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Abstract: There is growing interest in analyzing human movement data for clinical, sport, and 
ergonomic applications. Functional Data Analysis (FDA) has emerged as an advanced statistical 
method for overcoming the shortcomings of traditional analytic methods, because the information 
about continuous signals can be assessed over time. This paper takes the current literature a step 
further by presenting a new time scale normalization method, based on the Hilbert transform, for 
the analysis of functional data and the assessment of the effect on the variability of human 
movement waveforms. Furthermore, a quantitative comparison of well-known methods for 
normalizing datasets of temporal biomechanical waveforms using functional data is carried out, 
including the linear normalization method and nonlinear registration methods of functional data. 
This is done using an exhaustive database of human neck flexion-extension movements, which 
encompasses 423 complete cycles of 31 healthy subjects measured in two trials of the experiment on 
different days. The results show the advantages of the novel method compared to existing 
techniques in terms of computational cost and the effectiveness of time-scale normalization on the 
phase differences of curves and on the amplitude of means, which are assessed by Root Mean 
Square (RMS) values of functional means of angles, angular velocities, and angular accelerations. 
Additionally, the confidence intervals are obtained through a bootstrapping process. 

Keywords: human movement analysis; Functional Data Analysis (FDA); nonlinear time 
normalization; registration; warping function; Hilbert transform 
 

1. Introduction 
In recent years, the application of nonlinear techniques and advanced statistical 

methods has received increasing attention for biomechanical analyses. Examples of such 
biomechanical applications include gait analysis, sit-to-stand movement, sport 
movements, rehabilitation therapies, and clinical applications, to name but a few (e.g., [1–
3]). Nowadays, it is easy to collect large amounts of kinematic or dynamic data with 
motion analysis equipment and labs. In this regard, human movement analysis entails the 
use of time series of data such as joint angles, velocities, accelerations, forces and 
moments, mechanical power, landmark positions, etc. 

These movement curves may present variations in amplitudes and temporal patterns 
(phase differences) for different subjects or experimental trials [4,5]. This variability may 
lead to the statistical cancellation effect related to the aggregation of data [6]. Therefore, 
the main characteristics of each individual pattern may be hidden when obtaining 
averaged patterns. Then, the analysis of such data requires some time-scale normalization 

Citation: Llopis-Albert, C.; Venegas 

Toro, W.R.; Farhat, N.;  

Zamora-Ortiz, P.; Page del Pozo, 

Á.F. A New Method for Time 

Normalization Based on the 

Continuous Phase. Application to 

Neck Kinematics. Mathematics 2021, 

9, 3138. https://doi.org/10.3390/ 

math9233138 

Academic Editor: Xiaoping Liu 

Received:  22 September 2021 

Accepted: 2 December 2021 

Published: 5 December 2021  

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2021 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Mathematics 2021, 9, 3138 2 of 16 
 

 

so that observational curves are comparable. This normalization is intended to match the 
duration of different registrations, preserve the main features of individual patterns, and 
reduce variability in the timing of significant events [7]. 

The most widely used method to normalize time scales in clinical and biomechanical 
applications is linear normalization, which converts them into a percentage of the 
duration of the movement analyzed [8]. It is a simple method and can provide good 
results in many applications [1]. However, it presents some problems that must be 
considered. On the one hand, it depends on a good estimate of the initial and final 
moments of the movement, which is not always evident [9]. On the other hand, it 
implicitly assumes that the duration of the different phases of the movement is scaled to 
the total duration of the movement. In [7], it is shown that this is not always true, which 
has important consequences for reducing variability. In fact, it is possible that linear 
normalization not only does not reduce temporal variability, but actually increases it in 
cases where there is not a high correlation between the duration of the events and the total 
duration of the movement.  

In the FDA context, other, much more efficient strategies have been developed to 
reduce phase variability through different nonlinear registration procedures, as reviewed 
in [10]. Nonlinear time-scale normalization techniques include landmark registration [11], 
the sequence of states method [12], dynamic time warping [8,13], and curve registration 
based on correlation criteria [1,9,14] or on the Fisher–Rao Riemannian metric and square-
root velocity function (SRVF) [15,16]. Function registration methods could virtually 
eliminate all phase variability so that the registered curves have the same shape, differing 
only by the different amplitudes [11,15]. This makes it possible to obtain good estimates 
of the average curves. However, the temporal information (which in linear normalization 
is maintained in the lags between curves) does not disappear in this type of rescaling but 
is maintained in the so-called time warping functions. These functions represent the 
relationship between the modified time as a function of real time and make it possible to 
analyze when the movement develops faster or slower than the reference motion.  

Despite the attractiveness of these methods, they are not exempt from certain 
practical limitations. First, their effectiveness in reducing variability depends on the type 
and characteristics of the functions to be recorded. Thus, when applied to motion curves 
that have many characteristic points (maxima, minima, inflection points), the reduction in 
variability is much better than when applied to curves without the existence of such points 
[1]. In addition, the registration process is complex from a mathematical point of view and 
presents a high computational cost since the curves must be registered one by one with 
respect to a reference. Moreover, the registration of curves that differ significantly in the 
amplitude of their inflection points may distort the functions [17], the so-called pinching 
effect [10], which causes important distortions in the shape of the curves. In practice, this 
is equivalent to introducing discontinuities or sudden changes in the warping functions, 
which is not consistent with the continuous nature of the speed of execution of a 
movement.  

Another drawback of these recording methods is that they are based on the 
comparison of each curve with a reference standard, usually a mean. This means that they 
are based on the geometric similarity between pairs of curves, without considering the 
dynamic nature of the phenomenon they represent, the relationships between the 
variables and their derivatives. In fact, the results of the registration process can change 
depending on the order of the derivative used, which is not very consistent from a 
physical point of view.  

This paper presents a novel time-scale normalization method, based on the Hilbert 
transform (HT), for analyzing functional data and assessing the effect on variability of 
human movement registrations. This method involves calculating the instantaneous 
phase of a cyclical movement, which is a concept widely used in nonlinear dynamics. The 
dynamics of movement are described in terms of the relationships between the variables 
defining the position of the system and their derivatives, represented in the phase space. 
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Unlike nonlinear recording methods, which are based on comparing each curve with a 
reference [10], the proposed method exclusively uses the information contained in the 
curve to be adjusted, providing a generalized phase that varies between 0°and 360° during 
the execution of a cyclical movement. In this way, it provides a common scale of intrinsic 
representation of each movement with a mechanical meaning. 

Despite its widespread use for describing phases of motor coordination [18], as far as 
we know, it has never been used as an alternative to time-scale normalization for reducing 
the variability associated with phase differences. Hence, neither its effectiveness nor its 
results when normalizing different types of periodic movements have been described. 
Therefore, a quantitative comparison is made between the proposed method and the two 
most widely used methods in the field of biomechanics: linear normalization and 
continuous registration based on correlations [1,9,14]. For this, a comprehensive database 
of flexion-extension movements of the human neck will be used. The results show the 
usefulness of the proposed method relative to the current techniques in the literature.  

The rest of the paper is organized as follows. Section 2 introduces the materials and 
methods needed to compare the time-scale normalization methods applied to a human 
movement database. The data structure is explained in Section 3, while Section 4 presents 
and discusses the results. Finally, Section 5 draws conclusions from this research. 

2. Materials and Methods 
A database with flexion-extension movements of the neck will be used to assess the 

effectiveness of the method. Three normalization procedures have been compared: (a) 
Linear normalization of the time scale, which is the technique widely used in 
biomechanical applications; (b) A nonlinear registration method based on correlations; 
and (c) The method based on the instantaneous phase obtained by the Hilbert transform. 

As a nonlinear registration method, we have chosen the one proposed in [9,17]. 
Although there are more recent alternatives, such as SRVF-based methods [15,16], we 
have chosen this nonlinear registration method as it is the most widely used in the context 
of human movement analysis. Since the state of motion of a dynamic system is defined by 
position and velocity, we have considered two nonlinear registration methods: (b1) using 
position curves (angles); and (b2) using velocity curves. The characteristics of each of the 
normalization methods are described below. 

2.1. Linear Normalization Method (Scale 0–100%) 
Let us consider a set with N temporal functions 𝑥௜(𝑡) representing a position variable 

associated with a cyclical movement, in our case, the angle of flexion-extension of the 
neck. 

Each curve i can be expressed as a series of values 𝑥௜௝ , at times 𝑡௜௝  sampled in the 
interval of duration of the movement, 𝑇௜. All curves are assumed to start at time t = 0, 
although the durations 𝑇௜ are different.     𝑥௜௝ = 𝑥௜൫𝑡௜௝൯ ;       𝑖 = 1, 2, . . 𝑁;     𝑗 = 1, 2, … 𝑀௜;    𝑡௜ଵ = 0;    𝑡௜ெ೔ =  𝑇௜  (1)

where 𝑀௜ is the number of samples of the i-th curve. Note that the curves can be sampled 
at different time intervals (𝑡௜௝ can be different from 𝑡௞௝). 

The normalization of the time scale from 0 to 100% of the execution time of the 
movement is performed through a linear transformation, in which the percentage of 
execution of the movement is calculated with respect to the total duration of the 
experiment (100% of execution of the movement cycle) for each instant of time. Therefore, 
the normalized time scale 𝑡𝑛 is obtained by means of Equation (2). 𝑡௜௝௡ = 𝑡௜௝𝑇௜ · 100         ;   𝑡௜௝௡  ∈ [0, 100]   (2)

From the normalized times, the corresponding normalized functions over time, 𝑥௡(𝑡௡) are calculated as: 
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𝑥௜௡൫𝑡௜௝௡ ൯ = 𝑥௜(𝑡௜௝) (3)

All 𝑡௜௝௡  are defined in the same interval, [0, 100], although they do not necessarily 
correspond to the same instants. For the normalized curves to be comparable, the last step 
is to interpolate the 𝑥௜௡ curves to express them all in the same equispaced values of 𝑡௡, 
with a step equal to 1%. In this way, all functions are defined in the same normalized 
instants [0, 1, 2 … 100]% of the duration of the movement. 

It is important to note that linear normalization is performed independently for each 𝑥௜(𝑡)curve. No comparison is made between the curves of the set since each curve only 
uses a single parameter, the duration of that movement, 𝑇௜. Note also that the normalized 
time is the same for the function 𝑥௜(𝑡) or for its first and second derivatives. 

2.2. Nonlinear Registration Method of Functional Data Using Angles or Velocities 
The procedure used for registering position or velocity curves is described in [9]. Let 

us consider the set of N curves to be registered, 𝑥௜(𝑡), that correspond to the position 
variables or their derivatives. In this work, flexion-extension angles and their first 
derivative have been used. We will assume that all the curves are defined in the same time 
interval [0, T], which implies a previous process of linear normalization of time. 

The registered curves are a new set of curves 𝑥௜∗(𝑡) = 𝑥௜(ℎ௜(𝑡)), where ℎ௜(𝑡) functions 
are a nonlinear transformation of the time scale called a warping function. The warping 
functions must minimize the phase differences between each curve, 𝑥௜∗(𝑡), and a reference 
curve 𝑥௢(𝑡). Note that the nonlinear registration process involves comparing each curve 
in the set with a reference curve, usually the functional mean of the set, 𝑥(𝑡) [17]:  𝑥଴(𝑡) = 𝑥(𝑡) =  ଵே ∑ 𝑥௜(𝑡)ே௜ୀଵ   (4)

Since functional averages are affected by the cancellation effect, the adjustment 
process cannot be done all at once, but rather, through a Procrustes process, as discussed 
later. 

The calculation of ℎ௜(𝑡)  is associated with an optimization process where the 
variability associated with the amplitude must be maximized, and the variability 
associated with the phase differences must be minimized. This cannot be done directly on 
the differences between a curve before and after the registration procedure because in 
such a case, the method tries to compress the regions where amplitudes differ [17]. It 
distorts the shape and temporal patterns of functions since a function minimizes the 
variability and perfectly fits another function, except in the vicinity of the maxima and 
minima. Another more rigorous method has been used to overcome this shortcoming, 
based on some ideas from principal component analysis (PCA) [9]. The method used is 
based on minimizing the second eigenvalue of the cross-product matrix  𝐿 given by 
Equation (5). 𝐿 = ቆ ׬ 𝑥଴ଶ(𝑡)𝑑𝑡 ׬ 𝑥଴(𝑡) 𝑥௜(ℎ௜(𝑡))𝑑𝑡׬ 𝑥଴(𝑡) 𝑥௜(ℎ௜(𝑡))𝑑𝑡 ׬ 𝑥௜ଶ(𝑡)𝑑𝑡 ቇ  (5)

This matrix is symmetric, and hence, has two real eigenvalues. The largest of them 
(𝜇ଵ) corresponds to the variance associated with the amplitude differences, while the 
second (𝜇ଶ) is associated with the phase differences [17]. Therefore, the best fit between 𝑥଴(𝑡) and 𝑥௜(𝑡)  is obtained by means of a function ℎ௜(𝑡)  that minimizes the smallest 
eigenvalue of the matrix. In practice, this value is not used directly but rather its logarithm. 
So that the objective function to optimize is 𝐹(ℎ௜) = log 𝜇ଶ . 

The warping functions are required to have an integrable second derivative and also 
to be strictly increasing. As explained in [17], such functions can be described by the 
homogeneous linear differential Equation (6) 𝐷ଶℎ௜ = 𝑤௜𝐷ℎ௜ (6)
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where 𝐷 and 𝐷ଶ denote the first and second derivatives, respectively, and 𝑤௜(𝑡) is any 
unconstrained function. This equation is also subject to the constraints ℎ(0) = 0 and ℎ(𝑇) = 𝑇, which makes it possible to obtain its solution as presented in [9]. 

Then Equation (6) has the solution ℎ௜(𝑡) = 𝐶௜ ׬ exp൫׬ 𝑤௜(𝑣) 𝑑𝑣௨଴ ൯ 𝑑𝑢௧଴   (7)

where 𝐶௜ = 𝑇/[׬ 𝑒𝑥𝑝൛׬ 𝑤௜(𝑣) 𝑑𝑣௨଴ ൟ௢்  𝑑𝑢].  
Note that Equation (6) and the function 𝑤௜(𝑡) are introduced to calculate the function ℎ௜ that minimizes 𝐹(ℎ௜) = log 𝜇ଶ , under the constraint that it is strictly increasing. In this 

way, the optimization problem is carried out through 𝑤௜. 
As mentioned before, the nonlinear registration is performed by comparing each 

function 𝑥௜(𝑡) with the functional mean of the set, 𝑥଴(𝑡). Since the original functions are 
not aligned, the mean 𝑥଴ will be affected by the cancellation process, which can distort the 
results. A Procrustes method is used to avoid this. It consists of an iterative process in 
which the registration of the set of curves is repeated several times so that a new 𝑥଴ is 
obtained in each iteration, serving as a reference for the next registration. The process 
converges in a few iterations. In this work, we have used three iterations [9]. 

The registration process involves making a comparison of the reference curve with 
each of the sets, which implies the nonlinear optimization of N functions ℎ௜(𝑡). Also, it 
must be repeated three times in the Procrustes process, which means performing 3N 
nonlinear optimizations. This involves a much longer computation time than methods 
where curves are not compared, such as nonlinear normalization or the Hilbert transform-
based method described in the next subsection. 

2.3. Nonlinear Hilbert Transform (HT) Method 
The idea of obtaining an instantaneous phase of a movement comes from the 

description of the dynamics of an oscillatory system through phase portraits, in which 
velocity versus position is represented. In the case of harmonic motion of amplitude A 
and angular frequency 𝑤, that diagram is a centered ellipse. If the motion begins at the 
point of maximum elongation, then the 𝑥 and 𝑦 components are: 𝑥 = 𝐴 cos(𝑤𝑡);  𝑦 = 𝑣 =−𝐴 𝑤 sin(𝑤𝑡) . Normalizing by the amplitudes, the instantaneous phase can be calculated 
as: 𝜙(𝑡) = arctan ቀ−𝑦𝑤 𝑥ቁ = 𝑤𝑡  (8)

This approach can be extended to the calculation of the phase in other cyclical 
movements, in which case a phase is obtained that does not depend linearly on time, that 
is, with a variable angular frequency, 𝑤(𝑡) . This approach has been widely used in 
movement analysis to describe the coordination between the movements of different 
joints. It is very consistent when it comes to quasi-harmonic periodic signals but offers 
debatable results in other cases; for example, when there are several relative maxima or 
minima in each cycle, which lead to a change of direction of the phase velocity. Therefore, 
we propose to use the Hilbert transform (HT) as a way of obtaining a smoothed phase 
diagram in the analysis of human movements. HT has been widely used in different 
engineering applications, mainly in signal analysis [19]. However, its use in Biomechanics 
is scarce and has been related to the study of motor coordination rather than normalizing 
the phase of the curves associated with human movement [18,20].  

Given that the HT is applied to each curve separately, regardless of the rest of the set, 
in this section, we will dispense with the subscripts, explaining how the HT of an 
individual curve is obtained. 

The HT is a specific linear operator that takes a function, 𝑥(𝑡), of a real variable and 
provides another function of a real variable, 𝑥ො(𝑡) =  𝐻[𝑥(𝑡)]. This linear operator is given 
by convolution with the function 1 (𝜋𝑡)⁄ , i.e., the HT of 𝑥  can be considered as the 
convolution of 𝑥(𝑡) with the function 𝑔(𝑡) = 1 (𝜋𝑡)⁄ , which is referred to as the Cauchy 
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kernel. Since 1 𝑡 ⁄ is not integrable across 𝑡 = 0, the integral defining the convolution does 
not always converge. Therefore, the HT is defined using the Cauchy principal value (P). 
The HT of a function 𝑥(𝑡)  is traditionally defined by means of an improper integral 
(Equation (9)), provided this integral exists as a principal value. 𝑥ො(𝑡) = 𝐻[𝑥(𝑡)] = 1𝜋  𝑃 න 𝑥(𝜏) ∗ 1𝑡 − 𝜏 𝑑𝜏ାஶ

ିஶ  (9)

The Hilbert transform allows the transformation of any real signal into a complex, 
analytic signal 𝑋(𝑡) defined as 𝑋(𝑡) = 𝑥(𝑡) + 𝑗 𝑥ො(𝑡) = 𝐴(𝑡) 𝑒௝థ(௧) (10)

From Equation (10), the instantaneous phase, 𝜙(𝑡), is defined as  𝜙(𝑡) = arctan ൬𝑥ො(𝑡)𝑥(𝑡)൰ (11)

Subsequently, the derivative of 𝜙(t) is the angular frequency, ω(t) = d𝜙⁄dt, which can 
be interpreted as the instantaneous velocity of the execution of the movement, in terms of 
phase velocity. In this work, the HT has been computed by means of the MATLAB 
function “hilbert.m”. This function returns the analytic signal 𝑋(𝑡) in Equation (10). 

The HT is not directly applied to the 𝑥(𝑡) functions, but rather they must be centered 
to avoid distortions in the phase associated with a continuous offset between functions. 
The centering of each curve is calculated by subtracting a certain parameter from each 
curve, as shown in Equation (12). 𝑥௖௘௡௧௘௥௘ௗ(𝑡) = 𝑥(𝑡) − [max൫𝑥(𝑡)൯ + min(𝑥(𝑡))]2  (12)

2..4. Procedure to Measure the Effectiveness of Each Time-Scale Normalization Method 
Four comparisons are carried out among different normalization methods of 

functions. The first one is based on the comparison of warping functions, ℎ௜(𝑡)  for 
nonlinear registration or 𝜙(𝑡) in the case of HT. We analyzed their continuity, absence of 
singularities, and coherence with the dynamics of the movement. It is assumed that the 
warping functions must be smooth and must not present discontinuities.  

The second one uses the amplitude of the functional mean obtained with each type 
of normalization. It is assumed that higher RMS (root mean square) values are associated 
with better control of phase differences by avoiding the cancellation effect associated with 
the lags between curves, which translates into a flattening of the maxima and minima. 
There is only one data set and, consequently, a single mean function for the angle, velocity, 
and acceleration. In order to test the significance of the differences in the RMS values of 
the means obtained with the different normalization methods, a bootstrap method has 
been followed to establish the confidence intervals of the means for α = 0.05 (those shown 
in the Table 1), but also for α = 0.01 and α = 0.005, which allows us to estimate whether the 
differences correspond to p < 0.05, p < 0.01, or p < 0.005, respectively [21]. 
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Table 1. Root Mean Square (RMS) values of the functional means of angles, angular velocities, and 
angular accelerations as a function of the time-scale normalization method. In parentheses, the 95% 
confidence interval. 

Function 
Linear 

Normalization 
Registration 

Using Angles 

Registration 
Using 

Velocities 

Hilbert 
Transform 

RMS value of the 
functional mean of the 

angle (°) 

45.8 
[42.8, 48.6] 

45.8 
[42.8, 48.6] 

45.4 
[42.3, 48.3] 

45.3 
[43.6, 46.9] 

RMS value of the 
functional mean of the 
angular velocity (°/s) 

89.7 * 
[81.9, 97.1] 

94.2 
[86.3, 102.1] 

95.0 
[87.3, 103.5] 

95.6 
[91.5, 99.8] 

RMS value of the 
functional mean of the 

angular acceleration 
(°/s2) 

203.8 ** 
[187.5, 221.6] 

218.4 
[202.2, 235.6] 

237.0 *** 
[222.6, 253.0] 

219.3 
[210.4, 228.9] 

Differences with respect to the HT method: * p< 0.05; ** p < 0.01; *** p< 0.005 The significance levels 
have been obtained from confidence intervals of 0.005, 0.01, and 0.05, calculated through a 
bootstrapping process. 

Thirdly, the phase differences between the individual signals and the ensemble mean 
signal for each normalization method are measured directly using the procedure 
described in [17]. It consists of defining two time series, x and 𝒚, which are considered as 
vectors of an n-dimensional space so that the angle they form is obtained through 
Equation (13). cos 𝜃 = 𝑑𝑜𝑡(𝒙, 𝒚)𝑛𝑜𝑟𝑚(𝒙) · 𝑛𝑜𝑟𝑚(𝒚) (13)

where 𝑑𝑜𝑡(𝑥, 𝑦) is the dot product of x and y (Euclidean inner product) and 𝑛𝑜𝑟𝑚(𝑥)is the 
L2 norm (𝑛𝑜𝑟𝑚(𝑥) = ඥ𝑑𝑜𝑡(𝑥, 𝑥). 

When this procedure is applied to harmonic functions, it results in the lag between 
them. In other types of signals, it is a measure of the phase difference. When the cos 𝜃 is 1, 
then the functions are in phase. On the contrary, a null value of (13) represents two 
orthogonal functions with a phase shift of 90°. 

Subsequently, the mean of each variable is calculated for each normalization method, 
and the phase difference of each curve with respect to that mean is calculated. The 
discrepancies are generally small since the curves are approximately harmonic, beginning 
and ending in the same place. This leads to clearly asymmetric distributions, in which the 
differences are analyzed using the Friedman test [22]. 

Finally, we measured the computational cost of the four normalization procedures 
on the same computer. 

3. Application to a Case Study. Data Structure 
A quantitative comparison of different methods for normalizing temporal patterns 

using registration of functional data is performed based on an exhaustive database of neck 
flexion-extension movements. The database corresponds to 31 subjects, each of whom was 
measured in two different trials, executing between 7 and 10 complete cycles of neck 
flexion-extension movements in each trial. The subjects were informed regarding the aim 
of the experiment, and they signed the corresponding informed consent. 

The Kinescan/IBV® v.5.5 photogrammetry system was used to record and analyze the 
motion data captured using a helmet with eight reflective markers, according to the 
procedure described in [23]. The movement was recorded at 200 frames per second. The 
experimental setup is shown in Figure 1. The flexion-extension angles were measured and 
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the angular velocities and accelerations were calculated using the procedures described 
in [23,24]. 

 
Figure 1. Experimental setup. 

The start and end points of each extension-flexion cycle are determined using the 
procedure described in [23], so that each cycle begins at a point of zero velocity and 
minimum angle and ends at the next minimum angle. Obviously, each cycle has a 
different duration due to the differences between subjects and within each subject in 
different repetitions. 

Consequently, the database is made up of matrices with a size of 1254 × 423 for the 
variables related to angles (phi), angular velocities (Dphi), angular accelerations (D2phi), 
and absolute times sampled at a frequency of 200 Hz. That is, matrices with dimensions 
equal to the length required for the longest registration.  

The normalized curves are expressed in two different formats. On the one hand, in 
the case of linear normalization and nonlinear registration (from angles or velocities), the 
normalized curves are represented with 101 observations, on a time scale between 0 and 
1 for each cycle, at intervals of 0.01 steps. On the other hand, for recording using the phase 
obtained from the Hilbert transform, the X-axis uses a scale between 0 and 360°, at 1° 
intervals. However, in the figures presented in the following sections, the scale for the 
continuous phase is divided by 360 in order to compare the results with those obtained 
with the normalized times, so the scale of the X-axis goes from 0 to 1 in all cases. 

As a result, the database is made up of 423 complete cycles, which have been used to 
perform the quantitative comparison of the different methods. 

The database encompasses the following variables: 
• philn: angle with linearly normalized time. 
• Dphiln: angular velocity with linearly normalized time. 
• D2philn: angular acceleration with linearly normalized time. 
• phiR0: angle with time registered using angle curves. 
• DphiR0: angular velocity with time registered using angle curves. 
• D2phiR0: angular acceleration with time registered using angle curves. 
• phiR1: angle with time registered using the angular velocity curves. 
• DphiR1: angular velocity with time registered using the angular velocity curves. 
• D2phiR1: angular acceleration with time registered using the angular velocity curves. 
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• phiH: angle using the phase obtained with the Hilbert transform (HT). 
• DphiH: angular velocity using the phase obtained with the Hilbert transform. 
• D2phiH: angular acceleration using the phase obtained with the Hilbert transform. 

4. Results and Discussion 
Figure 2 shows the absolute time-scale curves for angles (phi), velocities (Dphi), and 

accelerations (D2phi), which exhibit a large dispersion and show the need for normalizing 
the temporal patterns. 

 
Figure 2. Absolute time-scale curves for angles (phi), velocities (Dphi), and accelerations(D2phi). To 
better appreciate the detail of the curves, only a quarter of the curves used in the analysis have been 
drawn, which have been chosen at random. 

Figure 3 presents the normalized angle (phi) curves obtained by means of the four 
normalization methods compared, together with their functional means (solid black line) 
and functional standard deviations (dashed black line).  Figure 4;  Figure 5 do the same 
for the normalized velocities (Dphi) and accelerations (D2phi), respectively. These figures 
also show the large amplitude dispersion of the human neck flexion-extension movements 
measured for 31 healthy subjects in the two trials of the experiment. Note that for this 
figure and the following ones, the phase is divided by 360, so the X-axis scale ranges from 
0 to 1, thus making the results comparable among the four methods. 

 
Figure 3. Normalized angle (phi) curves for the four methods compared, together with their 
functional means (solid black line) and functional standard deviations (dashed black line). 



Mathematics 2021, 9, 3138 10 of 16 
 

 

 
Figure 4. Normalized velocity (Dphi) curves for the four methods compared, together with their 
functional means (solid black line) and functional standard deviations (dashed black line). 

 
Figure 5. Normalized acceleration (D2phi) curves for the four methods compared, together with 
their functional means (solid black line) and functional standard deviations (dashed black line). 

Figure 6 illustrates the time warping functions for the four compared methods, which 
represent the relationship between the normalized and the absolute times. Based on the 
results, several conclusions can be drawn: 
• On the one hand, for the linear normalization method, the warping functions are 

straight lines, as expected. On the other hand, for the nonlinear methods (registration 
of functions and HT method), nonlinear warping functions are achieved. 

• The registration of functions method leads to different warping function curves when 
angles or velocities are used as the registration source.  

• Registration using angles tends to present significant variations in the time recorded 
in the vicinity of the central zone (which corresponds to the maximum angle). This 
can be observed around the time of 0.5 s in the normalized time (Y-axis of Figure 6), 
where there are curves in which the absolute time advances but the recorded time 
does not. This distortion in the shape of the warping functions can appear when the 
differences in amplitude are optimized at the expense of unnatural alterations over 
time [17]. In practice, this is equivalent to introducing discontinuities or sudden 
changes in the warping functions, which is not consistent with the continuous nature 
of the speed of execution of human neck movements. 
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• Registration using velocities also leads to distortions in the warping function curves, 
although to a lesser extent. 

• Consequently, these two characteristics (i.e., obtaining different results according to 
the order of the derivative used for registration; and the existence of singularities in 
the warping functions) reveal that although it is an effective technique, it is purely 
geometric and unrelated to the dynamics of the functions. 

• The HT method provides nonlinear curves, but they are smoother and without 
sudden changes. Hence, the differences between the normalized and the absolute 
times are not significant but have consequences for the mean, phase differences, and 
dispersion values. Note that we are analyzing a cyclical movement similar to a 
harmonic one. 
Such differences can be better appreciated in Figure 7, which compares the warping 

functions of the four methods for a certain registration curve (register number #345). 
Again, it can be observed that the HT method provides a smooth and nonlinear recording, 
while the registration of functions methods using either angles or velocities present 
singularities and give rise to different curves. It is worth mentioning that although the R0 
and R1 warping functions are quite similar in this case, in other cases, they may differ 
substantially. 

 
Figure 6. Time warping functions for the four methods compared. To better appreciate the detail of 
the warping functions, only a quarter of the curves used in the analysis have been drawn (the same 
ones represented in Figure 2). 

 
Figure 7. Comparison of the time warping functions for the four methods and registration curve 
number #345. 
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4.1. Comparison of the Effect of Time-Scale Normalization on the Amplitude of the Means 
Table 1 presents the Root Mean Square (RMS) values of the functional means of 

angles, angular velocities, and angular accelerations for the time-scale normalization 
methods compared. The results illustrate that when comparing the different time scale 
normalization methods, there is hardly any difference for angles because the phase 
differences are small and do not affect the mean or the RMS values. 

However, for the angular velocities, the HT method improves the results provided 
by the linear normalization method since it leads to 6.6% higher RMS values. Conversely, 
there are no significant differences regarding the RMS values provided by the nonlinear 
registration method.  

With regard to angular accelerations, HT-based normalization is significantly better 
than the linear normalization method (a 7.6% higher RMS value) and similar to the 
nonlinear registration method using angles. However, the RMS values obtained when 
using velocity curves outperform those provided by the HT method. In fact, an 
improvement of 8% is achieved. 

4.2. Comparison of the Effect of Time-Scale Normalization on the Phase Difference 
Table 2 shows the medians and interquartile ranges (IQR) of the phase difference for 

each time-scale normalization method. IQR is used as a measure of the statistical 
dispersion, which is equal to the difference between the 75th and 25th percentiles or 
between the upper and lower quartiles. 

Table 2. Distribution of the phase difference between the individual curves of angles (phi), angular 
velocities (Dphi), and angular accelerations (D2phi), and their corresponding functional means, for 
each time-scale normalization method. The median and interquartile range are measured in degrees. 
The level of significance of the comparison of each normalization method with the Hilbert 
transform, using Friedman’s test, is presented in brackets. 

Variable 

Linear 
Normalization 
Median (iqr) 

[p-Value] 

Registration 
Using Angles 
Median (IQR) 

[p-Value] 

Registration Using 
Velocities 

Median (IQR) 
[p-Value] 

Hilbert 
Transform 

Median (IQR) 

phi 
10.7 (8.0) 
[0.0000] 

4.2 (7.5) 
[0.0000] 

9.1 (7.1) 
[0.0000] 5.5 (6.5) 

Dphi 
11.0 (6.7) 
[0.0000] 

7.0 (3.4) 
[0.0000] 

4.5 (5.4) 
[0.000] 7.8 (4.3) 

D2phi 
23.5 (12.9) 

[0.0000] 
19.4 (8.9)  
[0.05779] 

15.4 (5.7) 
[0.0000] 19.3 (10.0) 

The worst results for the three variables are obtained for linear normalization. This is 
because this process leads to higher phase differences for such variables, which are 
represented by the median and interquartile range (Table 2). Furthermore, the phase 
difference presents much worse results for velocities, and even more so for accelerations. 
This calls into question the usefulness of linear normalization for an adequate 
representation of the kinematics and dynamics of human movements. Note that we are 
analyzing a cyclical movement where all cycles start and end at the same values. In 
contrast, the HT method obtains much better results than the linear normalization method 
for angles (the phase difference is reduced to almost half). The reductions of the lags in 
velocities are somewhat smaller but are still important, 29% in the velocities and 18% for 
the accelerations. 

The nonlinear registration method is also clearly better than the linear normalization 
method, although it provides different results depending on whether position or velocity 
registration curves are used. Angular curves return the best results with the R0 
registration, while the R1 registration, using velocity curves, is better for velocities and 
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accelerations. The fact that the results differ according to the registration curves used for 
normalization, both in phase differences and in the warping functions, suggests that 
nonlinear registration is an inconsistent method. That is, the function registration method 
provides different results for the same data depending on the order of the derivative used 
in the registration curves. Although this method provides formally suitable results (for 
both angles and velocities if registration using angles or velocities are used, respectively), 
it entails a purely geometric adjustment. Therefore, it is questionable that it fulfills the 
characteristics of the dynamics of the movement. To overcome this drawback [17] 
proposed to use higher-order derivatives for the registration of functions, assuming that 
by using more maxima and minima, more temporal information is retained. 
Unfortunately, this is not true in our case, since the registration using velocities is worse 
than using angles if we measure the phase angle difference, although better if the phase 
velocity difference is considered. We have not calculated the registration using 
accelerations. 

Regarding the method of representing kinematic variables as a function of the phase 
obtained by means of the Hilbert transform, the results exceed those obtained with the 
linear normalization method in the variables of position, velocity, and acceleration. 
Nevertheless, the comparison of the Hilbert transform method with the nonlinear 
registration method leads to somewhat contradictory results. In this sense, the Hilbert 
transform provides better results than the R1 registration for position and worse for 
velocity and acceleration curves. When the HT method is compared with the R0 
registration, it presents results that are worse for angular curves, slightly worse for 
velocity curves, and similar for acceleration curves. However, the differences between the 
HT method and the registration of functions method are considerably smaller than those 
between HT and the linear normalization method. It is worth mentioning that the HT 
method involves a lower computational cost than the nonlinear registration method. 
Furthermore, HT does not alter the dynamic relationships between the angles and their 
derivatives since the time scale is not changed. Instead, it is replaced by another variable, 
the phase of the movement, which is related to the relative velocity of execution within 
the cycle of movement. 

As a summary, for the three variables analyzed, the following conclusions can be 
drawn: 
• Phase angle difference (phi): the best method is the registration method using angles. 

The HT method is much better than linear normalization and nonlinear registration 
using velocities. 

• Angular velocities (Dphi): the smallest lags are obtained with nonlinear registration 
using velocities. Nonlinear registration using angles and the HT method offer similar 
values, although slightly better in the former. The worst result is obtained for the 
linear normalization method. 

• Angular accelerations (D2phi): the pattern is repeated for the case of accelerations. 
That is, the worst method is linear normalization, and the best is registration of 
functions using velocities. Nonlinear registration using angles and the HT method 
provide very similar results. 

4.3. Comparison of Computational Efficiency 
Although the computational cost is not a limiting factor for applying any of the 

normalization methods, significant differences are appreciated in terms of execution 
times. The linear normalization method has the lowest computational cost, with an 
execution time of only 0.21 s. The Hilbert transform method entails a simulation time of 
0.61 s (2.9 times higher than linear normalization). Finally, the nonlinear registration 
method using angles requires a running-time cost of 968.3 s (16.1 min), while registration 
using velocities takes 1230 s (20.5 min). That is, nonlinear registration reports execution 
times around 4610.9 and 5857 times higher than the linear normalization method, 
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respectively. As mentioned above, the high computational cost of nonlinear registration 
methods is due to the fact that in each iteration of the Procrustes process, they must 
perform a nonlinear optimization for each ℎ௜ . Linear and HT methods perform 
normalization only once per curve using fast calculation procedures. 

These values reinforce the idea that the HT method provides excellent results with a 
low computational cost compared to the other time-scale normalization methods. 

5. Conclusions 
This paper presents a novel method for normalizing human movement patterns 

using functional data analysis with key applications in the fields of biomechanics and 
ergonomics. The method is based on the Hilbert transform, and is very useful for the 
normalization of human movement curves due to its enormous potential in reducing 
variability among registrations. Furthermore, a quantitative comparison of methods for 
normalizing time-series data has been carried out based on an exhaustive database of neck 
flexion-extension movements. It is noteworthy that time-scale normalization methods 
play a major role in functional averages, since they affect the lag between curves. 
Moreover, they can alter the shape of the ensemble mean of individual curves and reduce 
its amplitude. This raises the need to develop appropriate methods to deal with such 
issues.  

The linear normalization method has traditionally been used for reducing phase lags 
because of its simplicity and low computational cost. However, the results have shown 
that linear methods do not allow us to fully control phase differences, even in apparently 
harmonic cyclical movements, such as neck flexion-extension movements. Therefore, the 
worst of the four methods compared is, by far, linear normalization in terms of reducing 
phase lags and cancellation effect. The worse behavior of the linear normalization method 
implies a reduction in the amplitude of the averaged curves, which has been measured 
through RMS values. Although the differences in angular curves are negligible, they are 
significant for velocity and acceleration curves. Consequently, the use of linear methods 
must be avoided.  

Several nonlinear registration methods have been proposed in the literature to 
overcome these drawbacks. However, our results show that these methods can present 
some problems. Firstly, their results differ depending on the order of the derivative used 
as the reference for the record. That is, different rescaled times appear for the same 
dynamic system depending on the order of the derivative of the functions. This does not 
make much sense from a mechanical point of view, as the position and velocity variables 
correspond to the same movement, contradicting the assumption that such methods are 
capable of identifying “system time” from the absolute clock time [10]. In addition, some 
inconsistencies may arise, such as singularities at certain points, which, although they 
limit the phase differences, give rise to curves without any physical sense. Finally, 
nonlinear registration methods are computationally expensive compared to linear or HT 
methods.  

The results have also shown that the proposed method to normalize temporal 
patterns can improve on the current techniques in the literature in terms of reducing phase 
differences with good computational efficiency. It consists of replacing the time scale with 
the instantaneous phase of the movement obtained from the Hilbert transform. We have 
verified the following advantages of the presented methodology: 
• It provides a single result (angle and velocity are used at the same time). 
• The results are clearly better than those of the linear time base regarding velocities 

and accelerations and similar to the nonlinear registration method in terms of 
velocities. Regarding accelerations, it is similar to registration using angle curves and 
somewhat worse than registration using velocities. 

• From a computational point of view, it is much faster than nonlinear registration by 
three orders of magnitude. 
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• It does not give rise to warping functions with singularities, but rather the phase 
curves are smoother. 

• The proposed method uses the information of the movement of each individual 
curve, obtaining an instantaneous phase with mechanical meaning. Its derivative is 
an instantaneous angular frequency representing a phase velocity, and it is 
independent of the curve amplitude. 
The results shown here correspond to a relatively harmonic type of cyclical 

movement, although less harmonic than others described in the literature [1]. To 
generalize the conclusions on the performance of HT, it would be necessary to compare 
the methods using other more complex cyclical movements, such as human gait. 

On the other hand, we have used the nonlinear registration method proposed in [17], 
as it is the most widely used in the field of Biomechanics. As indicated above, there are 
other more recent alternatives, such as those based on SRVF [15], whose application in the 
field of human movement analysis is limited so far [16], but which should provide better 
results than those based on correlations. 

As further research, the HT method could be applied to movements that are highly 
sensitive to variability, such as the instantaneous axes of rotation of joints. In addition, the 
velocity of execution of the movement is currently tackled using parameters such as 
cadence, frequency of movement, period between cycles, etc., which do not offer 
continuous information on the instantaneous velocity of execution of the movement. 
Conversely, this novel normalization technique could lead to new functional assessment 
systems for analyzing this type of movement through phase velocity and quantifying 
harmonic motions. Phase velocity could be used for detecting abnormal behaviors 
associated with acute pain or simulation, which are currently analyzed through other 
parameters such as the correlation between position and acceleration, jerk, etc. However, 
these parameters depend on second or third derivatives and are quite sensitive to the 
derivation method used. We consider that the amplitude of phase velocity is a much 
simpler indicator for quantifying the deviation between a harmonic movement (with 
constant phase velocity) and a nonharmonic one (with important oscillations in the phase 
velocity). 
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