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Abstract: At present, Finite Element Analysis (FEA) is indispensable in the field of simula-
tion technology, as this kind of numerical analysis method can help engineers to predict results
difficult to obtain from experimental tests. However, the mesh generation process in FEA is
time-consuming. It is estimated that about 80 percent of analysis time is devoted to mesh gen-
eration in some fields, such as automotive or shipbuilding industries. On the other hand, the
imperfections of mesh models can lead to inaccurate results. In this study, we adopted a new
numerical analysis method, Isogeometric Analysis (IGA) to develop a random vibration fatigue
analysis on a wind turbine tower model. From the mesh generation process, it can be observed
that the NURBS mesh creation is far more convenient and time-efficient than the finite element
counterparts. From fatigue analysis results, we can conclude that IGA can predict fatigue dam-
age using fewer mesh elements and integration points, corresponding very well with the finite
element results.

1 Introduction

It is necessary to predict the fatigue life of a structure during the design stage. In the
numerical simulation, the fatigue analysis can be developed both in the time and frequency
domain. However, compared with frequency domain fatigue analysis, the time domain fatigue
analysis is computationally expensive. So, in this studying, we adopted the frequency domain
fatigue analysis method to calculate the cumulative damage ratio based on Dirlik’s approach,
in which the input random vibration load and output stress are described by Power Spectrum
Density functions (PSD).

At present, there are several disadvantages to FEA. The most significant one is to spend a
long time in mesh generation. For example, it is estimated that about 80% of overall analysis
time has been applied to the mesh creation process in automotive, aerospace, and shipbuilding
industries [1]. In 2005, T.J.R. Hughes proposed a method, which is named Isogeometric analysis
(IGA) to mainly solve the problems derived from the classical FEA.

IGA with NURBS basis function has been applied in various engineering problems, including
contact mechanics [2, 3, 4], fluid mechanics [5, 6, 7], structural optimization [8, 9, 10, 11], shell
analysis [12, 13, 14, 15], beam analysis [20, 16, 17] damage and fracture mechanics [18, 19],
and structural vibration analysis [16, 20, 21], etc. In this paper, we mainly investigate the
performance of the NURBS-based IGA LS-DYNA on a wind turbine tower model. Results are
verified by classical FEA and matlab code.

The originality of this paper is that the isogeometric random vibration fatigue analysis is
firstly employed on an industrial model. The structure of this article is as follows. In section
2, we briefly review some theoretical backgrounds. In section 3, isogeometric random vibration

https://doi.org/10.4995/YIC2021.2021.13262

             139



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

fatigue analysis is applied on a wind turbine tower model and the results are verified by the
FEA and own developed Matlab programming. In section 4, we conclude on the present studies.

2 IGA modelling

At present, most IGA is developed, based on NURBS basis function, as it not only has a
wide application in CAD systems but also possesses powerful capability in describing complex
geometric models. The NURBS basis functions are defined by the B-spline basis function built
from knot vectors. Details can be found in [1].

2.1 Some basic concepts of IGA

• I) Different spaces

The index space in two dimensions is an equally divided domain, no matter with the knot
values of knot vectors. For example, in the case where the knot vectors are respectively Ξ =
{0, 0, 0, 0.5, 1, 1, 1} and η = {0, 0, 0, 0.5, 1, 1, 1}, the index space ranges from [0, 1] (figure 1 (a)).
The parameter space in two dimensions is the [0, 1] ⊗ [0, 1] domain where the NURBS basis
functions are defined (figure 1 (b)). And the control points, physical mesh, and control mesh
are defined in physical space (figure 1 (c)).

(a) Index space (b) Parameter space

(c) Physical space

Figure 1: Schematic illustration of different spaces

• II) Knot vector

A knot vector in one dimension is defined as a series of non-decreasing coordinates in the
parametric space, denoted by Ξ = {ξ1, ξ2, ..., ξn+p+1}, where ξi ∈ R is the ith knot (or coordi-
nate), and i is the knot index from 1, 2, . . . , n + p + 1, in which n is the number of B-spline
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basis function along ξ parametric direction, and p is the polynomial order of B-spline basis
function. In the construction of B-spline surface and solid, it is necessary to use 2 and 3-knot
vectors, which are respectively directed along ξ and η directions. Each knot or coordinate of a
knot vector is used to divide the parametric space of a geometrical model to obtain elements,
meaning that all of the mesh elements can be selected by knot values of the knot vectors. In
terms of the space between different knots, a knot vector can be referred to as a uniform or
non-uniform knot vector. In a uniform knot vector, the knots are equally spaced in the para-
metric space, such as Ξ = {1, 2, 3, . . . , ξn+p+1}. Similarly, in a non-uniform knot vector, the
knots are unequally spaced in the parametric space, such as Ξ = {1, 1.5, 2.5, 3, . . . , ξn+p+1}. In
a knot vector, there can be repeated knots, and a knot vector is said to be open if its first and
last knots repetition are equal to the p + 1, in which p is the polynomial order of the basis
function. In one dimension, the basis functions constructed by an open knot vector interpolate
the ends of parametric space.

• III) B-spline basis function and B-spline curve

The B-spline basis functions are defined by the following equation 1 and 2.
For p = 0, it is defined by:

Ni,0(ξ) =

{
1 if ξi <6 ξ < ξi+1

0 otherwise
(1)

For p = 1, 2, 3,..., they are defined by

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ) (2)

B-spline curves are defined by the linear combination of B-spline basis functions and the
corresponding control points, the vector - valued coefficients of the basis function Pi ∈ R,
i = 1, 2, ..., n, as in equation 3.

C(ξ) =
n∑

i=1

Ni,p(ξ)Pi (3)

• Non-Uniform Rational B-Spline (NURBS) basis function, NURBS curve, and NURBS
surface

The univariate NURBS basis function is described by the rationale of weighted B-spline basis
functions as:

Ri,p(ξ) =
ωiNi,p(ξ)

W (ξ)
=

ωiNi,p(ξ)∑ncp

i=1 ωiNi,p (ξ)
1 ≤ i ≤ p+ 1 (4)

Where ωi denotes the weight value of the control point Pi, and W (ξ) is the weighted linear
combination of B-spline basis functions. Here, n denotes the total number of NURBS control
points. The NURBS curve is defined by the linear combination of univariate NURBS basis
function Ri,p(ξ) and control point Pi by the following expression [1]:

C(ξ) =
n∑

i=1

Ri,p(ξ)Pi (5)

And the NURBS surafce is defined by:
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C(ξ, η) =
n∑

i=1

m∑
j=1

Rp,q
i,j (ξ, η)Pi,j (6)

where Rp,q
i,j (ξ, η) is bivariate NURBS basis functions, which are defined by:

Rp,q
i,j (ξ, η) =

Ni,p(ξ)Mj,q(η)wi,j∑n
i=1

∑m
j=1Ni,p(ξ)Mj,q(η)wi,j

(7)

where Ni,p(ξ) and Mj,q(ξ) are pth and qth order B-spline basis function, which are defined
in ξ and η parametric directions, respectively.

3 The IGA and FEA on a wind turbine tower model

In this section, isogeometric and finite element random vibration fatigue analysis are devel-
oped on a wind turbine tower model created based on the reference[22].

3.1 The analysis preparation

3.1.1 The geometric model, material properties

As shown in figure 2, the wind turbine tower model is assembled by a series of different
thickness cylinders and conical shell sections, in which the geometry parameters like the height,
thickness, etc are displayed in the form of mm. The tower model consists of 3 flange connections,
whose base, middle and top flange thicknesses are respectively 300, 200 and 200 mm.

Figure 2: geometry model of the tower

The material properties are shown in table 1. And the material constants of the S-N curve
are respectively β = 9.82 and C = 4.0641× 1088 [23].

Table 1: Material properties

Mass density Young’s modulus poisson’s ratio

3.81e-3 g/mm3 3.1e+11 Pa 0.33
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3.1.2 Mesh models and boundary condition

The isogeometric and finite element mesh models are presented in figure 3, in which the
number of control points and nodes are respectively 7639 and 12969. The finite element mesh
model is created by quadrilateral 4 nodes mesh elements, and the shell element formulation
of Belytschko-Tsay is chosen to develop fatigue analysis. For IGA, we used the isogeometric
NURBS element, and adopted Hughes-Liu with rotational DOFs shell formulation; the poly-
nomial order of univariate shape functions in s and r-directions in the parametric space are
respectively 2, and in LS-DYNA, the mesh refinement method, SUBDIVISION, is used to cre-
ate more isogeometric mesh elements. After mesh generation on each section, the keyword,
NODE DUPLICATION, is used to merge duplicate control points (nodes for FEA) to assemble
the different sections.

To simulate the weight effects of blades, turbines, and other parts on the top of the wind
turbine tower, at the height of Z = 26460 and X= -750, Y = 0 mm, a node is created to
substitute the concentrated mass element of 4.023e+7 g. Then the node is connected with all
control points of the top flange edge, and the weight direction is set to in negative z-direction.
During analysis, the base flange of the tower model is clamped in the translational and rotational
local x, y, z-directions.

(a) (b)

Figure 3: Mesh models (a) IGA (b) FEA

3.2 Analysis results

3.2.1 Modal analysis results: the first five natural frequencies and vibration mode

Table 2, figure 4 and 5 respectively show the first five natural frequencies and correspond-
ing vibration modes obtained from IGA and FEA, from which it can be observed that the
frequencies and the vibration modes have a good agreement.
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Table 2: The first five natural frequencies(Hz)

Method 1 2 3 4 5

IGA 4.47 4.55 26.83 27.26 30.47
FEA 4.47 4.54 27.15 27.21 30.48

(a) (b) (c)

(d) (e)

Figure 4: Isogeometric first five vibration mode

(a) (b) (c)
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(d) (e)

Figure 5: Finite element first five vibration mode

3.2.2 Fatigue analysis results: effective stress PSD, RMS and cumulative damage
ratio

The force PSD load, as shown in figure 6 is applied on the node substituting the element
concentrated mass in the x-direction. The random vibration fatigue analysis of unit second,
in which the damping ratio is set to 0.01, is developed to calculate the effective stress PSD,
RMS, and cumulative damage ratio in Ls Dyna. Then based on obtained PSD, the cumulative
damage ratio is validated in Matlab using Matlab program.

Figure 6: Applied load PSD

Figure 7, and 8 show the calculated isogeometric and finite element effective stress PSD and
RMS, in which only the first natural frequency is excited by the applied force PSD. It is observed
that isogeometric and finite element PSD and RMS display a good agreement, in which the
maximum effective stress RMS from IGA and FEA is 3.151e+8 and 3.125e+8 pa respectively,
leading to the relative error of 0.83%, based on the equation 8. From figure 9, it can be seen
that the obtained isogeometric and finite element cumulative damage ratios are respectively
2.678e-4 and 2.638e-4, with a relative error of 1.52%, and the maximum damage ratios are
located on similar elements close to the door edge. According to the equation 9, the expected
isogeometric and finite element fatigue life E[Tf ] are 3.7341e+04, and 3.7908e+04 seconds
respectively. Based on the Matlab program, the isogeometric and finite element damage ratios
are respectively 2.6204e-04 and 2.6406e-04, which are in a good accordance with the damage
ratios computed from Ls Dyna.

Relative error =
IGAresult− FEAresult

FEAresult
(8)

             145



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

E[Tf ] =
T

E[D]
(9)

Where T is the duration time (1 seconds in these analyses), E[D] is the obtained cumulative
damage ratio.

Figure 7: The effective stress PSD

(a) IGA (b) FEA

Figure 8: The effective stress RMS

4 Conclusion

In this studying, we considered random vibration fatigue analysis on a tower model using
IGA and FEA, in which the isogeometric and finite element damage results are validated by
the Matlab program.

During the analysis, the tower model is clamped on the base flange, and random force PSD
in a vertical direction to the tower surface is applied to the concentrated mass element. From
modal analysis, it can be found that the obtained first five natural frequencies and vibration
modes from IGA and FEA have a good agreement. Fatigue analyses show that the obtained
isogeometric and finite element maximum effective stress RMS are 3.151e+8 and 3.125e+8 pa
with a relative error of 0.83%, and cumulative damage ratios are 2.678e-4 and 2.638e-4 with
a relative error of 1.52%. Based on the Matlab program, the isogeometric and finite element
damage are respectively 2.62e-4 and 2.64e-4, leading to the relative error of -0.76%.

On the other hand, in the aspect of the mesh refinement process, for IGA, it is not necessary
to create mesh elements on the original geometry model. it is sufficient to develop mesh elements
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(a) IGA (b) FEA

Figure 9: The cumulative damage ratio

on the previous mesh model, and so the mesh refinement time can be largely saved. However,
for the FEA, the refinement process is mandatory to communicate with the original geometric
model, and so this process is more time-consuming in LS Dyna software.

In addition, IGA can predict the fatigue life using fewer NURBS elements and integration
points in the thickness direction, which correspond very well to the fatigue life computed by
FEA, with the relative errors of 0.68% . Through the comparison of numerical analysis results,
it can be observed that the obtained isogeometric, finite element PSD and RMS have a good
agreement, leading to conclude that IGA is suitable for the random vibration fatigue analysis.
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