT-FD.

The performance of the three configurations is shown in Fig. 5.8 as a func-
tion of frequency in terms of: acoustic contrast (in Fig. 5.8a), MSE in
the bright zone (in Fig. 5.8b), and array effort (in Fig. 5.8c). We only
present results for AEmax = 10 dB because we can see in Fig. 5.6 that
the effect of the window length on the performance is similar for different
effort constraints. In Fig. 5.8, we see that WT can offer higher acoustic
contrast than FT and also lower or equal MSE in certain frequency bands,
e.g., 150-200 Hz, 400-500 Hz, and 800-1500 Hz. This means that a longer
window cannot offer better performance than Iw = 76 for these frequen-
cies, neither in terms of acoustic contrast nor in terms of MSE (even if we
tune µ̄f ). Next, if we compare WT and FT-FD, we can see that WT leads
to higher acoustic contrast for all the studied frequencies except for the
bands 125-150 Hz and 280-300 Hz, where FT-FD presents slightly better
acoustic contrast. For example, WT leads to almost 6 dB better acous-
tic contrast than FT-FD around 1 kHz, and 4 dB better contrast around
180 Hz. Also, the MSE is almost the same for WT and FT-FD, as expected,
and is broadly similar for FT, although slightly higher or lower for different
frequencies. Moreover, the array effort required by WT is lower than for
FT and FT-FD for frequencies above 700 Hz. From these results, we can
conclude that windowing the target response with a short window of length
Iw = 76 (12 ms) leads to significantly better acoustic contrast than the case
without windowing for most of the studied frequencies. This indicates that
targeting the minimization of the energy of the diffuse reverberant compo-
nents in the bright and dark zones can lead to great improvements in the
performance for this scenario.
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(a) AC (b) MSE

(c) AE

Figure 5.8: Performance for three different configurations as a function
of frequency in terms of: acoustic contrast in (a), MSE in the bright zone
in (b), and array effort in (c). An effort constraint AEmax = 10 dB is
considered.

Next, we study the energy of the cascade impulse responses that are
obtained with the filters for configurations WT and FT, i.e., with window
lengths Iw = 76 and Iw = ∞, respectively. Let us define the cascade
impulse response in the m-th validation point for a given set of filters gl as

xv,m(n) =

L−1∑

l=0

gl(n) ∗ hv,ml(n). (5.11)

We show in Fig. 5.9 the energy per sample of the cascade impulse responses
in six validations points for configurations WT and FT. In particular, the
energy in three validation points in the bright and dark zones is shown in the
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(a) m = 0 (bright zone) (b) m = 16 (dark zone)

(c) m = 5 (bright zone) (d) m = 21 (dark zone)

(e) m = 15 (bright zone) (f) m = 31 (dark zone)

Figure 5.9: Energy of the cascade impulse response for configurations
WT and FT, i.e., with Iw = 76 and Iw = ∞, respectively. The energy for
three validation points in the bright and dark zones is shown in the left
and right columns, respectively. The 32 samples (5 ms) moving average of
the energy is included to improve the readability of the results. An effort
constraint AEmax = 10 dB is considered.
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left and right columns of Fig. 5.9, respectively. To improve the readability
of the results, we also include in Fig. 5.9 the 32 samples (5 ms) moving
average of the energy. An effort constraint AEmax = 10 is considered.
Also, it is worth noting that, for the sake of simplicity on the visualization,
we do not include in the figures all the time instants before the propagation
peak in which the response has near 0 energy and that are produced by
the modelling delay. The results show that the energy in the bright zone
is similar for both configurations in the time instants near the arrival of
the direct propagation component, being slightly higher for WT due to the
equalization applied to the target. However, WT leads to lower energy in
the bright zone than FT for times between 12 ms and 200 ms after the
arrival of the direct component, mainly because WT aims the suppression
of the reverberant components in the bright zone in those times. Moreover,
we can see that WT also leads to lower energy than FT in the dark zone
for most times between 12 ms and 200 ms after the arrival of the direct
component. These facts indicate that the improvements obtained with
windowed targets are not achieved because we force the cancellation of some
sparse high-energy early-reflections, but because we target the cancellation
of the diffuse reverberant tail in the bright and dark zones.

Finally, we show in Fig. 5.10 and 5.11 the impulse responses of the
filters gl of length Ig = 2048 for FT and WT, respectively, and for all the
loudspeakers of the system. An effort constraint AEmax = 10 is considered.
The most significant difference between the two sets of filters is their energy
distribution along the loudspeakers. For FT, it is clear that the filter for
l = 3, i.e., the reference loudspeaker, presents significantly higher energy
than the filters for the other loudspeakers. The motivation is that in this
case we want to synthesize the response produced by loudspeaker l = 3 in
the control points of the bright zone, so it is reasonable that the greatest
contribution of the array comes from this loudspeaker. For WT, the energy
of the filters is more uniform along the loudspeakers. In this case, we
do not want to synthesize exactly the response produced by loudspeaker
l = 3 in the control points of the bright zone, but a modified version which
does not include all the reverberation components. Then, the filters for
all loudspeakers present more similar energy levels than for FT, since the
contributions from all the loudspeakers are required to suppress some of
the reverberant components in the bright zone.
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(a) l = 0 (b) l = 1 (c) l = 2 (d) l = 3

(e) l = 4 (f) l = 5 (g) l = 6 (h) l = 7

Figure 5.10: Impulse response of the filters gl for configuration FT, i.e.,
with Iw = ∞, and for all the loudspeakers of the system. An effort con-
straint AEmax = 10 dB is considered.

(a) l = 0 (b) l = 1 (c) l = 2 (d) l = 3

(e) l = 4 (f) l = 5 (g) l = 6 (h) l = 7

Figure 5.11: Impulse response of the filters gl for configuration WT, i.e.,
with Iw = 76 (12 ms), and for all the loudspeakers of the system. An effort
constraint AEmax = 10 dB is considered.
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(a)

(b)

Figure 5.12: Setup used to measure the RIRs without perturbations in
(a), and to measure the RIRs with the perturbations produced by two
persons within the zones in (b).

5.3.4 Robustness to perturbations

We now evaluate whether the improvements obtained by windowing the
target are robust to perturbations in the environment. To this end, we
present evaluation results where the filters are computed with the RIRs
measured at the control points without any perturbation (as in Fig. 5.12a)
and evaluated using the RIRs measured at the control points when per-
turbations in the RIRs, due to two people located within the zones, are
present (as in Fig. 5.12b). The control filters are those calculated without
any perturbations, as in Section 5.3.3, but now the performance, as shown
in Fig. 5.13, has been calculated after these perturbations in the RIRs. For
comparison purposes, we also include in Fig. 5.13 the performance of the
filters when evaluated without perturbations (as in Section 5.3.3). We can
see that the perturbations have generally decreased the acoustic contrast
and increased the MSE in the bright zone with respect to the case without
perturbations. However, the acoustic contrast is still significantly larger
for the windowed target than it is without the window, and the MSE is
also again broadly similar in the two cases. We can thus conclude that
the performance improvements obtained by selecting a short window are
robust to perturbations in the environment.
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(a) AC (b) MSE

(c) AE

Figure 5.13: Performance for WT and FT as a function of frequency
when the perturbations produced by to persons located within the zones
are considered in terms of: acoustic contrast in (a), MSE in the bright
zone in (b), and array effort in (c). An effort constraint AEmax = 10 dB is
considered. The performance of the filters evaluated without perturbations
is also shown for comparison purposes.

5.4 Performance evaluation in a listening room

In this section, the proposed target selection is evaluated in the listening
room at the Audio and Communications Signal Processing Group of the
Institute of Telecommunications and Multimedia Applications (iTEAM),
which presents lower reverberation time than the office-like room considered
in Section 5.3.
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5.4.1 Setup and methodology

Setup

The experimental evaluations have been carried out in the listening room
at iTEAM, which presents a reverberation time T60 of 180 ms and a size
of 9.07× 4.45× 2.65 m. The walls of the listening room are acoustically
treated with absorber panels. The setup is formed by one bright and one
dark zone, as shown in Fig. 5.14a. In each zone, two different grids of micro-
phones are used for spatial sampling, such that the RIRs measured at the
control and validation grids are used to compute the filters and to evaluate
their performance, respectively. A linear array of 8 two-way loudspeakers
with an inter-element distance of 0.18 m is used (see Fig. 5.14b). Each
loudspeaker in the array is formed by a woofer Beyma 5” MP60/N 8 OH
[139] and a tweeter Beyma T-2030 8 OH [140]. The RIRs were measured
using the swept-sine technique [69] with a sampling frequency of 44100 Hz,
and then downsampled to 6300 Hz, obtaining impulse responses of length

(a)

(b) (c)

Figure 5.14: Setup used for the evaluations in (a), where and denote
control and validation points, respectively, and denotes a loudspeaker.
The walls are in x = ±4.53 m, y = {−0.46, 3.99} m, and z = {0, 2.65} m,
and the loudspeakers and microphones are at a height of 1.51 m. The array
of 8 loudspeakers is shown in (b). The two grids of 4×4 microphones used
for measuring the RIRs in the control/validation points are shown in (c).
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Ih = 1170. Two grids of 4×4 Brüel & Kjær microphones Type 4958 [74],
previously calibrated with a Brüel & Kjær sound calibrator Type 4231 [75],
were used to measure the RIRs at the control/validation points (as shown
in Fig. 5.14c). The distance between the elements of the grid is 0.15 m.

Methodology

The methodology presented in Section 5.3.1 is used here to compute and
to evaluate the filters. We show in Fig. 5.15a and 5.15b examples of tar-
get impulse and frequency responses, respectively, in the bright zone with
Iw = 51 and Iw =∞.

(a) (b)

Figure 5.15: Target impulse response and target frequency response in
(a) and (b), respectively, in the 0-th control point of the bright zone for
two window lengths. The modelling delay is not considered in (a).

5.4.2 Kurtosis of RIRs

Before evaluating the performance of the proposed approach, we study
the Kurtosis of the RIRs measured in the listening room. We show in
Fig. 5.16 the average Kurtosis of the RIRs, which is computed with (5.10)
considering a segment length Is = 126, i.e., 20 ms, as suggested in [137].
The Kurtosis presents high values for times smaller than 10 ms, while it
drops below 3 after 10 ms. Again, this fact indicates that the RIRs start to
behave randomly following a Gaussian PDF after 10 ms, so the reverberant
components for this scenario can be assumed approximately diffuse after
this time.
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Figure 5.16: Average Kurtosis of the RIRs in the listening room.

5.4.3 Evaluation of windowed targets

Next, we study the performance of the proposed target in the listening
room. Fig. 5.17 shows the performance as a function of Iw and frequency
in terms of: acoustic contrast (in Fig. 5.17a-b), MSE in the bright zone (in
Fig. 5.17c-d), and array effort (in Fig. 5.17e-f). In Fig. 5.17, the metrics in
the left-column are computed with AEmax = 10 dB, whereas AEmax = 0 dB
is used for the right-column. Again, the performance is similar for both
constraints at frequencies above 800 Hz, as is the effect of the window
length for frequencies below 800 Hz in both cases. Similarly to Section 5.3.3,
we can see in Fig. 5.17c-d that very short windows (of 1 ms or less) lead
to a much higher MSE than longer windows, while the acoustic contrast
is similar. Then, selecting a window that is too short can significantly
degrade the performance. Also, we can see that very long windows lead
to better acoustic contrast and MSE for frequencies below 700 Hz than
shorter ones. For frequencies above 700 Hz, the acoustic contrast is better
for short windows (of about 4 to 10 ms) than for longer ones. However,
we can also see in Fig. 5.17c-d that, in general, the MSE is also higher for
short windows. In this case, the higher acoustic contrast when using short
windows comes at the cost of higher MSE in the bright zone. Then, it is not
clear so far whether windowing the target offers performance improvements
in this scenario. Furthermore, there is a close relation between the results
for frequencies above 700 Hz in Fig. 5.17 and the Kurtosis in Fig. 5.16,
which illustrates the use of the Kurtosis in estimating the window length,
although only at higher frequencies, in this case, with a short reverberation
time.
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(a) AC (AEmax = 10 dB) (b) AC (AEmax = 0 dB)

(c) MSE (AEmax = 10 dB) (d) MSE (AEmax = 0 dB)

(e) AE (AEmax = 10 dB) (f) AE (AEmax = 0 dB)

Figure 5.17: Performance of the proposed target selection in (5.3) as a
function of the window length and frequency in terms of: acoustic contrast
in (a, b), MSE in the bright zone in (c, d), and array effort in (e, f). For
the left-column figures AEmax=10 dB is selected, and AEmax=0 dB for the
right-column figures.
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To further study if windowing the target offers performance improve-
ments in this scenario, we compare next the following configurations:

• Windowed Target (WT): Iw = 51 (8 ms) and µ̄f = 0.5.

• Full Target (FT): Iw =∞ and µ̄f = 0.5.

• Full Target with Frequency Dependent µ̄f (FT-FD): Iw =∞ and µ̄f
selected as shown in Fig. 5.18 to achieve the same MSE as WT.

The performance of these configurations is shown in Fig. 5.19 in terms of:
acoustic contrast (in Fig. 5.19a), MSE in the bright zone (in Fig. 5.19b),
and array effort (in Fig. 5.19c). We only present results for AEmax=10 dB
to avoid redundancy. First, we can see that FT has a significantly lower
MSE than WT, and consequently, than FT-FD, for all frequencies. FT-FD
presents higher acoustic contrast than WT and approximately equal MSE
for frequencies 150-1000 Hz, which indicates that windowing the target can
not improve the acoustic contrast for those frequencies. However, for the
same MSE level, WT offers about 2 dB better acoustic contrast than FT-FD
in 125-150 Hz and above 1 kHz. Then, windowing the target in this scenario
offers performance improvements in certain frequencies, however, these are
more limited than those obtained for the office-like room in Section 5.3.3.
From these results and the results in Section 5.3.3, we can conclude that
the optimal window length is frequency and scenario dependent, and also,
that the higher the reverberation in the room, the greater the improvement
obtained by windowing the target response in the bright zone.

Figure 5.18: Weighting factor µ̄f selected for FT-FD.
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(a) AC (b) MSE

(c) AE

Figure 5.19: Performance for three different configurations as a function
of frequency in terms of: acoustic contrast in (a), MSE in the bright zone
in (b), and array effort in (c). An effort constraint AEmax = 10 dB is
considered.

5.5 Summary

In this chapter we proposed a novel approach to select the target response
in the bright zone for the weighted Pressure Matching (wPM) algorithm.
In previous works, the target for the bright zone has generally been se-
lected to be the Room Impulse Response (RIR) from one loudspeaker to
all the control points in the bright zone. The aim is thus to synthesize
the direct propagation component and all the reverberant components in
the bright zone, while minimizing the energy of all components in the dark
zone. The late reverberant components, however, are diffuse above the
Schroeder frequency. We showed theoretically that there is no set of filters
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that can lead to large differences between the energy of the diffuse rever-
berant components in the bright and dark zones, so trying to synthesize
the diffuse reverberation components in the bright zone while minimizing
their energy in the dark zone is not a good strategy. Alternatively, we pro-
posed windowing the RIRs from one loudspeaker to all the control points
in the bright zone, and use these responses as targets for the bright zone.
This approach allows us to select which reverberant components we want
to synthesize and which ones we want to suppress in the bright zone by
choosing the window length. Then, the proposed approach, with a proper
window length selection, can be used to obtain a target for wPM that aims
to suppress the diffuse components both in the bright and dark zones. We
presented experimental evaluation results in two rooms with different levels
of reverberation to show the effect of windowing the target response. For
the evaluations, because of its simplicity for the comparison of the different
targets, we used wPM-F. Nevertheless, our findings can be generalized to
the other formulations of wPM. The results revealed that windowing the
target response can lead to higher acoustic contrast than the case without
windowing, with similar Mean Squared Error (MSE) in the bright zone.
Specifically, improvements of up to 6 dB in the acoustic contrast are ob-
served for a room with T60 = 500 ms when a window length of 12 ms is
used in the target impulse responses. Also, the results indicate that the
window length that offers best performance is, in general, both frequency
and scenario dependent. The Kurtosis of the RIRs, which is related to
their level of diffuseness, is shown to give a good indication of the set of
window lengths that offer performance improvements. Also, we observed
that greater improvements with respect to the case without windowing are
obtained for mid-high frequencies. Finally, we showed that the improve-
ments obtained by windowing the target are greater for scenarios with high
reverberation levels.
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Chapter 6

Conclusions and future work

This chapter summarizes the results of this thesis. First, we review the main
conclusions and contributions of this work. Next, based on the knowledge
gained from this research, recommendations for future research are pre-
sented. Finally, the publications related to the outcome of this work are
listed.

6.1 Main conclusions and contributions

This thesis focuses on the optimization algorithms required to compute the
filters for Personal Sound Zones (PSZ) systems in real acoustic environ-
ments, which aim to deliver independent sounds to a number of listeners
sharing an acoustic space through the use of loudspeakers. Next, we review
the main conclusions and contributions.

In Chapter 2 we discussed the fundamental theory related to PSZ sys-
tems, giving special attention to the use of loudspeaker array processing to
focus sound at low and mid frequencies. We reviewed the state-of-the-art
algorithms for PSZ systems and determined that weighted Pressure Match-
ing (wPM), either with time or frequency domain formulations, is the most
suitable algorithm for these systems, since it allows to balance the inter-
ference level between zones and the audio quality of the signal rendered
to the users. Previous works compared the performance of the time and
frequency domain formulations of wPM, i.e., wPM-T and wPM-F, respec-
tively, in reverberant environments. However, these works did not consider
in the comparison aspects such as the filter length, the modelling delay or
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the regularization level. Then, we presented original experimental results
to compare the performance of wPM-T and wPM-F in a reverberant envi-
ronment, taking into account the effect of the filter length, the modelling
delay, and the regularization level. The results indicated that both algo-
rithms present almost equal performance when long filters and appropriate
modelling delays are considered. However, wPM-T clearly outperforms
wPM-F at low frequencies when either short filters or too short modelling
delays are used. Also, the effect of the regularization seems relevant, since
increasing the regularization level leads to smaller differences between both
algorithms, but at the cost of worsening the performance of both algo-
rithms. Hence, we concluded that wPM-T offers superior performance to
wPM-F for systems in which short modelling delays or short filters are
desired.

Both formulations of wPM, i.e., wPM-T and wPM-F, involve a Least
Squares (LS) problem to compute the optimal filters. A key difference is
that the LS problem for wPM-T includes a larger number of unknown pa-
rameters than that for wPM-F. Then, although wPM-T may outperform
wPM-F in some cases, it requires higher computational complexity, which
is an important drawback for systems with limited processing capabilities.
Thus, in Chapter 3 we discussed and evaluated different solvers to effi-
ciently compute the filters for wPM-T. On the one hand, we studied a
classic solver based on the Cholesky factorization, which does not assume
any specific structure for the matrices of the LS problem. On the other
hand, we considered the FAEST solver and the superfast solver [79], which
take advantage of the block-toeplitz structure of the matrices of the LS
problem to efficiently solve it. The accuracy of the solvers, their influence
on the performance of a PSZ system, and their computational demands
were experimentally evaluated in a reverberant environment. The results
indicated that the Cholesky solver presents the highest accuracy among the
studied solvers, but it requires very high computational complexity. Also,
we showed that the FAEST and the superfast solvers are not suitable when
extremely low regularization factors are considered, since FAEST diverges
and the superfast solver requires very large approximation orders. How-
ever, extremely low regularization factors are not used in practice for PSZ
systems, mainly to assure robustness against perturbations in the environ-
ment. For moderately high regularization factors, which are typically used
in practical PSZ systems, FAEST and the superfast solver offer good ac-
curacy and very similar performance to that obtained with the Cholesky
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solver. Moreover, the evaluations revealed that FAEST requires signifi-
cantly lower computational complexity than the Cholesky solver, but even
larger computational savings are obtained with the superfast solver. Con-
sequently, we concluded that the superfast solver proposed in [79] seems a
good candidate to compute the filters for wPM-T in practical PSZ systems,
since it can obtain good accuracy and presents affordable computational
demands. In any case, we also showed that the computational complexity
for wPM-T with any of the considered solvers is higher than for wPM-F,
so wPM-F is preferred when low computational complexity is required to
compute the filters.

The results in Chapters 2 and 3 revealed that wPM-F presents low
computational complexity but exhibits bad performance for short system
delays, whereas wPM-T presents good performance for short system delays
but requires high computational complexity. Consequently, PSZ systems
would benefit from an alternative approach that offers good performance
for short system delays and low computational complexity. In this regard,
we proposed in Chapter 4 using subband filtering for PSZ systems by means
of GDFT filter banks. We presented a novel subband formulation for the
PSZ problem that makes use of the subband decomposition [102] of the
Room Impulse Responses (RIR). The subband decomposition algorithm
presented in [102] is further optimized in this work to reduce its compu-
tational complexity. The main advantage of the proposed subband formu-
lation for PSZ is that the filters for each subband can be independently
optimized, which provides versatility to select different system configura-
tions in each subband. To compute the subband filters, we proposed the
weighted Pressure Matching with Subband-Domain Formulation (wPM-S)
algorithm, which formulates an independent time-domain optimization for
each subband using the wPM criterion. The proposed algorithm was ex-
perimentally evaluated in a reverberant environment. First, we studied the
influence of the configuration of the filter bank on wPM-S and determined
that good performance is achieved when the Reconstruction Error (RE)
and the Alias-To-Signal Ratio (ASR) of the filter bank are below −35 dB.
Next, we showed that wPM-S outperforms the algorithm proposed in [47],
which also makes use of subband filtering. Also, we confirmed that wPM-S
and wPM-T offer almost equal performance, although wPM-S presents an
additional delay due to the effect of the filter bank. Furthermore, we deter-
mined that wPM-S presents better performance than wPM-F when short
modelling delays are considered, even when the additional delay produced
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by the filter bank is taken into account for wPM-F. Moreover, we evaluated
the versatility of wPM-S to use different configurations in each subband.
In particular, we showed that the filter length, the number of loudspeakers,
and the approximation order for the superfast solver [79] can be reduced in
certain subbands with negligible performance loss. Also, the computational
complexity of wPM-S was compared with that of wPM-T and wPM-F. We
determined that the computational savings offered by wPM-S are minor
when the same configuration is used in all subbands. However, very im-
portant savings are obtained when the versatility of wPM-S is exploited
to use suitable configurations in each subband. In that case, wPM-S re-
quires substantially lower computational efforts than wPM-T to compute
the filters. Still, wPM-S presents higher computational complexity than
wPM-F. From these results, we concluded that wPM-S is a good alter-
native to wPM-T and wPM-F for PSZ systems, since it presents better
performance than wPM-F for short system delays and lower computational
complexity than wPM-T.

An important aspect that influences the performance of wPM is the
target response selected for the bright zone, since different targets lead to
different levels of interference between zones. In Chapter 5 we proposed a
novel approach to select the target response in the bright zone for wPM. In
previous works, the target for the bright zone was generally selected to be
the RIR from one loudspeaker to all the control points in the bright zone.
The aim is thus to synthesize the direct propagation component and all the
reverberant components in the bright zone, while minimizing the energy of
all components in the dark zone. The late reverberant components, how-
ever, are diffuse above the Schroeder frequency. We showed theoretically
that there is no set of filters that can lead to large differences between the
energy of the diffuse reverberant components in the bright and dark zones,
so trying to synthesize the diffuse reverberation components in the bright
zone while minimizing their energy in the dark zone is not a good strategy.
Alternatively, we proposed windowing the RIRs from one loudspeaker to
all the control points in the bright zone, and use these responses as targets
for the bright zone. This approach allows us to select which reverberant
components we want to synthesize and which ones we want to suppress
in the bright zone by choosing the window length. Then, the proposed
approach, with a proper window length selection, can be used to obtain
a target for wPM that aims to suppress the diffuse components both in
the bright and dark zones. We presented experimental evaluation results
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in two rooms with different levels of reverberation to show the effect of
windowing the target response. From these results, we concluded that the
proposed approach can lead to higher acoustic isolation between the zones
than the case without windowing, with similar reproduction errors in the
bright zone. Furthermore, the results indicated that the window length that
offers best performance is, in general, both frequency and scenario depen-
dent. We showed that the Kurtosis of the RIRs, which is related to their
level of diffuseness, gives a good indication of the set of window lengths
that are potentially offering performance improvements. Also, we observed
that greater improvements with respect to the case without windowing are
obtained for mid-high frequencies, and that these improvements are larger
for scenarios with high reverberation levels.

Finally, we presented in Appendix A an in-depth analysis of the com-
putational complexity of the different algorithms studied in this work, and
in Appendix B we detailed the method used to design the prototype filter
for the GDFT filter bank employed with wPM-S.

6.2 Future work

Further to the research described in this thesis, we discuss below several
lines of research that remain open.

In this thesis we studied the performance of different algorithms for
PSZ systems operating in reverberant environments. An important aspect
is that we assumed that full knowledge of the RIRs in the control points is
available to compute the optimal filters, however, this is not always possible.
For example, the number of positions in which the RIRs should be measured
can be very large for PSZ systems involving a lot of users. Then, a very
time-consuming measurement stage is required to obtain all the required
RIRs. To avoid the measurement stage, the free-field propagation model
has been used in the literature to estimate the RIRs, however, this model is
not accurate enough for low and mid frequencies. In this regard, it would
be very interesting to study alternative methods to estimate the RIRs in
any desired position within a shared acoustic environment.

We proposed the wPM-S algorithm that allows to use different configu-
rations for the system in each subband. In particular, we studied the use
of different filter lengths, number of loudspeakers, and solvers in each sub-
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band. However, the versatility of wPM-S could be further investigated. For
instance, it would be interesting to study the use of different regularization
and weighting factors in each subband. On the one hand, the regulariza-
tion factor is related to the robustness of the system to perturbations, so
it could be beneficial to select a subband-specific regularization factor that
guarantees high robustness in all the operation bandwidth. On the other
hand, the weighting factor influences the balance between the interference
in the dark zone and the reproduction error in the bright zone, so selecting
suitable weighting factors in each subband may be beneficial for the sys-
tem. The weighting factor in each subband could be selected based on a
perceptual criterion that would take into account the annoyance of the in-
terferences in the dark zone and the perceived quality of the audio delivered
to the bright zone. Moreover, we determined in this thesis that windowing
the target response for the bright zone can improve the isolation between
zones, but the optimal window length is frequency dependent. Then, in-
vestigating the use of different window lengths in each subband for wPM-S
seems an interesting topic that could lead to further improvements in the
performance of PSZ systems.

Finally, there are many interesting research questions that remain open
regarding dynamic PSZ systems, in which the filters of the system must
be re-calculated frequently because either the position of the users or the
number of users is time-varying. For instance, it would be interesting to
investigate how often the filters must be re-calculated, according to factors
as the speed at which the users move within the shared space. It would
be also interesting to study if the filters for a present time instant can be
updated efficiently from the filters for past time instants.
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Appendix A

Computational complexity
analysis AA

In this appendix we study the computational complexity of the algorithms
studied throughout this work. In particular, we focus on the number of
Floating Point Operations (FLOPs) required by the different algorithms.
Other computational aspects, as memory allocation and memory displace-
ments, are not considered next.

The algorithms have been implemented using C language, and the FLOPs
counts are based on this specific implementation. The Basic Linear Algebra
Subprograms (BLAS) [141] included in Intel MKL v.2017.0.31 [142] and the
Linear Algebra Package (LAPACK) v.3.7.0 [143] are used for all algebra-
related operations. For DFT computations, the Fastest Fourier Transform
in the West (FFTW) v.3.3.5 [144] is used. We provide the code for the
different algorithms discussed in this appendix in [145].

We consider that one FLOP is one of the following operations in real
arithmetic: addition, subtraction, multiplication, and division. Also, we
consider that 2 FLOPs are required for complex addition or subtraction,
and 6 FLOPs for complex multiplication or division. Furthermore, we
assume that a N -point DFT with complex-valued input and output re-
quires 5N log2N FLOPs, while half the number of FLOPs are required
when either the input or the output are real-valued [146]. The number of
FLOPs required by the routines of BLAS/LAPACK can be found in [147].
Nonetheless, we consider that other procedures that only involve memory
displacements, e.g., truncation or decimation of signals, do not require any
FLOPs.
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All the algorithms studied next require at some point to solve a system
of linear equations of the form AX = B, where A is a Na×Na positive-
definite matrix, B is a Na×Nb matrix, and X is a Na×Nb matrix. Such a
system is said to have Nb right-hand sides. We use notation A\B→ X to
denote the operations required to solve the system. In this appendix, we
employ the Cholesky factorization to solve this kind of system. For real-
valued matrices A, B, and X, LAPACK routine dpotrf is used to compute
the Cholesky factorization of A, i.e., A = LLT , and dpotrs to solve the
triangular systems LY = B and LTX = Y. Otherwise, for complex-valued
matrices, routine zpotrf is used to compute the Cholesky factorization of
A, i.e., A = LLH , and zpotrs to solve LY = B and LHX = Y.

In this appendix, we consider a PSZ system with L loudspeakers, M
control points, and RIRs hml of length Ih.

A.1 Computational complexity of wPM-T

Next, we detail the number of operations required to compute the Ig-length
optimal filters for wPM-T using the three solvers studied in Chapter 3.

A.1.1 Cholesky solver

First, we focus on the Cholesky solver studied in Section 3.3. So far, we
assumed that the matrix R and the vector c required to obtain the optimal
solution are explicitly computed as R = HTH + β ILIg and c = HTd,
respectively. However, alternative expressions can be derived that require
lower computational efforts. Then, we first derive these expressions, and
later, we study the computational complexity of the Cholesky solver.

Computation of R

Let us define the L×L correlation matrix at frequency f as

R̄f = H̄H
f H̄f + β IL, (A.1)

where H̄f is a M×L matrix defined in (2.15), and R̄f is an hermitian
matrix with L (L+1)/2 unique elements. Also, let us define the LId×LId

block-diagonal matrix containing R̄f for all control frequencies as

R̄ = diag
{

R̄f0 . . . R̄fId−1

}
, (A.2)
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which can be alternatively expressed as

R̄ = H̄H H̄ + β ILId , (A.3)

where H̄ is a block-diagonal matrix defined in (3.19) containing H̄fk for all
control frequencies. Now, let us define the LId×LId extended time-domain
correlation matrix Re as

Re = FH
L R̄FL, (A.4)

where FL is defined in (3.16) as the matrix of a Id-point DFT with blocks
of size L. Since Re is hermitian, it can be alternatively expressed as

Re =




R0 . . . RH
Id−1

... toeplitz

RId−1


 , (A.5)

in which

Rn =

Id−1∑

k=0

Φ
(k,n)∗
Id

R̄fk , (A.6)

where Φ
(k,n)
Id

is the coefficient for the n-th time index and the k-th frequency
bin of a Id-point DFT. Hence, the required Rn to form Re can be computed
with L (L+1)/2 IDFTs of size Id, because R̄fk is hermitian. Also, we
showed in Section 3.5 that H can be expressed as

H = FH
M H̄ FLTT , (A.7)

where T is a truncation matrix defined in (3.17). Then, using (A.7), we
can write R as

R = TFH
L

(
H̄H H̄ + β ILIg

)
FLTT , (A.8)

where we took into account that TTT = ILIg and that FL is a unitary
matrix. From (A.1)-(A.4) and (A.8), R can be expressed as

R = TReT
T , (A.9)

which is equivalent to set R as the LIg×LIg upper-left block of Re, i.e.,

R = [Re](0:LIg−1,0:LIg−1) . (A.10)

Then, R is a truncated version of Re. Since Re can be computed using
the FFT algorithm and does not require to explicitly form H, (A.10) is
preferred to R = HTH + β ILIg .
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Computation of c

Let us define the L×1 cross-correlation vector at control frequency f as

c̄f = H̄f d̄f , (A.11)

where H̄f is a M×L matrix defined in (2.15), and d̄f is a M×1 vector
defined in (2.22). Moreover, let us define a LId×1 vector containing c̄f for
all control frequencies as

c̄ =
[
c̄Tf0 . . . c̄TfId−1

]T
, (A.12)

which can be also expressed as

c̄ = H̄FMd. (A.13)

Also, let us define the LId×1 extended time-domain correlation vector as

ce = FH
L c̄ =

[
cT0 . . . cTId−1

]T
, (A.14)

in which

cn =

Id−1∑

k=0

Φ
(k,n)∗
Id

c̄fk , (A.15)

where Φ
(k,n)
Id

is the coefficient for the n-th time index and the k-th frequency
bin of a Id-point DFT. Hence, the required cn to form ce can be computed
using L IDFTs of size Id. Now, from (A.7), we can express c as

c = TFH
L H̄FMd. (A.16)

From (A.13)-(A.14) and (A.16), c can be alternatively expressed as

c = Tce, (A.17)

which is equivalent to set c as the LIg first elements of ce, i.e.,

c = [ce](0:LIg−1) . (A.18)

Then, c is a truncated version of ce. Since ce can be computed using
the FFT algorithm and does not require to explicitly form H, (A.18) is
preferred to c = HTd.
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Operation Routine Calls FLOPs/call

C
o
m

p
.

R

DFT of hml → H̄f FFTW/dft r2c ML 5
2
N log2N

H̄H
f H̄f+βIL → R̄f BLAS/zherk

1
2
N 4ML(L+1)

IDFT of R̄f → Re FFTW/dft c2r L(L+1)
2

5
2
N log2N

[Re](0:LIg−1,0:LIg−1) → R - - -

C
o
m

p
.

c

DFT of dm → d̄f FFTW/dft r2c M 5
2
N log2N

H̄H
f d̄f → c̄f BLAS/zgemv

1
2
N 8ML

IDFT of c̄f → ce FFTW/dft c2r L 5
2
N log2N

[ce]0:LIg−1 → c - - -

Solve with Chol. fact.

R \ c→ gopt

LAPACK/dpotrf 1

1
3
(LIg)3+

1
2
(LIg)2+
1
6
(LIg)

LAPACK/dpotrs 1 2 (LIg)2

Table A.1: Operations required by the Cholesky solver to compute the
filters for wPM-T, considering a system with L loudspeakers, M control
points, filters of length Ig, and targets of length Id = Ig+Ih−1. The size
for the DFTs/IDFTs is N = Id.

Computational complexity

In Table A.1, we present the steps required to compute the optimal filters
for wPM-T using a Cholesky solver, which are based on Algorithm 3.1 and
on the previous derivations. For each step, we show the associated routine,
the number of calls to the routine, and the number of FLOPs required to
execute each routine. The DFTs/IDFTs in Table A.1 are of size N = Id,
because Id = Ig+Ih−1 control frequencies are required to compute R and
c using (A.10) and (A.18), respectively. Also, let us note that hml and dm
are real-valued, and then, their DFTs have hermitian symmetry. Hence,
all the computations in Table A.1 for individual frequencies are computed
only for the N/2 control frequencies in the positive spectrum1. Let us point

1For a N -point DFT, the number of frequency bins in the positive spectrum is
⌊
N
2

⌋
+1.

We assume that N
2
≈

⌊
N
2

⌋
+1 to simplify the computational cost expressions.
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out that the names of the routines of FFTW are shortened in Table A.1 for
the sake of simplicity, e.g., fftw execute dft r2c is presented as dft r2c.
This naming criteria is used from now on. From Table A.1, the number of
FLOPs for the Cholesky solver is:

Nflop =

[
L3

3

]
I3

g +

[
5L2

2

]
I2

g +

[
5

2

(
ML+M+

1

2
L2+

3

2
L

)]
Id log2 Id+

[
2ML (L+3)

]
Id +

[
L

6

]
Ig. (A.19)

In the previous expression, we gathered the different terms according to
their computational order. It is clear that the Cholesky factorization of
matrix R becomes the dominant operation as Ig approaches infinity.

A.1.2 FAEST

Now, we investigate the computational complexity of the FAEST solver
studied in Section 3.4. In Table A.2, we show the steps required to compute
the optimal filters for wPM-T using the FAEST solver, which are based on
Algorithm 3.2. The optimal solution is obtained by time-updating the
optimal filters for Id=Ig+Ih−1 iterations. In each iteration, the auxiliary
variables for FAEST are updated, and then, an estimate ĝn is obtained.
Let us note that in each iteration we must solve the systems Γ−1

n Eb
n = Rb

n

and Γ−1
n en = rn, which require the factorization of the same matrix. Then,

the Cholesky factorization of Γ−1
n is performed only once per iteration to

solve both systems. From Table A.2, the total number of FLOPs for the
FAEST solver is:

Nflop =

[
10ML2+4ML

]
IgId+

[
1

3

(
M3+L3

)
+8
(
M2L+ML2

)
+

1

2

(
5M2+L2

)
+

1

6
(M+L)

]
Id,

(A.20)

Again, we gathered the different terms according to their computational

order. The operations involving matrices Gn and
←−
Hn become dominant as

Ig approaches infinity, because their size is related to Ig.
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Operation Routine Calls FLOPs/call

It
er

a
te

fo
r
n

=
0,
..
.,
I d
−

1

Hn−
←−
Hn−1Ψ

f
n−1 → Ef

n BLAS/dgemm Id 2ML2Ig

Γn−1E
f
n → Rf

n BLAS/dsymm Id 2M2L

Solve with Chol. fact.

Ωf
n−1 \

(
Ef
n

)T → Φ1

LAPACK/dpotrf Id

1
3
L3+

1
2
L2+1

6
L

LAPACK/dpotrs Id 2ML2

Gn−1−Ψf
n−1Φ1 → Φ2 BLAS/dgemm Id 2ML2Ig[

Φ1; [Φ2](0:L(Ig−1)−1)

]
→ Θ1 - - -

[Φ2](L(Ig−1):LIg−1) → Θ2 - - -

Θ1+Ψb
n−1Θ2 → Gn BLAS/dgemm Id 2ML2Ig

Γ−1
n−1+Ef

nΦ1 → (Γe
n)
−1

BLAS/dgemm Id 2M2L

(Γe
n)
−1−Eb

nΘ2 → Γ−1
n BLAS/dgemm Id 2M2L

βΘT
2 Ωb

n−1 → Eb
n BLAS/dsymm Id 2ML2

Solve with Chol. fact.

Γ−1
n \Eb

n → Rb
n

LAPACK/dpotrf Id

1
3
M3+

1
2
M2+1

6
M

LAPACK/dpotrs Id 2M2L

Ωf
n−1 +

(
Ef
n

)T
Rf
n → Ωf

n BLAS/dgemm Id 2ML2

Ωb
n−1 +

(
Eb
n

)T
Rb
n → Ωb

n BLAS/dgemm Id 2ML2

Ψf
n−1 + Gn−1R

f
n → Ψf

n BLAS/dgemm Id 2ML2Ig

Ψb
n−1 + GnRb

n → Ψb
n BLAS/dgemm Id 2ML2Ig

dn −
←−
Hnĝn−1 → en BLAS/dgemv Id 2MLIg

Solve with Chol. fact.

Γ−1
n \ en → rn

LAPACK/dpotrs Id 2M2

ĝn−1 + Gnrn → ĝn BLAS/dgemv Id 2MLIg

ĝId−1 → gopt - - -

Table A.2: Operations required by the FAEST solver to compute the
filters for wPM-T, considering a system with L loudspeakers, M control
points, filters of length Ig, and targets of length Id = Ig+Ih−1.
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Operation Routine Calls FLOPs/call

C
om

p
.

g
fd

DFT of hml → H̄f FFTW/dft r2c ML 5
2
N log2N

DFT of dm → d̄f FFTW/dft r2c M 5
2
N log2N

H̄H
f H̄f+βIL → R̄f BLAS/zherk

1
2
N 4ML(L+1)

Solve with Chol. fact.

R̄f \ H̄H
f → H̄†f

LAPACK/zpotrf
1
2
N

4
3
L3+

3L2+5
3
L

LAPACK/zpotrs
1
2
N 8ML2

H̄†f d̄f → q̄opt,f BLAS/zgemv
1
2
N 8ML

Form q̄opt using q̄opt,f - - -

TFHL q̄opt → gfd FFTW/dft c2r L 5
2
N log2N

C
om

p
.

co
rr

ec
ti

on
te

rm

H̄†fH̄f → Λ̄f BLAS/zgemm
1
2
N 8ML2

Form Λ̄ using Λ̄f - - -

Bq̄opt → r̄0

FFTW/dft c2r L 5
2
N log2N

FFTW/dft r2c L 5
2
N log2N

Λ̄r̄p−1 → r̄′p, for p > 0 BLAS/zgemv
1
2
PN 8L2

Br̄′p → r̄p, for p > 0
FFTW/dft c2r PL 5

2
N log2N

FFTW/dft r2c PL 5
2
N log2N∑P

p=0 r̄p → r̄ C/+
1
2
PLN 2

Λ̄r̄ → r̄ BLAS/zgemv
1
2
N 8L2

TFHL r̄ → r FFTW/dft c2r L 5
2
N log2N

gfd + r → gap,P C/+ LIg 1

Table A.3: Operations required by the superfast solver [79] to compute the
P -th order approximation of the filters for wPM-T, considering a system
with L loudspeakers, M control points, filters of length Ig, and targets of
length Id = Ig+Ih−1. The size of the DFTs/IDFTs is N = Id.

A.1.3 Superfast solver

Last, we discuss the superfast solver [79] studied in Section 3.5. In Ta-
ble A.3, we show the steps required to compute the P -th order approxima-
tion of the filters for wPM-T using the superfast solver, which are based
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on Algorithm 3.3. All the DFTs/IDFTs in Table A.3 are of size N = Id,
because Id = Ig+Ih−1 control frequencies are considered for the superfast
solver. Since hml and dm are real-valued, all the computations for individ-
ual frequencies must be computed only for the N/2 control frequencies in
the positive spectrum. Furthermore, we showed in Section 3.5 that Λ̄ is a
block-diagonal matrix of size LId×LId that is formed by Id blocks of size
L×L. Due to the hermitian symmetry, the product of Λ̄ and a vector of
size LId×1 can be alternatively performed as Id/2 independent products
of matrices of size L×L and vectors of size L×1. Also, let us note that
pre-multiplication by FH

L is equivalent to perform L IDFTs of size Id, so
it can be computed by calling L times to routine dft c2r. Moreover, pre-
multiplication by T is equivalent to truncate L impulse responses of length
Id to length Ig, which is an arbitrary operation that does not involve any
FLOPs. Nonetheless, we studied in Section 3.5 that pre-multiplication by
B is equivalent to transform L frequency responses to the time-domain by
using Id-point IDFTs, set to zero their first Ig samples, and transform back
to the frequency-domain by using Id-point DFTs. Then, pre-multiplication
by B can be computed by calling L times to routines dft c2r and dft r2c.
From Table A.3, the total number of FLOPs for the superfast solver is:

Nflop =

[
5L

]
PIdlog2Id +

[
4L2+L

]
PId +

[
5

2
ML+

5

2
M+10L

]
Idlog2Id+

[
2

3
L3+

11

2
L2+

5

6
L+2ML(5L+3)

]
Id +

[
L

]
Ig, (A.21)

From the previous expression, it is clear that the Id-point DFTs and IDFTs
required to compute the P correction terms become the dominant opera-
tions as Ig and P approach infinity.

A.2 Computational complexity of wPM-F

In this section, we study the computational complexity of wPM-F. In Ta-
ble A.4, we show the required steps to compute the filters of length Ig for
wPM-F, which are based on the method described in Section 2.2.3 using
cost function (2.23). We consider that the number of control frequencies
for which the optimal responses are computed is Id = Ig+Ih−1, so the
DFTs/IDFTs in Table A.4 are of size N = Id. It is worth noting that other
sizes could be used. Since hml and dm are real-valued, all the computations
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Operation Routine Calls FLOPs/call

DFT of hml → H̄f FFTW/dft r2c ML 5
2
N log2N

DFT of dm → d̄f FFTW/dft r2c M 5
2
N log2N

H̄H
f H̄f+βIL → R̄f BLAS/zherk

1
2
N 4ML(L+1)

H̄H
f d̄f → c̄f BLAS/zgemv

1
2
N 8ML

Solve with Chol. fact.

R̄f \ c̄f → q̄opt,f

LAPACK/zpotrf
1
2
N

4
3
L3+

3L2+5
3
L

LAPACK/zpotrs
1
2
N 8L2

Form q̄opt using q̄opt,f - - -

TFHL q̄opt → gfd FFTW/dft c2r L 5
2
N log2N

Table A.4: Operations required to compute the filters for wPM-F, con-
sidering a system with L loudspeakers, M control points, filters of length
Ig, and targets of length Id = Ig+Ih−1. The size for the DFTs/IDFTs is
N = Id.

for individual frequencies must be computed only for the N/2 control fre-
quencies in the positive spectrum. From Table A.4, we can conclude that
the total number of FLOPs is:

Nflop =

[
5

2
(ML+M+L)

]
Idlog2Id +

[
2

3
L3+2ML2+6ML+

11

2
L2+

5

6
L

]
Id.

(A.22)

Then, the Id-point DFTs and IDFTs become the dominant operations in
Table A.4 as Ig approaches infinity.

A.3 Computational complexity of wPM-S

In this section, we study the computational complexity of wPM-S. We
consider a GDFT filter bank with K subbands, resampling factor R, and
prototype filter p of length Ip. Since the subband decomposition of the RIRs
and the target impulse responses is required to compute the subband filters
for wPM-S, we first study the computational complexity of the subband
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decomposition, and later, we discuss the complexity required to compute
the subband filters.

A.3.1 Subband decomposition

First, we discuss the computational complexity of the subband decomposi-
tion of a generic signal a of length Ia. We assume that ãk is the Iã,k-length
signal at the output of the k-th subband of the analysis filter bank when is
fed with a, where

Iã,k = d(Ia+Ip−1) /Re , (A.23)

and that ak is the Ia,k-length subband component of a in the k-th subband,
where

Ia,k = Iã,k − dIp/Re+1. (A.24)

Next, we study the original method proposed in [102], and later, the method
proposed in Section 4.2.3.

Original

Reilly et al. [102] proposed to compute the subband component of a in the
k-th subband as

aopt,k =
(
∆̃H
k ∆̃k

)−1
∆̃H
k ãk, (A.25)

where ãk is a vector defined in (4.43) that contains the samples of ãk,
and ∆̃k is a matrix defined in (4.44) that contains shifted versions of
δ̃k = (uk)↓R. The previous expression can be alternatively written as

aopt,k = R̃−1
k c̃k, (A.26)

where R̃k = ∆̃H
k ∆̃k and c̃k = ∆̃H

k ãk. Since ∆̃ is a toeplitz matrix, it
is easy to see that (A.26) has the same form as (3.3). Then, the solvers
described for wPM-T can be easily extended to compute (A.26), taking
into account that it involves complex-valued matrices. In particular, we
consider next the Cholesky solver discussed in Section A.1.1, i.e., R̃k and
c̃k are computed using DFTs and the system is solved using the Cholesky
factorization.
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Operation Routine Calls FLOPs/call

C
om

p
.

R̃
k

uk → (uk)↓R → δ̃k - - -

DFT of δ̃k → ∆̃k(f) FFTW/dft
1
2
K 5N log2N

∆̃∗k(f)∆̃k(f) → R̃k(f) C/*
1
2
KN 6

IDFT of R̃k(f) → R̃e,k FFTW/dft
1
2
K 5N log2N[

R̃e,k

]
(0:Ia,k−1,0:Ia,k−1)

↓
R̃k

- - -

C
om

p
.

c̃
k

a → ãk polyphase [148] Q

(Ia/R)
[
2Ip+

2K+

5Klog2K
]

DFT of ãk → Ãk(f) FFTW/dft
1
2
KQ 5N log2N

∆̃∗k(f)Ãk(f) → C̃k(f) C/*
1
2
KNQ 6

IDFT of C̃k(f) → c̃e,k FFTW/dft
1
2
KQ 5N log2N

[c̃e,k]0:Ia,k−1 → c̃k - - -

Solve with Chol. fact.

R̃k \ c̃k → aopt,k

LAPACK/zpotrf
1
2
K

4
3
I3
a,k+

3I2
a,k+5

3
Ia,k

LAPACK/zpotrs
1
2
KQ 8I2

a,k

Table A.5: Operations required by the approach proposed in [148] to
compute the subband components in all subbands for Q signals a of length
Ia, considering a GDFT filter bank with K subbands, resampling factor R,
and prototype filter of length Ip. The size for the DFTs/IDFTs is N = Iã,k.

For wPM-S, we are interested in the subband decomposition of multiple
signals of equal length. Then, rather than studying the subband decom-
position of a single signal, we consider the subband decomposition of Q
signals, since many computations are common to all of them. We show in
Table A.5 the steps required to compute the optimal subband components
of a set of Q signals a of equal length Ia using the approach previously
described. In Table A.5, the analysis signals ãk are computed with the
polyphase implementation proposed by [148], which involves DFTs of size
K. The other DFTs/IDFTs in Table A.5 are of size N = Iã,k. Let us note
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that the optimal subband components are only computed for the K/2 sub-
bands in the positive spectrum due to the hermitian symmetry. Moreover,
R̃k in (A.26) is common for all Q signals. Then, for each subband, R̃k and
its Cholesky factorization only need to be computed once for all Q signals.
Also, it is worth noting that we consider that the decimation operation
required to compute δ̃k does not require any FLOPs. From Table A.5, the
number of FLOPs required to compute the optimal subband components
for the Q signals and K subbands is:

Nflop =

[
2

3
K

]
I3

a,k +

[
K

(
3

2
+4Q

)]
I2

a,k +

[
5K (Q+1)

]
Iã,klog2Iã,k+

[
5

6
K

]
Ia,k +

[
Q

R
(2Ip+2K+5K log2K)

]
Ia +

[
3K (Q+1)

]
Iã,k.

(A.27)

Proposed approach for subband decomposition

In Section 4.2.3, we proposed to compute the optimal subband component
of a in the k-th subband as

aopt,k = EH
k

(
PTP

)−1
PTTH

k ãk, (A.28)

where P is a matrix defined in (4.50) that contains shifted versions of the
downsampled prototype filter p↓R, and Tk and Ek are diagonal matrices
defined in (4.48) and (4.49), respectively, that contain exponential terms.
Now, let us define

aφopt,k = Ekaopt,k, (A.29)

ãφk = TH
k ãk, (A.30)

which are phase-shifted versions of aopt,k and ãk, respectively. Then, in-

stead of directly computing aopt,k, we can compute aφopt,k as

aφopt,k =
(
PTP

)−1
PT ãφk , (A.31)

and then, we can compute the optimal solution as aopt,k = EH
k aopt,k,φ.

Now, we can express (A.31) as

aφopt,k = R−1
p c̃φk , (A.32)
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Operation Routine Calls FLOPs/call

C
o
m

p
.

R
p

p → p↓R - - -

DFT of p↓R → P↓R(f) FFTW/dft r2c 1 5
2
N log2N

P ∗↓R(f)P↓R(f) → Rp(f) C/*
1
2
N 6

IDFT of Rp(f) → Re,p FFTW/dft c2r 1 5
2
N log2N[

Re,p

]
(0:Ia,k−1,0:Ia,k−1)

↓
Rp

- - -

C
o
m

p
.

c̃
φ k

a → ãk
polyphase

[148]
Q

(Ia/R)
[
2Ip+

2K+

5Klog2K
]

Phase shift ãk → ãφk C/*
1
2
KNQ 6

DFT of ãφk → Ãφ
k (f) FFTW/dft

1
2
KQ 5N log2N

P ∗↓R(f)Ãφ
k (f) → C̃ φ

k (f) C/*
1
2
KNQ 6

IDFT of C̃ φ
k (f) → c̃φe,k FFTW/dft

1
2
KQ 5N log2N[

c̃φe,k

]
0:Ia,k−1

→ c̃φk - - -

Chol. fact. Rp → Lp LAPACK/dpotrf 1

1
3
I3
a,k+

1
2
I2
a,k+1

6
Ia,k

Solve with Chol. fact.

Rp \ <
{

c̃φk

}
→ <

{
ãφopt,k

} LAPACK/dpotrs
1
2
KQ 2I2

a,k

Solve with Chol. fact.

Rp \ =
{

c̃φk

}
→ =

{
ãφopt,k

} LAPACK/dpotrs
1
2
KQ 2I2

a,k

EH
k ãφopt,k → ãopt,k C/*

1
2
KQIa,k 6

Table A.6: Operations required by the approach proposed in Section 4.2.3
to compute the subband components in all subbands for Q signals a of
length Ia, considering a GDFT filter bank with K subbands, resampling
factor R, and prototype filter of length Ip. The size for the DFTs/IDFTs
is N = Iã,k.
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in which Rp = PTP, and c̃φk = PT ãφk . Since Rp is a real matrix, the real

and imaginary components of aφopt,k can be independently computed by
solving two real-valued systems of linear equations that involve matrix Rp

(which is common for all subbands). Moreover, the systems for the real and
imaginary components have the same form as (3.3). Hence, we consider that
the Cholesky solver discussed in Section A.1.1 is used to solve the systems,
i.e., Rp and c̃k are computed using DFTs and the systems related to the
real and imaginary components are solved using the Cholesky factorization.

We show in Table A.6 the steps required to compute the optimal sub-
band components of a set of Q signals a of equal length Ia using the ap-
proach previously described. Some aspects, as the computation of ãk, are
common for Tables A.5 and A.6, so they are not discussed again here. Let
us note that Rp in (A.26) is common for all subbands and all signals. Then,
Rp and its Cholesky factorization only need to be computed once for the
K subbands and Q signals, while K/2 factorizations are required for the
approach proposed in [102]. This is the main strength of the proposed
method. From Table A.6, the number of FLOPs required to compute the
optimal subband components for the Q signals and K subbands is:

Nflop =

[
1

3

]
I3

a,k +

[
2QK+

1

2

]
I2

a,k +

[
5 (QK+1)

]
Iã,klog2Iã,k+

[
3QK+

1

6

]
Ia,k +

[
Q

R
(2Ip+2K+5K log2K)

]
Ia +

[
6QK+3

]
Iã,k.

(A.33)

From (A.27) and (A.33), we can see that the proposed approach requires
approximately 2K times less FLOPs than the original approach [102].

A.3.2 Computation of subband filters

Now, we focus on the computational complexity required to compute the
subband filters of length Ig,k for wPM-S, assuming that the subband com-
ponents hml,k and dm,k are already known. We showed in Section 4.3.4,
that the optimal subband filters in the k-th subband for wPM-S can be
computed as

ġopt,k=
(
ḢH
k Ḣk+β̇kILIg,k

)−1
ḢH
k ḋk, (A.34)
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or alternatively as

ġopt,k=Ṙ−1
k ċk, (A.35)

where Ṙk = ḢH
k Ḣk+β̇kILIg,k , and ċk = ḢH

k ḋk. In the previous expressions,

we did not consider the weighting matrix Ẇk. Again, we can see that (A.35)
has the same form as (3.3). Then, the solvers described for wPM-T can
be easily extended to compute (A.35), taking into account that it involves
complex-valued matrices.

Operation Routine Calls FLOPs/call

C
om

p
.

Ṙ
k

DFT of hml,k → H̄f,k FFTW/dft ML 5N log2N

H̄H
f,kH̄f,k+βkIL → R̄f,k BLAS/zherk N 4ML(L+1)

IDFT of R̄f,k → Ṙe,k FFTW/dft L(L+1)
2

5N log2N
[
Ṙe,k

]
(0:LIg,k−1,0:LIg,k−1)

↓
Ṙk

- - -

C
o
m

p
.

ċ
k

DFT of dm,k → d̄f,k FFTW/dft M 5N log2N

H̄H
f,kd̄f,k → c̄f,k BLAS/zgemv N 8ML

IDFT of c̄f,k → ċe,k FFTW/dft L 5N log2N

[ċe,k]0:LIg,k−1 → ċk - - -

Solve with Chol. fact.

Ṙk \ ċk → ġopt,k

LAPACK/zpotrf 1

4
3
(LIg,k)3+

3(LIg,k)2+
5
3
(LIg,k)

LAPACK/zpotrs 1 8 (LIg,k)2

Table A.7: Operations required by the Cholesky solver to compute the
subband filters in the k-th subband for wPM-S, considering a system with
L loudspeakers, M control points, subband filters of length Ig,k, and targets
of length Id,k = Ig,k+Ih,k−1. The size for the DFTs/IDFTs is N = Id,k.
We assume that hml,k and dm,k are known.
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Cholesky solver

We consider next the Cholesky solver discussed in Section A.1.1, i.e., Ṙk

and ċk are computed using DFTs and the system is solved using the
Cholesky factorization. In Table A.7, we present the steps required to
compute the optimal subband filters for the k-th subband using the ap-
proach previously described. The DFTs/IDFTs in Table A.7 required to
compute Ṙk and ċk are of size N = Id,k = Ig,k+Ih,k−1. The subband filters
are only computed for K/2 subbands due to the hermitian symmetry of the
GDFT filter bank. Then, from Table A.7, the number of FLOPs needed to
compute all the subband filters is:

Nflop=

K/2−1∑

k=0

([
4

3
L3

]
I3
g,k +

[
11L2

]
I2
g,k +

[
5

(
ML+M+

1

2
L2+

3

2
L

)]
Id,k log2 Id,k+

[
4ML (L+3)

]
Id,k +

[
5

3
L

]
Ig,k

)
. (A.36)

Superfast solver

We consider now the superfast solver [79] discussed in Section 3.5 to com-
pute the subband filters for wPM-S. The expressions presented in Sec-
tion 3.5 for the superfast solver can be directly used for computing the
subband filters by adding subbindex k to all the elements of the expres-
sions, and also by taking into consideration that the time domain signals in
this case are complex-valued. In Table A.8, we present the steps required
to compute the Pk-th order approximation of the subband filters for the
k-th subband using the superfast solver. The DFTs/IDFTs in Table A.8
are of size N = Id,k = Ig,k+Ih,k−1. The subband filters are only computed
for K/2 subbands due to the hermitian symmetry of the GDFT filter bank.
Then, from Table A.8, the number of FLOPs needed to compute all the
subband filters is:

Nflop=

K/2−1∑

k=0

([
10L

]
PkId,klog2Id,k +

[
5ML+5M+20L

]
Id,klog2Id,k+

[
8L2+2L

]
PkId,k +

[
4

3
L3+11L2+

5

3
L+4ML(5L+3)

]
Id,k +

[
2L

]
Ig,k

)
.

(A.37)
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Operation Routine Calls FLOPs/call

C
o
m

p
.

ġ
fd
,k

DFT of hml,k → H̄f,k FFTW/dft ML 5N log2N

DFT of dm,k → d̄f,k FFTW/dft M 5N log2N

H̄H
f,kH̄f,k+βkIL → R̄f,k BLAS/zherk N 4ML(L+1)

Solve with Chol. fact.

R̄f,k \ H̄H
f,k → H̄†f,k

LAPACK/zpotrf N
4
3
L3+

3L2+5
3
L

LAPACK/zpotrs N 8ML2

H̄†f,kd̄f,k → q̄opt,f,k BLAS/zgemv N 8ML

Form q̄opt,k using q̄opt,f,k - - -

TkF
H
L,kq̄opt,k → ġfd,k FFTW/dft L 5N log2N

C
o
m

p
.

co
rr

ec
ti

on
te

rm

H̄†f,kH̄f,k → Λ̄f,k BLAS/zgemm N 8ML2

Form Λ̄k using Λ̄f,k - - -

Bkq̄opt,k → r̄0,k

FFTW/dft L 5N log2N

FFTW/dft L 5N log2N

Λ̄kr̄p−1,k → r̄′p,k, for p > 0 BLAS/zgemv PkN 8L2

Bkr̄
′
p,k → r̄p,k, for p > 0

FFTW/dft PkL 5N log2N

FFTW/dft PkL 5N log2N∑P
p=0 r̄p,k → r̄k C/+ PkLN 2

Λ̄kr̄k → r̄k BLAS/zgemv N 8L2

TkF
H
L,kr̄k → ṙk FFTW/dft L 5N log2N

ġfd,k + ṙk → ġap,Pk,k C/+ LIg,k 2

Table A.8: Operations required by the superfast solver [79] to compute
the Pk-th order approximation of the subband filters in the k-th subband
for wPM-S, considering a system with L loudspeakers, M control points,
subband filters of length Ig,k, and targets of length Id,k = Ig,k+Ih,k−1. The
size for the DFTs/IDFTs is N = Id,k. We assume that hml,k and dm,k are
known.
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A.3.3 Total computational complexity

The total computational complexity of wPM-S is the combination of the
computational complexities required to compute the subband decomposi-
tion of hml and dm, and to compute the optimal subband filters. The num-
ber of FLOPs required to compute the subband components of hml are ob-
tained by setting Q=ML, Ia=Ih, Iã,k=Ih̃,k

, and Ia,k=Ih,k in (A.33), where

I
h̃,k

= d(Ih+Ip−1) /Re and Ih,k=Ih̃,k
−dIp/Re+1. Similarly, the number

of FLOPs required to compute the subband components of dm are ob-
tained by setting Q=M , Ia=Id, Iã,k=Id̃,k

, and Ia,k=Id,k in (A.33), where

I
d̃,k

= d(Id+Ip−1) /Re and Id,k=Id̃,k
−dIp/Re+1. Finally, the number of

FLOPs required to compute the subband filters is obtained with (A.36) for
the Cholesky solver and with (A.37) for the superfast solver.
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Appendix B

Prototype filter design for
GDFT filter banks AA

In this appendix we describe the method used in this work for designing
the prototype filters for GDFT filter banks. We studied in Section 4.2
that a broadband system can be accurately approximated using a GDFT
filter bank if conditions (4.34) and (4.35) are fulfilled, which are directly
related to the Reconstruction Error (RE) and the Alias-To-Signal Ratio
(ASR) of the filter bank, respectively. Then, we propose designing the
prototype filter by minimizing the ASR and the RE of the filter bank. We
consider a GDFT filter bank with even number of subbands K, resampling
factor R, and a symmetric prototype filter p, i.e., with linear phase, of
odd length Ip. First, we derive the formulation that is later used to define
the optimization proposed to compute the prototype filters. Afterwards,
we show the impulse and frequency responses of prototype filters obtained
with the proposed method for different filter bank configurations.

B.1 Formulation

Next, we derive suitable expressions for the ASR and the RE, such that we
can define a cost function for designing the prototype filter p. Let us start
by defining a Ip×1 vector of the coefficients of the prototype filter as

pfull =
[
p(0) . . . p(Ip − 1)

]T
. (B.1)

Since we assume that p is symmetric and that Ip is odd, pfull only contains
Qp = (Ip+1) /2 unique elements. Then, it can be expressed as

pfull = Πp, (B.2)
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where p is a Qp×1 vector containing the unique elements of pfull, i.e.,

p =
[
p(0) . . . p(Qp−1)

]T
, (B.3)

and Π is a Ip×Qp matrix given by

Π =

[
IQp[

JQp−1 0(Qp−1)×1

]
]
, (B.4)

in which JQp−1 is the reversed identity matrix of size Qp−1×Qp−1. Next,
we use p instead of pfull to implicitly incorporate the symmetry of the
prototype filter in the formulation.

B.1.1 Alias-To-Signal Ratio (ASR)

First, we derive an expression for the ASR as a function of p. In Section 4.2,
we defined the ASR as

ASR =

1
R−1

K−1∑

k=0

R−1∑

i=1

∫ 2π

0

∣∣U∗k (ejω)Uk(e
jωΦi

R)
∣∣2 dω

K−1∑

k=0

∫ 2π

0

∣∣Uk(ejω)
∣∣2 dω

. (B.5)

Taking into account that the frequency response of the analysis filter in the
k-th subband for a GDFT filter bank with K even is defined as

Uk(e
jω) = P

(
ej(ω−

2π
K (k+ 1

2))
)
,

we can write (B.5) as

ASR =

1
R−1

R−1∑

i=1

∫ 2π

0

∣∣P ∗(ejω)P (ejωΦi
R)
∣∣2 dω

∫ 2π

0

∣∣P (ejω)
∣∣2 dω

. (B.6)

Now, considering that F −1
{
P ∗(ejω)P (ejωΦiR)

}
= p(−n)∗

(
p(n)ej

2πni
R

)
and

using Parseval’s identity [130], we can finally express the ASR as a function
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of the impulse response of the prototype filter as

ASR =

1
R−1

R−1∑

i=1

∑

n∈Z
|p(−n) ∗ ai(n)|2

∑

n∈Z
|p(n)|2

, (B.7)

where ai(n) = p(n)ej
2πni
R is the impulse response of the i-th aliasing com-

ponent. Now, let us define

Θi = diag
{[
ej

2π0i
R . . . ej

2π(Ip−1)i
R

]}
, (B.8)

which is a Ip×Ip matrix containing the exponential terms required for com-
puting ai. Hence, we can define

ai = ΘiΠp, (B.9)

which is a Ip×1 vector of the samples of ai. The convolution p(−n) ∗ ai(n)
can be computed using DFTs of size N = 2Ip−1, since p(n) and ai(n) are
finite responses of length Ip. Then, let us define F as the 2Ip−1×2Ip−1
matrix for a DFT of size N = 2Ip−1. Also, let us define

Fp = [F](:,0:Ip−1) , (B.10)

which is a 2Ip−1×Ip matrix used to compute the DFT of size 2Ip−1 of a
response of length Ip. Then, we can define

āi = Fpai = FpΘiΠp, (B.11)

which is a 2Ip−1×1 vector containing the DFT of the i-th aliasing compo-
nent ai. Similarly, let us define

P̄ = Diag {FpΠp} , (B.12)

which is a 2Ip−1×2Ip−1 diagonal matrix containing the DFT of the proto-
type filter p. Thus, let us define

yi = FHP̄∗āi, (B.13)

which is a 2Ip−1×1 vector containing the samples of p(−n) ∗ ai(n). Using
(B.11) and (B.12), we can alternatively express (B.13) as

yi = Aip,
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where Ai is a 2Ip−1×Qp matrix given by

Ai = FHP̄∗FpΘiΠ.

Moreover, we can define a (R−1)(2Ip−1)×Qp matrix Z as

Z =
1√

(R−1) ‖Πp‖2




A1

...

AR−1


 .

where the term ‖Πp‖2 is the energy of the prototype filter. Finally, the
ASR can be expressed as

ASR = ‖Zp‖2 , (B.14)

which is not a quadratic function, since Z is also dependent on p.

B.1.2 Reconstruction Error (RE)

Now, we derive an expression for the RE as a function of p. We studied in
Section 4.2 that the RE is given by

RE =
1

2π

∫ 2π

0

∣∣∣T (ejω)− e−jω(Ip−1)
∣∣∣
2
dω, (B.15)

where we assumed that the scaling and the delay produced by the filter
bank are ρf = 1 and τf = Ip−1, respectively. In (B.15), T (ejω) represents
the distortion transfer function of the filter bank, which was derived in
Section 4.1.2 and can be expressed as

T (ejω) =
1

R

K−1∑

k=0

Uk(e
jω)Vk(e

jω). (B.16)

For a GDFT filter bank, the frequency response of the synthesis filters is
given by

Vk(e
jω) = U∗k (ejω)e−jω(Ip−1), (B.17)

so we can write (B.16) as

T (ejω) =
e−jω(Ip−1)

R

K−1∑

k=0

Uk(e
jω)U∗k (ejω). (B.18)
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Then, using (B.18), we can re-write (B.15) as

RE =
1

2π

∫ 2π

0

∣∣∣∣∣

(
1

R

K−1∑

k=0

Uk(e
jω)U∗k (ejω)

)
− 1

∣∣∣∣∣

2

dω, (B.19)

which, considering that F −1
{
Uk(e

jω)U∗k (ejω)
}

= uk(n) ∗u∗k(−n) and using
Parseval’s identity [130], can be alternatively expressed as

RE =
∑

n∈Z

∣∣∣∣∣

(
1

R

K−1∑

k=0

uk(n) ∗ u∗k(−n)

)
− δ(n)

∣∣∣∣∣

2

. (B.20)

Since uk(n) = p(n)ej
2π
K (k+ 1

2)n, we can write

K−1∑

k=0

uk(n) ∗ u∗k(−n) = ej
πn
K σnrp(n), (B.21)

where rp(n) = p(n) ∗ p(−n) is the auto-correlation of p(n), and σn is a
scalar term defined as

σn =

K−1∑

k=0

e−j
2πkn
K =

{
K if n mod K = 0

0 otherwise
. (B.22)

Consequently,
∑K−1

k=0 uk(n) ∗ u∗k(−n) is different from 0 only in those time
instants that are multiple ofK, since for other time instants the components
for the different subbands cancel each other out. Using (B.20)-(B.22), we
can express the RE as

RE =
∑

n∈Z

∣∣∣∣
K

R
rp(nK)− δ(nK)

∣∣∣∣
2

, (B.23)

in which the term ej
πn
K has been omitted because it has no influence in

the expression. From (B.23), we can conclude that perfect reconstruction
is achieved when rp(0) = R/K and rp(qK) = 0 for q ∈ Z\0. Now, let us
define a 2Ip−1×1 vector containing the non-zero samples of rp(n) as

r =
[
rp(0) . . . rp(Ip−1) rp(−Ip+1) . . . rp(−1)

]T
. (B.24)
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Since the values of rp(n) can be computed using DFTs of size 2Ip−1, the
previous vector can be alternatively defined as

r = FHP̄∗FpΠp, (B.25)

where it is important to notice that in the definition of r in (B.24) we consid-
ered the circularity of the DFT. Since p is a filter of length Ip, rp(nK) might
be different from 0 only for n = −Ip↓+1, . . . , Ip↓−1, with Ip↓ = dIp/Ke.
Then, let us define a 2Ip↓−1×1 vector of the samples of rp(nK) as

r↓ =
[
rp(0) rp(K) . . . rp((Ip↓−1)K) rp((−Ip↓+1)K) . . . rp(−K)

]T
,

(B.26)

which can be alternatively defined as

r↓ = Cr = CFHP̄∗FpΠp, (B.27)

where C is a 2Ip↓−1×2Ip−1 matrix whose element in the i-th row and q-th
column is defined as

[C](i,q) =

{
1 if i = q and (i mod K = 0 or i−2Ip+1 mod K = 0)

0 otherwise
.

(B.28)

Now, we can express r↓ as

r↓ = Tp, (B.29)

where T is a 2Ip↓−1×Qp matrix given by

T = CFHP̄∗FpΠ. (B.30)

Also, let us define a 2Ip↓−1×1 vector dδ as

dδ =
[
1 01×2Ip↓−2

]T
. (B.31)

Then, the RE can be expressed as

RE = ‖Tp− dδ‖2 , (B.32)

which is not a quadratic function, since T is also dependent on p.
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B.2 Optimization

Next, we describe the optimization used for computing the prototype filter.
In particular, we propose to compute the prototype filter by minimizing
the weighted sum of the RE and the ASR, i.e.,

popt = arg min
p

(
RE(p) + γASR(p)

)
, (B.33)

where γ is a weighing term that balances the effort used to minimize each
component. Using the formulation presented in Section B.1, we can write
(B.33) as

popt = arg min
p



∥∥∥∥∥

[
T(p)
√
γ Z(p)

]
p−

[
dδ

0

]∥∥∥∥∥

2

 , (B.34)

where notation T(p) and Z(p) is used instead of T and Z, respectively, to
indicate the dependency of these matrices on the filters p. It is important
to highlight that (B.34) is not a quadratic optimization problem, so non-
linear optimization methods must be used to find the optimal solution.
In particular, we propose using the Iterative Least Squares (ILS) method
[100, 149], i.e., the solution to (B.34) is found iteratively by approximating
the cost function by a quadratic function. Then, with ILS for each iteration
i we aim to find

p̌i = arg min
p



∥∥∥∥∥

[
T(p̌i−1)
√
γ Z(p̌i−1)

]
p−

[
dδ

0

]∥∥∥∥∥

2

 , (B.35)

where the filter for iteration i−1, i.e., p̌i−1, is used to approximate the
original non-quadratic function by a quadratic function. The solution for
each iteration can be obtained as

p̌i =
(
TH(p̌i−1)T(p̌i−1) + γZH(p̌i−1)Z(p̌i−1)

)−1
TH(p̌i−1)dδ. (B.36)

Moreover, to add robustness to the convergence of the ILS algorithm we
consider the following averaging for instants i−1 and i [149]

p̌i = (1−ϑ) p̌i + ϑ p̌i−1, (B.37)

where 0 ≤ ϑ ≤ 1 is a forgetting factor. Also, we consider that the pro-
totype filter is computed using Niter iterations, but the algorithm stops if
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Algorithm B.1: ILS method to compute the prototype filter.

Select Ip, Niter, γ, ϑ, and εth;

Initialize p̌−1 as a square-root raised cosine FIR filter of length Ip;

for i = 0, ..., Niter do

p̌i =
(
TH(p̌i−1)T(p̌i−1) + γZH(p̌i−1)Z(p̌i−1)

)−1
TH(p̌i−1)dδ;

p̌i = (1−ϑ) p̌i + ϑ, p̌i−1;

if (‖p̌i − p̌i−1‖ / ‖p̌i−1‖) < εth then

break;

end

end

the normalized variation ‖p̌i − p̌i−1‖ / ‖p̌i−1‖ is lower than a threshold εth.
The proposed algorithm for computing the prototype filter is summarized
in Algorithm B.1. Specifically, in this work we use in all cases Niter = 20,
ϑ = 0.5, and εth = 1·10−3, and a search is carried to select γ such that
similar values are obtained for the RE and the ASR. Also, we consider
that the initial prototype filter p̌−1 is selected as a square-root raised co-
sine FIR filter of energy R/K, which we obtain using MATLAB’s function
rcosdesign with a roll-off factor R/K.

B.3 Design examples

Next, we show some examples of prototype filters obtained with the method
described in Section B.2. The impulse and frequency responses of the de-
signed filters for a length Ip = 55 are shown in Fig. B.1, in which we
consider the following combinations of number of subbands and resampling
factors: 1) K = 8 and R = 6; 2) K = 8 and R = 8; 3) K = 16 and R = 10;
4) K = 16 and R = 16. Also, for these same combinations, the impulse
and frequency responses of the designed filters for a length Ip = 95 are
shown in Fig. B.2. In these results, we can see how the proposed method
can effectively provide prototype filters that minimize the ASR and the RE.
In particular, the longer the filter length, the lower the ASR and the RE.
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B.3. Design examples

(a) Impulse Response (K = 8, R = 6) (b) Freq. Response (K = 8, R = 6)

(c) Impulse Response (K = 8, R = 8) (d) Freq. Response (K = 8, R = 8)

(e) Impulse Response (K = 16, R = 10) (f) Freq. Response (K = 16, R = 10)

(g) Impulse Response (K = 16, R = 16) (h) Freq. Response (K = 16, R = 16)

Figure B.1: Examples of the prototype filter designed with the proposed
method. The impulse and frequency responses of the prototype filter are
shown in (a,c,e,g) and (b,d,f,h), respectively, for 4 combinations of K and
R. A filter length Ip = 55 is considered. The ASR and the RE for each
case is displayed in the graphs.
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(a) Impulse Response (K = 8, R = 6) (b) Freq. Response (K = 8, R = 6)

(c) Impulse Response (K = 8, R = 8) (d) Freq. Response (K = 8, R = 8)

(e) Impulse Response (K = 16, R = 10) (f) Freq. Response (K = 16, R = 10)

(g) Impulse Response (K = 16, R = 16) (h) Freq. Response (K = 16, R = 16)

Figure B.2: Examples of the prototype filter designed with the proposed
method. The impulse and frequency responses of the prototype filter are
shown in (a,c,e,g) and (b,d,f,h), respectively, for 4 combinations of K and
R. A filter length Ip = 95 is considered. The ASR and the RE for each
case is displayed in the graphs.
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