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Abstract 29 

E-noses can be routinely used to evaluate the volatile profile of tomato samples once the sensor drift 30 

and standardization issues are adequately solved. Short-term drift can be corrected using a strategy 31 

based on a multiplicative drift correction procedure coupled with a PLS adaptation of the Component 32 

Correction. It must be performed specifically for each sequence, using all sequence signals data. With 33 

this procedure, a drastic reduction of sensor signal %RSD can be obtained, ranging between 91.5% 34 

and 99.7%for long sequences and 75.7% and 98.8% for short sequences. On the other hand, long-35 

term drift can be fixed up using a synthetic reference standard mix (with a representation of main 36 

aroma volatiles of the species) to be included in each sequence that would enable sequence 37 

standardization. With this integral strategy, a high number of samples can be analyzed in different 38 

sequences, with a 94.4% success in the aggrupation of the same materials in  PLS-DA two-39 

dimensional graphical representations. Using this graphical interface e-noses can be used to 40 

developed expandable maps of volatile profile similitudes, which will be useful to select the materials 41 

that most resemble breeding objectives or to analyze which preharvest and postharvest procedures 42 

have a lower impact on the volatile profile, avoiding the costs and sample limitations of gas 43 

chromatography.  44 

 45 

Keywords: electronic nose, drift correction, chemometrics, sequence standardization, tomato. 46 
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Introduction 48 

The objective evaluation of flavor in crops such as tomato is expensive and time-consuming, 49 

consequently, this trait has been usually disregarded. Today it is known that one of the main factors 50 

under the loss of flavor relies on the loss of alleles related to the contents of aroma volatiles [1], 51 

and the use of delayed ripening genes that alter the aroma profile, an effect that depends on the 52 

genetic background [2]. Additionally, tomato flavor can also be altered by the preharvest and 53 

postharvest management of the crop that also alter the production of volatiles [3 – 6],  . 54 

In order to satisfy the demands of high quality markets, it would necessary to include flavor 55 

evaluation, and especially the volatile profile, during the development of breeding programs [7], 56 

cultivation, and postharvest procedures. In this context, the use of trained panelists or the precise 57 

volatile quantifications by gas chromatography-mass spectrometry is discarded considering that 58 

these evaluations are too expensive and time-consuming and, consequently, not adequate to 59 

evaluate a high number of samples.  60 

As an alternative, electronic noses (e-noses) were designed to evaluate the volatile profiles of 61 

agricultural products [8]. For this purpose, they have been usually applied to classify materials 62 

considering their quality characteristics, their origin, the variety or the presence of diseases, 63 

additives, adulterations, and off-flavors in different fruits and vegetables (tomato, kiwifruits, peach, 64 

nectarine, apple, banana, persimmon, grape, watermelon, strawberry, blackberry, onion, potato, 65 

pumpkin, broccoli, etc.), grains (wheat, rice, maize, peanuts, etc.), aromatic and medicinal plants 66 

(tea, coffee, saffron, cocoa, oregano, ginseng, etc.), processed products (oils, juices), livestock and 67 

poultry meat, and fish [8–12]. Most of these applications were modeled and tested in a short-term 68 

scenario, using a limited number of samples. However, the application of this technology to the 69 

evaluation of materials in breeding programs and food industry makes it is necessary to assure the 70 

capability to process a high number of samples in the same day, as well as being able to compare 71 

them with data obtained in previous assays. By doing so, it would be possible to apply e-noses to 72 

selection and quality control programs, in which each new sample is compared with reference 73 
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values or fingerprints obtained in previous assays with elite materials grown and handled in ideal 74 

conditions. From this point of view, the objective would not be centered on classifying a new 75 

sample, but to have an idea of its distance to elite reference samples. Consequently, it would be 76 

possible to select the best individuals or those preharvest or postharvest procedures that minimize 77 

their impact on the volatile profile. 78 

In order to take advantage of the capabilities of e-noses, it would be necessary to overcome the 79 

effects of sensor drift. This phenomenon is defined as temporary or gradual changes in one or some 80 

sensor properties which causes distorted response measures and reduces the validity of the 81 

electronic fingerprints. It is inevitable and caused by complex and dynamic processes, such as 82 

changes in room environmental conditions (temperature or humidity), changes in the composition 83 

of measured samples (component interactions), instrument operational disturbances (sensors 84 

thermal and memory effects, aging or poisoning) [13, 14]. These changes can be noticed both, in 85 

signals within a work sequence (short-term drift) and signals obtained in different work sequences 86 

(long-term drift). The improvement of sensor technology at the manufacturing stage to enhance its 87 

stability over time has contributed to reduce these problems. However, despite the advances 88 

obtained, a regular calibration is still required to limit the effects of sensor drift. It can be performed 89 

using external standards and statistical multivariate calibration models. Nonetheless, multivariate 90 

calibration requires a large number of samples and frequent re-calibrations of the sensor arrays and 91 

this would limit the number of new samples analyzed. Therefore, a new model calibration transfer 92 

or update and signal standardization using only a small number of reference samples would 93 

represent an interesting solution to keep the system operative for long periods [14].  94 

In the last two decades, an enormous research effort has been made on different methodologies 95 

aimed to properly process signals and data from e-noses (reviewed by [13–15]). Nevertheless, it 96 

seems clear that, despite the high amount of research on drift correction and calibration update 97 

methods developed, these proposals were not routinely used, except for component correction and 98 

directed standardization methods. The best solutions proposed up to now rely on the analysis of a 99 
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high number of samples to develop robust models or use simple volatile mixes. These approaches 100 

are distant from the real context of tomato evaluation. This species has a complex volatile profile 101 

with more than 400 compounds, with nearly 30 of them playing an important role in tomato aroma 102 

perception [2]. On the other hand, the need to develop models with a high number of samples would 103 

not be realistic in high-throughput evaluations, as the models would have to be recalculated each 104 

time a sensor has to be changed. 105 

In this context, although the use of commercial electronic noses for the evaluation of volatile 106 

profiles has a huge potential, it is necessary to develop an operating methodology enabling the 107 

routine evaluation of wide collections of real samples. This is, in fact, the aim of this paper, to 108 

propose a practical methodology to correct drift within and between sequences, using a minimum 109 

number of samples to calibrate the models and a tomato-like complex synthetic reference mix to 110 

standardize sequences. Finally, the development of long-term expandable partial least squares 111 

discriminant analysis (PLS-DA) graphical maps of e-nose volatile profiles is proposed as a valuable 112 

tool to enable the routine evaluation of the volatile profile of new samples, analyzing the relative 113 

distance to reference points. 114 

 115 

Materials and Methods 116 

 117 

Plant material and tomato-like synthetic standards 118 

Tomato-like synthetic standards were developed to obtain a synthetic mixture of main volatile 119 

compounds of an average real tomato sample, but with higher stability and reproducibility. For this 120 

purpose, a high concentration standard mixture was prepared (TomSSt_4), containing 30 individual 121 

volatile compounds at concentrations (Table 1) corresponding to the mean values of representative 122 

tomato cultivars with different aromatic profiles [16]. Three alternative standards were obtained 123 

diluting TomSSt_4 to 70% (TomSSt_3), 50% (TomSSt_2) and 30% (TomSSt_1). The dilutions 124 

were obtained to cover a wide range of volatile sample concentrations. TomSSt_2 was employed 125 
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as a reference sample for inter-sequence standardization in long-term drift correction. These 126 

working solutions where prepared by volume dilution from more concentrated stock solutions 127 

which were stored in the freezer at -30ºC in sealed vials. They have an established stability of one 128 

year for the main stock solutions (around 500 ppm or higher) and of 1 month for the ppb to sub 129 

ppm solutions. As preparation of synthetic standards is carried out by dilution in volume of stock 130 

standards, this process can be reliably and reproducibly performed producing adequate standard 131 

solutions in the routine laboratory. For sequences run in different months, the specific standard 132 

mixtures were prepared de novo to provide restrictive conditions. 133 

Table 1 134 

Composition of the tomato-like synthetic standard TomSSt_4. 135 

Volatile compound ng mL-1 Volatile compound ng mL-1 
E-2-hexen-1-ol acetate 0.70 eugenol 13.92 
3-methyl thiopropanal 1.12 nonanal 11.12 
terpineol (alpha+beta+gamma) 0.56 2-isobutylthiazole 26.40 
E-2-hexen-1-ol 1.10 E-2-heptenal 24.96 
1-hexanol 2.02 methyl salicylate  892.00 
3-carene 2.11 guaiacol 480.00 
3-methylbutyl acetate  2.04 E-2-hexenal 702.00 
alpha-pinene 1.98 6-methyl-5-hepten-2-one 590.00 
gamma-terpinene 2.08 hexanal 800.00 
2-carene 7.20 Z-3-hexenal 824.00 
linalool 6.60 E-2-octenal 102.00 
phenylacetaldehyde 9.20 citral (Z+E) 170.40 
2-phenylethanol 12.04 R-limonene 98.00 
6-methyl-5-hepten-2-ol 13.64 Z-3-hexen-1-ol 216.80 
beta-ionone 13.16 geranyl acetone 114.80 

 136 

Tomato varieties evaluated in this work represented a wide diversity of fruit shapes, colors, 137 

genotypic structures (commercial hybrids and landraces), and origins (Table 2). The plant material 138 

included four commercial hybrids, “Zayno RZ”, “Divyne RZ”, “Vinchy RZ” (Rijk Zwaan Iberica, 139 

Almería, Spain), and “Caramba” (De Ruiter Seeds, Almería, Spain). Four experimental tomato 140 

breeding lines (UJI008, UJI011, UJI014, and UJI028) with different fruit sizes. One cherry tomato 141 

type accession (BGV004587). Five accessions of local landraces, UJI023 of “de penjar” landrace, 142 

BGV005477 accession of a “Morado” landrace, BGV005651 an accession of “Muchamiel” 143 

landrace, BGV005718 an accession of “Amarillo” landrace, and BGV005655 an accession 144 
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belonging to the “Valenciano”. The “de penjar” landrace carries with alcobaça, alç, long-life 145 

mutation allelic to the nor gene [17] and it results in a very specific aroma volatile evolution [18], 146 

“Morado” landrace has external pink color due to the transparent peel typical of the yellow, y, 147 

mutation which alters the synthesis of polyphenols and “Amarillo” has yellow flesh color typical 148 

of the impairment of carotenoid synthesis resulting from the presence of the yellow-flesh, r, 149 

mutation (reviewed by [19]) and it, therefore, affects the synthesis of apocarotenoid volatiles. 150 

UJI accessions were obtained from Universitat Jaume I and BGV accessions from the genebank of 151 

the Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV). 152 

 153 

Table 2 154 

Description of the tomato accessions tested in the different assays performed. 155 

Code Type of material Accession 
Number of sequences 

Fruit characteristics 
1st assay 2nd assay 3rd assay 

1 Commercial hybrid “Zayno RZ”a,z 3 1 3 Large, rounded, green-red 
2 “Amarillo” landrace BGV005718b,x 3 1 3 Large, slightly flattened, yellow 
3 Commercial hybrid “Caramba”a,y 1 1 1 Large, flattened, green-red 
4 Breeding line UJI011c,u 1 1 1 Large, rounded, red 
5 Commercial hybrid “Divyne RZ”a,z 1  1 Medium-large, rounded, red 
6 Commercial hybrid “Vinchy RZ”a,z 1  1 Large, rounded, red, long life 
7 “De penjar” landrace UJI023b,u 1 1 1 Small, rounded, red, long life 
8 “Morado” landrace BGV005477b,x 1 1 1 Large, slightly flattened, pink 
9 “Muchamiel” landrace BGV005651b,x 1 1 1 Large, flattened, red-orange,  
10 “Valenciano” landrace BGV005655b,x 1  1 Medium-large, heart-shaped, red-orange 
11 Cherry tomato BGV004587b,x 1  1 Small, rounded, orange-brownish 
12 Breeding line UJI008c,u 1  1 Small, rounded, red 
13 Breeding line UJI014c,u 1  1 Medium-large, slightly flattened, red 
14 Breeding line UJI028c,u 1  1 Small, rounded, red 
TomSSt1 Tomato like standard (30%)  3  3  
TomSSt2 Tomato like standard (50%)  3 1 3  
TomSSt3 Tomato like standard (70%)  3  3  

TomSSt4 Tomato like standard 
(100%)  3  3  

Tomato types: acommercial hybrid, blocal landraces, cbreeding lines 
Origin: zRijk Zwaan Iberica S.A., yDe Ruiter Seeds S.A., xInstituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana (COMAV) 
seed bank, uUnivesitat Jaume I seed collection. 

 156 
Experimental design 157 
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Three different assays were performed. In the first assay, 18 samples with different compositions 158 

were used. These samples included real tomato samples from 14 varieties obtained homogenizing 159 

whole fruits (Table 2) and the four tomato-like synthetic standards (TomSSt) with variable volatile 160 

composition. Three sequences were run on different days. Each sequence included four specific 161 

varieties (that were included only in one sequence) and two varieties that were included as controls 162 

in the three sequences. The 4 tomato-like synthetic standards were also included in all the sequences. 163 

Tomato samples were replicated 7 times and tomato-like synthetic standards 4 times in each 164 

sequence. All the samples were randomly distributed in each working sequence. 165 

For a deeper study of the short-term drift, a second assay was designed to include a higher number of 166 

repetitions (12) per sample. Two consecutive long work sequences (22 hours each) were planned to 167 

test seven tomato and one tomato-like synthetic standard (TomSSt_2). All the samples were also 168 

randomly distributed within the first replicate of each sequence, and the order was maintained in the 169 

rest of the replicates. This design provided data to compare the performance in a whole sequence (12 170 

repetitions/sample in 22 hours) or a short sequence (4 repetitions/sample in 8 hours approximately) 171 

to test the performance of the drift correction strategy proposed in different scenarios. 172 

Finally, a third assay was performed to analyze the effect of long-term drift. To ensure the inclusion 173 

of long-term drift in the signal responses, the sequences of this trial were carried out in a 3 months 174 

period (one sequence per month) included in the normal routine usage of the equipment. During this 175 

period other samples from tomato and other vegetable crops were analyzed in the equipment. The 176 

short-term drift correction was applied before analyzing the results.  177 

In a first step, the effect of long-term drift was analyzed using the four tomato-like standard solutions 178 

in three sequences. Then the effect of long-term drift was also checked adding two tomato varieties 179 

analyzed in three sequences. Long-term drift correction via sequence standardization was then 180 

applied and its validity checked. 181 

The independent study of each one of these three sequences was used to test and correct short-term 182 

drift within a work-day sequence. The joint data of all these sequences were used to test the 183 
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performance of the long-term drift correction between sequences and standardization strategies 184 

proposed in this work.  185 

Once the reliability of the long term-drift correction had been checked it was applied to analyze the 186 

data obtained from the analysis of the 14 tomato varieties distributed in three sequences, using the 187 

data from TomSST2 for sequence standardization. 188 

 189 

Electronic nose and data acquisition 190 

A FOX 4000 (Alpha MOS, Toulouse, France) e-nose system was used. The system included 18 191 

metal oxide semiconductor sensors (MOS) installed in three chambers, an autosampler system 192 

(CombiPAL HS100, CTC Analytics, Zwingen, Switzerland), and a software package (AlphaSoft 193 

v11) to control and process initial data. The sensor response in MOS sensors is a resistance variation 194 

due to a reaction caused by the chemical species on the surface of the active layer of the sensor. As 195 

usual for MOS sensors, the signal was expressed as normalized resistance variation of the signal 196 

highest point ((Ri – Rmax)/Ri), where Ri is resistance at time zero and Rmax is resistance in the signal 197 

highest point of the sensor [20].  198 

The analysis parameters related to general aspects of equipment operation were fixed following 199 

manufacturer recommendations, while those that directly determine the response quality (influence 200 

headspace generation) were established from previous tests based on the methodology for the 201 

analysis of tomato aroma developed by the group [16]. For each sample, 2 g of homogenate (2 mL 202 

in the case of tomato synthetic standards) were introduced into a 10 mL vial and sealed. Each sample 203 

replicate corresponded to an independent vial. Samples were incubated in the autosampler at 45ºC 204 

for 10 minutes to generate the headspace and then 2 mL of it were injected into the sensors chambers 205 

for analysis. The sensors' response was recorded over two minutes with 18 minutes between each 206 

measurement to allow the baseline recovery. Between samples, dry clean synthetic air flowed over 207 

the sensor array for 2 minutes to remove residues of the previous sample, following manufacturer 208 

recommendations. The gas flow rate was 150 mL min-1. Instrument maintenance (daily auto test 209 
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and two-week diagnosis) were routinely performed following supplier protocols to ensure proper 210 

operation.  211 

 212 

Drift correction and inter-sequence standardization 213 

A multivariate adaptation of the multiplicative drift correction procedure proposed by Salit and 214 

Turk [21], combined with a partial least squares (PLS) adaptation of the component correction 215 

strategy [22] to model time-dependent drift was used both to remove intra-sequence short-term drift 216 

and to perform inter-sequence standardization to counteract long-term drift. Salit and Turk method 217 

is based on an interpolative projection of sample signal onto a smooth function defined by fitting 218 

to signals from regularly interspersed standards. Component correction strategy is based on the 219 

assumption that there is a subspace direction that captures only the drift variance and can be 220 

modelled (they use Principal Component analysis) and substracted from the measurement matrix X 221 

to provide drift corrected signals. Two assumptions were considered: i) drift, regardless of its type, 222 

is a function of time, and ii) drift for our electronic nose instrument is multiplicative (i.e. the 223 

magnitude of the perturbations is dependent on the signal level). Additionally, it had to be 224 

considered that the nature of the samples being analyzed could not be contemplated by the model, 225 

as they were unpredictable. 226 

A practical guide of our proposed intra-sequence drift correction methodology is included in Supp. 227 

Fig. 1. According to [21], when multiplicative drift appears, the signal measured in a sample i 228 

evaluated with j repetitions in each of the k sensors of the system (𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘 measured ) could be 229 

decomposed as:  230 

𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘 measured =  𝑆𝑆𝑖𝑖,𝑘𝑘 truth(1 +  𝐸𝐸drift (𝑡𝑡) + 𝐸𝐸noise )   (1) 231 

Being 𝑆𝑆𝑖𝑖 truth the true signal for sample i, 𝐸𝐸drift (𝑡𝑡) the drift estimation as a function of time and 232 

𝐸𝐸noise the estimation of the background noise (independent of time). 𝑆𝑆𝑖𝑖 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡ℎ can be estimated using 233 

the mean of all 𝑆̂𝑆𝑖𝑖,𝑘𝑘 measured 234 
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Then the multiplicative deviation pretreatment for each measured signal (
𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘 measured

𝑆̂𝑆𝑖𝑖,𝑘𝑘 measured
) allowed to 235 

model the deviations from 1 as an estimate of 𝐸𝐸𝑖𝑖,𝑘𝑘 drift (𝑡𝑡) +  𝐸𝐸𝑖𝑖,𝑘𝑘 noise  236 

To estimate time-dependent drift, a multivariate PLS regression between the pretreated signal 237 

measurements for all system sensors as independent variables (X matrix) and the time of analysis 238 

as a dependent variable (Y vector) was performed. As PLS drift model finds latent variables that 239 

explain the variability in the deviation of electronic signals due only to time evolution, this model 240 

function provides the estimate of 𝐸𝐸𝑖𝑖,𝑘𝑘 drift (𝑡𝑡) and the residuals of these model provide the 241 

estimation of 𝐸𝐸𝑖𝑖,𝑘𝑘 noise. 242 

Accordingly, as proposed by [22], after the drift model was fitted, the matrix product of resulting 243 

loadings and scores of the model was used to calculate the matrix of 𝐸𝐸drift (𝑡𝑡) components. Then 244 

the initial signal measured values were corrected for multiplicative drift using the following 245 

equation from [21]: 246 

𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘 corrected = [𝑆̂𝑆𝑖𝑖,𝑘𝑘 measured(1 −  𝐸𝐸𝑖𝑖(𝑗𝑗),𝑘𝑘 drift (𝑡𝑡))] +  𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘 measured   (2) 247 

A similar strategy was used to perform inter-sequence standardization to correct long-term drift. A 248 

practical guide is included in Supp. Fig. 2. For different work sequences, a generalization of 249 

equation (1) was considered to decompose signal measured in a sample i evaluated with j repetitions 250 

in each of the k sensors of the system. This generalization assumes that in this case the truth signal 251 

can be estimated using two components, the mean of all 𝑆𝑆𝑖𝑖(𝑗𝑗)repetitions and an inter-sequence 252 

standardization coefficient. To calculate this inter-sequence standardization coefficient, the 253 

difference of the signals of the same reference sample measured in two different sequences was 254 

used. The tomato-like standard TomSSt_2 was used as a reference sample in all work sequences.  255 

Consequently, the multiplicative deviation pretreatment used for each measured signal was: 256 

𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘 measured

𝑆̂𝑆𝑖𝑖,𝑘𝑘 measured+(𝑆̂𝑆TomSSt1,𝑘𝑘− 𝑆̂𝑆𝑇𝑇omSSt𝑛𝑛,𝑘𝑘) 
  (3) 257 

Where  𝑆̂𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1,𝑘𝑘 and 𝑆̂𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑘𝑘  are the signal means of all repetitions for the tomato-like 258 

synthetic standard reference sample in sequences 1 and n, respectively, for each k sensor. 259 
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The generalization of equation (1) also assumes that, when considering several work sequences, the 260 

time-dependent drift can be decomposed in two components:  261 

𝐸𝐸drift (𝑡𝑡) =  𝐸𝐸short (𝑡𝑡) +  𝐸𝐸long (𝑡𝑡) (4) 262 

Where Eshort(t) represents the short-term (between-sample within-run) signal drift and Elong(t) the 263 

long-term (between-run) drift. Inter-sequence standardization was applied to all sequences after 264 

short-drift correction. Doing that, time-dependent drift would be equivalent to the long-term drift 265 

that appears between sequences. Consequently, after applying pretreatment of equation (3) when 266 

drift was modeled by PLS regression as explained previously, it was possible to calculate the matrix 267 

of 𝐸𝐸long components and to use it to standardize sequence signals applying equation (4). 268 

The PLS regressions were performed using venetian blinds (with as many groups as samples 269 

evaluated) as resampling procedure, in order to calculate error models and to select the number of 270 

latent variables used in the model. Outliers were detected and removed, using Hotelling T2 and Q 271 

Residuals [23]. 272 

  273 

Graphical maps and data analysis tools 274 

Drift-corrected sensor signals were graphically plotted in a 2D PLS-DA scatterplot map as with this 275 

dimensional reduction representation technique the distance between projected points preserves 276 

sample similarities [24]. Confidence ellipsoids (p=0.05) were calculated and plotted for samples 277 

with more than four replicates. In some cases, after removing outliers there were not enough points 278 

to calculate these intervals, and data points were just linked with lines to provide rapid identification 279 

of groups. The closer the points, the higher the similarity between signals. This procedure enables 280 

the comparison of sample volatile profile similarities, for example, for selection purposes. The 281 

objective was not to classify samples in predefined groups. This would be a typical objective in a 282 

quality assurance control, but in breeding programs, the objective is to select those materials closer 283 

to specific volatile profile targets. Nevertheless, to assess the performance of the proposed drift 284 

correction strategy, classification results were compared with those obtained using other reputed 285 
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drift correction methods: the original method proposed by Salit and Turk [21], independent 286 

component analysis (ICA) and parallel factor analysis 2 (PARAFAC2) [25]. ICA is a signal 287 

processing method that separates a multivariate signal into additive subcomponents assuming that 288 

the subcomponents are non-Gaussian signals and that they are statistically independent from each 289 

other. PARAFAC methods are generalizations of Principal Component Analysis (PCA) to higher 290 

order arrays. PARAFAC2 is an improvement of the original PARAFAC method in which the strict 291 

trilinearity is no longer required. Compared with PCA methods, PARAFAC methods have the 292 

advantages of no rotation problem, as in PCA, easier to interpret and higher statistical robustness. 293 

Once the correction was obtained, three frequent classification techniques were applied. K nearest 294 

neighbors (KNN) classification, soft independent modeling of class analogy (SIMCA), and 295 

discriminant analysis based on partial least square regression (PLS-DA) [24] . KNN is a non-296 

parametric classification method in which a data point is assigned to the class most common among 297 

its k nearest neighbors. SIMCA classification is mainly based on principal component analysis and 298 

an object is assigned to a class if its residual distance is below the statistical limit for the class. In 299 

PLS-DA, the predictive modelling comprises two main procedures, a PLS component development 300 

(i.e. dimension reduction for selecting variables for classification) and a prediction model 301 

construction (i.e. discriminant analysis) to predict class assignment for the data. 302 

KNN, SIMCA, PLS and PLS-DA, analysis and graphics were performed using PLS_Toolbox v 8.6 303 

(Eigenvector Research Inc, Wenatchee, WA, USA) for Matlab v 9 (Mathworks Inc, Natick, MA, 304 

USA). ICA models [26] were calculated with the FastICA toolbox for Matlab developed at the 305 

Helsinki University of Technology. PARAFAC2 models were performed using a graphical user 306 

interface, SENSABLE [20].  307 

To justify the need for standardization procedures, tests for significant differences between the same 308 

sample signals in different sequence work using MANOVA analysis and Roy test were used [24]. 309 

These analyses were performed using IBM SPSS v.24 (IBM Corp., Armonk, NY, USA). 310 

 311 
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Results and discussion 312 

Short-term drift correction  313 

In the first assay, high levels of short-term drift were observed leading to a high variation in the 314 

position of each sample replicate in the two-dimensional representation of the PLS analysis 315 

obtained with raw signals (Fig. 1 a, b, and c). This variation could be related to a possible lack of 316 

homogeneity of real tomato samples, but a considerable variability was also detected in tomato-like 317 

standards which are highly homogeneous. As a consequence, despite having a different aroma 318 

volatile profile, the confidence ellipsoids of each variety overlapped. Thus, it was impossible to 319 

discriminate the materials. This effect of short-term drift was detected in the three independent 320 

sequences tested, but it affected each sequence differentially. As an example, the confidence 321 

ellipsoid of the tomato-like standard TomSSt_2 was small and data points plotted close in the first 322 

sequence (Fig. 1a), while the ellipsoid was considerably wider in the second (Fig.1b) and third 323 

sequences (Fig. 1c). The contrary was observed in the case of TomSSt1, with higher variability in 324 

the first sequence and lower in the second and third. As the samples were randomly distributed for 325 

each replicate in the sequence, the differences observed in confidence ellipsoids suggest that the 326 

effect of drift changes between sequences. This spurious trend confirmed the difficulty of 327 

extrapolating short-term drift effects on different analysis sessions.  328 

The effect of sequence duration on short-term drift was analyzed in-depth comparing the 329 

performance of long (22-hour) and short (8-hour) sequences using 8 samples, including 7 tomato 330 

varieties and one tomato-like standard (Table 2). This time, samples were randomized in the first 331 

replicate, but the order was maintained in the rest of the replicates to enable comparisons between 332 

varieties. The long sequence (22 hours), typical of situations where a high number of samples is to 333 

be analyzed, was obtained increasing the number of repetitions per sample up to 12. Raw sensor 334 

data from these analyses revealed, for all the samples and in all the sequences, the presence of an 335 

important drift effect that affected all the sensors. The drift affected differentially each variety, with 336 

the highest effects detected in the samples of the variety “Caramba” (Fig. 2).  337 
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These drift effects were more evident and important at the end of the sequence (Fig. 2a), showing 338 

a complex non-linear time-dependent variation, with positive and negative signals tending to 339 

converge to 0. In the case of “Caramba” samples, raw signals (12 repetitions distributed in a 340 

sequence of 60 analysis) showed a very high relative standard deviation (%RSD) for the complete 341 

sequence for all the sensors (Fig. 2b. first data in parenthesis).  342 

In order to provide a reference, these values obtained with “Caramba”, were compared to those 343 

obtained by Xu et al. [27] corresponding to 6 analyses with the same apparatus equipped with the 344 

same sensors (Fig. 2b in square brackets). %RSD values obtained in the present work were 345 

considerably higher. Thus, the use of long sequences such as these would be unacceptable. It should 346 

be considered though, that the material used by [27] was Semen arecae, a dried seed preparation 347 

from Areca catechu L. Therefore, differences in %RSD would be explained both by changes in the 348 

sample matrix and in the number of hours of work of the sensors per sequence. 349 

When shorter sequences were considered (8 working hours, i.e. 4 “Caramba” samples distributed 350 

in a sequence of 18 injections) the drift levels were lower, but they continued to be excessive (Fig. 351 

2d. first data in parenthesis). 352 

The main factors contributing to e-nose drift effects in sensor performance are usually due to 353 

differences in temperature, humidity, changes in samples analyzed due to components interactions, 354 

or other uncontrolled effects. In the long term, the stability of MOS sensors could progressively be 355 

affected by sensor aging or poisoning affecting their performance. This includes changes in the 356 

morphology of the sensing layer and irreversibly bind of some sample compounds to metal oxides 357 

which diminish the catalytic oxidation of sample volatiles and affecting the sensors’ resistance 358 

response [14]. In practice, the data distortion caused by sensor drift in short time scenarios (one or 359 

few work-sequences) has many times been avoided when the use of the data collected was strictly 360 

for classification purposes. In these cases, the use of advanced multivariate statistical classification 361 

methodologies makes it possible to obtain subjacent information from the raw signal characteristic 362 

of each sample group, discarding the rest of the signal information and thus diminishing the drift 363 
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distortions problems (see examples in [28–30]). Unconsciously, when using a multivariate 364 

classifying technique, the analysis identifies and, to preserve sample group characteristic 365 

information, it discards the “non-characteristic” part of raw sensor signal which is normally related 366 

to noise, drift, and other non-relevant information. Nevertheless, this “signal cleaning” is a 367 

collateral effect (unwanted effect) and, consequently, the success of this strategy is variable since 368 

the characteristic subjacent information of the group is highly dependent on the samples and the 369 

number of latent variables used to build up the classification model. When a reduced number of 370 

samples with important differences between them are evaluated or when the volatile composition 371 

of the samples is not complex the “signal cleaning” effect would work well, making it possible to 372 

classify the samples in a quite satisfactory way [31]. But, with this approach, it is not always 373 

possible to completely avoid drift distortion effects. It would be the case of complex samples 374 

(complex matrix and/or very complex mixtures of volatiles) or collections of samples with similar 375 

volatile profiles. Consequently, a drift correction strategy would be more convenient in those cases. 376 

In order to correct short-term drift effects, sensor drift of the second assay was modeled and 377 

subtracted from the raw signals. To do that, a multivariate adaptation of the multiplicative drift 378 

correction procedure proposed by Salit and Turk [21] combined with a PLS adaptation of the highly 379 

used component correction strategy [22] to specifically model each drift present in each sequence 380 

was performed. The following assumptions were considered: i) sensors of the array have similar 381 

drift behavior, ii) this drift has a specific direction in the data hyperspace which allows its 382 

modelization by regression, and iii) this drift is time-dependent. After modeling short-term drift for 383 

each sequence, drift components for each signal in the data matrix were calculated. Later, matrix 384 

subtraction was performed in a Matlab environment to remove drift from the raw sensor signal data, 385 

thus providing a corrected sensor data matrix, which was used to plot the data (Fig. 2e). Compared 386 

with the raw sensor signals (Fig. 2a), the corrected signals were much more stable during the whole 387 

sequence for all sensors, even those with higher %RSD. Accordingly, an impressive %RSD 388 

decrease was observed for all the sensors (Fig. 2b), ranging from between 91.5% and 99.7% for 389 
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long sequences and 75.7% and 98.8% for short sequences. Maximum %RSD values were 0.65% 390 

for long sequences and 0.72% for short sequences. Those values are were between one (T40/2 391 

sensor) and 27 (LY2/LG sensor) times lower than those reported by Xu et al. [27] with a lower 392 

number of injections. As expected, the use of shorter work-sequences (18 injections in 8 hours 393 

sequence) resulted in better performance after drift correction (Fig. 2d and 2f), as it avoided the 394 

higher levels of drift detected at the end of long sequences. 395 

It should be considered though, that the increase in stability entailed a small decrease in the absolute 396 

value of signals after correction. This side effect mainly affects long sequences (Fig. 2a vs. Fig. 2e), 397 

while this decrease is imperceptible in shorter sequences (Fig. 2c vs. Fig. 2f). Consequently, despite 398 

the powerful short-term drift correction capabilities obtained, it would be preferable to use short (8 399 

hours) work sequences.   400 

When this drift correction strategy was applied to the signals of the first assay, an impressive 401 

reduction of the sample signal variability was attained, enabling a clear comparison of similitudes 402 

between samples in the new PLS-DA similarity map obtained (corrected: Fig. 1d, 1e, and 1f vs. 403 

raw: Fig. 1a, 1b, and 1c). Indeed, after this correction, it was easy to ascertain similarities in the 404 

volatile signal profile between samples, and the confidence intervals did not overlap as it had 405 

happened with the raw data. 406 

The use of similitude maps to compare volatile profiles is a novel alternative. Therefore, in order 407 

to compare this strategy with previous works it was necessary to assess its performance using 408 

classification methodologies, which are rather popular in e-nose preceding literature. Consequently, 409 

using the data of the second assay, the new drift correction strategy was compared with alternative 410 

drift correction methods including the original approach by Salit and Turk, [21], ICA [32], using 411 

KNN, SIMCA, and PLS-DA as classifying methods. In general, SIMCA outstood in the 412 

classifications. KNN and PLS-DA had a similar performance, which varied depending on the 413 

variety considered (Table 3). Considering different alternatives, the new correction proposed in this 414 

work offered the best results (classification effectiveness) compared to the alternatives evaluated 415 
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independently of the classification method. In fact, SIMCA and KNN classification with the 416 

proposed short-term drift correction allowed to classify correctly a 100% of the samples, assigning 417 

them to the variety to which they belonged. 418 
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Table 3 419 
Percentage of samples correctly classified using KNN (K=8), SIMCA and PLS-DA classification methods for seven tomato cultivars and the tomato-420 
like synthetic standard 2, before (raw data) and after intra-sequence drift correction using the proposed correction based on an adaptation of [21] and 421 
PLS component correction method, the Salit and Turk [21], ICA [32] and PARAFAC2 [20] methods. Average data of three work-sequences is provided 422 
(variation range in brackets). 423 

 424 

Sample 
Raw data Proposed correction Salit & Turk correction ICA correction PARAFAC2 correction 

KNN SIMCA PLS-DA KNN SIMCA PLS-DA KNN SIMCA PLS-DA KNN SIMCA PLS-DA KNN SIMCA PLS-DA 

TomSSt_2a 98.9 
(97.9-100) 

100 100 100 100 100 97.6 
(93.8-100) 

56.3 
(51.1-60.6) 

100 94.8 
(86.5-100) 

100 93.8 
(81.3-100) 

99.0 
(97.9-100) 

100 93.7 
(88.3-99.0) 

Zayno 85.4 
(78.6-92.9) 

82.0 
(49-99) 

90.4 
(84.7-100) 

100 100 99.3 
(98.0-100) 

92.2 
(83.6-100) 

60.1 
(52-67.7) 

93.5 
(88.7-100) 

83.6 
(76.5-91.8) 

96.6 
(89.8-100) 

80.9 
(74.5-85.7) 

80.3 
(77.5-85.7) 

81.6 
(72.4-89.6) 

72.7 
(66.3-80.6) 

“Amarillo” 
(BGV005718) 

91.5 
(87.8-99.0) 

98.3 
(94.8-100) 

88.4 
(83.5-91.8) 

100 100 94.6 
(90.8-100) 

99.7 
(99.0-100) 

57.9 
(52.1-59.4) 

89.7 
(85.6-91.8) 

79.9 
(64.3-98.0) 

98.3 
(94.8-100) 

83.3 
(76.5-87.8) 

86.4 
(74.4-93.9) 

88.4 
(85.7-90.6) 

68.5 
(55.1-80.6) 

Caramba 60.5 
(47.9-84.7) 

76.5 
(69-89.8) 

76.8 
(68.0-83.7) 

100 100 94.5 
(92.9-98.0) 

89.0 
(82.6-92.9) 

52.4 
(51-54.1) 

80.8 
(78.3-85.6) 

54.8 
(47-62.2) 

76.5 
(70.8-89.8) 

81.3 
(61.2-91.7) 

66.8 
(62.7-69.3) 

64.9 
(56.3-71.4) 

60.5 
(48.4-71.0) 

Breeding line 
(UJI011) 

78.2 
(71.4-82.6) 

79.8 
(68-90.8) 

77.7 
(70.8-83.7) 

100 100 92.4 
(82.2-100) 

94.2 
(90.8-99.0) 

53.8 
(53.1-55.2) 

78.3 
(69.9-86.7) 

63.6 
(55.1-76.5) 

83.2 
(68-90.8) 

65.2 
(61.2-67.3) 

61.2 
(52-71.4) 

67.5 
(53.1-79.6) 

67.9 
(61.2-73.5) 

De penjar 
(UJI023) 

96.3 
(91.8-99.0) 

100 99.7 
(99.0-100) 

100 100 100 96.5 
(90.6-100) 

60.7 
(56.1-65.6) 

97.2 
(91.7-100) 

75.8 
(56.1-86.6) 

100 88.1 
(71.4-100) 

93.8 
(90.6-98.0) 

94.9 
(89.8-98) 

84.3 
(81.6-89.8) 

Morado 
(BGV005477) 

88.8 
(76.5-99.0) 

100 92.8 
(89.6-94.9) 

100 100 98.0 
(93.9-100) 

97.3 
(92.9-100) 

72.4 
(66.7-82.3) 

94.5 
(92.7-96.9) 

79.2 
(45.9-98.0) 

100 90.1 
(79.6-96.9) 

95.2 
(90.8-98.0) 

91.5 
(79.6-97.9) 

85.3 
(81.3-88.8) 

Muchamiel 
(BGV005651) 

82.8 
(82.3-83.7) 

96.9 
(90.8-100) 

77.9 
(74.3-79.7) 

100 100 95.9 
(93.9-98.0) 

91.4 
(82.3-100) 

57.8 
(55.1-63.3) 

84.3 
(77.4-93.9) 

79.7 
(54.3-94.0) 

96.9 
(90.6-100) 

83.7 
(75.3-91.0) 

85.8 
(82.3-91.8) 

93.2 
(90.8-96) 

77.9 
(75.3-81.6) 
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 425 
Long-term drift and sequence standardization. 426 

Once the problem of short-term drift was solved, the focus was set on the effects of the variability 427 

detected among sequences. This variability, as stated above, can be generated by different causes 428 

originating a long-term drift effect. A solution to this effect is critical when a high number of 429 

samples are to be analyzed, as samples have to be distributed in different sequences that would be 430 

run on several days.  431 

Regardless of the cause of inter-sequence variability, the effects can be considerable and 432 

unpredictable, as was pointed out in the comparison of the three sequences of the first assay. 433 

Consequently, it seemed clear that some reference samples should be included in each sequence to 434 

assess how long-term drift affected the signal. At this point, it would not be advisable to use real 435 

tomato samples as references. The storage capability of these samples would be limited, and long-436 

term evolution in a freezer would introduce an undesirable noise in the system, thus increasing 437 

long-term drift. Accordingly, it was decided to include tomato-like synthetic standard volatile 438 

solutions, which were designed and created for this purpose. As tomato volatile profile is highly 439 

complex, with more than 400 volatiles being involved, it was decided to focus on a group of 440 

compounds (Table 1) that had been suggested to hold a prominent role in the aroma perception [33, 441 

34]. Standards were created from stock solutions for each session. Nonetheless, in the future and 442 

for practical reasons, standards can be created and stored in sealed vials at -30°C during one month 443 

with a high stability. In this case, over a 3-month span, the standards were created specifically for 444 

each session, thus providing more restrictive conditions. 445 

In a first step, three different sequences with the tomato-like standards at different concentrations 446 

were run. After applying the proposed short-term drift correction, a PLS-2D map was obtained (Fig. 447 

3a). Samples from the same tomato-like standard tended to group together, but still, a considerable 448 

level of variation was detected. In some cases, the confidence intervals of the same samples run in 449 

different sequences did not overlap and intervals of different standards did overlap in one case. 450 
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Considering the homogeneous nature of these standards, this variability would not be mainly related 451 

with the nature of the sample. To check this point, the analysis was repeated including samples 452 

from two tomato varieties “Rayno RZ” and “Amarillo”. Again, wide variability was detected, which 453 

was not specifically higher in the real tomato samples than in the standard solutions, despite their 454 

more complex nature (Fig. 3b). 455 

This time, even in the case of the control with lower variability (TomSSt_1), the fluctuations of 456 

signal values were rather high for some sensors, reaching RSD values above 20% (e.g. LY2/gCTl 457 

and LY2/GH sensors) or very close to this threshold (e.g. LY2/G sensor). In fact, a MANOVA 458 

analysis for TomSSt_1 using the data from the three sequences showed significant inter-sequence 459 

differences (Roy test α < 0.03). Higher levels of variation were found in the rest of the controls. 460 

Consequently, despite the use of the routine instrument calibration recommended by the equipment 461 

manufacturer, the unacceptable inter-sequence variance for each sample caused important bias in 462 

the graphs constructed joining the data from several sequences. Therefore, it makes necessary the 463 

use of a data standardization step before merging data from different sessions. 464 

In order to tackle this long-term drift effect, the data from the tomato-like synthetic standard 465 

TomSSt_2 was selected to standardize sequence signals. The use of a real sample as reference had 466 

to be discarded, as its volatile profile would evolve during their conservation and it would also have 467 

a finite nature. On the opposite, a homogeneous synthetic standard including main tomato volatiles, 468 

representing the complex nature of its aroma, can be generated expressly for each sequence.  469 

Following this premise, in order to standardize sequences, sensor signals from each sample after 470 

short-term drift correction were transformed using the deviation observed between the corrected 471 

signals of the synthetic standard in the different sequences. Once the signals were transformed, they 472 

were related to a time vector using PLS regression. Time vector values were obtained adding the 473 

time of each analysis, including the different sequences consecutively.  474 

New PLS-DA 2D maps were then obtained, and the efficiency of correction was evident (Fig. 3a 475 
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vs 3b). For five of the six controls no significant inter-sequence differences were found, and the 476 

confidence ellipsoids overlapped. Only in the case of the samples of the tomato landrace “Amarillo” 477 

(coded 2_1 in Fig. 3) significant differences (Roy test α < 0.001) were found between the first 478 

sequence and the remaining two. Nonetheless, the three samples plotted at a short distance. The 479 

standardization procedure showed a grouping correction efficiency of 94.4%, as 17 of the 18 sample 480 

groups were correctly ascribed with their equals ran in different sequences and their confidence 481 

intervals overlapped. This result represents a similar efficiency compared to other strategies 482 

regarding long-term drift counteraction methods [15, 35–40] or better [41, 42]. It was confirmed, 483 

then, that data from different sequences could be pooled in order to work with a high number of 484 

samples.  485 

Considering the good performance obtained with these controls, the sequence standardization 486 

procedure was applied to the data obtained with three sequences, with 14 tomato varieties and 487 

TomSSt_2 as a reference. When both short-term drift correction and sequence standardization was 488 

applied (Fig. 4b), the variation observed per sample was highly reduced compared to the use of raw 489 

data (Fig. 4a). Again, the replicates analyzed in different sequences tended to overlap their 490 

confidence intervals, and only one of the replicates of the “Amarillo” landrace could not be grouped 491 

with the rest of the corresponding replicates (coded 2.1 in Fig 4b). Therefore, this procedure enables 492 

a realistic comparison of similitudes and differences in the volatile signal profile between samples 493 

run in different sequences. 494 

Other works [15, 35, 41] deal with adaptations of the component correction strategy applied to a 495 

long-term drift counteraction. These works use a group of training samples to model the drift using 496 

different regression methodologies (PLS, OSC, or CPCA) and, then subtract the drift modeled from 497 

the signals of new samples. These strategies assume that with a good training set, the calibration 498 

model can be useful for a long time for practical purposes. However, it is obvious that to extend the 499 

period of use, large training sets are needed. Gutierrez-Osuna [43] used a training set of 5 to 10 500 
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samples for a drift correction period of 3 months in samples of 4 very different spices. Padilla et 501 

al., [35] used training sets higher than 100 samples for a drift correction period of 10 months in 502 

samples of individual chemical compounds at different concentrations. A similar application was 503 

tested by Ziyatdinov [41] with training sets higher than 1000 samples for a drift correction period 504 

of 7 months. Nevertheless, it seems also obvious that when sensor degradation increases, the 505 

usefulness of these calibration models will decrease and, at any moment, they would need an 506 

update. Additionally, training sets have been used with mixes of a few volatiles, and real tomato 507 

samples consist of more than 400 volatiles [34]. 508 

In the present study, specific training set samples were not used. Instead, the information of the 509 

samples evaluated in each sequence was used to calculate the specific drift correction model. Four 510 

injections per sample would be enough to model short-term drift and at the same time providing a 511 

reliable confidence interval. By doing so, each sequence would have its proper model and, 512 

consequently, it would always be up to date. The unpredictable nature of short-term drift in different 513 

sequences using tomato matrices would limit the efficiency of other alternatives. 514 

On the other hand, the use of one reference synthetic standard has proven to be highly efficient to 515 

standardize sequences in order to reduce inter-sequence variability, enabling the comparison of 516 

samples analyzed in different sequences. This strategy would also be useful when a replacement of 517 

sensors is performed or when different instruments are used to enlarge the processing capabilities 518 

of the lab. Tomic et al., [37] tried a similar component correction strategy based on PCA and 519 

complemented with multiplicative drift correction to accomplish a successful calibration transfer 520 

between instruments. Other calibration transfer strategies which use sophisticated correction 521 

methods and algorithms have been also applied to the expansion of calibration update models [38, 522 

39, 44] but they need a higher number of training samples (10 to more than 400 depending on the 523 

methodology) and were tested only for the detection of individual chemical compounds, so the 524 

efficiency in more complex samples still needs to be tested [14]. 525 
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Combining short-term and sequence standardization and PLS-DA 2D similitude maps it is possible 526 

to easily identify differences in the volatile signal profiles of the samples. It is then possible to make 527 

rapid identification of those samples with a volatile profile more similar to high quality reference 528 

materials. This procedure would enable the use of e-noses for example in breeding programs. It 529 

would be possible to select which genetic backgrounds have a lower negative impact on the aroma 530 

profile. From an agronomic point of view, it would also enable a rapid identification of which 531 

preharvest and postharvest procedures have the lowest impact on the volatile profile. These maps 532 

would be expandable, offering the possibility of including new reference points. In fact, when Fig. 533 

3c and 4b are compared, the relative position of the real tomato samples of “Zayno RZ” (coded 1 534 

in the figures) and the “Amarillo” landrace (coded 2 in the figures) were not altered. 535 

In the present work, this strategy has been successfully applied to a combination of different tomato 536 

materials, selected to represent a wide variability of volatile profiles, especially in the case of tomato 537 

landraces. The landraces included in the study had already shown a clearly different volatile profile 538 

[45], and especially important as they are frequently commercialized in quality markets in which 539 

consumers are willing to pay a price premium for excellent flavor [46]. Interestingly, “Muchamiel”, 540 

which had previously shown a less intense volatile profile in gas chromatography analysis 541 

compared to “Valenciano” and “Morada”, plotted in the PLS-DA 2D map in an area corresponding 542 

to materials with lower volatile concentration (Fig.4b). The next step in future works will be 543 

centered on the comparison of the volatile profile obtained with the e-nose and GC-MS data in 544 

order to confirm this trend.  545 

 546 

Conclusions 547 

Short- and long-term drift compromises the application of e-noses to the evaluation of volatile 548 

profiles. These effects are variable and unpredictable. Consequently, general models are not useful, 549 

and the performance registered in each sequence has to be used in order to model drift effects. The 550 
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distribution of 4 replicates per sample and sequence enables the development of an effective and 551 

sequence-specific short-term drift correction. On the other hand, the unpredictable nature of the 552 

variation between sessions makes it necessary to use reference materials to standardize sequences. 553 

By doing so it would be possible to analyze a high number of samples distributed in different 554 

sequences. The use of a tomato-like synthetic has proven to be for this purpose. The two-step 555 

correction methodology proposed here, combined with PLS-DA two-dimensional similitude maps, 556 

will enable rapid and reliable identification of samples with a volatile signal profile similar to 557 

references selected as ideal targets. 558 
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1.- Getting raw data from e-nose

Sensorsresponse
Injection
nº

Sample Injection
time (h)

LY2/LG LY2/G LY2/AA LY2/Gh LY2/gCTI LY2/gCT T30/1 ...

1 TomSST
2

0,00 0,667 -2,17 -2,06 -2,03 -2,03 -0,905 0,817 …

2 3 0,35 0,146 -0,477 -0,554 -0,384 -0,295 -0,113 0,649 …

3 6 0,70 0,106 -0348 -0,428 -0,273 -0,203 -0,079 0,622 …

4 2_1 1,03 0,392 -0,528 -0,64 -0,403 -0,301 -0,104 0,645 …

… … … … … … … … … … …

2.- Appliying multiplicative pretreatment for each sample class

S = (
𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘measured

𝑆̂𝑆𝑖𝑖,𝑘𝑘measured
) LY2/LG TomSST2 injection 1 = ( 0,667

𝑆̂𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
) = ( 0,667

0,643
)

3.- Performing PLS regression to model intra-sequence drift (in PLSToolbox for Matlab) 

Eg.:

Y = Injection time (h) (n x 1 vector)
X = Pretreated sensor response matrix (n samples x 18 sensor matrix)

(Outliers removed from the model based on Q residuals and T2 Hotelling statistics if necessary)

4.- Obtaining intra-sequence drift (in Matlab) 

Obtaining scores and loadings matrices from de PLS model
(extracting data from de model as raw data)

Intra-sequence drift matrix (Edrift)= scores * loadings‘

5.- Substracting intra-sequence drift from raw data signal (in Matlab or Excel) 

𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘 corrected = [𝑆̂𝑆𝑖𝑖,𝑘𝑘 measured(1 − 𝐸𝐸𝑖𝑖 𝑗𝑗 ,𝑘𝑘 drift 𝑡𝑡 )] + 𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘 measured

LY2/LG TomSST2 injection 1 corrected = 0,643 (1- Edrift 1,1) + 0,667 = 0,6419

(matrix product in Matlab command window giving a n samples x 18 sensors matrix) 

Scores (matrix of n samples x number of latent variables selected)
Loadings ( matrix of 18 sensors x number of latent variables selected )

Supp. Fig. 1. Schematic representation of short-term drift within a sequence.

Eg.:



1.- Getting raw data from e-nose for each sequence

3.- Appliying multiplicative pretreatment for each sample class

Seq matrix 1 Seq matrix 2 Seq matrix m
…

4.- Performing PLS regression to model inter-sequence drift with all corrected matrices 
joined (in PLSToolbox for Matlab) 

5.- Obtaining inter-sequence drift (in Matlab) 

6.- Substracting intra-sequence drift from raw data signal (in Matlab or Excel) 

𝑆𝑆𝑖𝑖(𝑗𝑗),𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

𝑆̂𝑆𝑖𝑖,𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚+(𝑆̂𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑘𝑘− 𝑆̂𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑘𝑘)

2.- Performing intra-sequence drift correction for each sequence data matrix

Seq matrix 1 
intra-seq
corrected

Seq matrix 2 
intra-seq
corrected

Seq matrix m 
intra-seq
corrected

…

LY2/LG TomSST2 injection 1 seq 2 = ( 𝑆𝑆1,1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
��𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 1− 𝑆𝑆𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 2

) = ( 0,652
0,643 −0,627

)

Seq matrix 2 
intra-seq
corrected + 
multiplicative
pretreated

Seq matrix m 
intra-seq
corrected + 
multiplicative
pretreated

…
Seq matrix 1 
intra-seq
corrected

Eg.:

X matrix
(sensor signals)

Y vector 
(injection time  in hous; continuous for
the whole trial)

Similar as described for intra-sequence drift correction

Supp. Fig. 2. Schematic representation of long-term drift with several sequences.


