
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Applied Linguistics

Comparative study of computer tools for linguistic
annotation of corpora

Master's Thesis

Master's Degree in Languages and Technology

AUTHOR: Gou , Hongling

Tutor: Periñán Pascual, José Carlos

ACADEMIC YEAR: 2021/2022



1

MÁSTER EN LENGUAS Y TECNOLOGÍA

Curso Académico: 2021/2022

TÍTULO TRABAJO FIN DE MÁSTER:

Comparative study of computer tools for linguistic annotation of corpora

AUTORA: Hongling Gou

Declaro que he redactado el Trabajo de Fin de Máster “Comparative study of
computer tools for linguistic annotation of corpora” para obtener el título de
Máster en Lenguas y Tecnología en el curso académico 2021-2022 de forma
autónoma, y con la ayuda de las fuentes consultadas y citadas en la bibliografía
(libros, artículos, tesis, etc.). Además, declaro que he indicado claramente la
procedencia de todas las partes tomadas de las fuentes mencionadas.

Firmado:

DIRIGIDO POR: Dr. Carlos Periñán Pascual



ACKNOWLEDGEMENTS

Upon finishing this thesis, I would like to express my great gratitude to all those

who have offered me sincere assistance during this year.

First and foremost, my hearty thanks go to my tutor, Professor Dr. Carlos

Periñán Pascual, who has given me insightful suggestions and constant

encouragement both in my study and in my life.

Also, I owe my thanks to all the professors who have taught and enlightened me

during my study at UPV, for guiding me in the field of research work, which is

both challenging and fantastic.

The experience and profit I obtained will be of great importance to my further

studies.



ABSTRACT

Computer tools play a significant role in corpus annotation, since software

suitable for linguists improves the efficiency of annotation, increases the user

experience, and contributes to generating professional results. This research

compares current corpus-annotation tools from a qualitative perspective to

evaluate availability, interactivity, and functionality. In particular, this research

presents an innovative method to compare this type of computer tools using the

XML, XSL, and HTML technologies. In this regard, XSL is applied to XML files

generated by corpus-annotation software so that HTML files can be

automatically created to allow linguists to display different annotations marked

with different colors on the browser.

Key words: computer tool, corpus annotation, XML, XSL, HTML



RESUMEN

Las herramientas informáticas desempeñan un papel significativo en la

anotación de corpus, ya que un programa informático adecuado para los

lingüistas mejora la eficiencia de la anotación, aumenta la experiencia de los

usuarios y contribuye a generar resultados más profesionales. Esta

investigación compara herramientas actuales de anotación de corpus desde

una perspectiva cualitativa con el fin de evaluar su disponibilidad, interactividad

y funcionalidad. En concreto, esta investigación presenta un método innovador

para comparar este tipo de herramientas informáticas a través del uso de las

tecnologías XML, XSL y HTML. En este sentido, XSL se aplica a los archivos

XML generados por los programas de anotación de corpus de forma que se

puedan construir automáticamente archivos HTML que permitan a los lingüistas

mostrar en el navegador las diversas anotaciones marcadas con colores

diferentes.

Palabras clave: herramienta informática, anotación de corpus, XML, XSL,

HTML



RESUM

Les eines informàtiques exerceixen un paper significatiu en l'anotació de corpus,

ja que un programa informàtic adequat per als lingüistes millora l'eficiència de

l'anotació, augmenta l'experiència dels usuaris i contribueix a generar resultats

més professionals. Aquesta investigació compara eines actuals d'anotació de

corpus des d'una perspectiva qualitativa amb la finalitat d'avaluar la seua

disponibilitat, interactivitat i funcionalitat. En concret, aquesta investigació

presenta un mètode innovador per a comparar aquest tipus d'eines

informàtiques a través de l'ús de les tecnologies XML, XSL i HTML. En aquest

sentit, XSL s'aplica als arxius XML generats pels programes d'anotació de

corpus de manera que es puguen construir automàticament arxius HTML que

permeten als lingüistes mostrar en el navegador les diverses anotacions

marcades amb colors diferents.

Paraules clau: eina informàtica, anotació de corpus, XML, XSL, HTML



TABLE OF CONTENTS

1. INTRODUCTION..............................................................................................................................1
2 CORPUS ANNOTATION..................................................................................................................2

2.1 Levels.......................................................................................................................................2
2.1.1 Phonological and orthographic annotation............................................................ 3
2.1.2 Morphology level annotation.................................................................................... 4
2.1.3 Syntax level annotation............................................................................................. 5
2.1.4 Semantic level annotation.........................................................................................7
2.1.5 Pragmatic/discourse level annotation.....................................................................8

2.2 Standards..............................................................................................................................10
2.2.1 TEI...............................................................................................................................11
2.2.2 EAGLE....................................................................................................................... 13

2.3 Technology............................................................................................................................16
2.3.1 XML............................................................................................................................ 16
2.3.2 DTD............................................................................................................................ 21
2.3.3 XSD............................................................................................................................ 24
2.3.4 XSL............................................................................................................................. 25
2.3.5 HTML..........................................................................................................................30

2.4 Software................................................................................................................................ 31
2.4.1 BioAnnotate...............................................................................................................32
2.4.2 Callisto........................................................................................................................33
2.4.3 Ellogon....................................................................................................................... 33
2.4.4 Glozz.......................................................................................................................... 34
2.4.5 MMAX2...................................................................................................................... 34
2.4.6 MAE............................................................................................................................ 35
2.4.7 Wordfreak.................................................................................................................. 36
2.4.8 UAM Corpus..............................................................................................................36
2.4.9 Other Software..........................................................................................................37

3 RESEARCH TASKS....................................................................................................................... 38
3.1 Analysis of computer tools................................................................................................. 38
3.2 Methodology......................................................................................................................... 39
3.3 Task #1.................................................................................................................................. 43

3.3.1 MAE............................................................................................................................ 44
3.3.2 UAM............................................................................................................................51
3.3.3 DEXTER.................................................................................................................... 56
3.3.4 Result of Task #1......................................................................................................62

3.4 Task #2.................................................................................................................................. 67
3.4.1 UAM............................................................................................................................68
3.4.2 DEXTER.................................................................................................................... 73
3.4.3 Result of Task #2......................................................................................................78

4. CONCLUSION................................................................................................................................81
5. BIBLIOGRAPHY............................................................................................................................ 82
APPENDICES....................................................................................................................................... 1



Appendix 1. First XSL file of process one for UAM................................................................ 1
Appendix 2. Generated XML file of UAM in process one......................................................3
Appendix 3. Second XSL file of process two for UAM and process three for DEXTER.. 7
Appendix 4. Original generated XML file of UAM in process two........................................ 8
Appendix 5. First XSL file of process one for DEXTER.......................................................13
Appendix 6. Original generated XML file of process one for DEXTER.............................14
Appendix 7. Final generated XML file of process one for DEXTER..................................19
Appendix 8. Second XSL file of process two for DEXTER................................................. 24
Appendix 9. Generated XML file of DEXTER in process two.............................................28



INDEX OF FIGURES

Figure 1. Tagset guidelines of EAGLE...........................................................................................19

Figure 2. Steps for comparing computer tools............................................................................. 44

Figure 3. Annotation procedures of MAE...................................................................................... 47

Figure 4. The MAE interface............................................................................................................51

Figure 5. UAM annotation procedures...........................................................................................54

Figure 6. Design scheme for layers................................................................................................56

Figure 7. Design scheme for layers................................................................................................56

Figure 8. Annotation procedures in the Dexter tool..................................................................... 58

Figure 9. The style sheet of Dexter.................................................................................................60

Figure 10. Annotation of Dexter tool...............................................................................................62

Figure 11. Procedures of Task #2 for UAM...................................................................................70

Figure 12. Result of Task #2 with UAM..........................................................................................73

Figure 13. Procedures of Task #2 for DEXTER............................................................................75

Figure 14. Result of Task #2 with DEXTER.........................................................................77

TABLE INDEX

Table 1. Comparison result one...................................................................................................... 65

Table 2. Comparison result two.......................................................................................................78



1

1. INTRODUCTION

Corpus annotation is recognized as the most fundamental academic research

worldwide. Through corpus annotation, linguists can not only analyze linguistics

but, most importantly, they can facilitate international communication by

analyzing different languages. As a result of the rapid development of computer

science in recent years, linguistic annotators have been applying corpus

computer tools in line with that development.

Availability, interactivity, and functionality are the three basic aspects of

computer tools that need to be evaluated. Although most computer tools are

free-access and can be easily downloaded from official websites, installation in

different operating systems can be complicated. In addition, the interactivity of

the computer tool is crucial. For example, computers tools can be very

user-friendly for inexperienced corpus annotators if they include a user manual

and guides users step by step. The functionality of the computer tool is of most

importance. For example, for an annotator with no experience in corpus

annotation, it is more appropriate to choose a corpus computer tool with a simple

interface and guidelines. However, for a professional linguistic annotator, the

more advanced features of the corpus computer tool are more important,

because there are a large number of corpus annotations that need to be

manually annotated over time, and it is more important that annotators can go

back to the previous annotation interface to continue annotation.

Therefore, a suitable computer tool plays a very important role in corpus

annotation, not only to improve the efficiency of annotation, but also to increase

the user experience and to generate professional annotation files as a basis for

further academic research. For this reason, this study designed two academic

tasks to test these three aspects of the computer tool. Task 1 designed a sample

corpus and implemented the corpus annotation using three computer tools. All



2

steps were recorded to compare the three computer tools. Table 1 shows the

results of comparing these three computer tools in different aspects. Task 2

creates the XSL file, converts the generated XML file into an HTML file, and

displays the annotations marked with different colors in the browser. As a result,

Table 2 shows the results of the comparison. This study applies the technologies

XML, DTD, XSL and HTML to propose a corpus annotation based on

morphosyntactic and syntactic annotations, where the two levels of corpus

annotation are part of speech (POS) and verb tense.

In summary, this research has three parts. Section 2 provides a literature review

of corpus levels, standards and computer tools, Section 3 describes the two

tasks and compares the corpus tools and draws conclusions in the form of two

tables describing the comparison between the tools MAE, UAM and DEXTER.

Finally, Section 4 concludes with a general review of the theoretical and practical

parts of the research.

2 CORPUS ANNOTATION

This section introduces four parts about corpus annotation: the levels of corpus

annotation, standards for corpus annotation, theoretical techniques, and corpus

computer tools.

2.1 Levels

Linguistic information about grammatical categories of words, syntactic

structures of sentences, speech acts and semantic information can be annotated,

bringing added value to professional research in academic and social fields. The

classification of the different linguistic levels of corpus annotation is crucial as a

foundational theory for annotation.



3

Today, modern corpora are created in electronic format, making it easier to store

linguistic resources. In this technological context, corpus computer tools are

increasingly used in linguistics. Therefore, it is important to present a

comparative study of computer tools applied to the field of linguistic annotation.

For this reason, this section describes the theoretical background of the level of

corpus annotation.

With the rapid development of information technology, corpus annotation at

different linguistic levels has been applied in various related research fields.

According to previous research, there are seven levels of corpus annotation:

The different sounds used by a language are described at the
level of phonology. The writing system is described at the level
of orthography. Morphology describes the formation and
inflection of individual words. Syntax describes the ordering of
words and their combination into phrases and sentences.
Semantics analyzes the meaning of individual words (lexical
semantics) and the meaning of phrases and sentences
(compositional semantics). How words and phrases are used to
make things happen is the level of pragmatics. How people and
things are introduced as topics and subsequently referred to in
later utterances is the level of discourse. (Wilcock, 2009, p. 29)

Therefore, this section provides an overview of the main concepts and practical

examples related to different levels and standards of corpus annotation. This

section also presents the status of corpus annotation at different levels, including

but not limited to definitions of levels, examples of corpus computer tools, and an

overview of future developments in the field.

2.1.1 Phonological and orthographic annotation

Wilcock (2009) explained that phonology and orthography deal with the smallest



4

units, that is, individual sounds and letters, respectively. Thus, orthographic and

phonology levels of annotations are related according to the direction of

research. According to Gires (2017), an orthographic transcription can generate

the phonemic annotation automatically by utilizing a pronunciation lexicon and/or

rule-based algorithms. He argued that orthographic annotation provided a

methodology for solving linguistic research in phonological annotation. The

orthographic level of annotation focused on the written words and the spellings,

and the annotation tasks were typically tokenization and sentence boundary

detection (Wilcock, 2009). As explained by Attia (2017), tokenization is used to

identify token boundaries and is automatically performed with a limited set of

token delimiters: space and punctuation symbols.

There were annotation tasks on phonological level. For example, various

phonology applications can be distinguished at different levels of representation

for acoustics and linguistic functions. Hirst (2006) argued that, between the

physical acoustic signal and a functional representation of linguistic meaning,

there were three intermediate levels: phonetic representation, surface

phonological representation, and underlying phonological representation.

However, Gries (2017) claimed that research on paralinguistic aspects of speech

is in the initial steps, and prosodical corpus annotation is still not mainstream in

corpus linguistics.

2.1.2 Morphology level annotation

According to Wilcock (2009), morphological annotations focus the formation and

inflection of every single word. For example, part-of-speech (POS) tagging is a

task under the theoretical basis of morphology.

From a more general perspective, morphology and lexicography are, in a sense,



5

related and cannot be separated. Thus, when linguistic hierarchies are applied to

categorize corpus annotations, such annotated linguistic corpora are similar

even though they are under different levels of linguistic annotations. In other

words, when a human annotator selects a linguistic annotation level and then

builds a corpus based on the selected linguistic level, other linguistic

categorizations are also reflected in some practical parts of research and are

shown in the final results. More specifically, for example, when creating a lexical

corpus, POS tagging is also used, and the lexical-level annotated corpus that

was initially created to build a lexical corpus for lexical meaning analysis may

also yield morphological results in its final analysis. For instance, the topic

chosen by a research group can be to analyze grammars utilizing the syntactic

level of corpus annotation, but (i) we can study and illustrate syntactic

phenomena morphologically, deriving some indices of the influence of different

grammar on word formation, or (ii) we can study the composition of sentences at

the syntactic level efficiently.

According to the classification of linguistic levels (Wilcock, 2009), this article

classifies corpus annotation into seven linguistic levels. However, corpora are

not annotated at one particular linguistic level in practical tasks. Of course, this is

not only a problem encountered in our research, Starko (2020) found that

semantic annotations are a natural complement to morphological annotations,

and after the whole process of semantic annotation, he claimed that the

application of the combination of morphological (POS) and semantic tagging

could be a significant development of linguistic annotation and a variety of

natural language processing (NLP) applications. In corpus annotation, there are

many similar cases. For example, the TIGER Corpus Navigator also used syntax

annotation to identify target classifications even though it is a semantic website

system (Hellmann, 2010).

2.1.3 Syntax level annotation



6

Syntax describes the ordering of words and their combination into phrases and

sentences. Syntactic annotation is at the level of words, phrases, clauses, and

the combination of each part. Based on this basic theoretical knowledge, those

annotation projects related to the formation of a whole sentence and the

relationship between each part of a sentence belong to the level of syntactic

annotation. As mentioned above, annotation can be applied to an

interdisciplinary field of study. For example, Tateisi (2005) and his team focused

on the syntax level of annotation with the study of relations between proteins and

genes in cooperation with biologists for further scientific development in the

biomedical field. Based on original texts in the biomedical domain, the corpus

containing syntactic annotation was created for improving NLP software in

bio-text mining for information extraction. Following the Penn Treebank II (PTB)

scheme, the primary texts of the GENIA Corpus were manually annotated with

an XML editor and then converted to a PTB format before being merged with the

POS annotation of the GENIA Corpus (Tateisi, 2005).

While syntactic ways of annotation have the advantage of simplifying the

process of annotation, those surface syntactic annotation methods are essential

to provide deeper information using semantically oriented annotation, and when

"deeper" is mentioned, there are various aspects in different linguistic

frameworks. Candito (2014) and his linguistic team define a deep syntactic

representation scheme for French based on the SEQUOIA corpus. Focused on

a deep annotation scheme and a deeply annotated corpus by analyzing the

surface dependency trees of the Sequoia corpus, the free-access DS (Deep

Sequoia) corpus was created for corpus linguistics studies and further semantic

analysis. The DS corpus, developed by team members located in two different

French towns (i.e. Paric and Nancy), was iteratively and collaboratively

produced. In particular, a complete annotation of the corpus was constructed

independently in both towns and then the final results were collaboratively



7

agreed on.

There are also numerous creative and practical ways of using syntactic

annotation in different fields. For example, also based on the SEQUOIA corpus,

Fort (2014) presented the design of Zombilingo, a Game With A Purpose (GWAP)

that provided ways of syntactic annotation. With the view that using a GWAP is

an alternative way to the traditional and costly human annotation, after

comparing several games such as PhraTris6 and Phrase Detectives, Fort (2014)

decided to create a new GWAP, despite the discouraging results of previous

projects. Furthermore, to build the corpus annotated at syntax level and free

access, the resources were freely available texts by selecting Wikipedia articles

from public domain resources. For this reason, applying syntactic annotation to

make an free-access corpus for information extraction for initial study in different

domains of research is an typical task in syntactic annotation.

2.1.4 Semantic level annotation

Semantics analyzes the meaning of individual words and the meaning of

phrases and sentences, and semantic annotation is the level of dealing with the

medium-sized units such as words, phrases, and sentences. However,

according to Wilcock (2009, p. 30): “at the higher linguistic levels of semantics,

pragmatics and discourse, there are numerous different theories and it is difficult

to find a clear consensus for use in the practical tasks of corpus annotation.”

Palmer (2005) and his team have clearly explained the difference between

semantic and syntactic analyses in the aspect of parsers that represent the

meaning of texts. By comparing these two sentences “John broke the window.”

and “The window broke,” Palmer (2005, p. 1) explained that: “a syntactic

analysis will represent the window as the verb’s direct object in the first sentence

and its subject in the second but does not indicate that it plays the same

underlying semantic role in both cases”. Therefore, semantic annotation and



8

syntactic annotation focus on different aspects of linguistic annotation.

During academic research in recent decades, semantic annotation played a

significant role in annotating natural language texts. For example, in the study by

Starko (2020), semantic annotations were used for Ukrainian with a taxonomic

approach and were solved by insights from human natural language

categorization. The project put forward a way of creating a semantic lexicon via

annotating semantic annotation and then matching it with VESUM (Large

Electronic Dictionary of Ukrainian). Starko (2020, p. 1) stated that: “the semantic

lexicon will be used by the TagText tagger (both tools developed by the r2u team)

to add the semantic annotation to the GRAC corpus”. The semantic annotation

provided opportunities for other scholars to further explore semantic classes and

other tasks in NLP software and applications. This research played an essential

role in the development of semantic annotation application of solutions in the

social field. Semantic tags were helpful for applications that could be applied in

corpus linguistics and other domains, such as named entity recognition and

information extraction. In addition, GRAC, the General Regionally Annotated

Corpus of Ukrainian, was not only used in the academic field of linguistics but

also NLP communities.

2.1.5 Pragmatic/discourse level annotation

According to Wilcock (2009, p. 29): “how words and phrases are used to make

things happen is the level of pragmatics. How people and things are introduced

as topics and subsequently referred to in later utterances is the level of

discourse”. Although Wilcock separately defined the pragmatical level of

annotation and the discourse-level of annotation, they were not separated

clearly in many practical projects of corpus annotation.



9

The Penn Discourse Treebank (PDTB), a classical discourse-level annotation

project, aimed to produce a large-scale corpus. In the project, connectives and

arguments were annotated to expose a clearly defined level of discourse

structure (Miltsakaki, 2004). Four classes of connectives, subordinating and

coordinating conjunctions, adverbials and implicit connectives, and arguments

were defined and illustrated to prove that a structure-clarified corpus could be

annotated at the discourse level. Most discourse annotations were used to

provide linguistic information and statistical support in NLP basing on PDTB.

For decades, the word-level annotation has been applied to artificial intelligence,

machine translation, data analysis, segment source code, medical schedules,

and other new sciences of interdisciplinary fields to provide practical solutions to

social and scientific research problems.

However, unlike PDTB, which focused more on the linguistic markers of

coherence relations, “Cognitive approach to Coherence Relations (CCR) was

originally proposed as a set of cognitively plausible primitives to order coherence

relations, but is also increasingly used as a discourse annotation scheme” (Hoek,

2019, p. 1). Recently, Hoek (2019) provided a new CCR to illustrate the

application of the cognitive approach to coherence relations, and Hoek's new

research significantly contributes to adding “disjunction” as a new distinction to

CCR.

Corpus annotation has seen significant diachronic changes from annotating

standardized text in journals to relatively informal text in novels, from written text

annotation to spoken dialogues. Despite those manually annotated text corpus

projects, the application of discourse annotation in the field of videos and their

transcribed texts is the mainstream usage of discourse annotation in the new

decades. For instance, a discourse-level annotation based on planned spoken

monologues applying the style of PDTB was executed by Long (2020) to study



10

and display the annotation results of distributions of discourse relations and

senses, which differed from the corpus containing standard written text only.

2.2 Standards

The standard of establishing a corpus is an essential aspect during the initial

step of corpus creation as the annotation standard helps to standardize the

annotation tasks. Scholars were researching how to automatically adapt one

annotation to another in order to reduce human input as the annotation tasks are

always under different annotation standards (Jiang, 2009). In his research, Jiang

provided a strategy for an automatic adaptation of annotation standards. The

adaptation between the different standards of annotation tasks, such as

treebanks and sequence labelling, was still hot research in the NLP domain, and

it would be a tremendous support for saving human input on corpus annotation.

In recent decades, there have been numerous ideas for designing schemes for

testing the annotation standards automatically. For example, Flickinger (2008)

believed that the significant role of a target annotation scheme was that it should

be under the theoretical and practical aspects of facilitating the automatic

comparison of results across frameworks and supporting the final evaluation of

results against the corpus annotation standards.

According to Müller(2002, p. 1): “The result is that in many research projects

software is created from scratch, used once for a particular corpus processing

task, and is then discarded”. Corpus annotation standards are very important

because annotation files that adhere to annotation standards can be reused. In

view of the foregoing, this section provides the theoretical basis of corpus

annotation standards and describes two annotation standards, Text Encoding

Initiative (TEI) and Expert Advisory Groups on Language Engineering Standards

(EAGLE).



11

2.2.1 TEI

Adherence to corpus annotation standards is an important prerequisite for

creating corpus annotations. A well-known and widely used corpus annotation

standard is the Text Encoding Initiative (TEI). TEI promotes coding

standardization, it allows more scholars to use the same coding principles and

markup language to facilitate standardization and validation of the accuracy and

consistency of XML files, as well as to provide a means for information software

to access the corpus for further applications. Wynne (2005) also mentioned four

significant parts of the TEI Header, a file description, an encoding description, a

profile description, and a revision description.

The TEI standard is one of the important corpus annotation standards, which is

characterized by comprehensibility, flexibility and extensibility. The TEI standard

mainly provides a standard format for data exchange and guidance for encoding

texts in this format. Burnards (1994) explained that the TEI encoding scheme is

formulated with numerous models and DTD fragments, which can also be called

tag sets. According to Burnadas (1994, p. 55): “the DTD fragments from which

the main TEI DTD is constructed may be classified as core DTD fragments, base

DTD fragments, and additional DTD fragments”.

Nowadays, the TEI standard is widely used by linguists for corpus annotation.

For example, Maraoui (2017, p. 1) developed his research under the TEI

standard because of its simplicity and concrete structure. The author declared

that: “we choose to work with TEI because it has clear, simple and concrete

structure. Further, the text encoding with TEI bases upon a well-maintained

schema and offers a large spectrum of possible elements”. For this reason, a

TEI-based model is presented for normalizing and improving the structure of the

Hadith corpus in his research. Before presenting the experiment on the corpus,



12

Maraoui (2017) stated an overview of TEI standards, the original goal of TEI is to

support the development of a comprehensive set of standards for the

preparation and transcription of electronic texts for corpus annotation. In addition,

the author present the following sample for TEI.

<TEI xmlns="http://www.tei-c.org/ns/1.0">
<teiHeader>
<!-- Header properties -->
</teiHeader>
<text>
<front> <!-- front information --> </front>
<body> <!-- main body --> </body>
<back> <!-- back information --> </back>
</text>
</TEI> (Maraoui, 2017, p. 2)

The elements <TEI>, <teiHeader>, <text>, <front>, <body> and <back> are

structured by TEI standards. The simplified structure presents two parts: the TEI

header and the text. First, according to Maraoui (2017, p. 2): the <TEI> element

“contains all the information analogous to that provided by the title page of a

printed text” and the <teiHeader> marked the metadata of the document.

Second, the <text> element has three child elements <front>, <body> and

<back>. The <front> element contains the front information, the <body> element

contains the main body and the <back> element contains the back information.

The following is a sample of book information applying TEI standards:

<TEI xmlns="http://www.tei-c.org/ns/1.0">
<teiHeader>

<fileDesc>[FileInformation]</fileDesc>
</teiHeader>
<book>

<title>[BookTitle] </title>
<publication>[JournalName]</publication>

</book>
</TEI>

https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-fileDesc.html
https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-fileDesc.html


13

Complying with the TEI standard, this sample presents two parts: the TEI header

and the book information. First, the <teiHeader> element contains the header of

the document, the <fileDesc> presents the information of the file itself. Second,

the <book> element presents detailed book information, i.e., the title of the book

and the name of the journal that published the book. The <book> element

contains subelements <title> and <publication> elements that present this book

information respectively.

In conclusion, the above paragraph contains an introduction to TEI standards.

According to the TEI consortium, there is a set of Guidelines that specify

encoding methods for “machine-readable texts” in the field of linguistics and

others.

We applied the TEI standard of corpus annotation for three main reasons to

comply with our research:

a. Its basic knowledge of corpus annotation language is XML, and this

research is creating the corpus based on XML language;

b. Its original goals are to simplify the corpus structure, and there is precisely a

demand for improving the structure.

c. The generated XML files by computer tools follow the TEI standard.

2.2.2 EAGLE

Expert Advisory Groups on Language Engineering Standards (EAGLE) is a

standard for different levels of corpus annotation. According to guidelines on the

Recommendations for the Morphosyntactic Annotation of Corpora, two types of

annotation most commonly applied to a text are morphosyntactic annotation and

https://tei-c.org/release/doc/tei-p5-doc/en/html/ref-fileDesc.html


14

syntactic annotation. According to EAGLE (1996a), the guidelines of

morphosyntactic annotation1 is also defined as grammatical tagging, “whereby a

label or tag is associated with each word token in the text, to indicate its

grammatical classification”. The following Figure 1 shows the tagset guidelines.

Figure 1. Tagset guidelines of EAGLE.

Figure 1 shows tagsets. The capital letters represent tags, and the contents in

square brackets explain the type of annotations indicated by tags. For example,

capital N refers to noun tag, capital V refers to verb tag, capital AJ refers to the

adjective tag, and so on. In addition, on EAGLE’S official website, there are

explanations for the last three tags.

EAGLE (1996b) proposed guidelines for syntactic annotation2. For example,

EAGLE (1996b) proposed several annotation layers And the following shows

annotation eight layers:

Bracketing of segments: layer (a)

Labelling the category of segments: layer (b)

1 The guidelines of morphosyntactic annotation can be found on the website of EAGLE. URL:
http://www.ilc.cnr.it/EAGLES96/annotate/annotate.html
2 The guidelines of syntactic annotation can be found on the website of EAGLE. URL:
http://www.ilc.cnr.it/EAGLES96/segsasg1/segsasg1.html

http://www.ilc.cnr.it/EAGLES96/segsasg1/node18.html
http://www.ilc.cnr.it/EAGLES96/segsasg1/node19.html
http://www.ilc.cnr.it/EAGLES96/annotate/annotate.html
http://www.ilc.cnr.it/EAGLES96/segsasg1/segsasg1.html


15

Showing dependency relations: layer (c)

Indicating syntactic function labels: layer (d)

Marking subclassification of syntactic segments: layer (e)

Logical relations of various kinds: layer (f)

Information about the rank of a syntactic unit: layer (g)

Spoken language non-fluency phenomena: layer (h)

(EAGLE, 1996b)

The A layer proposed the “syntactic integrity (sentences, clauses, phrases,

words)” that is delimitated by square brackets. B layer described that “Segments

can be labelled according to their syntactic function, such as Subject, Object,

Adjunct...” C layer showed the dependency relations, which EAGLE (1996)

explained as “head-dependent relations between words, e.g. adjectives and the

nouns they modify”. D layer proposed the annotation for syntactic functions,

such as Subject, Object, and Adjunct. E layer “involves assigning feature values

to phrases or words, e.g. marking a Noun Phrase as singular, or a Verb Phrase

as past tense.” According to EAGLE, “a singular (proper) noun phrase (Nns),

and past tense verb phrase (Vd)”. F layer “includes a variety of syntactic

phenomena, such as co-referentiality (e.g. in control structures), cross-reference

(or substitution), ellipsis, control, traces and syntactic discontinuity.” G layer

described the rank of annotation, which is “applied to general categories of

constituents, words being of lower rank than phrases, phrases being of lower

rank than clauses, and clauses being of lower rank than sentences.” The last H

layer is defined to annotate “a range of phenomena that do not normally occur in

written language corpora, such as blends, false starts, reiterations and filled

pauses.” (EAGLE, 1996b)

Apart from these recommendations for morphosyntactic annotation, EAGLE also

http://www.ilc.cnr.it/EAGLES96/segsasg1/node20.html
http://www.ilc.cnr.it/EAGLES96/segsasg1/node21.html
http://www.ilc.cnr.it/EAGLES96/segsasg1/node22.html
http://www.ilc.cnr.it/EAGLES96/segsasg1/node23.html
http://www.ilc.cnr.it/EAGLES96/segsasg1/node24.html
http://www.ilc.cnr.it/EAGLES96/segsasg1/node25.html


16

provided a Corpus Encoding Standard (CES)3 based on XML. According to

EAGLE (2000), the CES standard complies with TEI guidelines.

The CES specifies a minimal encoding level that corpora must
achieve to be considered standardized in terms of descriptive
representation (marking of structural and typographic
information) as well as general architecture (to be maximally
suited for use in a text database). (EAGLE, 2000)

EAGLE (2000) proposed recommendations for corpus annotation in many

aspects. It proposed the definition of the basic terms, such as “encoding”, “text”

and “markup”. For example, according to EAGLE (2000), a text “is a piece of

human language communication in the broader sense, that one has reason to

consider as a whole.” and markup or tags “represent the interpretation of

segments of text”. Furthermore, it proposed three levels of standardization, the

metalanguage level, syntactic level and semantic level standardization.

According to EAGLE (2000), a better way to “standardize texts is to specify

precise tag names and syntactic rules for using the tags as well as constraints

on content”. Finally, it also defined the types of information and several criteria

for encoding.

2.3 Technology

This section describes five computational languages and specifications: XML,

DTD, XML Schema, XSL, and HTML.

2.3.1 XML

XML is a computational language that is widely used in corpus annotation, and

3 The Corpus Encoding Standard (CES) can be found on the website of EAGLE. URL:
https://www.cs.vassar.edu/CES/

https://www.cs.vassar.edu/CES/


17

this research uses XML as the main encoding language to create a corpus for

morphosyntactic level annotation. Indeed, the “familiarity with SGML or XML” is

an essential technical principle for understanding the structure of the TEI

scheme (Burnard, 1994). Thus, having a basic understanding of the structures of

XML is also an essential theoretical basis in order to start to establish any corpus

for any usage for various levels of corpus annotation.

XML, Extensible Markup Language, is a markup language that can be used to

create customized tags. Furthermore, tags, elements, and attributes are three

terminologies and basic structures used to describe XML (Tidwell, 1999). Below

is a modified sample of a part of the XML document with the structure cited from

Tidwell's (1999) introduction of an XML language for an initial understanding of

XML.

<address>

<name>

<first-name>Hongling</first-name>

<last-name>Gou</last-name>

</name>

<street>27 Street</street>

<city state="VL">Valencia</city>

<postal-code>46000</postal-code>

</address>

These tags should be structured by the left angle bracket (<) and the right angle

bracket (>), and there should be two tags: starting tag and ending tag, for

example, <address> and </address>; These elements are the starting tags and

ending tags mentioned above and are structured by the brackets. <first-name>

and <last-name> are the child elements of <name>.



18

Within the element, attributes provide information concerning the element, and

the information provided needs to be enclosed in quotation marks. For example,

“state” is the attribute of the <city> element, containing the “VL” value. In the

following we present two samples for introducing the attribute in an element:

Sample A)

<Book color= “red”>

<BookTitle>Poems of Shakespeare</BookTitle>

</Book>

Sample B)

<Book>

<BookColor>Red</BookColor>

<BookTitle>Poems of Shakespeare</BookTitle>

</Book>

Sample A has two elements: <Book> and <BookTitle>, in which the <BookTitle>

element is the child element of the <Book> element, “color” is the attribute of the

<Book> element, providing the information of book color. On the contrary,

sample B has three elements: <Book>, <BookColor> and <BookTitle>, in which

<BookColor> and <BookTitle> are the child elements of the <Book> element.

The <BookColor> element provides the book color information. In sample A, the

color of the book is presented in the attribute “color” while in sample B the value

of color is presented in element <BookColor>, so the annotator can use both

attribute and element to provide the same information.

The following paragraphs present different types of XML of annotated corpus

samples:



19

Sample C)

<?xml version='1.0' encoding='utf-8'?>

<document>

<header>

<file_name>Mycorpus.txt</file_name>

</header>

<body>

<annotation id='1' features='grammar'>Hmmm</annotation>

<annotation id='2' features='grammar'>Emmm</annotation>

...

<annotation id='200' features='grammar'>Ahh</annotation>

</body>

</document>

Regarding sample C), this XML document generated from corpus annotation has

two parts to its structure. In the first part, the <header> tag contains the child tag

<file_name>, which contains the information of the name of this XML file.

The second part is the <body> tag, which contains two hundred <annotation>

child elements. The <annotation> tag has two attributes. First, the attribute id

defines the serial number of the annotation, which is normally auto-generated by

the computer tools. Second, the features attribute presents the layer of

annotation, it is “grammar” in this case, and it could be POS or verb tenses in

this task. The value of the <annotation> tag is the annotated text. For example,

the <annotation> tag whose id presents “200” and has been annotated with the

grammar layer containing the value “Ahh”, and “Ahh” is the annotation text.

Sample D)

<?xml version="1.0" encoding="UTF-8"?>

<dexter_code_set>



20

<metadata>

<file>Text3.xml</file>

<modified>22-5-9 12:07</modified>

</metadata>

<data>

<type name="verb" red="255" green="128" blue="255" visible="true">

<token>

<start_id>b.10.1</start_id>

<start_index>106</start_index>

<start_string>If</start_string>

<end_id>b.10.1</end_id>

<end_index>174</end_index>

<end_string>one</end_string>

</token>

<token>

...

</token>

</type name="noun" red="128" green="255" blue="255" visible="true">

<type>

...

</type>

</data>

</dexter_code_set>

Regarding sample D, there are also two parts in the structure of XML files, the

<metadata> and the <data>. In the first part, the <metadata> tag contains the

child element <file> and <modified>, the <file> defines the name of this XML file,

and <modified> element presents the time when this XML file is modified.



21

In the second part, the <data> element contains all the data of annotation, which

is the main body of this XML document. In the <data> element, there are child

elements <type>. <type> elements refer to different annotation tags. For

example, the attribute name of the first <type> has the value “verb”, which

defines that this <type> element contains the information of annotation for verbs.

The attribute name of the second <type> element has the value “noun”, which

defines that this <type> element contains the information of annotation for

nouns.

Sample D contains the annotation information in the <token> element, which has

six child elements, <start_id>, <start_index>, <end_id>, <end_index> and

<end_string>. These six child elements contain the annotation information , but

they present the position of the annotation in the original XML files instead of

presenting the annotated text. The <start_id> and <end_id> contain the serial

number information of the start and end positions; the <start_index> and

<end_index> contain the information of the position of annotated text in the

original XML document; the <start_string> and </end_string> present the string

before and after the annotation.

In this way, the computer locates the position of the annotated text. For example,

in this <token> element, its child elements define the location of annotation. The

id number is “b.10.1”, the location index from 106 to 107 in the XML document,

and the annotated text starts with the text “if” and ends with “one”.

2.3.2 DTD

Document Type Definition (DTD) plays an essential role in forming the basic

technical knowledge of corpus annotation. As defined by Goldberg, “A DTD, or

Document Type Definition, is an older, but widely used system with a peculiar

and limited syntax” (Goldberg, 2010, p. 94). DTD principles help standardize and



22

validate the markup languages and clarify the structure. It is also a personalized

and customized standard that can be applied in different fields of corpus

annotation.

According to Goldberg (2010), DTD can define various elements, other

occasions of choice, and occurrences. Below we present five kinds of elements

and examples for DTD rules.

a. DTD principles can define an element that contains text, which means its

content and value should only be text, but no other form of value.

Eg. <!ELEMENT author (#PCDATA)>

<!ELEMENT name (#PCDATA)>

b. DTD principles can define an empty element, which means its value should

be empty.

E.g. <!ELEMENT image EMPTY>

<!ELEMENT date EMPTY>

c. DTD principles can define an element that contains a child element, which is

an element that belongs to its father element. Thus, in the example below, the

"color" element should be the child element of <book_colors> and with these

DTD rules, the <book_colors> element only exists as one child element.

Eg. <!ELEMENT book_colors (color)>

d.If one element has many child elements, such as book name, author, date of

publication, book color, and book image. DTD can also be used to define it as

below:



23

E.g. <!ELEMENT book_info (name, author, date, color, image)>

d. In some cases, DTD can be used to define an element that contains anything,

which means no rules apply to the value of this element. In other words, the

value can be text, data, or symbol.

Eg. <!ELEMENT book_content ANY>

<!ELEMENT book_classification ANY>

The following shows sample A about student information.

A.

<!ELEMENT student (university_name,gender,age,nationality,emai_addl)>

<!ELEMENT university_name (#PCDATA)>

<!ELEMENT gender(#PCDATA)>

<!ELEMENT age(#PCDATA)>

<!ELEMENT nationality(#PCDATA)>

<!ELEMENT email_add(#PCDATA)>

Sample A has an element <student>, which has five child elements describing

the student information in the aspect of university name, gender, age, nationality

and email address.

The following shows sample B of a DTD file standardizing the XML document

about book information.

B.

<!ENTITY name "book">

<!DOCTYPE book[

<!ELEMENT book_info (title, abstract)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT abstract (short, long)>



24

<!ELEMENT short (#PCDATA)>

<!ELEMENT long (#PCDATA)>

<!ATTLIST book id CDATA #REQUIRED>

]>

<document id="123">

<title>Un título</title>

<abstract>

<short>short abstract</short>

<short>long abstract</short>

</abstract>

</document>

As for sample B, the first line describes the name of this entity as “book”. The

codes from line 3 to line 8 define the content of book information, from which the

<book_info> element contains the title and abstract. In addition, there are two

types of abstract, which are long and short types defined in the fifth line. The

data type is also defined in DTD. The element <title>, <short> and <long> are

followed by “#PCDATA”, which means the data type of these elements are the

plain texts.

In addition, there are more detailed principles for DTD standards in Goldberg's

(2010) quick start guide to explain how DTD works to validate that the XML

documents are deemed valid, and the value of each element in the XML

documents is well-formed, strictly as the DTD documents require.

2.3.3 XSD

According to Campbell (2003), the XML Schema Definition (XSD) “represents

the metadata for the associated XML document or class of XML documents.” He

also pointed out that “XML Schema’s goal was to extend the capabilities of the



25

DTD (Data Type Definition).” On the W3C XML Schema Web Site, two

guidelines can be found for XML Schema, the structure of XML Schema4 and

the datatypes of XML Schema5.

On the one hand, XML Schema and DTD are both computational languages that

provide a format to validate the content of XML documents. On the other hand,

there are differences between them. First, “XML Schema is more verbose than a

DTD that performs the same function.” This could be the advantage of DTD in

some cases, but XML Schema could provide more solutions in more

complicated cases where “data typing is an important issue”. Second, Campbell

also explained that “the major difference between the DTD and an XML Schema

is the fact that the DTD is not an XML document; it is written in Extended BNF

notation. By contrast, the XML Schema is itself an XML document.”

This research applies DTD technology as a simplified DTD file is required to

validate the generated XML sample. According to Campbell's theory, the use of

XSD technology will result in more verbose coding in this case.

2.3.4 XSL

According to Clark (1999), XSL “specifies the styling of an XML document by

using XSLT to describe how the document is transformed into another XML

document that uses the formatting vocabulary.”

XSL is a computational language that modifies the XML document. Each

computing language has its own syntax and rules, and XSL also has a concise

and strict syntax and rules. The most essential step in creating an XSL file is to

make a declaration by presenting a namespace at the top of the XSL file.

4 The website of structure of XML Schema. URL: https://www.w3.org/TR/xmlschema11-1/
5 The website of the datatypes of XML Schema URL: https://www.w3.org/TR/xmlschema11-2/



26

According to Clark (1999), “XSLT processors must use the XML namespaces

mechanism [XML Names] to recognize elements and attributes from this

namespace”. Apart from the namespaces, syntax and rules are most important.

The following paragraphs describe several samples of XSL syntax and rules.

Clark (1999) defined that “the content of the xsl:template element is the template

that is instantiated when the template rule is applied.” Sample A describes the

syntax of the <xsl:template> element.

A.

<xsl:template match = pattern name = qname>

<!-- Content: (xsl:param*, template) -->

</xsl:template>

Clark (1999) defined that “an xsl:call-template element invokes a template

by name; it has a required name attribute that identifies the template to be

invoked.” Sample B describes the syntax of <xsl:call-template> instruction:

B.

<xsl:call-template name = qname >

<!-- Content: xsl:with-param* -->

</xsl:call-template>

Clark (1999) also described that “the xsl:apply-templates element recursively

processes the children of the source element,” and if there is no attribute “select”,

“the xsl:apply-templates instruction processes all of the children of the current

node, including text nodes.” Sample C describes the syntax of

<xsl:apply-templates> instruction:

C.

<xsl:apply-templates>

<xsl:apply-templates select = node>

<!-- Content: (xsl:sort | xsl:with-param)* -->



27

</xsl:apply-templates>

Clark (1999) described that “The xsl:for-each instruction contains a template,

which is instantiated for each node selected by the expression specified by the

select attribute.” and the attribute “select” is required for this function. Sample D

describes the syntax of <xsl:for-each> instruction:

D. <xsl:for-each>

<xsl:for-each select = node-set-expression >

<!-- Content: (xsl:sort*, template) -->

</xsl:for-each>

In XSL, variables and parameters are two instructions to which values can be

assigned. Clark (1999) explained the difference between variables and

parameter that “the value specified on the xsl:param variable is only a default

value for the binding.” The attribute name is required for both instructions. The

following samples E and F describes these two instructions:

E.

<xsl:variable>

<xsl:variable name = qname select = expression >

<!-- Content: template-->

</xsl:variable>

F.

<xsl:param>

<xsl:param name = qname select = expression >

<!-- Content: template -->

</xsl:param>

According to Clark (1999), the main purpose of the <xsl:key> element is to

declare keys and he explained that “xsl:key element gives information about the



28

keys of any node that matches the pattern specified in the match attribute.”

There are three attributes required in key elements, the name attribute, match

attribute and use attribute. Sample G shows the rules of element key:

G.

<xsl:key name = qname

match = pattern

use = expression />

According to Clark (1999), “sorting is specified by adding xsl:sort elements as

children of an xsl:apply-templates or xsl:for-each element” and the attribute of

data-type defines two types of data:

- text specifies that the sort keys should be sorted
lexicographically in the culturally correct manner for the
language specified by lang

- number specifies that the sort keys should be converted to
numbers and then sorted according to the numeric value; the
sort key is converted to a number as if by a call to the number
function; the lang attribute is ignored. (Clark, 1999:40)

During the process of programming, sorting is an essential step to

set orders for the generated values. Sample H describes part of the

rules of element xsl:sort that applied in this research.

H.

<xsl:sort

select = string-expression

data-type = { "text" | "number"} />

In XSL, there are two instructions to perform conditional processing, the xsl:if

and xsl:choose. The difference between these two functions is that the xsl:if

element defines conditional processing with only one condition while xsl:choose



29

has optional conditions. In this research, we design the XSL with the xsl:choose

element.

The xsl:choose element has three parts of code, xsl:choose, xsl:when and

xsl:otherwise, where the xsl:otherwise element executes the optional conditions

when the xsl:when is not true. As for this point, Clark (1999) explained in detail

that “the content of the first, and only the first, xsl:when element whose test is

true is instantiated. If no xsl:when is true, the content of the xsl:otherwise

element is instantiated.” Sample I describes the syntax of xsl:choose instruction.

I.

<xsl:choose>

<xsl:when test = boolean-expression >

<!-- Content: template -->

</xsl:when>

<xsl:otherwise>

<!-- Content: template -->

</xsl:otherwise>

</xsl:choose>

The <xsl:when> element and <xsl:otherwise> elements are child element of the

<xsl:choose> element. By testing the “boolean-expression”, the result presents a

value that can only contain the value of “true” or “false”. This step decides this

conditional processing.

Apart from these instructions, two functions have been applied in this research.

The count function and substring function. The XSL count function is defined to

count elements with specific attribute names defined in the XML document. In

addition, the count function adopts transformation by means of matching the

templates in a style sheet against an XML document. Sample J shows the



30

syntax of the count function.

J. <xsl:value-of select="count(root/child/line[name='attribute value'])" />

2.3.5 HTML

Hyper Text Markup Language (HTML) is computational language that provides

the technology for publishing information. According to W3C6, the publishing

language used by the World Wide Web is HTML. According to the guidelines,

there are four means that HTML offers to publish information and this research

complies with the first method. The task in the next chapter applies HTML

language to “publish online documents with headings, text...”

The following sample presents the structure of a HTML file that is related to this

task.

<!DOCTYPE html>

<html>

<head>

<title>Page Title</title>

</head>

<body>

<h1>This is the most important heading</h1>

<h2>This is heading two</h2>

<p>This is paragraph one.</p>

<sentence>This is sentence one </sentence>

<sentence>This is sentence two</sentence>

...

6 The World Wide Web Consortium (W3C) is the main international standards organization for
the World Wide Web. According to W3C, there are guidelines for HTML. URL:
https://www.w3.org/TR/html401/

https://en.wikipedia.org/wiki/Standards_organization
https://en.wikipedia.org/wiki/World_Wide_Web


31

<p>This is paragraph two.</p>

</body>

</html>

Having regard to the above code, <html>, <head>, <body> and <p> tags are the

basic four tags of HTML. HTML separate the header and the body into two parts

in the structure, the head part and the body part.

According to the above sample, the child element <title> of the <head> tag

contains the value of page title. The <body> tag contains the main body of the

HTML file and its child element <h1> contains the heading of the HTML file; its

child elements <p> tags contain the <sentence> tags, which present the original

text.

2.4 Software

There is a diversity of computer tools, and different types of computer tools meet

different academic needs. This section presents some of the computer tools as

theoretical basis.

Choosing an appropriate tool for corpus annotation research is essential.

Nowadays, the creation and analysis of the corpus has been improved and

optimized by the development of information technology. Corpora was first

generated by handwriting and were entirely manually compiled. Corpora has

become more popular because scholars recognized that corpora significantly

contributes to the storage, integration, and analysis of data and text, information

sharing and extraction with information technology. However, linguists prefer to

obtain technical support from computer tools, allowing them to spend more time

on anticipatory annotation rather than learning how to prepare and use the

software. With all of the information and free-access software emerging on the



32

Internet, there is a wide range of computer tools to be discovered and evaluated,

so it is difficult to identify each one.

Neves (2021) argued that computer tools were critical for creating and assessing

new NLP and information extraction methods in specific instances. Therefore, he

chose 78 computer tools and evaluated them based on four criteria:

Publication criteria. These criteria describe features related
to both the tools ’ publications and to other publications
referencing the use of the tool.

Technical criteria. This group of criteria evaluates technical
aspects of the software itself, such as source code availability
and the easiness of installation.

Data criteria. These criteria assess the input and output
format of documents, schema and annotations. Functional
criteria. In this group, we evaluated various criteria related to the
functionality of the tools.

Functional criteria. In this group, we evaluated various
criteria related to the functionality of the tools. (Neves 2021:4)

Finally, Neves's (2021) proposed one annotation list for annotation tools:

BioAnnotate, Callisto, Ellogon, Glozz, MMAX2, MAE, UAM Corpus, and

WordFreak. This section briefly describes these standalone annotation tools.

2.4.1 BioAnnotate

According to a recent study, BioAnnotate is an effective software platform for

automated word annotation in biomedical applications (Fernández, 2013).

Fernández stated that BioAnnotate has three primary significant features that

make it a versatile and adaptable open-source computer tool:

(i) a rich client enabling users to annotate multiple documents in a
user-friendly environment,

(ii) an extensible and embeddable annotation meta-server allowing for
the annotation of documents with local or remote vocabulary and

(iii) a simple client/server protocol that facilitates the use of our



33

meta-server from any other third-party application. (Fernández, 2013:1)

BioAnnotate is available on its official website7.

2.4.2 Callisto

Callisto is a Java-based computer tool that is multilingual and multi-platform, with

a modular design that allows for extensive customization. “It is built on the

ATLAS architecture to promote extensibility and abstraction across the diversity

of linguistic signals and their associated annotations” (Day, 2004). The computer

tool and its modules are free access on the website8.

2.4.3 Ellogon

The Ellogon computer tool is defined as a text engineering platform by Petasis.

Ellogon is a new text engineering platform developed by the
Software and Knowledge Engineering Laboratory of the Institute of
Informatics and Telecommunications, N.C.S.R. “Demokritos”, Greece.
Ellogon is a multi-lingual, cross-platform, general-purpose text
engineering environment, developed to aid both researchers who are
doing research in the natural language field or computational
linguistics, as well as companies that produce and deliver language
engineering systems. (Petasis, 2002, p. 1)

According to Petasis' research, Ellogon comprises three subsystems: a

Collection and Document Manager (CDM), a sophisticated and user-friendly

graphical user interface (surface), and a modular pluggable component system.

Furthermore, according to Petasis (2002), the Ellogon contains eight features

that make it an effective computer tool:

7 The official website of BioAnnotate, URL: https://www.sing-group.org/bioannote/)
8 The website of Callisto, URL: http://callisto.mitre.org

https://www.sing-group.org/bioannote/
http://callisto.mitre.org


34

a. Support of multiple languages
b. Portability
c. Advanced surface
d. Modular Architecture
e. Interoperability with other platforms
f. Memory compression
g. Execution server
h. HTTP Server

Ellogon is also available on its website9.

2.4.4 Glozz

According to Widlöcher (2012), “a formal framework supporting description of

heterogeneous linguistic objects and structures, appropriate representation

formats, and adequate manual computer tools” is required to satisfy the demand

for creating and distributing reference annotations. Glozz, a comprehensive

corpus computer tool, was designed to address specific demands. The essential

feature of Glozz is its versatility, as other annotation systems do not allow for

simultaneous editing, reading, and mining of annotations. Glozz is a complex

and adaptive tool in that it incorporates an advanced tool, namely GlozzQL, that

simplifies annotation tasks and allows for simultaneous annotating and querying.

Glozz's website (www.glozz.org) has a detailed introduction and Yann Mathet

published “Glozz User's Manual” in 2011.

2.4.5 MMAX2

According to Müller (2006), “MMAX2 is a highly customizable tool for creating,

browsing, visualizing and querying linguistic annotations on multiple levels.”

Müller (2006) explains how MMAX2 may be used to define an annotation

scheme, create an annotation, assess inter-annotator agreement, and perform

9 The website of Glozz, URL: https://www.ellogon.org/

https://www.ellogon.org/


35

the corpus query and transformation. Furthermore, when the MMAX2 tool is

used for advanced NLP tasks, the MMAX2 Discourse API allows MMAX2

documents from the programming language Java to be processed for more

complex operations than basic queries and modifications.

Müller (2006) demonstrated that the MMAX2 tool had previously been used in

annotation tasks such as “POS tags, word senses, coreferences, disfluencies (in

transcribed spoken language), grammatical dependency relations, and others.”

In response to the requirement for a more streamlined operating procedure,

three standalone computer tools are briefly described below for reference: MAE,

WordFreak, and UAM Corpus.

2.4.6 MAE

According to Stubbs (2011), “MAE and MAI are lightweight annotation and

adjudication tools for corpus creation.” MAI is another computer tool that is

frequently nominated with MAE. MAE is for Multi-purpose Annotation

Environment, while MAI stands for Multi-document Adjudication Interface (MAI).

Furthermore, due to their versatility, from the beginning they were both designed

to be used for a multiplicity of annotation tasks.

The MAI and the MAE are similar in that they both employ the Java

programming language and the SQLite database to store and extract annotation

data (Stubbs, 2011). MAE and MAI can be utilized more efficiently for linguistic

annotation by inexperienced annotators.

Furthermore, MAE may be used for document-level annotation. Document-level

annotations are utilized for activities such as document categorization, and

recognizing documents based on hallmarks and phrases (Neves, 2021).



36

2.4.7 Wordfreak

According to Morton (2003), “WordFreak is a natural language computer tool

that has been designed to be easy to extend to new domains and tasks.”

WordFreak was launched as a fundamental computer tool for linguistic

annotations. Furthermore, as a Java-based and open-source program,

WordFreak distributes the original code of WordFreak on its website10, as well as

screenshots and a deployable online version of this computer tool (Morton,

2003).

2.4.8 UAM Corpus

According to O’Donnell (2008), the UAM Corpus tool “allows the user to

annotate a corpus of text files at a number of linguistic layers, which are defined

by the user”, besides, O’Donnell (2008) explained that UAM has a lot of

functions of “corpus search, automatic tagging based on lexical pattern matching,

and production of statistics”, which makes it a useful and valuable software for

annotating a text corpus.

One of the reasons for choosing UAM is that “UAM CorpusTool is free, and

works on Macintosh and Windows” (O’Donnell, 2008). Our operating systems

are mostly Windows. As a result, it is more convenient for us to initiate this

research with a tool that is compatible with the operating system to facilitate the

installation of the computer tool. There is considerable demand for a simplified

computer tool because it would encourage inexperienced human annotators to

focus on the annotation process rather than on core computer science such as

operating systems or environment settings.

10 The website of Wordfreak, URL: http://wordfreak.sourceforge.net



37

Furthermore, “stand-off annotation provides far better support for projects with

multiple annotation layers of the same text, or annotations by alternative users”

(O’Donnell, 2008). Using standalone annotation software in our study is critical

in selecting computer tools. There are two types of annotations: in-line and

stand-off. When XML annotations are inserted into the text, this is called in-line

markup. In this way, all the text and annotations are mixed in the plain text,

making it complicated to read and modify. On the other hand, the stand-off

annotations are not annotated in the exact plain text but annotated for separating

the text and annotations utilizing a stand-off markup.

The great advantage of using stand-off annotations is that
whatever specific annotation types are to be made, other
annotation types can be added later because the original text is
still available. (Wilcock, 2009, P. 28)

This program also provides a Corpus Search tool, which “allows the user to

search for instances in the annotated corpus which matches some criteria.”

(O'Donnell, 2008) According to the introduction on its website, “you can also

search for segments CONTAINING another segment type, or containing one or

more words of text.” There is a major trend today in social and academic

requirements for information transmission and research. Providing a tool for

searching directly within the computer tool saves time and effort for new

annotators. In addition, the resources are available on its website11.

2.4.9 Other Software

ANVIL, which was designed in 2000 for gesture research, is currently one of the

most prominent open-source tools for video annotation research. Since ANVIL’s

fundamental language is Java, its essential coding background requirement is

JavaSE 8 or higher. Color-coded elements, cross-level connections, 3D

11 The website of UAM, URL: http://www.corpustool.com/index.html



38

visualizations of motion capture data, and project tools can be used to facilitate

the annotation process throughout the coding process.

DEXTER is a collection of software tools that aid in annotating linguistic data and

it is user-friendly, free, and cross-platform. DEXTER comprises two primary

components: Dexter Converter and Dexter Coder. The Dexter Converter offers

technical assistance for converting the source text into XML documents. The

Dexter Coder concentrates on changing tags and performing annotations.

DEXTER includes a transform tool, allowing the user to focus on annotation

instead of the time-consuming technology of learning XML language. The

following experiment task will demonstrate the academic research of DEXTER.

DEXTER is available on its official website12.

3 RESEARCH TASKS

This research designs two tasks to test the availability, interactivity, and

functionality of MAE, UAM and DEXTER. In Task #1, we designed a corpus

sample and performed corpus annotation using three computer tools. In Task #2,

we created XSL files to convert generated XML files into HTML files, which

display annotations marked with different colors on the browser. The procedures

are described so that these three computer tools can be compared.

3.1 Analysis of computer tools

Over the last few decades, corpus annotation software has gained much

importance as a research instrument for linguists, and an appropriate annotation

tool is important for linguists. This section includes the qualitative research of

three different computer tools (i.e. MAE, UAM, and Dexter) to give an in-depth

analysis of their advantages and disadvantages. There are two reasons why

12 The website of DEXTER, URL: http://www.dextercoder.org



39

these three computer tools were chosen for examination. Firstly, they technically

comply with the requirements of this research. Secondly, they are free-access

computer tools.

3.2 Methodology

This section provides a qualitative analysis of exploratory research that used

these three computer tools to capture the operational phases in real-time and

compare the annotation process.

There is a wide range of software available today, and the software prerequisites

differ depending on various academic requirements. First, since the technical

requirements of the computer tools differ, preparing them for undertaking

research before actually starting to annotate differs. For example, the MAE tool

requires preparing the DTD document before the annotation procedure, whereas

Dexter tools require plain text to be transformed into XML documents.

Second, apart from different academic requirements, evaluating the criteria of

different is an essential procedure before annotation. For example, the

annotation program has various criteria for generating tags. Some annotation

technologies require the generation of annotation tags by hand, while others

create the tags automatically. Furthermore, the software supports a variety of

annotation methods. For example, some software contains shortcut keys that

help to annotate with only one key whereas other software requires the text to be

selected and then a click is needed to annotate.

This section analyzes and reports each step to explore and compare the

availability, interactivity, and functionality of computer tools, thus, several

aspects are evaluated, including downloading, installing, utilizing, and eventually

exporting the results. The testing steps start with preparing the technology for



40

the download, installation, annotation process, and output results. Each aspect

of the annotation task was tested and recorded during the development of the

work. Additionally, the testing results of the computer tools are finally displayed

in a table. The final analysis and comparison of the suggested procedure will

focus on the features above, and the difficulties that occurred during the task are

also explained.

In detail, there are six steps for testing and comparing the computer tools in the

first part of the task. Figure 2 shows the procedure.

Figure 2. Steps in analyzing corpus-annotation software.

The remainder of this section explains the steps of annotation and how to



41

investigate each step, although the actual task process of applying different

computer tools is diverse due to different requirements.

Figure 2 shows that the first step is to download and install the annotation tools

MAE, UAM and DEXTER. The computer tools also have varied hardware

requirements, network requirements for download and installation; nevertheless,

the three annotation software packages are free access that are conveniently

implemented on the Windows operating systems.

Second, the requirements are different in the preparation of annotations. For

example, MAE requires a DTD document to create tags before the annotation

process; UAM has no technique requirements as MAE, and the process of

creating tags is automatically executed within the tool, and DEXTER has an

internal jar program that converts plain text into an XML document, so there are

no technical requirements for manually creating XML or DTD documents either.

Third, we create a corpus, and input the corpus into the annotation tools.

Typically, only one corpus is necessary to test the three computer tools at a time.

However, it is not sufficient to generate the corpus only once in the final stage of

exporting XML documents because different computer tools differ in steps and

storage space. Thus, we create a corpus sample and save them in the packages

in each software.

The next step is to input the corpus. The corpus input method varies in each tool.

Some tools can only input one plain text, while others can input dozens of texts.

When the text input process is executed, this will be the testing point. Scholars

are then required to manually annotate the plain text.

And then, we annotate by using these three tools and saving the generate

annotation results. This is the essential step since scholars can analysis the



42

procedure by manually annotating it. For example, the surface of the computer

tool, surface features of the annotated results, manual annotation ease, and

many other elements will be examined and documented for future comparison.

The results of the annotation will be produced as XML documents. And then the

characteristics of the generated XML document will be checked in this step.

Finally, the computer tools are compared through testing and documenting the

procedures. The annotation findings and XML documents are the most important

aspects of the comparison. These three corpus computer tools are used to

generate an XML document for subsequent activity. The primary features of the

test throughout the annotation process are the availability, interactivity, and

functionality of the computer tools for linguistic annotators. The following points

are intended to present the features of these three tools during the task:

A. Is the software easy to install?

B. Does the software have a single interface or

multi-interface?

C. Does the software include guidelines?

D. How many steps are required for annotation?

E. Is there a shortcut key for annotation?

F. Can the corpus be loaded from a single text file or

or a folder of text files?

G. Can the software allow the annotation of multiple

layers?

H. Can the software add comments for annotations?

I. Can the software highlight annotations?

J. How many colors does the software have for

highlighting annotations?

K. Are the annotations of two layers separated in

different XML documents?



43

L. Are the annotations and the original text separated

into two XML documents?

M. Is it possible to perform secondary annotation?

Another important aspect of this task is the level of linguistic annotation. In this

task, the morphosyntactic level of linguistic annotation is chosen to test and

compare the functionality of each computer tool. In particular, we designed two

layers to identify basic word attributes at this linguistic level: POS and

VERBTENSES. In the layer of VERBTENSES, there are four tags to show the

verb tenses: simple present, present continuous, present perfect, and simple

past. In the POS layer, there are three tags to show the part of speech: verb,

noun, and preposition.

In conclusion, there are two tasks in total. To test the availability, interactivity,

functionality and professionalism, the first task is aimed at testing the software

throughout the annotation process. The second task is aimed at testing the

software by analyzing the structure of the generated XML file and the complexity

of converting the generated XML files to HTML files and then presenting the

HTML file on the browser.

3.3 Task #1

In Task #1, we designed a corpus sample and performed corpus annotation

using three computer tools. The goal of Task #1 is to test and compare MAE,

UAM and DEXTER by analyzing the annotation steps . In the end, Table 1 shows

the comparison results. As for English level, we chose A1-level English and

collected ten plain texts from the website13 of A1-level English, which contains

several listening lessons. To find and save the original text, the researcher

should enter into each lesson, and the plain text of the lesson shows up under

13 The website of of A1-level English. URL: https://learnenglish. britishcouncil.org



44

“Transcript”. In Task #1, we collected and saved ten plain texts, as the content of

the A1-level English corpus.

3.3.1 MAE

This subsection proposes Task #1 for linguistic annotation relying upon MAE.

MAE is a simplified computer tool for linguistic annotation which has only one

surface. The annotation steps in MAE are tested and recorded for further study.

In general, MAE requires six steps to execute the whole annotation procedure:

1. Download and install MAE

2. Prepare a DTD document

3. Load the DTD document

4. Create a linguistic corpus

5. Load the text

6. Annotate

7. Output the XML document



45

Figure 3. Annotation procedures of MAE.

To test MAE and record each step, we divide the MAE annotation task into three

parts.

Part one: Annotate one plain text on one level of

annotation.

Part two: Annotate one plain text on two levels of

annotation.

Part three: Annotate ten plain texts on two levels of

annotation.

Following the general steps in Figure 3, there are six steps recorded in part one.

First, MAE should be downloaded and installed in one folder. MAE is free-access



46

computer tool, which can be downloaded from the github platform14. The jar

document can be operated conveniently for annotation, so there are no more

steps for installation. Additionally, there is a free user guide manual that explains

how to use the software in detail.

Second, a DTD document should be prepared for annotation after installation.

Below is a sample DTD document for the task:

<!ENTITY name "ANNOTATIONDTD">

<!ELEMENT VERBTENSES ( #PCDATA ) >

<!ATTLIST VERBTENSES start #IMPLIED >

<!ATTLIST VERBTENSES type (simple present | present continuous | present perfect | simple

past) #IMPLIED "other" >

<!ATTLIST VERBTENSES comment CDATA "default value" >

The ENTITY name is “ANNOTATIONDDTD”. To start the initial test on a

syntactic level, there is one element of DTD documents named “VERBTENSES”.

The data type of the element should only be text, but no other form of value, so it

shows “#PCDATA” with brackets. The grammar tags are “simple present”,

“present continuous”, “present perfect”, and “simple past”, adding in the attribute

of the “VERBTENSES” element.

Third, after the full installation and preparation of the DTD document, MAE

requires to “load a file”. In the next step, after loading the DTD document and

TXT document, MAE will automatically generate one tag named grammar. The

tag has different types for annotation as it is settled in the DTD documents.

Following preparation, the scholar can now start the annotation process:

14 Github is mainly used for the creation of computer program source code. The MAE tool can be
downloaded in https://github.com/keighrim/mae-annotation.

https://github.com/keighrim/mae-annotation


47

First, select the text on the interface, and annotate the plain text. Choose

“VERBTENSES” if it is annotated in grammar level.

Second, the marked annotation results will be displayed at the bottom of the

window. There are five types of annotation: “simple present”, “present

continuous”, “present perfect”, and “simple past”. Choose one type of annotation

so it is matched and annotated in this type.

Finally, after the original texts are marked up and annotated, choose “save file as

XML” to output the results, and then the result is generated as an XML file and

saved. When outputting the final documents, the documents are saved in the

current corpus file directory. The other two computer tools can choose the

directory for final storage, but the final documents will disappear if we operate

MAE. In the methodology, we created a corpus directory before the annotation,

so we could use it to test and compare the three computer tools. However, when

we used MAE, the final documents were saved in the original corpus directory.

That is why there should be a new step to create a corpus only for annotation

with MAE.

To test the computer tool in different linguistic annotation levels, after the first

XML documents are generated, we used another DTD document to test the

computer tool. As it was already installed, in part two we started from the second

step. A new DTD document was created for annotation in two linguistic

annotation levels. Below is a sample DTD document for the task:

<!ENTITY name "ANNOTATIONT2">

<!ELEMENT VERBTENSES ( #PCDATA ) >

<!ATTLIST VERBTENSES start #IMPLIED >

<!ATTLIST VERBTENSES type ( simple present | present continuous | present perfect | simple

past ) #IMPLIED "other" >



48

<!ATTLIST VERBTENSES comment CDATA "default value" >

<!ELEMENT POS ( #PCDATA ) >

<!ATTLIST POS start #IMPLIED >

<!ATTLIST POS type ( verb | noun | preposition ) #IMPLIED "other" >

<!ATTLIST POS comment CDATA "default value" >

The ENTITY name is “ANNOTATIONT2”. There are two elements of DTD

documents to test the software at two linguistic levels: “VERBTENSES” and

“POS”. The first part of this DTD document is the same as the previous DTD

document, but we produce three new elements for POS layer, “verb”, “noun”,

and “preposition”.

In the next step, after loading the DTD document and the prepared TXT

documents in part one, MAE will automatically generate two tags: grammar and

function. Each tag has different types for annotation. When preparation has been

completed, the scholar can start the annotation process as below:

First, select the text in the interface, and mark the different language level tags.

Choose “VERBTENSES” if it is annotated at the grammar level, or choose

“POS” if annotated at the pragmatic level.

Second, the marked annotation results are displayed at the bottom of the

window. In POS layer, there are three types of annotations: “noun”, “verb”, and

“preposition”. In the grammar layer, there are four types of annotations: “simple

present”, “present continuous”, “present perfect”, and “simple past”. Choose one

type of annotation, so it is matched and annotated in this type.



49

Figure 4. The MAE interface.

Figure 4 shows the interface of the annotation step in MAE. There are three

main parts to the annotation process: text, tags, and annotation records. The

original text is in the center of the whole interface, occupying most of the

interface, and the annotated phrases are in-line and highlighted by a different

color. The VERBTENSES and POS layers are generated automatically by the

DTD document and are located in the middle of the interface. Finally, the

annotated records are at the bottom of the interface.

Therefore, there are three parts: the original text, the tags, and the annotation

records. The structure of each part has its own characteristics. The whole

original texts are shown in the center of MAE; the two tags are below the original

texts. The annotated records are at the bottom of MAE, where you can find six

attributes for each grammatical tag, i.e. “d”, “start”, “end”, “text”, “type”, and

“comment”. When we selected the original text and selected the tags, MAE

automatically generated the annotation records. The function of “id” is to

differentiate these annotation records, the function of “start” and “end” is to

record the position of the annotated text, and the “text” shows the value



50

corresponding to the grammatical tag. The option of “type” shows the different

tag types; The function of “comment” is to manually add any comments by the

user. Below is a sample of the XML documents, where the complete document

can be found in Appendix xxxx.

<?xml version="1.0" encoding="UTF-8" ?>

<ANNOTATIONDTD>

<TEXT><![CDATA[

Hi, everyone. I know...

...

OK. That's it? Are there any questions?

]]></TEXT>

<TAGS>

<VERBTENSES id="V1" start="203" end="214" text=" is leaving" type="present continuous"

comment="default value" />

<VERBTENSES id="V2" start="269" end="281" text="is starting " type="present continuous"

comment="default value" />

<VERBTENSES id="V3" start="550" end="559" text="'ve found" type="present perfect"

comment="default value" />

<VERBTENSES id="V4" start="1023" end="1042" text="has now introduced " type="present

perfect" comment="default value" />

<VERBTENSES id="V5" start="978" end="984" text="wanted" type="simple past"

comment="default value" />

<POS id="P2" start="94" end="105" text="information" type="noun" comment="default

value" />

<POS id="P4" start="114" end="120" text="change" type="noun" comment="default value"

/>

<POS id="P98" start="541" end="546" text="worry" type="verb" comment="default value" />

<POS id="P99" start="575" end="578" text="can" type="verb" comment="default value" />

<POS id="P100" start="579" end="582" text="use" type="verb" comment="default value" />



51

<POS id="P101" start="627" end="629" text="is" type="verb"

...

</TAGS>

</ANNOTATIONDTD>

The generated XML document is well structured. There are mainly two parts:

original text and tags. The original plain text is created in the element of <TEXT>.

The annotated text is created in the element of <TAGS>, in which each child

element shows the final annotation. The value of the element complies with the

annotation records at the bottom of MAE. For example, we do not add

comments for the annotation in this task, so it shows “default value”.

In part three, we decided to annotate ten plain texts on two layers of

morphosyntactic annotation. However, as MAE cannot load the whole directory,

but only the single text documents, part three is executed following the same

steps as part two. Finally, ten original plain texts are manually annotated, and

MAE separately generates ten different XML documents for each plain text.

3.3.2 UAM

In this subsection, UAM is applied to test linguistic annotation. The steps are

recorded to demonstrate the availability, interactivity, functionality, and

professionalism of the corpus annotation.

When applying UAM, the user is required to prepare different DTD documents to

set tags on the two layers of POS and verb tenses, so there are two tasks

designed to differentiate the single level annotation and multi-level linguistic

annotation. However, different DTD documents set two levels of linguistic tags,

so there is only one task designed to test it. In general, there are six steps to



52

perform the annotation under two linguistic levels of corpus annotation.

Figure 5. UAM annotation procedures.

Figure 5 shows the six steps of the annotation procedure. First, the UAM Corpus

annotation tool is free-access, so it is free to download from website. Installation

is relatively easy as there are no more steps after the file is unzipped, with the

EXE file running the tool.

Second, the UAM Corpus requires a new project for corpus annotation to be

created. The start-up screen of UAM requires creating a project, opening a

project, or importing a project. In this paper, we created a new annotation project.

In general, there are mainly three steps to start a new project.

1.Start a new project

2.Name the new project

3.Choose a project folder for the project



53

After the new project is created, there are four folders in the annotation project:

Annotations, Corpus, Results, and Schemes. UAM is user-friendly for

inexperienced human annotators as there is a guideline for each step. Moreover,

there is the option “Back” to modify the previous step.

Thirdly, UAM requires creating and extending the corpus. In this step, there are

also some guidelines for corpus creation. Following the steps of the UAM, the

most significant part is to choose the corpus location to add the original text.

There are two steps to add the corpus to this computer tool:

1.Extend corpus: choose the location of a single text file, or a folder of text files, or paste it

directly from the clipboard.

2.Incorporate the file.

In the first step, there are three ways of adding the original documents into the

software. After completing this procedure and testing it several times, we found

two features of UAM. First, UAM can add several corpus folders. Second, it can

add several times. These features are important as they simplify the procedure

of corpus annotation when there are several documents to be annotated.

In the second step, the user can choose to incorporate the text files one by one,

but can also press “Incorporate all” to load all the text files as a batch. There are

also options for previously added documents, for example, incorporating files

and deleting files.

After the texts are loaded, UAM requires layers to be created. There are several

options for a customized annotation design. For example, the user can choose

manual annotation or automatic annotation. Moreover, the user can segment

text by paragraphs, sentences, clauses, etc.



54

In this task, we chose manual annotation and sentence segmentation. In the

UAM Corpus tool, the two “function” and “grammar” tags are called layers, while

the different types are structured by the scheme's design. After the function and

grammar layers have been created, the UAM requires the scheme to be edited

in order to show the different types of linguistic levels. This step is shown in

Figure 6.

Figure 6. Design scheme for layers.

After the corpus and layer are created, the next step is annotation. UAM cannot

be applied to annotation on two linguistic levels at the same time, so the user

needs to annotate the same plain text twice. First, after opening the function

layer , and then selecting the original text and the different types at the bottom of

the surface, the pragmatic annotation is successfully executed. Secondly, the

syntactic annotation repeats the same procedure, but it is executed in the

grammar layer .



55

Figure 7. Annotation of UAM Corpus.

Finally, the last step is to generate the annotation results. Unlike MAE, the

operation is convenient and efficient, but the button option is on the surface of

the annotation.

As the annotation process is executed separately for the POS and

VERBTENSES layers, the final annotation results are generated in two different

XML documents by UAM. The original text and the annotation results are in the

same <segment> element, but the original texts are the content and the

annotation results are in brackets as an attribute of an element. For example,

below is one part of the XML documents of the POS layer:

I <segment id='102' features='pos;verb' state='active' parent='3'>have</segment>some

important <segment id='25' features='pos;noun' state='active' parent='3'>

information</segment>

This sample demonstrates that the annotation results are in the element



56

“<segment id='102' features='pos; verb' state='active' parent='3'>”, the “features”

element presents the annotation results in the form of a POS layer and it is

annotated as “verb”.

3.3.3 DEXTER

The Dexter computer tool requires transferring TXT documents into XML

documents one by one, so the linguistic annotation will be complemented on two

levels. This task consisted of testing and annotating one document and then

repeating the process for the entire corpus. For linguistic annotation using

DEXTER, there are ten steps in general:

Figure 8. Annotation procedures in the Dexter tool.

First, the Dexter software is free-access, so it can be downloaded from the

official website. The primary tools for this task are Dexter Coder and Dexter



57

Converter.

Second, to ensure the results are the same across tests, we tested the source

texts at the English A1 level and with the same linguistic annotation levels,

part-of-speech and verb tenses. Using the same TXT documents from the MAE

corpus, we created a new corpus folder and added it to the Dexter folder.

Unlike MAE, no preparation of the DTD file is required before starting annotation

other than installing and creating the corpus. Instead, after loading the original

text, DEXTER requires the user to create a style sheet for each original text. The

user can select different requirements for spoken or written language.

DEXTER can only load a single piece of text, not an entire folder of texts, and

then transfer it to XML after applying the stylesheet. In this step, we select the

written language and follow the guidelines in the Dexter converter.

Third, after the original plain text is transformed into an XML document, Dexter

requires the user to create a style sheet according to special requirements. The

style sheet consists of personalized choices for the user to set the form of the

original texts. Figure 9 shows a sample of the DEXTER style sheet. On the left,

Dexter shows each item of the style sheet, and the introductions of each item are

displayed after clicking on the orange question mark. Although the Dexter

computer tool has many guidelines inside the software, the inexperienced

human annotator may become confused with the requirements of setting the

style sheet. On the other hand, style sheets make it more convenient for

professional linguistic annotators to choose and set the structure of documents

in a personalized method.



58

Figure 9. The Dexter style sheet.

After the style sheet is created, the XML documents can be generated complying

with the different style sheet settings. Below is the sample of the XML

documents converted by the Dexter Converter:

<?xml version="1.0" encoding="UTF-8"?>

<TEI.2>

<teiHeader>

...

</teiHeader>

<text>

<body id="b">

<p id="b.1">

<seg id="b.1.1">Hi, everyone. I know you're all busy so I'll keep this briefing quick. I

have some important information about a change in the management team. As you already know,

our head of department, James Watson, is leaving his position at the end of this week. His



59

replacement is starting at the end of the next month. In the meantime, we'll continue with our

projects as usual. </seg>

</p>

...

</body>

</text>

</TEI.2>

The generated XML document has a simplified structure. Each paragraph is

separated by the <seg> element and has its own “id” number for identification.

With the generated documents, the Dexter Converter tool performs the steps for

creating different tags on different linguistic levels and executing annotations.

The Open Document option on the interface helps load the XML documents into

the Dexter Coder tool. Unlike the other two computer tools, the original texts

cannot be loaded into the Dexter Coder tool for annotation without conversion

by the Dexter Converter tool.

The next step is to create new code. There are two tags, i.e., “POS” and

“VERBTENSES”, used to execute linguistic annotations in two layers. These

tags are called codes in the Dexter Coder and named layers in UAM, and they

refer to the different linguistic tags for the “POS” and “VERBTENSES” of the

annotation.



60

Figure 10. Annotation of Dexter tool.

On the left of Figure 10, there are nine codes in total. The POS code has three

sub-codes and the VERBTENSES code has four sub-codes. The position and

structure are well-performed. In addition, the user can randomly select different

colors of the code. For example, in our task, the POS codes were designed in

calm blue tones, and VERBTENSES codes were in warm red tones. Different

colors make the layers more recognizable, so it improves the user experience

and the efficiency of corpus annotation.

Figure 10 shows the interface of the annotation of Dexter. The structure has two

parts. On the left, a column of tags shows the different codes, and on the right of

the interface, we find the original text of the loaded XML documents.

After creating the codes for two levels of linguistic annotation, the user can start

to annotate by selecting the code and the correspondingly presented texts. The

annotator can use the shortcut "A" on the keyboard to annotate the text. This



61

makes it convenient for annotation tasks requiring linguistic annotations

involving large amounts of manual annotation for different tags.

Finally, the last step is to output the annotation results. In Dexter, the final

annotated XML document is called “Code File.” We chose the option “Save Code

File” on the interface, so the annotated records could be output. In the end, the

outcome is also saved as another XML document. The following is part of the

example of the annotated XML document of Dexter. The annotated XML

document shows the different types of tags in the <type> element, the name

attribute shows the name of the type, and the attribute “red,” “green,” and “blue”

indicate the color. Also, we discover that the <token> elements show only the

data of the position of texts instead of the original texts. In this aspect, the

generated XML documents' structure differs from MAE and UAM. The following

is a sample of XML document:

<data>

...

<type name="simple past" parent="VERBTENSES" red="128" green="128" blue="255"

visible="true">

<token>

<start_id>b.4.1</start_id>

<start_index>19</start_index>

<start_string>I wan</start_string>

<end_id>b.4.1</end_id>

<end_index>24</end_index>

<end_string>ted t</end_string>

</token>

</type>

</data>



62

The <data> element presents the data of the position of annotations. In the

<token> element, there are six child elements: <start_id>, <start_index>,

<start_string>, <end_id>, <end_index>, and <end_string>. The first three

elements show the identification number, location in the text and the start

position of the annotation text.

3.3.4 Result of Task #1

After accomplishing all the research tasks, we recorded them and made a table

to compare these three computer tools in their availability, functionality, and

availability.



63

Table 1. Comparison of computer tools by Task #1.



64

Concerning feature A, this table compares the convenience of downloading and

installing the three corpus tools; MAE, UAM Corpus, and Dexter are all

open-source software and installation packages found on the official website. All

three computer tools proved to be easy to download and install.

Concerning feature B, this table compares whether the three corpus tools have a

simplified interface. MAE has only one interactive interface, and all executions

operate on the same page. In contrast to MAE, the UAM Corpus software has

multiple interactive interfaces. There are new interfaces for the guideline and the

annotation. In particular, the UAM corpus can annotate several texts and

different linguistic levels of annotation simultaneously during the annotation

steps, so there could be several annotation interfaces simultaneously. Dexter

has two computer tools, each of which has several interfaces for different uses.

As for feature C, this table compares whether the three corpus tools have

guidelines inside the software. As for MAE, there is a manual script for the new

annotator, but there is no guideline inside the software for introducing the

functions of MAE. The UAM Corpus has guidelines and instructions inside the

software, and it provides several options for the user to choose in different steps

according to their specifically designed annotation tasks. In addition, all the

guidelines of the UAM corpus tool are presented automatically at each step,

which the user follows to complete the entire project. These guidelines are also

available in the Dexter software. However, unlike UAM, Dexter requires the user

to click on them manually rather than presenting them actively and giving the

user a choice. Dexter and UAM have more advantages in terms of guidelines;

both tools offer functions that can be selected and set by the user. For example,

the interface shows the same structure as the original text with the loaded plain

text; there are no other functionalities to delimit the segments of the text.

However, UAM software has the functionalities of choosing how the text is

segmented, but it is selected and set by the user. The original text can be



65

segmented into paragraphs, sentences, clauses, tokens, etc. Dexter does not

have options for segmenting the original text, but when setting the style sheet,

there are personalized options for specific academic requirements.

Feature D describes the annotation steps. The process of annotating with MAE

consists of seven steps from start to end, while UAM requires six steps and

Dexter requires ten.

Regarding feature E, MAE and UAM have no shortcut key for annotation, but

Dexter has shortcut "A" to apply code to XML documents. Therefore, it is more

convenient to apply Dexter if many annotation tasks require manual annotation.

Regarding features F and G, MAE and DEXTER can only load in one single file

and only once, whereas the UAM Corpus tool provides the functions of loading

single files and a folder. Moreover, the UAM software can load several times. In

this way, if the original texts are separated into several documents, it is more

convenient to use UAM as the computer tool for annotation.

About feature H, MAE can test two linguistic levels simultaneously by designing

the DTD documents. If two linguistic levels of annotation are required, another

element can be added in the DTD documents, and the new tag will be generated

automatically in the interface after loading the DTD documents. UAM software

also has the functionality of annotating on two linguistic levels, but it requires

manually generating a “scheme” and setting the structure of each linguistic level.

The user must manually set the different types of each tag in the “scheme

system.” Like UAM, Dexter requires the user to create the tags, but in UAM, it is

named “layer,” and in Dexter, it is named “code.”

About feature I, the MAE and UAM software both have functions for recording

comments for annotation, but DEXTER has no comments function.



66

Regarding the characteristic of tags in feature J, MAE has no highlight on the

two function and grammar tags, UAM highlights the tags in orange, and Dexter

has 28 kinds of color that can be customized. As for the annotated texts, there

are two colors in MAE to highlight different annotations, UAM has only one color

to underline the original text and the annotated text, and Dexter has twenty-eight

colors according to the designed code. This is an aspect where DEXTER has a

clear advantage in that it emphasizes the annotated texts and the correlation

between content and tags, allowing users to identify the grade of annotated texts

directly by color. On the one hand, DEXTER allows for a closer correlation

between the annotation tags and the text being annotated. On the other hand,

optimizing the user interface makes the computer tool more attractive and allows

the annotator to become more involved in the annotation.

As for feature K, two linguistic levels of annotation results are displayed together

in the same generated XSL file by MAE. When applying DEXTER for annotation,

the annotation results for the two different levels are also in the same XML file,

but the final XML file output from MAE shows the original text and the annotation

text, whereas DEXTER only shows the annotation data, not the actual

annotation text. On the other hand, UAM separates two levels of linguistic

annotation, so the final XML file is separated.

Regarding feature L, we find that Dexter separates the annotation records and

the original texts into two different XML documents, while UAM and MAE contain

the annotated text and original text in the same XML documents.

Finally, feature M in the table, describes that MAE cannot open the annotated

documents again after it is executed. Dexter can review and annotate the

annotated text by simultaneously loading the converted XML documents and the

annotated code file. Nevertheless, the user must find the path where the XML



67

files converted using Dexter and the code file of the annotated texts are stored;

otherwise, the software will report an error. However, the UAM Corpus can open

the last project directly on the initial interface by choosing the latest project

options. In this regard, UAM is a better choice for tasks requiring secondary

annotation when a lot of annotation work is involved.

This section provides a way of critical thinking and approaching the exploration

and research of corpus tools. After the comparison, we conclude that an

inexperienced human annotator would prefer the MAE software, which only

requires a few steps compared with the other two tools, a complete user manual,

and a simplified interactive interface. Professional linguists involved in a

long-term and complex research task may choose the UAM or DEXTER as they

provide customized options and secondary annotation.

3.4 Task #2

Task #2 creates XSL files to convert generated XML files into HTML files,

displaying annotations marked with different colors on the browser. The goal of

the second task is to test UAM and DEXTER by analyzing the structure of the

generated XML and the complexity of converting the generated XML to HTML. In

the end, Table 1 shows the comparison results.There are four steps to complete

this task:

1.Use the XSL document to clean the data of the original XML document

2.Mark the annotation in the XML document

3.Convert the XML document into HTML document

4.Present the HTML document in the browser

However, we did not design Task #2 for MAE software for three reasons

according to the generated XML file by MAE: First, the original text is a whole



68

text and does not separate into paragraphs or sentences. Second, the structure

does not contain the elements of an HTML document. There are no <title>,

<body> or <paragraph> elements. Finally, there is only “start,” “end,” and “text”

data information about the position of annotation. The lacking data information

makes it more complicated to complete Task #2. For example, DEXTER has six

elements to present the detailed information on the position of the annotation in

the text, and the <start_string> element and <end_string> element help to locate

the annotation in the text. Consequently, Task #2 does not test MAE.

3.4.1 UAM

To test UAM, we analyzed the structure of the generated XML and then created

an XSL document to clean the data and convert the XML document into an

HTML document.

Figure 11. Procedures of Task #2 for UAM.



69

The structure of the XML document should be modified. On the one hand, the

generated XML has redundant data, for example, the <lang> element, which

refers to the annotation language but is unnecessary for the task. These

elements should be deleted by using XSL technology. On the other hand, as the

final goal is to transform XML files into HTML files, the structure of XML

documents should conform with the structure of HTML. The XML file already has

the element <body> and <header>, but there is no <p> element. Therefore, the

necessary elements should be added to the XML files by using XSL technology.

Figure 11 shows the detailed procedures. For preparation, there is one original

XML file annotated by UAM and two XSL files that we created to modify the XML

documents.

This task executes twice as there are two generated XML documents with two

layers presenting part of speech annotation and verb tenses annotation.

Therefore, the procedures for the two annotated XML documents are the same,

but the documents and results are different. For this reason, the following

paragraphs only describe the procedure on the left of Figure 11. In general, there

are three main steps to execute the task.

process one: the first XSL file is used to clean the data and mark out the annotated text

process two: the second XSL file is used to set colors for each tag

process three: the XML file is designed and modified and is then converted to an HTML file

In process one, the XSL file modifies the original XML document. Appendix 1

shows the code of the first XSL file. From line 1 to line 3, the code defines the

namespace of this document. Every HTML file requires the declaration and

namespace. From line 5 to line 21, the code modifies the XML document

structure by deleting the unnecessary elements and adding the required

elements. When the XSL code matches some nodes and does nothing, it deletes



70

the unnecessary elements, and when the XSL code matches the nodes and

adds an element in a bracket, it will add a required element to the XML file. For

example:

A.

<xsl:template match="lang" />

The above code deletes the <lang> element by matching the node of the <lang>

element and does nothing about it.

From line 23 to line 43, the code finds the node and marks out the annotation to

prepare the next step. The XSL code applies the <xsl: choose> element to

match the node where the value of "features" is "pos" and then sets the value for

each tag of "pos": verb, noun, and preposition. For example:

B.

<xsl:when test="@features='pos;verb'">verb</xsl:when>

The above code matches the node where the value of features is "pos" and

"verb," then marks out this node and sets the value "verb" to differentiate it from

other tags.

After the XML document is processed with the first XSL file, the result of the

generated new XML file is saved as the XML file for the next step. The generated

XML file shows in Appendix 2.

In process two, the second XSL file is used to modify the XML file into

well-structured HTML format and then changes the colors for each of the POS

tags. Appendix 3 shows the code of the second XSL file. From line 5 to line 21,

the XSL code converts the XML structure into HTML format structure by

changing the name of the elements. The following shows part of the code:



71

C.

<xsl:template match="//paragraph">

<p><xsl:apply-templates select="node()" /></p>

</xsl:template>

As for this part of the code, the element <paragraph> changes the name and

converts it into element <p> by using the <xsl:template> element.

From line 23 to line 33, the code matches the special node and sets the color for

the node by using the <font> tags of HTML. The following shows part of the

code:

D.

<xsl:template match="//segment[@pos='verb']">

<font color="olive"><xsl:apply-templates select="node()" /></font>

</xsl:template>

The generated XML file of process two is in Appendix 4. The code matches the

<segment> element where the value of "pos" is "verb" and then sets the olive

color for the whole node by selecting a node and using the <font> tags.

The next step is process three in Firgue 11. The well-structured XML generated

by process two is used to design and modify an HTML file. As process one and

process two have already converted the XML file into the format of an HTML file,

process three requires adding a title for the document, which can be present on

the browser.

E.

<h1>Part of Speech</h1>

Sample E applies the <h> HTML tag to add the title value. This title will be

present on the browser.



72

Finally, the declaration of the HTML is added (sample D) and is saved as an

HTML file, then it is opened by the browser. The annotation results are present in

the browser showing its annotated texts with the different colors that are set in

process two.

D.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

Sample D shows the declaration of HTML. As a result, the following Figure 12

shows the results of Task #2 for UAM. The XML document is converted into the

HTML file, which can be present on the browser.

Figure 12. Result of Task #2 with UAM.



73

The top of Figure 12 shows the original XML generated by UAM, and at the

bottom, it presents the annotation results with different colors in the browser.

3.4.2 DEXTER

Following the steps of Task #2, the general procedures of testing DEXTER are

the same. First, the structure of the generated XML is analyzed. Second, design

Task #2 by applying XSL technology to modify the XML files and converting the

modified XML file into an HTML file.

The structure of the original XML files generated by DEXTER is simplified. In

Task #1, DEXTER generates two XML documents: the original XML file, the

original code file, and the original converted XML file. The code file contains all

the annotation data of the two layers, and the text file contains the content of the

text. In order to set colors for annotations, it is essential to generate an XML file

with the annotation text instead of the annotation data, which are the numbers

and strings for the end and start positions. Thus, an essential step in this task is

to extract the annotation information from the code file and then put the

extracted annotation data in the original XML file.

As for the main steps of completing Task #2, we designed it to separate Task #2

into two layers for two reasons. On the one hand, the XSL codes could be more

verbose in processing two layers of annotation together. On the other hand,

since DEXTER annotates the exact text repeatedly for two layers simultaneously

and Task #2 is designed to apply colors to each annotation, separately

displaying the HTML file for each layer is more visually precise.

The following Figure 13 presents the procedures of DEXTER.



74

Figure 13. Procedures of Task #2 for DEXTER.

On the left of Figure 13, it presents the procedures of Task #2 regarding the POS

layers. In general, there are four main steps to complete the task.

process one uses the first XSL file to extract data from the original code file and then adds the

extracted annotation data into the original converted XML file.

process two uses the second XSL file to structure the XML file and marks the annotations.

process three uses the third XSL file to structure the XML file by the format of HTML and sets

colors for each annotation.

process four: designs and modifies the XML file and then converts it to an HTML file.

The main purpose of process one is to extract data from the original code file

using XSL technology. Appendix 5 shows the XSL file. This XSL file has one

template from line 5 to line 19, which uses <xsl:for-each> function to extract

annotation information from the original code file containing all the annotation

data. The <data> element contains a <xsl:for-each> element and the

<xsl:for-each> element has a <sent> element, which defines four attributes, the



75

attributes name are id, function, start and end. The following code is part of the

first XSL file.

a.

<sent>

<xsl:attribute name="id"><xsl:value-of select="start_id"/></xsl:attribute>

...

</sent>

The <sent> element has four attributes, the id attribute extracts the annotation id

information, the function attribute extracts the POS tags information (verb, noun,

and preposition), and the start and end attributes extract the position of the

annotation.

As a result, this step extracts the data from the code file and generates the

annotation data in the <data> element. The following shows part of the results of

process one in Appendix 6.

b.

<data>

<sent id="b.1.1" function="verb" start="17" end="20"/>

<sent id="b.1.1" function="verb" start="74" end="77"/>

...

</data>

The <data> element contains several child elements <sent>. Each <sent>

element contains four attributes, where id attributes present the id of each

annotation, function attributes present three POS tags, verb, noun, and

preposition, start attributes present the start position of annotations, and end

attributes present the end position of annotations. However, there are limitations

in this step.



76

After extracting the annotation data, we manually select and copy the two layers

of data and paste them into the original XML before proceeding to the next step.

This process of manual selection of replication risks generating unnecessary

errors and affects the results since the extracted annotation data is added to the

converted XML file in the next step. Finally, the generated XML file contains POS

annotation data showing in Appendix 7.

In process two, the second XSL file structures the XML file and marks the

annotations within the original text. Appendix 8 shows the second XSL file, which

has three templates. The first template structures the XML file by adding

<document>, <body>, <paragraph> and <sentence> elements, and sets a

framework for data extraction.

From line 6 to line 55, this template extracts the original text, sentence id from

<seg> element and adds all the information into the <sentence> element. In

addition, this template calls two templates “CountTags” and “TagText” to add the

annotation text by using the <xsl:call-template> function. The following c sample

shows the <xsl:call-template> function.

c.

<xsl:variable name="count">

<xsl:call-template name="CountTags">

<xsl:with-param name="id" select="$sentence_id"/>

</xsl:call-template>

</xsl:variable>

The <xsl:variable> element defines a variable, it is named “count” by the

attribute “name”. The variable element has a child element <xsl:call-template>,

which calls the template “CountTags”. The child element <xsl: with-template>

has two attributes, the “name” attribute specifies the name of the parameter and

the “select” attribute provides the value of the parameter.



77

The code from line 57 to line 60 defines the “CountTags” template that is called

<xsl:call-template>. The following d sample shows the template.

d.

<xsl:template name="CountTags">

<xsl:param name="id"/>

<xsl:value-of select="count(//data/sent[@id = $id])"

</xsl:template>

This template is named as “CountTags” by attribute name. The child element

<xsl:param> defines a parameter that is named as “id”. And then, the element

<xsl:value-of> provides the value of this parameter through the attribute “select”.

Using the same functions and programming logic, the function of code from line

36 to 43 calls another template “TagText” to add annotation information. From

line 62 to line 102, the “TagText” template defines six parameters and extracts

the data of attribute “function,” “start” and “end” from <sent> element into

“TagText” templates.

The “TagText template” marks out the annotations using the substring function to

set <segment> element to locate before and after the tag text. Finally, process

two generates the XML file that marks out all POS annotations within the

sentences showing in Appendix 9. The generated XML file has the <document>,

<body>, <paragraph>, <sentence> and <segement> element, and the

<segement> element contains all the annotation.

In process three, in Task #2 of DEXTER shares the same procedures as process

two with UAM, and the code uses the same functions and structures. Thus, the

XSL file of process three is also shown in Appendix 3. As a result, we transform

the XML files into HTML files, the following figure shows the final results of

transformation by DEXTER.



78

Figure 14. Result of Task #2 with DEXTER.

The top of Figure 14 shows the original XML file generated by DEXTER, and on

the bottom, it presents the annotation results with different colors in the browser.

In the end, the XML files, XSL files, and HTML files are packaged and uploaded

to the GitHub platform15 as an open-source project.

3.4.3 Result of Task #2

In general, Task #2 is designed to use these three computer tools to convert the

15 the XML files, XSL files, and HTML files are packaged and uploaded to the GitHub platform, URL:
https://github.com/GarritaGou/XSL_Project



79

XML files into HTML files and present the results in the browser.

After implementing the task, the recorded procedures analyze and compare the

software. Task #2 proposes five questions concerning the comparison of these

three computer tools.

N. Does the structure of XML files suit Task #2?

O. How many XSL files need to be created to complete the task?

P. How many steps are required to initiate the task?

Q. Is the code of XSL file more verbose?

R. Can the final HTML file present the same results in the browser?

The following Table 2 shows the results.

Table 2. Comparison result two.



80

As for the N characteristic, the XML files created by UAM and DEXTER both suit

Task #2. In addition, the original XML file generated by UAM contains the

information of the original text and the annotation information, which shows the

annotated text instead of the annotation data. So UAM has a better XML

structure for initiating Task #2 than DEXTER.

As for the O and P characteristics, there are two XSL files and three steps for

initiating Task #2 in UAM, while DEXTER requires three XSL files and four steps.

From the aspects of the procedure and required XSL files, UAM has more

advantages in converting its original XML file into an HTML over DEXTER.

Concerning the Q characteristic, DEXTER requires more verbose XSL code in

the third XSL file because it needs to extract annotation data from the code file

before proceeding with the following steps. In the first UAM XSL file, the code

only uses one template to mark out the annotations in the original sentences,

whereas Task #2 in DEXTER, the code in the third XSL file uses three templates

to mark the annotations. In this aspect, to complete the procedure of converting

the XML file into an HTML file, DEXTER needs more verbose XSL codes than

UAM.

The characteristic R describes that both UAM and DEXTER can execute Task

#2 successfully and present the same annotation results in the browser.

In conclusion, UAM and DEXTER have more advantages in converting their

annotation results into the HTML file than MAE in regard to the XML file structure.

UAM has more advantages than DEXTER in this task regarding the contents of

distributing annotation data in the XML file.



81

4. CONCLUSION

This research provides theoretical basis and makes contributions to compare

MAE, UAM and DEXTER by completing two academic tasks, where Task #1

designed a corpus sample and performed corpus annotation and Task #2

created XSL files to convert generated XML files into HTML files and showed

them in the browser. First, the evaluation results derived from Task #1 suggest

that MAE is a computer tool with a simplified interface and interactivity that suits

inexperienced annotators according to features A and B. In addition, MAE and

DEXTER are more suitable for professional linguists in resolving long-term and

complex annotation tasks, in which DEXTER offers a higher user experience

according to features E, I and J. Second, Task #2 proposes that UAM and

DEXTER have more advantages in transforming annotation results into the

HTML file than MAE in the aspect of the structure of XML files, in which UAM has

more advantages in transformation than DEXTER according to feature O, P and

Q.

Most importantly, this research contributes to the open source code uploading on

the Github platform, so that linguists can implement the conversion themselves.

There is a limitation to the current research. XSL files in Task #2 can be

improved to proceed automatically to make scientific results. In the future, we

will create and update the XSL codes so that the extracted data is automatically

divided into two layers and stored in two separate XML files to provide scientific

results.



82

5. BIBLIOGRAPHY

Attia, M., Mcdonald, R., Petrov, S., & Kayadelen, T. 2017. PoS, Morphology and

Dependencies Annotation Guidelines for Arabic.

Candito, M., Perrier, G., Guillaume, B., Ribeyre, C., Fort, K., Seddah, D., & de La

Clergerie, É. V. (2014). Deep syntax annotation of the sequoia french

treebank. In International Conference on Language Resources and

Evaluation (LREC). Reykjavik, Iceland. https://hal.inria.fr/hal-00969191v2

Campbell, C. E., Eisenberg, A., & Melton, J. (2003). Xml schema. ACM SIGMOD

Record, 32(2), pp.96-101.

Clark, J. (1999). Xsl transformations (xslt). World Wide Web Consortium (W3C).

URL http://www. w3. org/TR/xslt, 103.

Day, D. S., McHenry, C., Kozierok, R., & Riek, L. D. (2004). Callisto: A

Configurable Annotation Workbench. International Conference on Language

Resources and Evaluation (LREC). Massachusetts, USA.

http://www.lrec-conf.org/proceedings/lrec2004/pdf/612.pdf

Expert Advisory Groups on Language Engineering Standards (EAGLE).(1996a).

Recommendations for the Morphosyntactic Annotation of Corpora.

http://www.ilc.cnr.it/EAGLES96/annotate/annotate.html

Expert Advisory Groups on Language Engineering Standards (EAGLE).(1996b).

Recommendations for the Syntactic Annotation of Corpora.

http://www.ilc.cnr.it/EAGLES96/segsasg1/segsasg1.html

Expert Advisory Groups on Language Engineering Standards (EAGLE).(2000).

Corpus Encoding Standard. https://www.cs.vassar.edu/CES/
Flickinger, D. (2008). Toward a cross-framework parser annotation standard.

Coling 2008: Proceedings of the workshop on Cross-Framework and

Cross-Domain Parser Evaluation. Manchester, UK.

https://aclanthology.org/W08-13.

Fort, K., Guillaume, B., & Chastant, H. (2014). Creating Zombilingo, a Game

With A Purpose for dependency syntax annotation. Proceedings of the First

International Workshop on Gamification for Information Retrieval. Amsterdam,

The Netherlands. https://doi.org/10.1145/2594776.2594777.

Goldberg, K. H. (2010). XML: Visual quickstart guide. Berkeley: Peachpit Press.

http://www.lrec-conf.org/proceedings/lrec2004/pdf/612.pdf
http://www.ilc.cnr.it/EAGLES96/annotate/annotate.html
http://www.ilc.cnr.it/EAGLES96/segsasg1/segsasg1.html
https://www.cs.vassar.edu/CES/
https://aclanthology.org/W08-13
https://doi.org/10.1145/2594776.2594777


83

Gries, S. T., & Berez, A. L. (2017). Linguistic annotation in/for corpus linguistics.

In Handbook of linguistic annotation. (pp.379-409). USA: Springer.

Hellmann, S., Chiarcos, C., & Ngomo, A. C. N. (2010). The tiger corpus

navigator. Proc. 9th International Workshop on Treebanks and Linguistic

Theories TLT-9. Germany. http://hdl.handle.net/10062/15891.

Hirst, D. (2006). Phonetic and phonological annotation of speech prosody.

Analisi prosodica. teorie, modelli e sistemi di annotazione, Atti del II

Convegno Nazionale della Societa Italiana di Scienze della Voce (AISV).

Torriana.

Hoek, J., Evers-Vermeul, J., & Sanders, T. J. (2019). Using the cognitive

approach to coherence relations for discourse annotation. Dialogue &

Discourse, 10(2), pp.1-33.

Jiang, W., Huang, L., & Liu, Q. (2009). Automatic adaptation of annotation

standards: Chinese word segmentation and pos tagging–a case study.

Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL

and the 4th International Joint Conference on Natural Language Processing

of the AFNLP. Suntec, Singapore. https://aclanthology.org/P09-1059.

Leech, G., & Wynne, M. (2005). Developing linguistic corpora: A guide to good

practice. M. Wynne (Éd.). Developing linguistic corpora: a guide to good

practice, 92, pp.17-29.

Long, W., Cai, X., Reid, J. E., Webber, B., & Xiong, D. (2020). Shallow discourse

annotation for chinese ted talks. arXiv preprint arXiv.

López F. H., Reboiro J. M., Glez P. D., Aparicio, F., Gachet, D., Buenaga, M., &

Fdez R. F. (2013). BioAnnote: A software platform for annotating biomedical

documents with application in medical learning environments. Computer

methods and programs in biomedicine, 111(1), pp.139-147.

Maeda, K., & Strassel, S. M. (2004). Computer tools for Large-Scale Corpus

Development: Using AGTK at the Linguistic Data Consortium. Proceedings of

the Fourth International Conference on Language Resources and Evaluation

(LREC). PA, USA.http://www.lrec-conf.org/proceedings/lrec2004/pdf/761.pdf

Maraoui, H., Haddar, K., & Romary, L. (2017). Modeling of Al-Hadith Al-Shareef

with TEI. 2017 International Conference on Engineering & MIS (ICEMIS).

Monastir, Tunisia. https://doi.org/

Morton, T. S., & LaCivita, J. (2003). WordFreak: an open tool for linguistic

https://aclanthology.org/P09-1059
https://aclanthology.org/volumes/L04-1/
https://aclanthology.org/volumes/L04-1/
https://aclanthology.org/volumes/L04-1/
http://www.lrec-conf.org/proceedings/lrec2004/pdf/761.pdf
https://ieeexplore.ieee.org/xpl/conhome/8262697/proceeding


84

annotation. Companion Volume of the Proceedings of HLT-NAACL

2003-Demonstrations. Philadelphia, USA. https://aclanthology.org/N03-4

Müller, C., & Strube, M. (2002). An API for Discourse-level Access to

XML-encoded Corpora. Proceedings of the Fourth International Conference

on Language Resources and Evaluation (LREC). Heidelberg,

Germany.http://lrec-conf.org

Müller, C., & Strube, M. (2006). Multi-level annotation of linguistic data with

MMAX2. Corpus technology and language pedagogy: New resources, new

tools, new methods, 3, pp.197-214.

Neves, M., & Ševa, J. (2021). An extensive review of tools for manual annotation

of documents. Briefings in bioinformatics, 22(1), pp.146-163.

Ngonga Ngomo, A. C., & Lyko, K. (2012). Eagle: Efficient active learning of link

specifications using genetic programming. Extended semantic web

conference. Berlin, Heidelberg. https://aksw.org/Projects/LIMES.html

O’Donnell, M. (2008). The UAM CorpusTool: Software for corpus annotation and

exploration. Proceedings of the XXVI Congreso de AESLA.Almeria, Spain.

http://www.aesla.uji.es/congresoxxvii/

Palmer, M., Gildea, D., & Kingsbury, P. (2005). The proposition bank: An

annotated corpus of semantic roles. Computational linguistics, 31(1),

pp.71-106.

Miltsakaki, E., Prasad, R., Joshi, A. K., & Webber, B. L. (2004). The Penn

Discourse Treebank. Proceedings of the Fourth International Conference on

Language Resources and Evaluation (LREC). Philadelphia, USA.

http://lrec-conf.org

Petasis, G., Karkaletsis, V., Paliouras, G., Androutsopoulos, I., & Spyropoulos, C.

D. (2002). Ellogon: A new text engineering platform. Proceedings of the

Fourth International Conference on Language Resources and Evaluation

(LREC). Las Palmas, Canary Islands, Spain.

http://www.lrec-conf.org/proceedings/lrec2002/pdf/211.pdf

Sperberg-McQueen, C. M., & Burnard, L. (Eds.). (1994). Guidelines for

electronic text encoding and interchange. Chicago and Oxford: Text Encoding

Initiative. Oxford, UK: Humanities Computing Unit, University of Oxford.

Starko, V. (2020). Semantic Annotation for Ukrainian: Categorization Scheme,

Principles, and Tools. Proceedings of the 4th International Conference on

https://aclanthology.org/N03-4
https://aclanthology.org/volumes/L04-1/
https://aclanthology.org/volumes/L04-1/
http://www.aesla.uji.es/congresoxxvii/
https://aclanthology.org/volumes/L04-1/
https://aclanthology.org/volumes/L04-1/
https://aclanthology.org/volumes/L04-1/
https://aclanthology.org/volumes/L04-1/
https://aclanthology.org/volumes/L04-1/
http://www.lrec-conf.org/proceedings/lrec2002/pdf/211.pdf


85

Computational Linguistics and Intelligent Systems (COLINS). Lviv, Ukraine.

http://ceur-ws.org/

Stubbs, A. (2011). MAE and MAI: lightweight annotation and adjudication tools.

Proceedings of the 5th linguistic annotation workshop. Massachusetts, USA.

https://aclanthology.org/W11-0416

Tateisi, Y., Yakushiji, A., Ohta, T., & Tsujii, J. I. 2005. Syntax Annotation for the

GENIA corpus. Companion Volume to the Proceedings of Conference

including Posters/Demos and tutorial abstracts. Manchester, UK.

https://aclanthology.org/I05-2038

Tidwell, D. (1999). Tutorial: XML programming in Java. Cyber Evangelist.

developer Works XML Team.

Widlöcher, A., & Mathet, Y. (2012). The glozz platform: A corpus annotation and

mining tool. Proceedings of the 2012 ACM symposium on Document

engineering. Caen, France. https://doi.org/10.1145/2361354.2361394

Wilcock, G. (2009). Introduction to linguistic annotation and text analytics.

Synthesis Lectures on Human Language Technologies, 2(1), pp.1-159.

https://aclanthology.org/W11-0416
https://aclanthology.org/I05-2038
https://doi.org/10.1145/2361354.2361394


APPENDICES
Appendix 1. First XSL file of process one for UAM
<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="iso-8859-1" indent="yes"/>

<!-- copy everything -->

<xsl:template match="@*|node()">

<xsl:copy>

<xsl:apply-templates select="@*|node()"/>

</xsl:copy>

</xsl:template>

<!-- matches some nodes and do nothing, i.e. delete them -->

<xsl:template match="lang" />

<xsl:template match="body">

<body><paragraph><xsl:apply-templates select="node()" /></paragraph></body>

</xsl:template>

<xsl:template match="//sentence">

<sentence><xsl:apply-templates select="node()" /></sentence>

</xsl:template>

<xsl:template match="//segment">

<xsl:choose>

<xsl:when test="@features='pos'">

<sentence>

<xsl:apply-templates select="node()" />

</sentence>

</xsl:when>

<xsl:otherwise>

<segment>

<xsl:attribute name="pos">

<xsl:choose>

<xsl:when test="@features='pos;verb'">verb</xsl:when>

<xsl:when test="@features='pos;noun'">noun</xsl:when>

<xsl:when

test="@features='pos;preposition'">preposition</xsl:when>

</xsl:choose>

JOSE CARLOS PERINAN PASCUAL
You only created appendices to include each XSL file created.
You should also create appendices for each XML file automatically created by the three computer tools.
The number of each appendix depends on the order in which each is described in the body of the text.
Remember to make a reference to each appendix in the body of the text.



</xsl:attribute>

<xsl:apply-templates select="node()" />

</segment>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:stylesheet>



Appendix 2. Generated XML file of UAM in process one

<?xml version="1.0" encoding="iso-8859-1"?>

<document>

<header>

<textfile>Texts/final text.txt</textfile>

</header>

<body>

<paragraph>

<sentence>Hi, <segment pos="noun">everyone</segment>.</sentence>

<sentence>I <segment pos="verb">know</segment> you<segment

pos="verb">'re</segment> all busy so I'll <segment pos="verb">keep</segment> this <segment

pos="noun">briefing</segment> quick.</sentence>

<sentence>I <segment pos="verb">have</segment> some important <segment

pos="noun">information</segment>

<segment pos="preposition">about</segment> a <segment

pos="noun">change</segment>

<segment pos="preposition">in</segment> the <segment

pos="noun">management</segment>

<segment pos="noun">team</segment>.</sentence>

<sentence>

<sentence>As</sentence> you already <segment pos="verb">know</segment>,

our <segment pos="preposition">head</segment>

<segment pos="preposition">of</segment>

<segment pos="preposition">departme</segment>nt, <segment

pos="noun">James Watson</segment>, <segment pos="verb">is</segment>

<segment pos="verb">leaving</segment> his <segment

pos="noun">position</segment>

<segment pos="preposition">at</segment> the <segment

pos="noun">end</segment>

<segment pos="preposition">of</segment> this <segment

pos="noun">week</segment>.</sentence>

<sentence>His <segment pos="noun">replacement</segment>

<segment pos="verb">is</segment>

<segment pos="verb">start</segment>ing <segment

pos="preposition">at</segment> the <segment pos="noun">en</segment>d <segment

pos="preposition">of</segment> the next <segment

pos="noun">month</segment>.</sentence>

<sentence>

JOSE CARLOS PERINAN PASCUAL
Each appendix should start at a new different page.
Correct page numbers at the TOC
Moreover, I put each appendix in bold type.



<segment pos="preposition">In</segment> the <segment

pos="noun">meantime</segment>, we<segment pos="verb">'ll</segment>

<segment pos="verb">continue</segment>

<segment pos="preposition">with</segment> our <segment

pos="noun">projects</segment>

<sentence>as</sentence> usual.</sentence>

<sentence>I <segment pos="verb">have</segment> two more quick <segment

pos="noun">points</segment>.</sentence>

<sentence>Firstly, there <segment pos="verb">will</segment>

<segment pos="verb">be</segment> some <segment

pos="noun">improvements</segment>

<segment pos="verb">made</segment>

<segment pos="preposition">to</segment> the <segment

pos="noun">staff</segment>

<segment pos="noun">car</segment>

<segment pos="noun">park</segment> next <segment

pos="noun">month</segment>

<segment pos="preposition">for</segment> a <segment pos="noun">few

weeks</segment>.</sentence>

<sentence>It <segment pos="verb">will</segment>

<segment pos="verb">be</segment>

<segment pos="verb">closed</segment>

<segment pos="preposition">during</segment> that <segment

pos="noun">time</segment>.</sentence>

<sentence>

<segment pos="verb">Do</segment>n't <segment pos="verb">worry</segment>,

we<segment pos="verb">'ve</segment>

<segment pos="verb">found</segment> a <segment

pos="noun">solution</segment>.</sentence>

<sentence>We <segment pos="verb">can</segment>

<segment pos="verb">use</segment> the local <segment

pos="noun">church</segment>

<segment pos="noun">car</segment>

<segment pos="noun">park</segment>

<segment pos="preposition">until</segment> our own one <segment

pos="verb">is</segment> ready.</sentence>

<sentence>If you <segment pos="verb">arrive</segment>

<segment pos="preposition">before</segment> 8.30 <segment



pos="noun">a.m.</segment>, please <segment pos="verb">use</segment> our small

<segment pos="noun">car</segment>

<segment pos="noun">park</segment>

<segment pos="preposition">on</segment>

<segment pos="noun">Brown</segment>

<segment pos="noun">Street</segment>, and if you <segment

pos="verb">arrive</segment>

<segment pos="preposition">after</segment> that, you <segment

pos="verb">should</segment>

<segment pos="verb">go</segment> directly <segment

pos="preposition">to</segment> the <segment pos="noun">church</segment>

<segment pos="noun">car</segment>

<segment pos="noun">park</segment>.</sentence>

<sentence>It's only a five-minute <segment pos="verb">walk</segment>

away.</sentence>

<sentence>But they <segment pos="verb">need</segment> it in the <segment

pos="noun">evenings</segment>, so you <segment pos="verb">have</segment>

<segment pos="preposition">to</segment>

<segment pos="verb">leave</segment>

<segment pos="preposition">before</segment> 6 <segment

pos="noun">p.m.</segment>

</sentence>

<sentence>Sorry <segment pos="preposition">about</segment> that &#x2013; I

<segment pos="verb">know</segment> how much you all <segment

pos="verb">love</segment>

<segment pos="verb">working</segment> late!</sentence>

<sentence>

<sentence>The other <segment pos="noun">thing</segment> I <segment

pos="verb">wanted</segment>

<segment pos="preposition">to</segment>

<segment pos="verb">tell</segment> you <segment

pos="preposition">about</segment>

<segment pos="verb">is</segment> that the <segment pos="noun">canteen

<segment pos="verb">has</segment> now <segment pos="verb">introduced</segment> a

cashless <segment pos="noun">payment</segment>

<segment pos="noun">system</segment>.</segment>

<sentence>So, you <segment pos="verb">can</segment>'t <segment

pos="verb">use</segment> cash <segment pos="preposition">for</segment>

<segment pos="noun">payments</segment> any more.</sentence>



<sentence>You <segment pos="verb">can</segment>

</sentence>

<segment pos="verb">pay</segment> directly <segment

pos="preposition">with</segment> your <segment pos="noun">smartphone</segment> or you

<segment pos="verb">can</segment>

<segment pos="verb">pay</segment>

<segment pos="verb">using</segment> your <segment

pos="noun">comp</segment>any</sentence>

<segment pos="noun">ID</segment>

<segment pos="noun">card</segment>.</sentence>

<sentence>The total <segment pos="noun">amount</segment>

<segment pos="verb">put</segment>

<segment pos="preposition">on</segment> your <segment

pos="noun">company</segment>

<segment pos="noun">ID</segment>

<segment pos="noun">card</segment>

<segment pos="verb">come</segment>s off your <segment

pos="noun">salary</segment> at the <segment pos="noun">end</segment>

<segment pos="preposition">of</segment> each <segment

pos="noun">month</segment>.</sentence>

<sentence>OK.</sentence>

<sentence>That<segment pos="verb">'s</segment> it?</sentence>

<sentence>

<segment pos="verb">Are</segment> there any <segment

pos="noun">questions</segment>?</sentence>

</paragraph>

</body>

</document>



Appendix 3. Second XSL file of process two for UAM and process three for
DEXTER

<?xml version="1.0" encoding="iso-8859-1"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="html" version="4.0" encoding="iso-8859-1" indent="yes"/>

<!-- identity template - copies all elements and its children and attributes -->

<xsl:template match="@*|node()">

<xsl:copy>

<xsl:apply-templates select="@*|node()" />

</xsl:copy>

</xsl:template>

<xsl:template match="//document">

<html><xsl:apply-templates select="node()" /></html>

</xsl:template>

<xsl:template match="//textfile">

<title><xsl:apply-templates select="node()" /></title>

</xsl:template>

<xsl:template match="//paragraph">

<p><xsl:apply-templates select="node()" /></p>

</xsl:template>

<xsl:template match="//segment[@pos='verb']">

<font color="olive"><xsl:apply-templates select="node()" /></font>

</xsl:template>

<xsl:template match="//segment[@pos='noun']">

<font color="Gold"><xsl:apply-templates select="node()" /></font>

</xsl:template>

<xsl:template match="//segment[@pos='preposition']">

<font color="pink"><xsl:apply-templates select="node()" /></font>

</xsl:template>

</xsl:stylesheet>



Appendix 4. Original generated XML file of UAM in process two

<?xml version="1.0" encoding="iso-8859-1"?>

<html>

<header>

<title>Texts/final text.txt</title>

</header>

<body>

<p>

<sentence>Hi, <font color="Gold">everyone</font>.

</sentence>

<sentence>I <font color="olive">know</font> you<font color="olive">'re</font> all

busy so I'll <font color="olive">keep</font> this <font color="Gold">briefing</font> quick.

</sentence>

<sentence>I <font color="olive">have</font> some important <font

color="Gold">information</font>

<font color="pink">about</font> a <font color="Gold">change</font>

<font color="pink">in</font> the <font color="Gold">management</font>

<font color="Gold">team</font>.

</sentence>

<sentence>

<sentence>As</sentence> you already <font color="olive">know</font>, our <font

color="pink">head</font>

<font color="pink">of</font>

<font color="pink">departme</font>nt, <font color="Gold">James Watson</font>,

<font color="olive">is</font>

<font color="olive">leaving</font> his <font color="Gold">position</font>

<font color="pink">at</font> the <font color="Gold">end</font>

<font color="pink">of</font> this <font color="Gold">week</font>.



</sentence>

<sentence>His <font color="Gold">replacement</font>

<font color="olive">is</font>

<font color="olive">start</font>ing <font color="pink">at</font> the <font

color="Gold">en</font>d <font color="pink">of</font> the next <font color="Gold">month</font>.

</sentence>

<sentence>

<font color="pink">In</font> the <font color="Gold">meantime</font>, we<font

color="olive">'ll</font>

<font color="olive">continue</font>

<font color="pink">with</font> our <font color="Gold">projects</font>

<sentence>as</sentence> usual.

</sentence>

<sentence>I <font color="olive">have</font> two more quick <font

color="Gold">points</font>.

</sentence>

<sentence>Firstly, there <font color="olive">will</font>

<font color="olive">be</font> some <font color="Gold">improvements</font>

<font color="olive">made</font>

<font color="pink">to</font> the <font color="Gold">staff</font>

<font color="Gold">car</font>

<font color="Gold">park</font> next <font color="Gold">month</font>

<font color="pink">for</font> a <font color="Gold">few weeks</font>.

</sentence>

<sentence>It <font color="olive">will</font>

<font color="olive">be</font>

<font color="olive">closed</font>

<font color="pink">during</font> that <font color="Gold">time</font>.

</sentence>

<sentence>

<font color="olive">Do</font>n't <font color="olive">worry</font>, we<font



color="olive">'ve</font>

<font color="olive">found</font> a <font color="Gold">solution</font>.

</sentence>

<sentence>We <font color="olive">can</font>

<font color="olive">use</font> the local <font color="Gold">church</font>

<font color="Gold">car</font>

<font color="Gold">park</font>

<font color="pink">until</font> our own one <font color="olive">is</font> ready.

</sentence>

<sentence>If you <font color="olive">arrive</font>

<font color="pink">before</font> 8.30 <font color="Gold">a.m.</font>, please <font

color="olive">use</font> our small <font color="Gold">car</font>

<font color="Gold">park</font>

<font color="pink">on</font>

<font color="Gold">Brown</font>

<font color="Gold">Street</font>, and if you <font color="olive">arrive</font>

<font color="pink">after</font> that, you <font color="olive">should</font>

<font color="olive">go</font> directly <font color="pink">to</font> the <font

color="Gold">church</font>

<font color="Gold">car</font>

<font color="Gold">park</font>.

</sentence>

<sentence>It's only a five-minute <font color="olive">walk</font> away.

</sentence>

<sentence>But they <font color="olive">need</font> it in the <font

color="Gold">evenings</font>, so you <font color="olive">have</font>

<font color="pink">to</font>

<font color="olive">leave</font>

<font color="pink">before</font> 6 <font color="Gold">p.m.</font>

</sentence>

<sentence>Sorry <font color="pink">about</font> that &#x2013; I <font

color="olive">know</font> how much you all <font color="olive">love</font>

<font color="olive">working</font> late!

</sentence>



<sentence>

<sentence>The other <font color="Gold">thing</font> I <font

color="olive">wanted</font>

<font color="pink">to</font>

<font color="olive">tell</font> you <font color="pink">about</font>

<font color="olive">is</font> that the <font color="Gold">canteen <font

color="olive">has</font> now <font color="olive">introduced</font> a cashless <font

color="Gold">payment</font>

<font color="Gold">system</font>.</font>

<sentence>So, you <font color="olive">can</font>'t <font

color="olive">use</font> cash <font color="pink">for</font>

<font color="Gold">payments</font> any more.

</sentence>

<sentence>You <font color="olive">can</font>

</sentence>

<font color="olive">pay</font> directly <font color="pink">with</font> your <font

color="Gold">smartphone</font> or you <font color="olive">can</font>

<font color="olive">pay</font>

<font color="olive">using</font> your <font color="Gold">comp</font>any

</sentence>

<font color="Gold">ID</font>

<font color="Gold">card</font>.

</sentence>

<sentence>The total <font color="Gold">amount</font>

<font color="olive">put</font>

<font color="pink">on</font> your <font color="Gold">company</font>

<font color="Gold">ID</font>

<font color="Gold">card</font>

<font color="olive">come</font>s off your <font color="Gold">salary</font> at the

<font color="Gold">end</font>

<font color="pink">of</font> each <font color="Gold">month</font>.

</sentence>



<sentence>OK.</sentence>

<sentence>That<font color="olive">'s</font> it?

</sentence>

<sentence>

<font color="olive">Are</font> there any <font color="Gold">questions</font>?

</sentence>

</p>

</body>

</html>



Appendix 5. First XSL file of process one for DEXTER

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs" version="2.0">

<xsl:output method="xml" version="1.0" encoding="iso-8859-1" indent="yes"/>

<xsl:template match="/">

<data>

<xsl:for-each select="//data/type">

<xsl:variable name="function" select="@name"/>

<xsl:for-each select="token">

<sent>

<xsl:attribute name="id"><xsl:value-of

select="start_id"/></xsl:attribute>

<xsl:attribute name="function"><xsl:value-of

select="$function"/></xsl:attribute>

<xsl:attribute name="start"><xsl:value-of

select="start_index"/></xsl:attribute>

<xsl:attribute name="end"><xsl:value-of

select="end_index"/></xsl:attribute>

</sent>

</xsl:for-each>

</xsl:for-each>

</data>

</xsl:template>

</xsl:stylesheet>



Appendix 6. Original generated XML file of process one for DEXTER

<?xml version="1.0" encoding="iso-8859-1"?>

<data>

<sent id="b.1.1" function="verb" start="17" end="20"/>

<sent id="b.1.1" function="verb" start="74" end="77"/>

<sent id="b.1.1" function="verb" start="160" end="163"/>

<sent id="b.1.1" function="verb" start="207" end="213"/>

<sent id="b.3.1" function="verb" start="20" end="24"/>

<sent id="b.3.1" function="verb" start="45" end="47"/>

<sent id="b.3.1" function="verb" start="110" end="115"/>

<sent id="b.3.1" function="verb" start="142" end="144"/>

<sent id="b.3.1" function="verb" start="223" end="224"/>

<sent id="b.3.1" function="verb" start="303" end="306"/>

<sent id="b.3.1" function="verb" start="343" end="347"/>

<sent id="b.3.1" function="verb" start="384" end="387"/>

<sent id="b.3.1" function="verb" start="406" end="409"/>

<sent id="b.4.1" function="verb" start="19" end="24"/>

<sent id="b.4.1" function="verb" start="29" end="32"/>

<sent id="b.4.1" function="verb" start="72" end="81"/>

<sent id="b.4.1" function="verb" start="124" end="126"/>

<sent id="b.4.1" function="verb" start="164" end="166"/>

<sent id="b.4.1" function="verb" start="209" end="211"/>

<sent id="b.4.1" function="verb" start="213" end="217"/>

<sent id="b.3.1" function="verb" start="41" end="43"/>

<sent id="b.2.1" function="verb" start="3" end="6"/>

<sent id="b.2.1" function="verb" start="51" end="52"/>

<sent id="b.2.1" function="verb" start="72" end="75"/>

<sent id="b.2.1" function="verb" start="135" end="136"/>

<sent id="b.2.1" function="verb" start="138" end="143"/>

<sent id="b.3.1" function="verb" start="7" end="11"/>

<sent id="b.3.1" function="verb" start="193" end="198"/>

<sent id="b.3.1" function="verb" start="335" end="338"/>

<sent id="b.1.1" function="verb" start="46" end="49"/>

<sent id="b.1.1" function="verb" start="42" end="44"/>

<sent id="b.1.1" function="verb" start="204" end="205"/>

<sent id="b.1.1" function="verb" start="269" end="270"/>

<sent id="b.1.1" function="verb" start="272" end="279"/>

<sent id="b.1.1" function="verb" start="330" end="332"/>

<sent id="b.1.1" function="verb" start="334" end="341"/>



<sent id="b.2.1" function="verb" start="46" end="49"/>

<sent id="b.2.1" function="verb" start="130" end="133"/>

<sent id="b.3.1" function="verb" start="1" end="2"/>

<sent id="b.3.1" function="verb" start="16" end="18"/>

<sent id="b.3.1" function="verb" start="93" end="94"/>

<sent id="b.3.1" function="verb" start="216" end="221"/>

<sent id="b.3.1" function="verb" start="283" end="286"/>

<sent id="b.3.1" function="verb" start="261" end="262"/>

<sent id="b.4.1" function="verb" start="43" end="45"/>

<sent id="b.4.1" function="verb" start="64" end="66"/>

<sent id="b.4.1" function="verb" start="118" end="120"/>

<sent id="b.4.1" function="verb" start="160" end="162"/>

<sent id="b.4.1" function="verb" start="205" end="207"/>

<sent id="b.4.1" function="verb" start="258" end="260"/>

<sent id="b.4.1" function="verb" start="286" end="290"/>

<sent id="b.5.1" function="verb" start="9" end="10"/>

<sent id="b.5.1" function="verb" start="16" end="18"/>

<sent id="b.1.1" function="verb" start="25" end="27"/>

<sent id="b.3.1" function="verb" start="411" end="417"/>

<sent id="b.1.1" function="noun" start="94" end="104"/>

<sent id="b.1.1" function="noun" start="5" end="12"/>

<sent id="b.1.1" function="noun" start="56" end="63"/>

<sent id="b.1.1" function="noun" start="114" end="119"/>

<sent id="b.1.1" function="noun" start="128" end="137"/>

<sent id="b.1.1" function="noun" start="139" end="142"/>

<sent id="b.1.1" function="noun" start="170" end="173"/>

<sent id="b.1.1" function="noun" start="178" end="187"/>

<sent id="b.1.1" function="noun" start="190" end="194"/>

<sent id="b.1.1" function="noun" start="196" end="201"/>

<sent id="b.1.1" function="noun" start="219" end="226"/>

<sent id="b.1.1" function="noun" start="247" end="250"/>

<sent id="b.1.1" function="noun" start="257" end="267"/>

<sent id="b.1.1" function="noun" start="288" end="290"/>

<sent id="b.1.1" function="noun" start="304" end="308"/>

<sent id="b.1.1" function="noun" start="318" end="325"/>

<sent id="b.1.1" function="noun" start="352" end="359"/>

<sent id="b.2.1" function="noun" start="23" end="28"/>

<sent id="b.2.1" function="noun" start="59" end="70"/>

<sent id="b.2.1" function="noun" start="84" end="88"/>

<sent id="b.2.1" function="noun" start="90" end="92"/>



<sent id="b.2.1" function="noun" start="94" end="97"/>

<sent id="b.2.1" function="noun" start="104" end="108"/>

<sent id="b.2.1" function="noun" start="120" end="124"/>

<sent id="b.2.1" function="noun" start="157" end="160"/>

<sent id="b.3.1" function="noun" start="28" end="35"/>

<sent id="b.3.1" function="noun" start="59" end="64"/>

<sent id="b.3.1" function="noun" start="66" end="68"/>

<sent id="b.3.1" function="noun" start="70" end="73"/>

<sent id="b.3.1" function="noun" start="89" end="91"/>

<sent id="b.3.1" function="noun" start="242" end="247"/>

<sent id="b.3.1" function="noun" start="249" end="251"/>

<sent id="b.3.1" function="noun" start="253" end="256"/>

<sent id="b.3.1" function="noun" start="168" end="172"/>

<sent id="b.3.1" function="noun" start="174" end="179"/>

<sent id="b.3.1" function="noun" start="156" end="158"/>

<sent id="b.3.1" function="noun" start="358" end="360"/>

<sent id="b.3.1" function="noun" start="129" end="131"/>

<sent id="b.4.1" function="noun" start="11" end="15"/>

<sent id="b.4.1" function="noun" start="56" end="62"/>

<sent id="b.4.1" function="noun" start="94" end="100"/>

<sent id="b.4.1" function="noun" start="102" end="107"/>

<sent id="b.4.1" function="noun" start="187" end="196"/>

<sent id="b.4.1" function="noun" start="137" end="144"/>

<sent id="b.4.1" function="noun" start="128" end="131"/>

<sent id="b.4.1" function="noun" start="270" end="276"/>

<sent id="b.4.1" function="noun" start="278" end="279"/>

<sent id="b.4.1" function="noun" start="281" end="284"/>

<sent id="b.4.1" function="noun" start="301" end="306"/>

<sent id="b.4.1" function="noun" start="315" end="317"/>

<sent id="b.4.1" function="noun" start="327" end="331"/>

<sent id="b.5.1" function="noun" start="30" end="38"/>

<sent id="b.3.1" function="noun" start="160" end="163"/>

<sent id="b.1.1" function="noun" start="235" end="237"/>

<sent id="b.4.1" function="noun" start="224" end="230"/>

<sent id="b.4.1" function="noun" start="232" end="233"/>

<sent id="b.4.1" function="noun" start="235" end="238"/>

<sent id="b.4.1" function="noun" start="251" end="256"/>

<sent id="b.1.1" function="preposition" start="106" end="110"/>

<sent id="b.1.1" function="preposition" start="121" end="122"/>

<sent id="b.1.1" function="preposition" start="145" end="146"/>



<sent id="b.1.1" function="preposition" start="175" end="176"/>

<sent id="b.1.1" function="preposition" start="228" end="229"/>

<sent id="b.1.1" function="preposition" start="239" end="240"/>

<sent id="b.1.1" function="preposition" start="281" end="282"/>

<sent id="b.1.1" function="preposition" start="292" end="293"/>

<sent id="b.1.1" function="preposition" start="311" end="312"/>

<sent id="b.1.1" function="preposition" start="343" end="346"/>

<sent id="b.1.1" function="preposition" start="361" end="362"/>

<sent id="b.2.1" function="preposition" start="77" end="78"/>

<sent id="b.2.1" function="preposition" start="110" end="112"/>

<sent id="b.2.1" function="preposition" start="145" end="150"/>

<sent id="b.3.1" function="preposition" start="117" end="122"/>

<sent id="b.3.1" function="preposition" start="165" end="166"/>

<sent id="b.3.1" function="preposition" start="200" end="204"/>

<sent id="b.3.1" function="preposition" start="75" end="79"/>

<sent id="b.3.1" function="preposition" start="235" end="236"/>

<sent id="b.3.1" function="preposition" start="369" end="373"/>

<sent id="b.4.1" function="preposition" start="133" end="135"/>

<sent id="b.4.1" function="preposition" start="177" end="180"/>

<sent id="b.4.1" function="preposition" start="262" end="263"/>

<sent id="b.4.1" function="preposition" start="319" end="320"/>

<sent id="b.4.1" function="preposition" start="308" end="309"/>

<sent id="b.1.1" function="simple present" start="17" end="20"/>

<sent id="b.1.1" function="simple present" start="25" end="27"/>

<sent id="b.1.1" function="simple present" start="74" end="77"/>

<sent id="b.1.1" function="simple present" start="160" end="163"/>

<sent id="b.2.1" function="simple present" start="3" end="6"/>

<sent id="b.3.1" function="simple present" start="1" end="2"/>

<sent id="b.3.1" function="simple present" start="7" end="11"/>

<sent id="b.3.1" function="simple present" start="41" end="43"/>

<sent id="b.3.1" function="simple present" start="110" end="115"/>

<sent id="b.3.1" function="simple present" start="142" end="144"/>

<sent id="b.3.1" function="simple present" start="193" end="198"/>

<sent id="b.3.1" function="simple present" start="261" end="262"/>

<sent id="b.3.1" function="simple present" start="283" end="286"/>

<sent id="b.3.1" function="simple present" start="303" end="306"/>

<sent id="b.3.1" function="simple present" start="384" end="387"/>

<sent id="b.3.1" function="simple present" start="406" end="409"/>

<sent id="b.4.1" function="simple present" start="43" end="45"/>

<sent id="b.4.1" function="simple present" start="29" end="32"/>



<sent id="b.4.1" function="simple present" start="118" end="120"/>

<sent id="b.4.1" function="simple present" start="160" end="162"/>

<sent id="b.4.1" function="simple present" start="205" end="207"/>

<sent id="b.4.1" function="simple present" start="258" end="260"/>

<sent id="b.4.1" function="simple present" start="286" end="290"/>

<sent id="b.5.1" function="simple present" start="9" end="10"/>

<sent id="b.5.1" function="simple present" start="16" end="18"/>

<sent id="b.3.1" function="simple present" start="93" end="94"/>

<sent id="b.1.1" function="present continuous" start="204" end="213"/>

<sent id="b.1.1" function="present continuous" start="269" end="279"/>

<sent id="b.3.1" function="present perfect" start="16" end="24"/>

<sent id="b.4.1" function="present perfect" start="64" end="81"/>

<sent id="b.4.1" function="simple past" start="19" end="24"/>

</data>



Appendix 7. Final generated XML file of process one for DEXTER

<?xml version="1.0" encoding="UTF-8"?>

<TEI.2>

<teiHeader>

<fileDesc>

<titleStmt>

<title/>

</titleStmt>

<publicationStmt/>

<sourceDesc>

<recordingStmt/>

</sourceDesc>

</fileDesc>

<encodingDesc/>

<profileDesc>

<creation/>

<langUsage/>

<textClass/>

<textDesc/>

<particDesc/>

<settingDesc>

<setting/>

</settingDesc>

</profileDesc>

<revisionDesc/>

</teiHeader>

<text>

<body id="b">

<p id="b.1">

<seg id="b.1.1">Hi, everyone. I know you're all busy so I'll keep this briefing quick. I

have some important information about a change in the management team. As you already know,

our head of department, James Watson, is leaving his position at the end of this week. His

replacement is starting at the end of the next month. In the meantime, we'll continue with our

projects as usual. </seg>

</p>

<p id="b.2">

<seg id="b.2.1">I have two more quick points. Firstly, there will be some improvements

made to the staff car park next month for a few weeks. It will be closed during that time. </seg>

</p>



<p id="b.3">

<seg id="b.3.1">Don't worry, we've found a solution. We can use the local church car

park until our own one is ready. If you arrive before 8.30 a.m., please use our small car park on

Brown Street, and if you arrive after that, you should go directly to the church car park. It's only a

five-minute walk away. But they need it in the evenings, so you have to leave before 6 p.m. Sorry

about that – I know how much you all love working late! </seg>

</p>

<p id="b.4">

<seg id="b.4.1">The other thing I wanted to tell you about is that the canteen has now

introduced a cashless payment system. So, you can't use cash for payments any more. You can

pay directly with your smartphone or you can pay using your company ID card. The total amount

put on your company ID card comes off your salary at the end of each month. </seg>

</p>

<p id="b.5">

<seg id="b.5.1">OK. That's it? Are there any questions? </seg>

</p>

</body>

<data>

<sent id="b.1.1" function="verb" start="17" end="20"/>

<sent id="b.1.1" function="verb" start="74" end="77"/>

<sent id="b.1.1" function="verb" start="160" end="163"/>

<sent id="b.1.1" function="verb" start="207" end="213"/>

<sent id="b.3.1" function="verb" start="20" end="24"/>

<sent id="b.3.1" function="verb" start="45" end="47"/>

<sent id="b.3.1" function="verb" start="110" end="115"/>

<sent id="b.3.1" function="verb" start="142" end="144"/>

<sent id="b.3.1" function="verb" start="223" end="224"/>

<sent id="b.3.1" function="verb" start="303" end="306"/>

<sent id="b.3.1" function="verb" start="343" end="347"/>

<sent id="b.3.1" function="verb" start="384" end="387"/>

<sent id="b.3.1" function="verb" start="406" end="409"/>

<sent id="b.4.1" function="verb" start="19" end="24"/>

<sent id="b.4.1" function="verb" start="29" end="32"/>

<sent id="b.4.1" function="verb" start="72" end="81"/>

<sent id="b.4.1" function="verb" start="124" end="126"/>

<sent id="b.4.1" function="verb" start="164" end="166"/>

<sent id="b.4.1" function="verb" start="209" end="211"/>

<sent id="b.4.1" function="verb" start="213" end="217"/>

<sent id="b.3.1" function="verb" start="41" end="43"/>

<sent id="b.2.1" function="verb" start="3" end="6"/>



<sent id="b.2.1" function="verb" start="51" end="52"/>

<sent id="b.2.1" function="verb" start="72" end="75"/>

<sent id="b.2.1" function="verb" start="135" end="136"/>

<sent id="b.2.1" function="verb" start="138" end="143"/>

<sent id="b.3.1" function="verb" start="7" end="11"/>

<sent id="b.3.1" function="verb" start="193" end="198"/>

<sent id="b.3.1" function="verb" start="335" end="338"/>

<sent id="b.1.1" function="verb" start="46" end="49"/>

<sent id="b.1.1" function="verb" start="42" end="44"/>

<sent id="b.1.1" function="verb" start="204" end="205"/>

<sent id="b.1.1" function="verb" start="269" end="270"/>

<sent id="b.1.1" function="verb" start="272" end="279"/>

<sent id="b.1.1" function="verb" start="330" end="332"/>

<sent id="b.1.1" function="verb" start="334" end="341"/>

<sent id="b.2.1" function="verb" start="46" end="49"/>

<sent id="b.2.1" function="verb" start="130" end="133"/>

<sent id="b.3.1" function="verb" start="1" end="2"/>

<sent id="b.3.1" function="verb" start="16" end="18"/>

<sent id="b.3.1" function="verb" start="93" end="94"/>

<sent id="b.3.1" function="verb" start="216" end="221"/>

<sent id="b.3.1" function="verb" start="283" end="286"/>

<sent id="b.3.1" function="verb" start="261" end="262"/>

<sent id="b.4.1" function="verb" start="43" end="45"/>

<sent id="b.4.1" function="verb" start="64" end="66"/>

<sent id="b.4.1" function="verb" start="118" end="120"/>

<sent id="b.4.1" function="verb" start="160" end="162"/>

<sent id="b.4.1" function="verb" start="205" end="207"/>

<sent id="b.4.1" function="verb" start="258" end="260"/>

<sent id="b.4.1" function="verb" start="286" end="290"/>

<sent id="b.5.1" function="verb" start="9" end="10"/>

<sent id="b.5.1" function="verb" start="16" end="18"/>

<sent id="b.1.1" function="verb" start="25" end="27"/>

<sent id="b.3.1" function="verb" start="411" end="417"/>

<sent id="b.1.1" function="noun" start="94" end="104"/>

<sent id="b.1.1" function="noun" start="5" end="12"/>

<sent id="b.1.1" function="noun" start="56" end="63"/>

<sent id="b.1.1" function="noun" start="114" end="119"/>

<sent id="b.1.1" function="noun" start="128" end="137"/>

<sent id="b.1.1" function="noun" start="139" end="142"/>

<sent id="b.1.1" function="noun" start="170" end="173"/>



<sent id="b.1.1" function="noun" start="178" end="187"/>

<sent id="b.1.1" function="noun" start="190" end="194"/>

<sent id="b.1.1" function="noun" start="196" end="201"/>

<sent id="b.1.1" function="noun" start="219" end="226"/>

<sent id="b.1.1" function="noun" start="247" end="250"/>

<sent id="b.1.1" function="noun" start="257" end="267"/>

<sent id="b.1.1" function="noun" start="288" end="290"/>

<sent id="b.1.1" function="noun" start="304" end="308"/>

<sent id="b.1.1" function="noun" start="318" end="325"/>

<sent id="b.1.1" function="noun" start="352" end="359"/>

<sent id="b.2.1" function="noun" start="23" end="28"/>

<sent id="b.2.1" function="noun" start="59" end="70"/>

<sent id="b.2.1" function="noun" start="84" end="88"/>

<sent id="b.2.1" function="noun" start="90" end="92"/>

<sent id="b.2.1" function="noun" start="94" end="97"/>

<sent id="b.2.1" function="noun" start="104" end="108"/>

<sent id="b.2.1" function="noun" start="120" end="124"/>

<sent id="b.2.1" function="noun" start="157" end="160"/>

<sent id="b.3.1" function="noun" start="28" end="35"/>

<sent id="b.3.1" function="noun" start="59" end="64"/>

<sent id="b.3.1" function="noun" start="66" end="68"/>

<sent id="b.3.1" function="noun" start="70" end="73"/>

<sent id="b.3.1" function="noun" start="89" end="91"/>

<sent id="b.3.1" function="noun" start="242" end="247"/>

<sent id="b.3.1" function="noun" start="249" end="251"/>

<sent id="b.3.1" function="noun" start="253" end="256"/>

<sent id="b.3.1" function="noun" start="168" end="172"/>

<sent id="b.3.1" function="noun" start="174" end="179"/>

<sent id="b.3.1" function="noun" start="156" end="158"/>

<sent id="b.3.1" function="noun" start="358" end="360"/>

<sent id="b.3.1" function="noun" start="129" end="131"/>

<sent id="b.4.1" function="noun" start="11" end="15"/>

<sent id="b.4.1" function="noun" start="56" end="62"/>

<sent id="b.4.1" function="noun" start="94" end="100"/>

<sent id="b.4.1" function="noun" start="102" end="107"/>

<sent id="b.4.1" function="noun" start="187" end="196"/>

<sent id="b.4.1" function="noun" start="137" end="144"/>

<sent id="b.4.1" function="noun" start="128" end="131"/>

<sent id="b.4.1" function="noun" start="270" end="276"/>

<sent id="b.4.1" function="noun" start="278" end="279"/>



<sent id="b.4.1" function="noun" start="281" end="284"/>

<sent id="b.4.1" function="noun" start="301" end="306"/>

<sent id="b.4.1" function="noun" start="315" end="317"/>

<sent id="b.4.1" function="noun" start="327" end="331"/>

<sent id="b.5.1" function="noun" start="30" end="38"/>

<sent id="b.3.1" function="noun" start="160" end="163"/>

<sent id="b.1.1" function="noun" start="235" end="237"/>

<sent id="b.4.1" function="noun" start="224" end="230"/>

<sent id="b.4.1" function="noun" start="232" end="233"/>

<sent id="b.4.1" function="noun" start="235" end="238"/>

<sent id="b.4.1" function="noun" start="251" end="256"/>

<sent id="b.1.1" function="preposition" start="106" end="110"/>

<sent id="b.1.1" function="preposition" start="121" end="122"/>

<sent id="b.1.1" function="preposition" start="145" end="146"/>

<sent id="b.1.1" function="preposition" start="175" end="176"/>

<sent id="b.1.1" function="preposition" start="228" end="229"/>

<sent id="b.1.1" function="preposition" start="239" end="240"/>

<sent id="b.1.1" function="preposition" start="281" end="282"/>

<sent id="b.1.1" function="preposition" start="292" end="293"/>

<sent id="b.1.1" function="preposition" start="311" end="312"/>

<sent id="b.1.1" function="preposition" start="343" end="346"/>

<sent id="b.1.1" function="preposition" start="361" end="362"/>

<sent id="b.2.1" function="preposition" start="77" end="78"/>

<sent id="b.2.1" function="preposition" start="110" end="112"/>

<sent id="b.2.1" function="preposition" start="145" end="150"/>

<sent id="b.3.1" function="preposition" start="117" end="122"/>

<sent id="b.3.1" function="preposition" start="165" end="166"/>

<sent id="b.3.1" function="preposition" start="200" end="204"/>

<sent id="b.3.1" function="preposition" start="75" end="79"/>

<sent id="b.3.1" function="preposition" start="235" end="236"/>

<sent id="b.3.1" function="preposition" start="369" end="373"/>

<sent id="b.4.1" function="preposition" start="133" end="135"/>

<sent id="b.4.1" function="preposition" start="177" end="180"/>

<sent id="b.4.1" function="preposition" start="262" end="263"/>

<sent id="b.4.1" function="preposition" start="319" end="320"/>

<sent id="b.4.1" function="preposition" start="308" end="309"/>

</data>

</text>

</TEI.2>



Appendix 8. Second XSL file of process two for DEXTER

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs" version="2.0">

<xsl:output method="xml" version="1.0" encoding="iso-8859-1" indent="yes"/>

<xsl:key name="grammar" match="sent" use="@id"/>

<xsl:template match="/">

<document>

<body>

<xsl:for-each select="//p"> >

<paragraph>

<sentence>

<xsl:variable name="text" select="seg"/>

<xsl:variable name="sentence_id" select="seg/@id"/>

<xsl:attribute name="id">

<xsl:value-of select="$sentence_id"/>

</xsl:attribute>

<xsl:variable name="count">

<xsl:call-template name="CountTags">

<xsl:with-param name="id" select="$sentence_id"/>

</xsl:call-template>

</xsl:variable>

<xsl:choose>

<xsl:when test="$count > 0">

<xsl:variable name="constructions"

select="key('grammar', $sentence_id)" />

<xsl:variable name="sorted_start" as="element()*">

<xsl:for-each select="$constructions">

<xsl:sort select="@start"

data-type="number"/>

<index><xsl:value-of



select="@start"/></index>

</xsl:for-each>

</xsl:variable>

<xsl:call-template name="TagText">

<xsl:with-param name="text" select="$text"/>

<xsl:with-param name="constructions"

select="$constructions"/>

<xsl:with-param name="sorted_start"

select="$sorted_start"/>

<xsl:with-param name="num" select="1"/>

<xsl:with-param name="count"

select="$count"/>

<xsl:with-param name="new_start" select="0"/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="$text"/>

</xsl:otherwise>

</xsl:choose>

</sentence>

</paragraph>

</xsl:for-each>

</body>

</document>

</xsl:template>

<xsl:template name="CountTags">

<xsl:param name="id"/>

<xsl:value-of select="count(//data/sent[@id = $id])"/>

</xsl:template>

<xsl:template name="TagText">



<xsl:param name="text" />

<xsl:param name="constructions" />

<xsl:param name="sorted_start" />

<xsl:param name="num" />

<xsl:param name="count" />

<xsl:param name="new_start" />

<xsl:variable name="pos" select="$sorted_start[$num]"/>

<xsl:variable name="input" select="$constructions[@start=$pos]"/>

<xsl:variable name="function" select="$input/@function"/>

<xsl:variable name="start_index" select="$input/@start"/>

<xsl:variable name="end_index" select="$input/@end"/>

<xsl:variable name="length" select="$end_index - $start_index + 1"/>

<xsl:variable name="target" select="substring($text, $start_index - $new_start,

$length)"/>

<xsl:value-of select="substring-before($text, $target)"/>

<segment>

<xsl:attribute name="function">

<xsl:value-of select="$function"/>

</xsl:attribute>

<xsl:value-of select="$target"/>

</segment>

<xsl:choose>

<xsl:when test="$num=$count">

<xsl:value-of select="substring-after($text, $target)"/>

</xsl:when>

<xsl:otherwise>

<xsl:call-template name="TagText">

<xsl:with-param name="text" select="substring-after($text, $target)"/>

<xsl:with-param name="constructions" select="$constructions"/>

<xsl:with-param name="sorted_start" select="$sorted_start"/>

<xsl:with-param name="num" select="$num + 1"/>

<xsl:with-param name="count" select="$count"/>

<xsl:with-param name="new_start" select="$end_index"/>

</xsl:call-template>

</xsl:otherwise>



</xsl:choose>

</xsl:template>

</xsl:stylesheet>



Appendix 9. Generated XML file of DEXTER in process two

<?xml version="1.0" encoding="iso-8859-1"?>

<document>

<body>

<paragraph>

<sentence id="b.1.1">Hi, <segment function="noun">everyone</segment>. I

<segment function="verb">know</segment> you<segment function="verb">'re</segment> all

busy so I<segment function="verb">'ll</segment>

<segment function="verb">keep</segment> this <segment

function="noun">briefing</segment> quick. I <segment function="verb">have</segment> some

important <segment function="noun">information</segment>

<segment function="preposition">about</segment> a <segment

function="noun">change</segment>

<segment function="preposition">in</segment> the <segment

function="noun">management</segment>

<segment function="noun">team</segment>. <segment

function="preposition">As</segment> you already <segment function="verb">know</segment>,

our <segment function="noun">head</segment>

<segment function="preposition">of</segment>

<segment function="noun">department</segment>, <segment

function="noun">James</segment>

<segment function="noun">Watson</segment>, <segment

function="verb">is</segment>

<segment function="verb">leaving</segment> his <segment

function="noun">position</segment>

<segment function="preposition">at</segment> the <segment

function="noun">end</segment>

<segment function="preposition">of</segment> this <segment

function="noun">week</segment>. His <segment function="noun">replacement</segment>

<segment function="verb">is</segment>

<segment function="verb">starting</segment>

<segment function="preposition">at</segment> the <segment

function="noun">end</segment>

<segment function="preposition">of</segment> the next <segment

function="noun">month</segment>. <segment function="preposition">In</segment> the

<segment function="noun">meantime</segment>, we<segment function="verb">'ll</segment>

<segment function="verb">continue</segment>

<segment function="preposition">with</segment> our <segment

function="noun">projects</segment>



<segment function="preposition">as</segment> usual. </sentence>

</paragraph>

<paragraph>

<sentence id="b.2.1">I <segment function="verb">have</segment> two more quick

<segment function="noun">points</segment>. Firstly, there <segment

function="verb">will</segment>

<segment function="verb">be</segment> some <segment

function="noun">improvements</segment>

<segment function="verb">made</segment>

<segment function="preposition">to</segment> the <segment

function="noun">staff</segment>

<segment function="noun">car</segment>

<segment function="noun">park</segment> next <segment

function="noun">month</segment>

<segment function="preposition">for</segment> a few <segment

function="noun">weeks</segment>. It <segment function="verb">will</segment>

<segment function="verb">be</segment>

<segment function="verb">closed</segment>

<segment function="preposition">during</segment> that <segment

function="noun">time</segment>. </sentence>

</paragraph>

<paragraph>

<sentence id="b.3.1">

<segment function="verb">Do</segment>n't <segment

function="verb">worry</segment>, we<segment function="verb">'ve</segment>

<segment function="verb">found</segment> a <segment

function="noun">solution</segment>. We <segment function="verb">can</segment>

<segment function="verb">use</segment> the local <segment

function="noun">church</segment>

<segment function="noun">car</segment>

<segment function="noun">park</segment>

<segment function="preposition">until</segment> our own <segment

function="noun">one</segment>

<segment function="verb">is</segment> ready. If you <segment

function="verb">arrive</segment>

<segment function="preposition">before</segment> 8.30 <segment

function="noun">a.m</segment>., please <segment function="verb">use</segment> our small

<segment function="noun">car</segment>

<segment function="noun">park</segment>

<segment function="preposition">on</segment>



<segment function="noun">Brown</segment>

<segment function="noun">Street</segment>, and if you <segment

function="verb">arrive</segment>

<segment function="preposition">after</segment> that, you <segment

function="verb">should</segment>

<segment function="verb">go</segment> directly <segment

function="preposition">to</segment> the <segment function="noun">church</segment>

<segment function="noun">car</segment>

<segment function="noun">park</segment>. It<segment

function="verb">'s</segment> only a five-minute <segment function="verb">walk</segment>

away. But they <segment function="verb">need</segment> it in the evenings, so you <segment

function="verb">have</segment> to <segment function="verb">leave</segment> before 6

<segment function="noun">p.m</segment>. Sorry <segment

function="preposition">about</segment> that &#x2013; I <segment

function="verb">know</segment> how much you all <segment function="verb">love</segment>

<segment function="verb">working</segment> late! </sentence>

</paragraph>

<paragraph>

<sentence id="b.4.1">The other <segment function="noun">thing</segment> I

<segment function="verb">wanted</segment> to <segment function="verb">tell</segment> you

about<segment function="verb"> is</segment> that the <segment

function="noun">canteen</segment>

<segment function="verb">has</segment> now <segment

function="verb">introduced</segment> a cashless <segment

function="noun">payment</segment>

<segment function="noun">system</segment>. So, you <segment

function="verb">can</segment>'t <segment function="verb">use</segment>

<segment function="noun">cash</segment>

<segment function="preposition">for</segment>

<segment function="noun">payments</segment> any more. You <segment

function="verb">can</segment>

<segment function="verb">pay</segment> directly <segment

function="preposition">with</segment> your <segment

function="noun">smartphone</segment> or you <segment function="verb">can</segment>

<segment function="verb">pay</segment>

<segment function="verb">using</segment> your <segment

function="noun">company</segment>

<segment function="noun">ID</segment>

<segment function="noun">card</segment>. The total <segment

function="noun">amount</segment>



<segment function="verb">put</segment>

<segment function="preposition">on</segment> your <segment

function="noun">company</segment>

<segment function="noun">ID</segment>

<segment function="noun">card</segment>

<segment function="verb">comes</segment> off your <segment

function="noun">salary</segment>

<segment function="preposition">at</segment> the <segment

function="noun">end</segment>

<segment function="preposition">of</segment> each <segment

function="noun">month</segment>. </sentence>

</paragraph>

<paragraph>

<sentence id="b.5.1">OK. That<segment function="verb">'s</segment> it? <segment

function="verb">Are</segment> there any <segment function="noun">questions</segment>?

</sentence>

</paragraph>

</body>

</document>


	1.INTRODUCTION
	2 CORPUS ANNOTATION
	2.1 Levels
	2.1.1 Phonological and orthographic annotation
	2.1.2 Morphology level annotation 
	2.1.3 Syntax level annotation
	2.1.4 Semantic level annotation 
	2.1.5 Pragmatic/discourse level annotation 

	2.2 Standards
	2.2.1 TEI
	2.2.2 EAGLE

	2.3 Technology
	2.3.1 XML
	2.3.2 DTD
	2.3.3 XSD
	2.3.4 XSL
	2.3.5 HTML

	2.4 Software
	2.4.1 BioAnnotate
	2.4.2 Callisto
	2.4.3 Ellogon
	2.4.4 Glozz
	2.4.5 MMAX2
	2.4.6 MAE
	2.4.7 Wordfreak
	2.4.8 UAM Corpus
	2.4.9 Other Software


	3 RESEARCH TASKS
	3.1 Analysis of computer tools
	3.2 Methodology
	3.3 Task #1
	3.3.1 MAE
	3.3.2 UAM
	3.3.3 DEXTER
	3.3.4 Result of Task #1

	3.4 Task #2
	3.4.1 UAM
	3.4.2 DEXTER
	3.4.3 Result of Task #2


	4.CONCLUSION
	5.BIBLIOGRAPHY
	APPENDICES
	Appendix 1. First XSL file of process one for UAM
	Appendix 2. Generated XML file of UAM in process
	Appendix 3. Second XSL file of process two for UA
	Appendix 4. Original generated XML file of UAM in
	Appendix 5. First XSL file of process one for DEX
	Appendix 6. Original generated XML file of proces
	Appendix 7. Final generated XML file of process o
	Appendix 8. Second XSL file of process two for DE
	Appendix 9. Generated XML file of DEXTER in proce


