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1. Introduction 

The consequences of global warming are a clear reality. As such, all countries must 

commit to international agreements to establish common lines of action allowing them to 

take advantage of synergies and tackle this situation as effectively as possible. From the 

United Nations Framework Convention on Climate Change in 1992 to Cop25-Chile in 

2019, international consensus has been sought to address the problem of climate change. 

The aim is to combat an increasingly widespread scourge that threatens to destroy the 

planet and does not discriminate on the basis of economics, affecting all territories equally 

(Kahn et al., 2019). Issues such as resource scarcity, pollution, desertification and, 

ultimately, environmental imbalance are endangering the health of the population (Watts 

et al., 2018).  

The search for solutions to climate change and sustainability gives experimentation a 

prominent role (Hildén et al., 2017). Technology transfer and innovation can effectively 

respond to climate change, ensuring sustainable economic growth (Ferreira et al., 2020). 

However, the transition to sustainable development also involves a shift in the behaviour 

of society, and cultural differences should not represent an obstacle to such a change 

(Soyez, 2012; Sreen et al., 2018). According to an extensive literature, sustainability is 

grounded in the conjunction of three pillars: the economy, society and the environment 

(Barbier, 1987; Moldan et al., 2012; Boyer et al., 2016). Though, authors such as Purvis 

et al. (2019) call for a theoretical basis for this conception, to be able to apply it to specific 

contexts. Returning to the original definition, sustainable development is aimed at 

meeting current needs without compromising the resources and opportunities of future 

generations (United Nations, 1987). Wang and Li (2012) argue that it is possible to 

achieve this if economic growth can be reconciled with environmental quality. 

There is a certain scientific consensus on the need to mitigate greenhouse gas (GHG) 

emissions to ensure compliance with the targets set in international agreements 

(Hickmann, 2017). The Kyoto Protocol signed in 1997 was the first international 

agreement aimed at GHG emissions, which are the primary cause of climate change. 

Population, growth and economic structure are factors that have a two-way relationship 
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with trends in GHG emissions (Romero and Gramkow, 2021). In the absence of 

countervailing measures, climate change has adverse effects on economic activity, the 

costs of which are estimated to range between 5% and 15% of GDP (IPCC, 2014). In 

turn, economic growth can also intensify emissions, although the relationship is not 

always linear but rather depends on the income level of the country (Dietz et al., 2018; 

Stoerk et al., 2018).  

Over the last two decades, changes to production processes have been fostered in an effort 

to reduce GHG emissions, with calls for the introduction of innovative technologies in 

sectors such as construction (Yu et al., 2018), industry (Frigon et al., 2020), the food trade 

(Mylan et al., 2015; Galera-Quiles et al., 2021) and in the circular economy (de Jesus et 

al., 2018). Thus, emphasis is placed on the concept of eco-innovation, which is in line 

with the definition of innovation provided by the Oslo Manual (OECD, 2005): both 

concepts incorporate the application of new technologies developed by another 

institution.  

Eco-innovation is sometimes primarily driven by purposes other than environmental 

ones. For example, innovation in waste management may be aimed at cutting costs, while 

additionally leading to a reduction in GHG emissions. The numerous papers on this 

concept all focus on the introduction of know-how that avoids adverse effects on the 

environment, fostering more efficient use of available resources (European Commission, 

2013; Hojnik and Ruzzier, 2016; Tamayo-Obergozo et al., 2017). The search for forms 

of production compatible with environmental quality is encouraging companies and 

leaders to implement eco-innovation in sectors that have a major impact on all issues 

related to climate change; these include agriculture (FAO, 2017), tourism (Reyes-

Santiago et al., 2017) and industry (Maldonado-Guzmán and Garza-Reyes, 2020). 

Innovation in the environmental sphere seeks to prevent the negative impacts of economic 

and social activity on the environment, by reducing energy consumption, waste or 

excessive use of natural resources. 

In this context, the empirical analysis in this study is aimed at identifying the connection 

between eco-innovation and GHG emissions using a panel data sample of developed 

countries. The research is conducted in two stages. The first stage quantifies the eco-

innovation by OECD countries during the period 2011-2018, using an extension of data 

envelopment analysis, DEA-Bootstrap. An intertemporal analysis is carried out to help 

ensure the stability of the findings. In addition, the calculation of the Malmquist Index 
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(MI) supports the consistency of the previous results and reveals the changes in 

productivity. In the second stage, the two-step Generalized Method of Moments (GMM) 

is used to examine the determinants of GHG emissions, including the calculated eco-

innovation and other factors that a priori could also be expected to affect emissions, such 

as environmental and resource productivity and environmental policies and management. 

There are numerous papers in the literature that focus on analysing the environmental 

implication of new technologies. For example, Balsalobre et al. (2015) and Álvarez-

Herránz et al. (2017) examine the effect of energy innovation on GHG emissions. Others 

study the connection between environmental regulation and technological innovation 

(Guo et al., 2017; Yuan and Xiang, 2018; Feng et al., 2018), as well as the possible link 

between financial development, energy innovation and environmental quality (Baloch et 

al., 2021) or internationalization and eco-innovation (Hojnik et al., 2018; Šūmakaris et 

al., 2020). Within this sphere, the results of the present research represent a novel 

contribution to this paradigm, where environmental innovation plays an important role in 

halting climate change. First, the length of the period analysed means that conclusions 

can be drawn that are immediately applicable by decision-makers. Secondly, the 

intertemporal efficiency analysis makes it possible to establish a ranking of countries and 

extract a performance profile of those at the top of the ranking. Thirdly, the functions 

estimated with GMM shed light on the factors that need to be enhanced in order to reduce 

emissions, and can help guide forthcoming international agreements. 

The rest of the paper is structured as follows. Section 2 reviews the literature on 

environmental innovation and the issues surrounding GHG emissions. Section 2 presents 

the methods applied and the samples used. Section 4 analyses the results of the research. 

Lastly, Section 5 summarizes the conclusions of the study, the contribution it makes and 

the limitations. 
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2. Literature review 

2.1. Eco-innovation, green innovation or environmental innovation 

There is a fairly widespread belief about the positive effects that innovation and 

technology transfer can have on the environment. According to the OECD, GHG 

emissions decreased by around 7% during the period 2008-2017, while at the same time 

the patents it classifies as environment-related technologies rose by over 18%. However, 

a rebound in emissions was detected in 2018, along with a decline in patents aimed at 

tackling climate change. That said, a specific type of innovation must be encouraged: the 

introduction of new, environmentally-friendly technologies aimed at achieving socially 

desirable results (Voegtlin and Scherer, 2017; Lee and Trimi, 2018). Mongo et al. (2021) 

show that the effects of environmental innovation do not emerge in the short term; a 

longer time horizon is needed to reduce emissions. 

The transformation towards a green economy involves promoting innovative processes 

aimed at mitigating climate change. In recent decades, the literature has proposed 

concepts such as eco-, green or environmental innovation, all of which centre on 

preventing the negative impact of human actions (Shin et al., 2018). The concept of eco-

innovation can be attributed to the works of Fussler and James (1996) and James (1997), 

who addressed the emergence of new products and processes that provide added value to 

the customer and the company while simultaneously lessening the impact on ecosystems. 

Green innovation encompasses the introduction of technologies related to energy saving, 

pollution prevention, recycling, green product design or firms' environmental 

management (Chen et al., 2006). Lastly, environmental innovation centres on promoting 

economic development while reducing adverse effects on the environment (Polzin et al., 

2016). These three concepts, which have very similar purposes, have sparked the interest 

of the scientific community, prompting it to approach innovation as a key factor for 

achieving economic and social objectives in a way that respects the planet (Läple et al., 

2015). 

International organizations need quantitative information that allows them to assess the 

results of eco-innovation and identify its key drivers (Arundel and Kemp, 2009). In short, 

governments and companies need a paradigm of knowledge for the implementation of 

sustainable plans that mitigate global warming (García-Granero et al., 2018). 
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All the measurement instruments developed to quantify eco-innovation have been based 

around the four categories originally established by Acs and Audretsch (1993): input 

measures, including research and development (R&D) expenditure, R&D personnel and 

innovation expenditure; intermediate output measures, relating to patents and scientific 

articles; direct output measures, such as the number of innovations or the increase in sales 

of new products; and indirect impact measures, such as changes in resource efficiency 

and productivity. In this research, inputs and intermediate output measures are used to 

measure the eco-innovation by OECD countries. A broad literature supports the use of 

DEA for measuring efficiency in relation to environmental issues (Beltrán-Esteve and 

Picazo-Tadeo, 2017; Feng et al., 2017; Mavi et al., 2019; Mavi and Mavi, 2021).  

 

2.2. Mitigation of GHG emissions 

The various international agreements on climate change adopted in recent decades have 

been aimed at reducing GHG emissions, driving new strategies that act in different 

directions, from land use and infrastructure to industry as a whole (Han and Zhu, 2020; 

Liu et al., 2020; Zhang et al., 2020). A large amount of economic resources has been 

targeted at promoting the use of clean technologies to facilitate the achievement of this 

objective (IPCC, 2018). The scientific community needs information on specific 

production processes and technology in order to propose an effective treatment; as yet 

there is no sectoral classification associated with emissions (Romero and Gramkow, 

2021). 

The implementation of climate policies requires solid theoretical foundations and sound 

statistical information to ensure the success of the efforts made. Under the Paris 

Agreement, which set emission reduction as a priority in order to curb climate change, a 

wide-ranging scientific paradigm was developed aimed at clearly identifying the 

economic and social factors responsible for GHG emissions. Sectors such as transport 

(Andrés and Padilla, 2018), agriculture (Rotz, 2018) and energy (Xu et al., 2019) have 

been extensively analysed. Nevertheless, the conclusions drawn cannot always be 

generalized to all territories or periods of time. According to Picazo-Tadeo et al. (2014), 

improving energy efficiency is the most effective way of cutting emissions. Sadik-Zada 

and Gatto (2021) show that there is a monotonically increasing relationship between oil 

rents and the quantigy of GHG. Other authors such as Liobikienė and Butkus (2017) or 
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Jin and Kim (2018) argue that improved energy efficiency must be combined with the 

use of renewable energies in order to curb global warming and ensure sustainable growth. 

There is also a fairly large stream of research in which innovation is considered to have a 

notable impact on emission reduction (Kahouli, 2018; Yu and Xu, 2019). However, some 

contradictions have been detected: Fernández et al. (2018) show that R&D expenditure 

reduces CO2 emissions in the EU and US, but raises them in China. Koçak and Ulucak 

(2019) find evidence that certain types of R&D expenditure in OECD countries, such as 

renewable energy R&D and nuclear energy R&D, are not achieving their intended 

objectives.  

Three research methods have been used to analyse the determinants of GHG emissions: 

IPAT (Impact, Population, Affluence, Technology), Structural Decomposition Analysis 

(SDA) and Index Decomposition Analysis (IDA). IPAT, originally proposed by Ehrlich 

and Holdren (1971), is a mathematical function that explains the impact of population, 

affluence and technology on the environment. The introduction of the extended Input-

Output framework (Isard et al., 1968; Leontief, 1970) allowed the application of SDA 

and IDA to be extended to energy and emissions. Both of these methods examine the 

determinants of the change in aggregate energy consumption, GHG emissions and energy 

efficiency. The difference between them lies in the scope of the results: IDA only captures 

direct effects, while SDA also identifies indirect impacts. Authors such as Hu et al (2017), 

Wang and Feng (2018a, 2018b) propose decomposition analysis to study the determinants 

of GHG in China, however when using a panel sample composed of different countries, 

econometric models are more appropriate. Therefore, this research proposes the use of 

the extended IPAT, which consists of using two-step GMM to estimate a stochastic model 

that includes technology and GDP per capita along with other aspects such as 

environmental productivity, management and policies.  

 

3. Methods and materials 

The research was conducted on a panel data sample of 28 OECD countries1. The study 

was carried out for a time period of eight years, 2011-2018, in order to ensure the 

consistency of the analysis and accurately estimate the effect of innovation on emission 

                                                           
1 Chile, Israel, Korea, Luxembourg, Mexico, New Zealand, the Slovak Republic and Switzerland were eliminated due 

to a lack of complete statistical data. 
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reduction. Both the proposed efficiency analysis methods and GMM are supported by an 

extensive literature in the field of climate change (Luo et al., 2019; Mavi and Mavi, 2021; 

Hakimi and Inglesi-Lotz, 2020; Chen et al., 2021). 

 

3.1. Stage 1: Eco-innovation, DEA and MI 

The measurement of efficiency dates back to the original paper by Farrell (1957), which 

gave rise to stochastic frontier analysis (SFA) and DEA. The former applies econometric 

techniques to estimate the production frontier, while DEA uses linear programming to 

determine the efficient frontier.  

DEA is a non-parametric model developed by Charnes, Cooper and Rhodes (1978) under 

the assumption that production generates constant returns to scale, whereby any change 

in the inputs produces a proportional change in the outputs (CCR model). In order to 

avoid this assumption of proportionality, DEA was subsequently extended by Banker, 

Charnes and Cooper (1984) to account for the existence of variable returns to scale (BCC 

model). Both models can be either input- or output-oriented, that is, they can seek to 

minimize the resources needed to obtain a given output, or vice versa, to maximize the 

output obtained from the available inputs. The efficiency levels calculated by solving the 

linear programming problem are bounded between 0 and 1, with 1 being the maximum 

efficiency level. The degree of inefficiency is measured by the distance of the efficiency 

score from unity, resulting from a sub-optimal combination of inputs and outputs. 

There are two major advantages of DEA. First, it allows a relationship to be established 

between the inputs and outputs that characterize the decision-making units (DMUs) of 

the sample without having to specify a functional form. Second, it can provide additional 

information on how to improve the performance of inefficient DMUs (He et al., 2016). 

These advantages have led to the extensive use of this method in the field of sustainability. 

Covering a long period from 1996 to 2016, Zhou et al. (2018) conduct a review of the 

literature that uses DEA in the field of sustainability. Tsaples and Papathanasiou (2021) 

recently brought the analysis up to date by covering the period 2017-2020, noting that the 

vast majority of applications study Asian territories, with far less focus on European 

nations.  

Despite the popularity of the DEA technique among the scientific community, it does 

have some important limitations: the presence of outliers can distort the results; the 



8 
 

exclusion of variables can lead to inefficiencies being identified; and as it is a non-

parametric technique, it is not possible to formulate hypotheses to test to confirm its 

suitability. All this justifies the appropriateness of using DEA-Bootstrap, an extension of 

DEA that enables the researcher improve the robustness of the estimates by providing 

confidence intervals for the efficiency scores (Simar and Wilson, 1999). DEA-Bootstrap 

generates a numerical simulation of the DMUs in the original sample. Efficiency scores 

can then be calculated for a large number of simulated samples, thus minimizing data 

contamination.  

Given the objective of this research, the output-oriented BCC model is used, with 2000 

bootstrap replications as suggested by Simar and Wilson (2000).  Furthermore, an 

intertemporal analysis is conducted to ensure that isolated distortions occurring in a 

particular year do not lead to erroneous conclusions (Cruz-Cázares et al., 2013; Puertas 

et al., 2020). 

The MI is then used to calculate the evolution of the performance of a DMU in different 

periods of time. The MI was originally proposed by Caves et al. (1982), with Färe et al. 

(1992) later adapting DEA to measure it. The MI measures possible changes in 

productivity-over time, that is, it performs a vertical comparison using panel data with 

distance functions. These changes in productivity can be broken down according to their 

source: technical efficiency change (TEC) and the change resulting from technological 

progress (TC). In turn, TEC can be a result of different values of the distance to the 

frontier due to better use of the available technology (pure technical efficiency change, 

PTEC) or changes in scale efficiency (SEC). TC, on the other hand, corresponds to a shift 

in the frontier itself, that is, technological improvements as a result of progress (Appendix 

1). If TEC>1, the analysed DMU has improved its technical efficiency, and if in addition 

TC>1, it has undergone technological development. However, a DMU may become more 

technologically advanced (TC>1) while also suffering from technical inefficiency 

(TEC<1), with the latter due to worse use of available technology (PTEC<1) and/or errors 

in the scale of production (SEC<1). 

In the first stage of the empirical analysis, the two methods, DEA-Bootstrap and MI, are 

applied to a production function composed of two inputs and two outputs (Table 1). Inputs 

are expressed in constant USD to prevent price changes or currency rates from distorting 

the results. R&D expenditure includes personnel costs and any other costs associated with 
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the activity. The literature presented in Table 1 supports the choice of variables in the 

field of eco-innovation. 

 

Table 1. Variable used in DEA-Bootstrap and MI analysis 

Variable Role Unit Source Literature sources 

Business Enterprise R&D 

expenditure by industry* (BERD) 

Input millions constant 

USD 

OECD Yang and Yang (2015); 

Steinert et al (2020); 

Mavi and Mavi (2021)  

Government budget allocations for 

R&D in environment** and energy*** 

(GBARD) 

Input millions constant 

USD 

OECD Yang and Yang (2015); 

Mavi and Mavi (2021); 

Steinert et al (2020) 

Patents on environment-related 

technologies 

Output Number OECD Yang and Yang (2015); 

Steinert et al (2020) 

Scientific Publications on 

environmental science 

Output Number Scimago 

Journal  

Yang and Yang (2015); 

Steinert et al (2020) 

*Electricity, gas, steam, air conditioning and water supply; sewerage, waste management and remediation. 
**Environment: control, measuring, elimination and prevention pollution; climate protection; solid wastes; 

water protection; noise and vibrations; radioactive pollution; protecting the air; etc. 
***Energy: production, storage, transportation, distribution and rational usage is any type of energy; energy 

efficiency; capture and storage of CO2; sources of renewable energies; hydrogen and gas; etc. 

 

The literature on eco-innovation supports the choice of the proposed variables, as 

suggested by Steinert et al. (2020) and Mavi and Mavi (2021). As the focus is on output-

oriented efficiency, the result indicates whether the countries analysed have been able to 

use their inputs properly to maximize outputs. Table 2 shows the main descriptive 

statistics of the variables. 

 

Table 2. Descriptive statistics for inputs and outputs (2011-2018).  

 GBARDt-1 BERDt-1 Patents 

Scientific 

Publications 

Mean 652 120 1,638 3,970 

SD 1,175 180 3,666 6,021 

Max 5,851 903 17,147 35,927 

Min 0.3 0.1 2 67 
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The inputs are lagged one year to allow for the maturity process of the research. The 

statistics reveal greater involvement by the public sector in promoting environmental 

R&D, with Japan, the USA and Germany being the countries with the largest budget. In 

the business sector, it is in France, Japan and the USA where the largest amounts are 

allocated to environmental research. Regarding the outputs, the countries that stand out 

for their number of patents are the USA, Japan and Germany, while in terms of scientific 

publications it is the USA, the United Kingdom and Germany that register the highest 

volumes of research in this field. 

 

3.2. Stage 2: Determinants of GHG emissions , two-step GMM 

The second stage of the research involves estimating dynamic panel models using two-

step GMM. This method is applied to three models to assess the determinants of GHG 

emissions (equations 1, 2 and 3). GMM was originally put forward by Arellano and Bond 

(1991) to address the problem of endogeneity, proposing the use of lags as instruments 

for the endogenous variable. Roodman (2006) later suggested that in panel data samples 

of only a few years, and therefore with a small number of instruments, it is more 

appropriate to apply the two-step GMM. This extension uses the heteroscedastic weight 

matrix and the instruments in levels in the estimation, which reduces the loss of 

information but introduces the risk of overidentification.  

In all the specified models, GHG emissions, the efficiency score (EFF) and GDP per 

capita are included as independent variables. In addition, Model 1 analyses the impact of 

variables related to waste generation (Disposal) and treatment (Recovery), as well as 

resource consumption (Material footprint). Model 2 includes productivity indicators (CO2 

productivity, Energy productivity, and Non-energy productivity) and Model 3 examines 

the environmental policies adopted (Taxes, Terrestrial protected area, and DParis). 

 

Model 1 𝐺𝐻𝐺𝑖𝑡 = 𝛽0 + 𝛽1𝐺𝐻𝐺𝑖𝑡−1 + 𝛽2𝐸𝐹𝐹𝑖𝑡−1 + 𝛽3𝐺𝐷𝑃𝑖𝑡 + 𝛽4𝐷𝑖𝑠𝑝𝑜𝑠𝑎𝑙𝑖𝑡

+ 𝛽5𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦𝑖𝑡 + 𝛽6𝑀𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡𝑖𝑡 + 𝜀𝑖𝑡 

(1) 

𝛽1, 𝛽4,  𝛽6 > 0;  𝛽2, 𝛽5 < 0; 𝛽3 could be positive or negative  
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Model 2 𝐺𝐻𝐺𝑖𝑡 = 𝛽0 + 𝛽1𝐺𝐻𝐺𝑖𝑡−1 + 𝛽2𝐸𝐹𝐹𝑖𝑡−1 + 𝛽3𝐺𝐷𝑃𝑖𝑡

+ 𝛽4𝐶𝑂2 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡 + 𝛽5𝐸𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡

+ 𝛽6𝑁𝑜𝑛 − 𝑒𝑛𝑒𝑟𝑔𝑦 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑖𝑡 + 𝜀𝑖𝑡 

(2) 

𝛽1 > 0;   𝛽2,  𝛽4,  𝛽5, 𝛽6 < 0; 𝛽3 could be positive or negative  

 

Model 3 𝐺𝐻𝐺𝑖𝑡 = 𝛽0 + 𝛽1𝐺𝐻𝐺𝑖𝑡−1 + 𝛽2𝐸𝐹𝐹𝑖𝑡−1 + 𝛽3𝐺𝐷𝑃𝑖𝑡

+ 𝛽4𝐶𝑂2𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑡𝑎𝑥𝑒𝑠𝑖𝑡

+ 𝛽5𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑒𝑑 𝑎𝑟𝑒𝑎𝑖𝑡 + 𝛽6𝐷𝑃𝑎𝑟𝑖𝑠𝑖𝑡 + 𝜀𝑖𝑡 

(3) 

𝛽1 > 0;   𝛽2,  𝛽4,  𝛽5, 𝛽6 < 0; 𝛽3 could be positive or negative  

i = 1,2, …, 28 countries and t = 2011, 2012, …, 2018 

 

Table 3 presents the definitions of the variables used in each model and their unit of 

measurement. They are all sourced from the official statistics published by the OECD. 
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Table 3. Description of the determinants of GHG emissions 

Model 1: Waste and Material footprint 

Variables Definition Unit 

Disposal Any waste management operation serving or 

carrying out the final treatment and disposal of waste 

Kilograms, 

Thousands per 

capita 

Recovery Any waste management operation that diverts a 

waste material from the waste stream and which 

results in a certain product with a potential economic 

or ecologic benefit 

Tonnes, Thousands 

per capita 

Material footprint Global allocation of used raw material extracted to 

meet the final demand of an economy. 

Kilograms, 

Thousands per 

capita 

Model 2: Environmental and resource productivity 

CO2 productivity Reflects the economic value generated per unit of 

CO2 emitted 

USD per kilogram, 

2015 

Energy productivity Reflects efforts to improve energy efficiency and to 

reduce carbon and other atmospheric emissions 

USD, 2015 

Non-energy productivity Monetary value generated per unit of non-energy 

materials used 

USD per kilogram, 

2015 

Model 3: Environmental policies 

Environmental taxes An important instrument for governments to shape 

relative prices of goods and services. Environmental 

domain: Air pollution and Climate Change 

Millions USD 2015 

PPP per capita 

Terrestrial protected area Political regulation to determine the protected area % land area 

DParis The effect of the Paris Agreement Dummy2 (1 in 2018, 

0 otherwise) 

Common variables 

GHG emissions Total emissions of CO2, CH4, N2O, HFCs, PFCs, SF6 

and NF3 

Tonnes of CO2 

equivalent, 

Thousands per 

capita 

EFF-Bootstrap Eco-innovation of OECD countries Index 

GDP Gross Domestic Product USD 2015 per 

capita 

                                                           
2 The possible delay between the adoption of the Paris Agreement and the introduction of specific measures 

for countries to comply with it has been taken into account. 
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GHG emissions has been used as a dependent variable and lagged independent variable, 

reflecting the trend in emissions over time. Likewise, the efficiency score calculated using 

DEA-Bootstrap has been lagged to account for the maturation period required by 

investments and the implementation of patents in production processes. The dummy 

capturing the effects of the Paris Agreement identifies the possible influence of the 

agreement two years after its signing, the time frame needed for countries to begin to 

introduce changes in their economies. Table 4 presents the main statistics of these 

variables. 

 

Table 4. Descriptive statistics for independent variables (2011-2018). 

 Mean S.D. Max Min 

GHG 0.011 0.005 0.024 0.005 

EFF-Bootstrap 0.571 0.192 0.937 0.149 

GDP 40,571 11,252 81,394 21,033 

Disposal 0.183 0.163 0.717 0.002 

Recovery 0.314 0.176 0.810 0.002 

Material footprint  26.372 6.796 43.400 12.645 

CO2 productivity 6.016 2.270 14.884 1.962 

Energy productivity 11,202 3,841 28,602 2,473 

Non-energy productivity 3.576 1.843 9.662 1.305 

Environmental taxes 1,680 681 3,568 225 

Terrestrial protected 22.742 9.572 53.530 9.850 

 

Some of the descriptive statistics show dispersion in variables such as disposal, recovery 

and  non-energy productivity. All the variables included are a priori related in some way 

to global warming, except GDPpc because the level of income does not necessarily reflect 

the efforts made in this regard. All variables have been log transformed to help ensure 

stability and lessen the effect of outliers and units of measurement, thus limiting the 

variability of the variables. Appendix 2 (Table A1) presents the correlation matrix 

confirming the absence of severe multicollinearity among the variables (Gujarati, 2004). 

 

4. Results and Discussion 
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The first stage of the research was to analyse the eco-innovation of OECD countries. 

Although they are in different continents, they are all classified as high-income by the 

World Bank, except Turkey, which is among the upper-middle-income economies. They 

also have similar social standards. As a consequence, the sample is fairly homogeneous, 

which is a requisite for the proper application of DEA. 

DEA-Bootstrap can be used to identify countries whose spending on environmental 

innovation has been adequately converted into technology, measured by the number of 

patents and research papers. An eight-year period has been analysed with both the DEA-

Bootstrap and the MI, yielding consistent results. The first and second columns of Table 

5 show the mean efficiency (EFF mean) and its standard deviation (EFF SD), 

respectively. The following columns present the MI, TC, PTEC and SEC, allowing an 

assessment of the source of the productivity changes occurring during the analysed 

period. 
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Table 5. Efficiency scores of the intertemporal DEA-Bootstrap and MI (2011-2018) 

 EFF 

mean 

EFF 

SD 
MI TC PTEC SEC 

UK 0.859 0.060 0.932 1.036 1 0.900 

Netherlands 0.847 0.087 1.014 1.070 1.005 0.943 

USA 0.829 0.025 1.028 1.080 1 0.952 

Australia 0.767 0.134 1.065 1.096 1.034 0.940 

Portugal 0.741 0.116 1.129 1.093 1.006 1.027 

Slovenia 0.672 0.182 1.027 1.027 1 1 

Poland 0.649 0.110 0.880 0.952 0.985 0.938 

Sweden 0.634 0.056 0.916 1.055 0.955 0.910 

Ireland 0.625 0.218 1.256 1.112 1.109 1.018 

Japan 0.612 0.089 0.930 1.234 0.950 0.793 

Italy 0.600 0.085 0.916 0.956 0.985 0.972 

Denmark 0.599 0.186 1.084 1.057 1.057 0.970 

Greece 0.577 0.127 0.841 1.005 0.877 0.954 

Turkey 0.564 0.088 0.965 1.031 0.965 0.970 

Germany  0.555 0.064 1.008 1.167 0.971 0.889 

Iceland 0.551 0.172 2.065 1.903 1 1.085 

Spain 0.545 0.150 1.126 1.077 1.094 0.955 

Czech Rep. 0.525 0.118 1.082 0.999 1.106 0.979 

Belgium 0.516 0.119 1.086 1.141 1.022 0.932 

Lithuania 0.496 0.231 1.171 1.034 1 1.133 

Canada 0.489 0.106 1.036 1.058 1.055 0.928 

Norway 0.481 0.075 1.025 1.027 1.029 0.969 

Austria 0.472 0.050 0.978 1.130 0.926 0.935 

Latvia 0.421 0.158 0.945 1.065 0.887 1 

Hungary 0.405 0.146 1.009 1.030 0.998 0.982 

Finland 0.365 0.118 1.114 1.128 1.072 0.921 

Estonia 0.323 0.237 1.268 1.144 1.142 0.970 

France 0.269 0.045 1.001 1.168 1.006 0.852 

 

The results reveal that, for the defined production function, the United Kingdom, the 

Netherlands and the USA are the countries that have achieved the highest levels of 

efficiency (0.859, 0.847 and 0.829, respectively), although there are some differences in 

the progress they have made in productivity. All three show a decline in scale efficiency 

(SEC<1), however, the Netherlands and the USA have been able to offset this through 

technological advances of 7% and 8%, respectively (TC= 1.070 and 1.080). The United 

Kingdom has registered an advance of only 3.6%, which is not enough to compensate for 

the adverse result of the SEC; hence the evolution of its productivity shows a drop of 

6.8% (MI= 0.932). 

http://localhost/OECDStat_Metadata/ShowMetadata.ashx?Dataset=PAT_DEV&Coords=%5bCOU%5d.%5bDEU%5d&ShowOnWeb=true&Lang=en
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Generally speaking, efficiency levels are not very high with a wide dispersion between 

the maximum registered by the United Kingdom (EFF mean = 0.859) and the minimum 

by France (EFF mean = 0.269). This can be attributed to the intrinsic features of the 

sample analysed, as they are all highly developed countries with a strong commitment to 

international agreements on climate change. As such, small variations in inputs/outputs 

are probably behind these differences. Furthermore, the performance of each country 

should be compared only with the other members of the sample.  

Iceland has a level of inefficiency of 45% (EFF mean = 0.551) but has achieved an 

improvement in productivity of over 200% (MI = 2.065), while Greece has a similar 

efficiency level but has registered a decline of more than 25% (MI = 0.841). However, 

almost all countries show progress in productivity resulting from the introduction of 

technological improvements. This has translated into advances of, for example, 90.3% in 

Iceland, 23.4% in Japan or more than 16% in France and Germany. 

In the second stage of the research, the determinants of GHG emissions have been 

analysed, using the efficiency levels along with other variables. Table 6 shows the results 

of the three models estimated using two-step GMM. The coefficients have been 

standardized in order to determine the relative weight of each in determining the volume 

of emissions. For all the models, the applied tests confirm the adequacy of the results: the 

Hansen test confirms that the instruments used are valid and there is no overidentification 

problem (Prob>chi2 is greater than 0.05); the Arellano-Bond test confirms the absence of 

second-order serial correlation in the error [AR(2)] (Prob>z is greater than 0.05); the 

number of instruments is smaller than the number of groups (21 instruments and 28 

groups); and the Wald test, with a Prob>chi2 of less than 0.05, indicates that they are 

correctly specified and the set of indicators explain the dependent variable. 
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Table 6. Two-step GMM estimation results 

 Model 1 Model 2 Model 3 

lnGHG(-1) 0.1504*** 0.1418*** 0.1458*** 

lnEFF(-1) -0.0117*** -0.0067*** -0.0083*** 

lnGDP 0.0163*** 0.0178*** 0.0148*** 

lnDisposal 0.0091***   

lnRecovery -0.0037**   

lnMFootprint 0.0054**   

lnCO2Productivity  -0.0230***  
lnEnergy Productivity  0.0003  
lnNon-Energy Productivity  -0.0031**  
lnEnvironamental Taxes   -0.0076*** 

lnProtected area   -0.0081*** 

DParis18   -0.0007 

    

Hansen chi2(Prob>chi2) 18.19(0.198) 20.87(0.105) 18.42(0.188) 

ABond AR(1) z(Prob>z) -3.30(0.001) -3.30(0.001) -3.15(0.002) 

Abond AR(2) z(Prob>z) -0.72(0.470) -0.78(0.436) -0.80(0.426) 

Wald chi2 (Prob>chi2) 1.24e+06(0.000) 8.69e+06(0.000) 1.35e+06(0.000) 

Observations/groups 196/28 196/28 196/28 

Instruments 21 21 21 

Note: ***p<0.01, **p<0.05, *p<0.1. Hansen, A-Bond and Wald tests report p-values in parentheses 

 

In all three models the variable GHG (-1) turns out to have a significant and positive 

coefficient, reflecting the carry-over effect of the previous situation and how difficult it 

is for countries to break this trend. According to official OECD statistics, emissions are 

in decline, yet they continue to have a significant impact on subsequent emissions. These 

results are in line with the conclusions of the study by Koçak and Ulucak (2019), which 

analyses the effect of energy R&D expenditure on CO2 emissions, also introduced as a 

lagged independent variable.  

The eco-innovation calculated in the first stage of the research through the efficiency 

indicator also presents a significant coefficient with the expected sign, demonstrating that 

innovation enables a reduction in GHG emissions, unlike the wealth of the country. There 

is no consensus on these two variables in the literature (Grunewald and Martínez-Zarzoso, 

2011; Kahn et al., 2019; Ferreira et al., 2020). However, economic growth is often 

associated with increased production and, consequently, more pollution, while innovation 

represents the introduction of new technologies fostering environmental quality into 

production processes.  
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In Model 1 it can be seen that the other three variables analysed have significant 

coefficients: while recovery has an inverse relationship with GHG emissions, disposal 

and material footprint lead to an increase in emissions. Recovery includes the actions of 

recycling, reusing fuel or composting, all of which help mitigate climate change and 

therefore global warming. Disposal understood as overall waste management produces 

environmental pollution, however, if official statistics permitted such an analysis, we 

would very likely find that not all waste treatments yield the same results. Regarding 

material footprint, it is confirmed that the extraction and excessive use of raw materials 

increases emissions, harming the environment and therefore the health of the population. 

This challenging goal could be achieved by promoting the use of autonomous vehicles 

(Hoekstra, 2019), second generation biofuels produced from forest residues (Soimakallio 

et al., 2009) or increasing recovery rates of raw material (Altay et al., 2011). In short, 

GHG (-1) is the factor that has the greatest impact on emissions, followed by GDP and 

eco-innovation. 

In Model 2, both carbon and non-energy productivity are found to have significant 

coefficients with the expected sign. Moreover, the former has a greater impact on 

emissions than eco-innovation or GDP, pointing to a possible line of action for future 

agreements. Lastly, the environmental policies analysed in Model 3 reduce pollution, with 

an influence very similar to that of eco-innovation. However, with regard to the Paris 

Agreement, captured by the dummy variable, it is not found to have led to a reduction in 

emissions by the analysed countries. In this respect, Chen et al. (2017) conclude that the 

authorities should boost investment in environmental protection, and adopt fiscal policies 

that facilitate the development of green projects. 

While some of the results are in line with the existing literature, they are not directly 

comparable. For example, in this empirical study the impact of innovation is analysed by 

means of eco-innovation rather than directly with the number of patents or R&D 

expenditure, as in Mongo et al. (2021) or Petrović and Lobanov (2020). In addition, the 

proposed empirical approach includes other variables such as waste management, 

measures of environmental productivity and environmental policies, which have not 

previously been analysed in this field. 
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5. Conclusions 

Using a panel data sample of 28 OECD countries over the period 2011-2018, this research 

has two objectives: to measure eco-innovation, and to analyse the determinants of GHG 

emissions, thereby identifying the factors that have the greatest impact on climate change. 

The methods used to do so are strongly supported by the existing literature. 

In the first stage, it is shown that the countries under analysis have implemented new 

technologies and achieved improvements in productivity during the eight years analysed. 

Iceland stands out with technological change of more than 90%. In the second stage, the 

estimations carried out reveal the significant impact of eco-innovation, carbon 

productivity and environmental policies on emission reduction. 

The results shed light on the aspects that need to be strengthened by the authorities in 

order to be able to comply with the increasingly demanding series of international 

agreements. The European Union recently set itself the goal of eliminating emissions by 

2050, entailing the introduction of countless changes to its constituent economies. 

According to this research, eco-innovation should be promoted to help ensure that 

technological advances and scientific studies are oriented towards the achievement of a 

clean society. Complemented by public policies to establish environmental taxes and 

protected areas, this will foster environmental productivity, the introduction of 

improvements in waste management, and will encourage less demand for raw materials. 

This study is not without its limitations, which point to avenues for future research. 

Although environmental agreements have been ratified by a large number of countries, 

the existing literature focuses mostly on developed economies. Therefore, the logical 

continuation of this analysis would be to extend it to other territories with different levels 

of development to determine the behaviour of the analysed variables, along with others 

such as different types of waste management and generation, or the use of 

environmentally-friendly resources. 
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Appendix 1. Calculation and decomposition process of MI  

The MI is defined and decomposed as follows: 

𝑀𝐼(𝑥𝑡 , 𝑦𝑡, 𝑥𝑡+1, 𝑦𝑡+1) = [
𝐷𝑡(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡(𝑥𝑡, 𝑦𝑡)

𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡+1(𝑥𝑡, 𝑦𝑡)
]

1
2

=
𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡(𝑥𝑡, 𝑦𝑡)
𝑥 [

𝐷𝑡(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡(𝑥𝑡 , 𝑦𝑡)

𝐷𝑡+1(𝑥𝑡, 𝑦𝑡)
]

1/2

= 𝑇𝐸𝐶 𝑥 𝑇𝐶 

 

(1) 

Färe et al (1994b) redefined one component. They decomposed the TEC component to 

obtain: 

𝑇𝐸𝐶 = [
𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)

𝐷𝑡(𝑥𝑡, 𝑦𝑡)
] 𝑥 {

𝐷𝑐
𝑡+1(𝑥𝑡+1, 𝑦𝑡+1)/𝐷𝑡+1(𝑥𝑡+1, 𝑦𝑡+1

𝐷𝑐
𝑡(𝑥𝑡, 𝑦𝑡)/𝐷𝑡(𝑥𝑡 , 𝑦𝑡)

}

= 𝑃𝑇𝐸𝐶 𝑥 𝑆𝐸𝐶 

(2) 

 

sub-index c refers to constant returns to scale. 

 

. 
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Appendix 2. Table A1. Correlation matrix of the variables used in the three models 

 

 

 GHG(-1) EFF(-1) GDP Disposal Recovery 
Material 

Footprint 

CO2 

Productivity 

Energy 

Productivity 

Non-energy 

Productivity 

Environmental 

Taxes 

Protected 

area 

GHG(-1) 1           

EFF(-1) 0.163 1          

GDP 0.416 0.245 1         

Disposal 0.407 0.008 -0.231 1        

Recovery 0.052 0.107 0.731 -0.605 1       

Material Footprint 0.586 0.040 0.440 0.126 0.215 1      

CO2 Productivity -0.581 0.000 0.324 -0.354 0.365 -0.084 1     

Energy Productivity -0.431 0.240 0.145 -0.277 0.225 -0.485 0.389 1    

Non-energy Productivity -0.142 0.332 0.225 -0.296 0.243 -0.247 0.029 0.299 1   

Environmental Taxes -0.222 0.085 0.313 -0.515 0.577 -0.048 0.254 0.379 0.221 1  

Protected area -0.409 0.014 -0.102 -0.152 0.012 -0.177 0.244 0.173 0.203 -0.091 1 


