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Abstract The joint identification of the parameters defining a contaminant
source and the heterogeneous distribution of the hydraulic conductivities of
the aquifer where the contamination took place is a difficult task. Previous
studies have demonstrated the applicability of the restart normal-score en-
semble Kalman filter (rNS-EnKF) in synthetic cases making use of sufficient
hydraulic head and concentration data. This study shows an application of the
same technique to a non-synthetic case under laboratory conditions and dis-
cusses the difficulties found on its application and the avenues taken to solve
them. The method is first tested using a synthetic case that mimics the sand-
box experiment to establish the minimum number of ensemble members and
the best technique to prevent the filter collapsing. The synthetic case shows
that among different techniques based on update damping and covariance
inflation, the Bauser’s covariance inflation method works best in preventing
filter collapse. Its application to the sandbox data shows that the rNS-EnKF
can benefit from Bauser’s inflation to reduce the number of ensemble realiza-
tions substantially in comparison with a filter without inflation; yet, arriving
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to a good joint identification of both the contaminant source and the spatial
heterogeneity of the conductivities.

Keywords inverse modeling - forensic hydrogeology - data assimilation -
sandbox

1 Introduction

The motivation of this paper is to advance in the problem of the joint identifi-
cation of a contaminant source in an aquifer together with the spatial distribu-
tion of hydraulic conductivities. The restart normal-score Ensemble Kalman
filter (rNS-EnKF) has been tested in synthetic aquifers for the joint identifi-
cation of a source parameters and conductivities and in a sandbox experiment
for the identification of just the source parameters (Chen et al. 2018; Xu and
Goémez-Herndndez 2018). In both cases, the rNS-EnKF performed well; how-
ever, it could be argued that the synthetic case was far from reality, and that
the sandbox experiment used a known homogeneous conductivity. For these
reasons, a new sandbox experiment was designed, with a binary heterogeneous
distribution of conductivity, and with the aim of testing the rNS-EnKF for
the joint identification of the source and a spatially heterogeneous conductivity
field.

In addition, previous experience on the application of the INS-EnKF (Xu
et al. 2013) showed the effect of filter collapse, a problem that can be tackled
by the proper choice of number of ensemble realizations, covariance inflation,
covariance localization or update damping. For this reason, the paper starts
with the analysis of a synthetic field, resembling the new sandbox experiment,
to determine the choice of number of realizations and the technique that pre-
vents the filter to collapse and yields an acceptable identification of both source
and conductivities within reasonable computer times. Once these choices are
made, the sandbox experiment is directly addressed.

The importance of contaminant source identification, for instance in rela-
tion with the protection of wellhead capture zones (Feyen et al. 2003b,a), does
not need to be stressed and it has been the subject of research for many years.
The reader is referred to any of the review papers that can be found in the
literature (e.g., Atmadja and Bagtzoglou 2001; Bagtzoglou and Atmadja 2005;
Michalak and Kitanidis 2004; Sun et al. 2006). A very brief review, including
some works that appeared after the mentioned review papers, follows.

Most contaminant source identification approaches can be classified into
two main categories: optimization ones and probabilistic ones. In the opti-
mization approaches, an objective function is built and the algorithm tries to
minimize the discrepancies between simulated and measured concentrations
using an optimization approach such as least-squares regression or maximum
likelihood (e.g., Amirabdollahian and Datta 2014; Aral et al. 2001; Ayvaz 2016;
Gorelick et al. 1983; Mirghani et al. 2009; Wagner 1992; Yeh et al. 2007). In
the probabilistic approaches, the problem is cast in a stochastic framework
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and the algorithm tries to maximize the posterior probabilities of the simu-
lated concentrations conditioned on the observed values using techniques such
as those based on minimum relative entropy or the use of adjoint states (e.g.,
Bagtzoglou et al. 1992; Butera et al. 2013; Koch and Nowak 2016; Neupauer
and Wilson 1999; Woodbury and Ulrych 1996).

The main criticism to the approaches that can be found in the literature,
and the reason why it is difficult to find applications of any of those techniques
in practice, is that they have worked on synthetic cases, focusing on the iden-
tification of the contaminant source parameters and assuming that aquifer
hydraulic conductivities are perfectly known. But the truth is that geological
properties are quite heterogeneous, only sparsely known in reality, and very
influential in how the aquifer behaves (e.g., Gémez-Herndndez and Wen 1998;
Knudby and Carrera 2005; Zinn and Harvey 2003). Only a few papers discuss
the simultaneous identification of conductivity and the contaminant source,
but, almost all of them are limited to either homogeneous aquifers or with a
simplistic description of its heterogeneity (Datta et al. 2009; Mahar and Datta
2000; Wagner 1992). Only the works by Koch and Nowak (2016) and Xu and
Goémez-Herndndez (2018) address the problem of identifying heterogeneous
conductivities; the former using a Bayesian methodology, and the later using
the rNS-EnKF.

This paper builds on the previous work by Chen et al. (2018) and (Xu and
Goémez-Herndndez 2016, 2018) in which the capabilities of the rNS-EnKF,
for the purpose of the identification of the parameters defining a point con-
taminant source and the aquifer hydraulic conductivities, had been shown
in a synthetic case and in a laboratory experiment, and on the experience
of the research team on addressing the problem of characterization of non-
Gaussian conductivities (Capilla et al. 1999; Franssen and Gémez-Herndndez
2002; Journel et al. 1993; Zhou et al. 2012a,b). The goal of this paper is to
advance towards a practical application of the rNS-EnKF for contaminant
source identification in an aquifer with sparse information about hydraulic
conductivity heterogeneity. In comparison with previous papers, this paper
works with data collected in a sandbox experiment, instead of with gener-
ated synthetic data, and the sandbox has a binary heterogeneous distribution
(unknown to the algorithm), instead of a known homogeneous distribution.
There is an additional important difference with respect to the work by Xu
and Gémez-Herndndez (2018), which is that no piezometric head data are
available, and, therefore, the parameter identification will have to be solely
based on concentration observations. This adds an additional complication to
the performance of the rNS-EnKF since an important source of information
for conductivity heterogeneity identification will be missing.

In an initial attempt to apply the rNS-EnKF directly to the sandbox data,
numerous problems were found related with computing running time, filter col-
lapsing and filter divergence. For this reason, a decision was taken to analyze
first a more controlled synthetic experiment mimicking the heterogenous sand-
box to decide on the number of realizations and the best technique to prevent
the filter to collapse without comprising the results (in a reasonable time, with
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a reasonable uncertainty). As a result, the paper contains two case studies, (i)
the synthetic case, in which a sensitivity analysis is performed combining two
numbers of realizations, two update damping schemes and two covariance in-
flation approaches, out of which the number of ensemble realizations and a
filter collapse prevention technique are chosen; and (ii) the laboratory case, in
which the rNS-EnKF is demonstrated using the findings from the synthetic
case.

Filter collapsing is dealt with the use of covariance inflation. Several such
techniques can be found in the literature (e.g., Anderson 2007; Li et al. 2009;
Liang et al. 2012; Bauser et al. 2018; Hendricks Franssen and Kinzelbach 2008;
Wang and Bishop 2003; Zheng 2009), of which the damping method, Wang’s
method and Bauser’s method will be tested. These methods will be discussed
in detail further on in the corresponding section.

The paper shows the power of concentration data for the joint identification
of conductivities and contaminant source information in a sandbox experiment
by the rNS-EnKF. After this introductory review, the paper continues with
a review of the methodology and a description of the sandbox experiment
and its numerical modeling, followed by the synthetic data analysis and the
sandbox data analysis. The paper ends with the discussion of the results and
some conclusions.

2 Methodology
2.1 Groundwater Flow and Solute Transport Equations
Water flow and contaminant transport in the sandbox are modeled using the

corresponding governing equations for groundwater flow (Bear 1972) and con-
taminant transport (Zheng and Wang 1999):

SS%’Z =V (KVh) +w (1)
0 (gf) =V (0D -VC) — V- (0vC) — q,Cs (2)

where S, is specific storage [L 1], h is hydraulic head [L], ¢ is time [T, V- is the
divergence operator, V is the gradient operator, K is hydraulic conductivity
[LT~1] and w represents distributed sources or sinks [T~1]; 6 is porosity; C
is dissolved concentration [M L~3]; D is the hydrodynamic dispersion tensor
[L2T~1]; v is the flow velocity vector [LT~!] derived from the solution of the
flow equation, gs represents volumetric flow rate per unit volume of aquifer
associated with a fluid source or sink [T71] and Cj is the concentration of the
source or sink [ML~3].

The groundwater flow equation is numerically solved with MODFLOW
(McDonald and Harbaugh 1988) and the contaminant transport equation with
MT3DS (Zheng and Wang 1999).
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2.2 The Ensemble Kalman Filter

The ensemble Kalman filter (EnKF) was developed by Evensen (1994) as an
extension to the Kalman filter (KF). The main difference between the EnKF
and the KF is that, in the KF, the state covariance matrix is propagated in
time using an explicit expression based on a linear transition equation, while, in
the EnKF, this covariance matrix is derived from the statistical analysis of an
ensemble of state realizations obtained after the solution of the state equations
in each realization of the ensemble. The advantage of the EnKF over the KF
is for systems in which the state transition equation is not linear; in such a
case, the linear transition equation used by the KF is only an approximation
and the resulting covariance deteriorates in time; whereas, in the EnKF, since
the covariance is directly calculated from actual state spatial distributions,
its value is more accurate, with the only limitation that the covariance is
computed from a finite ensemble of realizations (if the number of realizations
is small, the resulting estimate may be also inaccurate).

Although the EnKF was initially developed to update only the state of the
system as observations are gathered, it has been shown that it can be also
used for the update of the parameters using what is called an augmented state
that includes both state variables and the parameters that control them (e.g.,
Chen and Zhang 2006; Houtekamer and Mitchell 2001; Li et al. 2012a,c). In
summary, the EnKF has been proven to be an efficient algorithm for parame-
ter identification, for strongly non-linear state-transfer equations, (Hendricks
Franssen and Kinzelbach 2009), and has received much attention in the last
decades. Next, the algorithm is described for the case study at hand, that
is, the identification of the parameters defining a contaminant source together
with the identification of the conductivities in a sandbox experiment for which
only concentration data are available.

First, build an augmented state vector S including the model parameters
and the state variables:

A (XSaZS)ICaIT7T€)T
S = (B) = (Z’IlKl,anl,...,l’l’LKN)T (3)
(Cl,Cl,...,CN)T

where A stands for model parameters, B for state variables, and N is the num-
ber of grid cells. In our case, the model parameters are those describing the
contaminant source, X, Z,, which are the contaminant source coordinates in
the horizontal and vertical directions, I, the injection concentration, I,., the in-
jection rate, and T, the end release time, plus the hydraulic log-conductivities,
InK; and the state variables are the contaminant concentrations, C. The aug-
mented state vector evolves in time, starting with an initial value at time 0,
So.

Second, forecast, using the groundwater flow and transport equations, the
state vector S; at time t based on the state variable B;_; and the model
parameters A;_1 obtained at time ¢ — 1:

ST =¢(Af_y, Biy) (4)
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where the superscript f stands for forecasted values and a stands for updated
values after assimilating the state observations; ¢ represents the state-transfer
function. (In the forecast step, the parameters A remain unchanged —the
transfer function is the identity function—, and the state B evolves according
to the flow and transport equations.)

Next, assimilate the state observations. The discrepancy between fore-
casted states and observed ones is used to update the forecasted augmented
state vector according to the following expression:

o= 5]+ K [y + e - B (5)
where 3% are the observed concentrations at time step ¢, &; stands for an
observation error with zero mean and covariance R;, H is the observation

matrix that extracts out of the whole augmented state vector the elements at
which observations where taken, K; is the Kalman gain matrix:

K, = P/H'HP/H” + R,]! (6)
. 1 Ne — —
P/ = N1 > At - shist, - sy (7)
€ i=1

where Pf is the experimental covariance computed from the ensemble of aug-

mented forecasted states, and Stf is the experimental ensemble mean. (Notice
that because observations are sparse, the observation matrix is mostly made
out of zeroes, and it is not necessary to compute all the elements in P{ , but
only those that are multiplied by the non-zero elements of H in P{ HT.)

2.2.1 The normal-score EnKF

The EnKF was further extended to deal with non-Gaussian variables. The
EnKF was found to be very effective to deal with non-linear transfer functions,
but it failed when the augmented state followed a non-Gaussian distribution
(Zhou et al. 2014). Several approaches have been developed to address this is-
sue: Gaussian mixture models, reparameterizations, iterative approaches, and
Gaussian anamorphosis, also known as normal-score transform (e.g., Chang
et al. 2010; Hendricks Franssen and Kinzelbach 2008; Sun et al. 2009; Zhou
et al. 2011). In this paper, the normal-score approach is used, and more pre-
cisely, the normal-score EnKF (NS-EnKF) as described by Zhou et al. (2011)
or Li et al. (2012b).

The NS-EnKF is based on transforming all parameters and variables into
Gaussian variates, performing EnKF in the Gaussian space, and then, back-
transforming the results into the original space. The normal-score transform
is a univariate transform that ensures that the transformed variates follow
a Gaussian distribution, but it does not ensure that higher-order moments
will follow a multiGaussian distribution; yet, the results obtained with the
NS-EnKF outperform those of EnKF for clearly non-Gaussian parameters.
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2.2.2 The restart NS-EnKF

The EnKF was designed to update both parameters and state variables at
each assimilation step. That is, the discrepancy between forecasted and ob-
served variables is used to update the whole augmented state (see Eq. (5)).
However, in general in the case of subsurface flow and transport, and in par-
ticular in the case at hand of contaminant source identification, the updated
states could be inconsistent with the updated parameters, either because the
mass conservation laws are not longer abided, or because the updated state
is not coherent with the updated contaminant source location. For this rea-
son, the forecast of the augmented state to the next observation time is not
done based on the updated augmented state at the previous time state, but
it is preferable to perform a forecast from time zero with the latest updated
parameters (Camporese et al. 2011; Crestani et al. 2012). This approach is
called, for this reason, the restart ensemble Kalman filter, or, in our case, the
restart normal-score ensemble Kalman filter (rNS-EnKF).
The forecast function in Eq. (4) changes into:

57(0 = oAt 1.5l = (1) ®

where By stands for the initial contaminant concentration in the domain. The
restart EnKF has been applied before, for instance, by Camporese et al. (2011)
and Crestani et al. (2012)

2.2.83 Damping

One way to deal with filter collapsing is to use a damping factor «, between 0
and 1, at the update step (Hendricks Franssen and Kinzelbach 2008):

5S¢ =8 + oK, |y + ¢, — HS{ (9)

2.2.4 Inflation Methods

Another way to reduce filter collapsing is by covariance inflation. There are sev-
eral covariance inflation approaches in the literature (Anderson 2007; Bauser
et al. 2018; Liang et al. 2012; Wang and Bishop 2003). In this work, two dif-
ferent time-dependent multiplicative covariance inflation methods are used,
the one proposed by Wang and Bishop (2003) and the one by Bauser et al.
(2018). In both methods, the augmented state vector should be inflated, after
the forecast, as follows:

Sinh T = V8], - s)) + st (10)
where szf 7 is the inflated augmented state vector of realization i after fore-

cast to t*" time step, and ); is the inflation factor, the computation of which
depends on the approach used.
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In the work by Wang and Bishop (2003), A; is given by:

(R, 2d,)"R; % d; — ny

)\t = 1
trace{R; *HP! (R, *H)T}

(11)

where ny is the number of observations, and d; is a vector with the residuals
between the observation data and the mean of the forecast data at observation
locations:

dy =y —Hx S/ (12)

Then, the updated augmented state vector is calculated as:
S¢, =S+ NPIHTHNPIHT + R, |y +c - HS™ | (13)

Wang and Bishop (2003) already recognize that parameter A; could vary
significantly in time, particularly at the early stages when concentrations are
small everywhere. For this reason, following their recommendations, its value
is restricted to be between 0.7 and 1.2.

In the work by Bauser et al. (2018), A, is treated as a state variable, which
is used to inflate the model parameters. Because it is a state variable, it is
forecasted and updated using the Kalman filter formulation as follows:

)‘{ = /\?71 (14)

A= M Ky, [dy, — ()] (15)

where the superscripts f and a stand for forecasted and updated values, K,
is the Kalman gain, d, is the absolute value of d;, and hA()\{ ) represents the
mean residual between observation data and forecasted mean at observation
location. These values are obtained by:

K, = Pf\ctHi [HNP{tHi + Ry, 7! (16)
(ha,(A\)))i = (R, )ii] 2 (17)

The covariance of the inflation parameter, P{t, the observation matrix Hj,
and the inflation parameter observation error Ry, can be obtained from the
state covariance matrix P{ , the observation matrix H and the observation
error covariance matrix R of the augmented state vector S by:

(P{,)ij = o3P |[(P])i(P]);5] 2 (18)

(Hx,)ij = 217 (ha, W)™ D (H) s (H)ins (P [(M)m]® (19)

m

(Ra,)ij = [(R)i; + (HP,"THT) 4 (20)
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\ Update
D flati
Then R, Calculate Pf\t 11}a:;c(1)(;n

At
LFollowed by h)\t()\{)% Obtain Hj,

Fig. 1 A flowchart of Bauser’s method to update the inflation factors, A¢.

LStart by calculating Pi"/f } Calculate dj,

where o stands for the uncertainty about the inflation factor, which, in this
case, is set to one, the same value used by Bauser et al. (2018), Pi”f’f stands
for the inflated forecast error covariance matrix, which is given by:

T
P = (YA )P (21)

A workflow summarizing how to apply Bauser’s inflation method is shown
in Fig. 1.
Finally, the updated augmented state vector is computed as:

S¢, =S 4 PP THT P T HT + Ry |y e - HSMY | (22)

3 Sandbox Experiment

A contaminant experiment was carried out in a sandbox with sodium fluores-
cein as the tracer. The size of the sandbox is 120 cm by 14 cm by 70 cm. Two
reservoirs with constant water levels at 62.5 cm and 60.6 cm with respect to the
bottom of the sandbox are set at the upstream and downstream boundaries,
respectively. (Notice that the experiment was performed with the upstream
boundary on the right side of the sandbox, and all figures are represented in
this way.) These two tanks define prescribed head boundaries, the bottom of
the sandbox is impermeable and the top boundary is the phreatic surface. Be-
tween the upstream and downstream tanks, the area filled with sand has a size
of 95 cm by 10 cm by 70 cm, which, for the purpose of modeling, is discretized
into 95 columns, 1 row, and 70 layers of equal-sized cells of 1 cm by 10 cm by
1 cm. The sandbox is filled with glass beads of two different diameters, 1 mm
and 4 mm, according to a spatial arrangement generated using a truncated
Gaussian simulation (Journel and Isaaks 1984) with the first quartile as the
truncation threshold, resulting in a large-bead proportion of 0.25. The spa-
tial distribution of the glass beads in the sandbox can also be seen in Fig. 2.
An injector is located at column 86, layer 40, at the position identified with
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Fig. 2 Sketch of the experimental device (view from the camera side inside the darkroom).
H, and H, stand for the constant head boundaries, the dashed rectangle corresponds to the
area captured by the camera in which concentrations will be monitored, the red triangle is
the release location, and the small square around the red dot indicates the release suspect
location during the identification process. Units are in cm. Pairs of numbers in parenthesis
refer to row and column pairs in the numerical model.

a red dot in the figure. The whole sandbox was placed in a darkroom with
a blue light source that was used to excite the injected fluorescein. Pictures
of the plume, as it evolved in time, were taken and luminosity values were
converted into concentration after a calibration procedure following Citarella
et al. (2015).

The hydraulic properties of the beads (Table 1) had been characterized
before with the same sandbox equipment (e.g., Cupola et al. 2015; Citarella
et al. 2015). The hydraulic conductivity of the large beads was estimated as
10.4 cm/s, and that of the small beads as 0.65 cm/s. The porosity is constant,
independent of the bead size, and equal to 0.37. The longitudinal dispersivity
within the large beads was estimated as 0.25 cm, and within the small beads
as 0.106 cm. The ratio of transverse to longitudinal dispersivity is constant
and equal to 0.45.

Although after processing the pictures the spatial distribution of concen-
tration is fully known within the entire central area of the sandbox (dashed
rectangle in Fig. 2), in order to mimic a potential sampling campaign in the
field, only the concentrations observed at the twenty nine dots identified as
observation points in the figure will be used for the purpose of identifying
both the hydraulic conductivity and the contaminant source parameters. The
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Table 1 Parameters used in the groundwater flow and transport models

Hydr. conduct., K 4 mm beads 10.4 cm/s
Hydr. conduct., K 1 mm beads 0.65 cm/s
Porosity, ¢  0.37
Long. disp., ar, 4 mm beads 0.2 cm
Long. disp., az 1 mm beads 0.106 cm
TRVT, aT/aL 0.45

release lasted 1200 s, the fluorescein concentration was 20 mg/l and the in-
jection rate 2.60 cm?/s. Observations were taken until after 3000 s from the
beginning of the injection, every 30 s for a total of 100 observations at each
observation point.

4 Definition of Scenarios and Ensemble Initialization

On a first attempt to apply the rNS-EnKF directly with the observed sand-
box concentrations, some difficulties were found mostly related with the filter
collapsing. These difficulties lead to perform a synthetic experiment prior to
the application to the real data to analyze the impact of the number of en-
semble realizations and the use of different approaches to prevent the filter
to collapse. For this purpose, a reference set of synthetic concentrations was
generated by solving, numerically, the flow and transport equations in a field
with the same spatial distribution of conductivities as the sandbox, the same
boundary conditions, and the same solute injection pulse. Then, 6 scenarios
(81 — S6) were analyzed with different ensemble sizes and different damping
and inflation methods, more precisely, two ensemble sizes were tested (500 and
1000), two values for the damping coefficient (damping with a factor of 0.1 and
with a factor of 0.5) and two covariance inflation methods (Wang’s method
and Bauser’s method). After the analysis of the results using the synthetic ref-
erence, the conclusions was reached, as discussed below, that Bauer’s inflation
method was the best method to prevent filter collapse, thus two additional
scenarios (R1 — R2) were run using the experimental data to test Bauer’s in-
flation approach. The combination of ensemble sizes and inflation methods for
the different scenarios is shown in Table 2.

The initial ensembles of log-conductivity realizations are the same for all
scenarios (for the scenarios of 500 realizations only the first 500 of a to-
tal of 1000 realizations are retained). They are generated using a Gaussian
random function with a mean equal to the weighted mean of the bead log-
conductivities, 1.07 In cm/s, and a variance equal to the variance of a binary
Gaussian mixture of two facies with the means and proportions of the sand-
box and an internal variance of one within each facies, i.e., 1.55 (In cm/s)?.
The correlation range of the log-conductivities is isotropic and equal to 15
cm. Previous studies (Xu et al. 2013), in which no conditioning conductivity
values had been used —as in this case—, have shown that the initial ensemble
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Table 2 Definition of scenarios

Scenario Inflation method Ensemble size
Synthetic
S1 no inflation 500
S2 no inflation 1000
S3 damping factor=0.1 500
S4 damping factor=0.5 500
S5 Wang’s method 500
S6 Bauser’s method 500
Experimental
R1 no inflation 1000
R2 Bauser’s method 500

Table 3 Suspect ranges of source parameters for the generation of the initial ensemble of
realizations and their true values

Parameter Actual Value Suspect Range
X s - z-coordinate of source (cm) 86 78 — 87
Zs - z-coordinate of source (cm) 40 38 — 47
Ir (cm3/s) - injection rate 2.60 2-3
Ic (mg/1) - injection concentration 20 5—25
Te (s) - final release time 1200 1050 — 1250

of log-conductivities is not as important as a sufficient number of observations
of the state of the aquifer.

Similarly, the initial ensembles of source locations and pulses are the same
for all scenarios. They are generated within suspect ranges that are defined us-
ing uniform distributions. The suspect source location (X, Zs), in cm, ranges
in U[78, 86] x UJ[38, 47] (see Fig. 2), the suspect injection rate ranges in U[2,
3] em?/s, the suspect injection concentration ranges in U[5, 25] mg/1 and the
suspect final release time ranges in U[1050, 1250] s (see Table 3). These param-
eters are generated independently among them and of the log-conductivities.
These ranges are used exclusively for the generation of the initial ensembles;
afterwards, the updated parameter values are not restricted by any bounds.

5 Performance Evaluation

The rNS-EnKF is applied to each scenario assimilating the observed concen-
trations at the points indicated in Fig. 2 at each time step. No log-conductivity
or piezometric head data are observed at any time. After assimilating the con-
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centration data at the end of each time step, the filter provides an ensemble
of updated parameters, which are analyzed in different ways:

1. Computing the ensemble mean and variance of the contaminant source
parameters at the end of each time step. The ensemble mean can be in-
terpreted as a parameter estimate and the variance as a measure of the
estimation uncertainty,

2. Visually analyzing the spatial variability of the cell ensemble mean and
ensemble variance of log-conductivities with respect to the reference log-
conductivity spatial distribution,

3. Computing the root mean-squared error (RMSE), the ensemble spread
(ES), and the ratio RMSE/SE of log-conductivities as given by

1 & N
RMSE = |- (InK"™ —InK;)? 23
DA T2 (23)
1 n
ES= |- 2 24
n;UInKi’ (24)

with n being the number of cells over which the averages are computed,
In K Z’ef is the reference log-conductivity value at cell ¢, In K; is the average
of the ensemble of log-conductivity realizations at cell 4, and of, K, s the
variance. The RMSE measures how accurate is the ensemble average as
an estimate of the reference field, and the ES measures the uncertainty
associated with such an estimate. The ratio RMSE/ES is a measure of filter
inbreeding, which may cause the filter to collapse, and should, ideally, be
close to one (e.g., Liang et al. 2011; Xu et al. 2013).

6 Results

As mentioned above, two analyses have been performed, a preliminary one
using synthetic data to decide on the number of realizations and on a method
to prevent filter collapse, followed by a specific analysis of the data collected
at the sandbox experiment.

6.1 Analysis of the Synthetic Data

The synthetic analysis is performed on six scenarios with combinations be-
tween two numbers of realizations and five alternatives to prevent filter collapse
as given in Table 2. Recall that the reference for the synthetic case comes from
a numerical simulation of flow and transport with the same characteristics as
the sandbox experiment.

Figs. 3 and 4 focus on the source parameters, they provide the ensemble
mean and the ensemble variance, respectively, of all five source parameters,
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after the update at each time step for all six scenarios. The ranges of the en-
semble variances were very different for each parameter and for this reason
the results are displayed after standardization by the ensemble variances of
the initial ensembles. It is hard to argue which is the scenario that performs
best. Scenario S3, the one with a damping factor of 0.1, can be discarded
since it is the one that ends with the highest variances for most of the pa-
rameters. Scenario S5, the one with Wang’s inflation method, should also be
discarded because it collapses the ensemble after a few time steps as shown by
the rapid decrease of the ensemble variance to zero for almost all parameters.
Scenario S2, with no inflation, but 1000 realizations —double than the rest of
the scenarios— performs well in that it provides an estimate close to the true
values and the variance decreases in time consistently and similarly to the
rest of the scenarios. Scenario S1, with no inflation and 500 realizations shows
some filter collapse, which does not happen as quickly as for S5 but ends with
similar magnitudes for the ensemble variances. Scenario S4, with a damping
factor of 0.5, does a good job in the estimation of the source parameters,
except for Ic but the final uncertainties are the largest after S3 for most of
the parameters. Finally, scenario S6, with Bauser’s inflation method, could be
considered as the one with the best performance, since it provides very good
estimates for all parameters, except for Ir, and it has low final uncertainties
without filter collapse. All methods estimate the vertical position Zs of the
release point lower in the sandbox than its real position, this behavior can be
produced by local velocity variations induced by the proximity of the injection
to the boundary between two cells with different glass bead diameters which
are not resolved by the observations.

Fig. 5 shows the ensemble mean and Fig. 6 the ensemble variance of the
initial InK realizations and of the updated ones computed at the 90th time
step for all synthetic scenarios. The ensemble mean and ensemble variance of
the initial InK are almost homogeneous and equal to their prior values since no
conditional data of InK is employed. After assimilating all concentration data
during 90 time steps, the ensemble mean of the updated InK conductivities
can capture the main patterns of variability of the glass bead distribution
with a substantial reduction of the ensemble variance in most of the sandbox.
A comparison among the different scenarios shows that, again, S3 performs
worst, with the worst estimation of InK and the largest estimation variances
and S5 shows filter collapse at most locations. Of the remaining scenarios,
52 and S6 give the best results, with S2 being slightly better in InK pattern
estimation thanks to the larger number of ensemble members. For a more
quantitative evaluation of the identification of InK, Fig. 7 shows how the three
statistics RMSE, ES and RMSE/ES evolve in time as the data assimilation
proceeds. The best performance would be for the lowest values of RMSE and
ES and the closest-to-one RMSE/ES ratio. The two best scenarios are S2 and
56, with S6 having the RMSE/ES ratio closest to one.

Taking into consideration the performance of the rNS-EnKF for the differ-
ent synthetic scenarios, the two scenarios that will be analyzed with the ex-
perimental data are the non-inflation method with 1000 realizations, referred
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Fig. 3 Time evolution of the ensemble means of the updated contaminant source parameters
for all the synthetic scenarios (S1 — S6)

to as R1, and the Bauser’s inflation method with 500 realizations, referred to
as R2.

6.2 Analysis of the Sandbox Data

The difficulties found on the first attempt to apply the rNS-EnKF to the sand-
box data must be due to observation errors in the concentrations. According
to earlier work (Chen et al. 2018), an underestimation of the observation er-
ror will force the filter to fit the concentrations too closely producing biased
estimates of the parameters, and an overestimation of the observation error
will allow too loose a fit producing estimates with large uncertainty. Since the
same sandbox equipment as Cupola et al. (2015) and Chen et al. (2018) is
used, the same observation error distribution with a mean of 0 mg/1 and a
standard deviation of 1 mg/1 is retained for this analysis.

Figs. 8 and 9 show the evolution of the ensemble mean and the ensemble
variance, respectively, of the contaminant source parameters for the two sand-
box scenarios (R1, R2). Both approaches perform well with mean estimates



Contaminant Source Identification 17

Xs Zs

o
> -
@
8
o
> -
@
4

o
>
@
e
o
>
@
£

s

<
=
S
kS

Relative variance to

the prior uniform distribution
Relative variance to

the prior uniform distribution

* ",
%,

e, "
N

+ Mmmwv
0 %M' 0 pamee

0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Time step Time step

Ic (mg/l) Ir (cm 3 /s)

<
o
o
o

Relative variance to
the prior uniform distribution

Relative variance to
the prior uniform distribution

o . o g
0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90
Time step Time step

Te(s)

Relative variance to

L oy

o .
0 10 20 30 40 50 60 70 80 90
Time step

Fig. 4 Time evolution of ensemble variances of the updated contaminant source parameters
for all synthetic scenarios(S1—56). Each variance plot has been standardized by the variance
of the initial ensemble.

close to the true values and estimation variances that go down close to zero
for all parameters. It seems that the injection concentration and the injection
rate are more difficult to identify, they have the largest estimation error and
the largest estimation variance; however, if the mass loading rate is computed,
that is the product of the injection rate times the injection concentration,
its mean and variance is similar to those of the other contaminant parame-
ters. This result seems to indicate that there may be some indetermination in
the identification of parameters Ic and Ir that disappears when the subject
of identification is its product. Disregarding parameters Ic and Ir, it can be
concluded that both scenarios perform equally and, therefore, that Bauser’s
inflation method can make up for the reduction from 1000 realizations to 500
realizations with similar performance.

Fig. 10 shows the ensemble mean and variance of InK for scenarios R1 and
R2 at the 90th time step. Fig. 11 shows the ensemble mean of the absolute
differences between the reference and updated InK maps at the 90th time
step. Both scenarios capture the main patterns of variability of InK and the
ensemble variance is substantially reduced in the areas of low conductivity.



18 Zi Chen et al.

T0: mean of Ink

3
- ﬁ“
2
15
a
Los
o
0s
R
Xdirection

T90: mean of InK(S6)

AT

2 direction

Fig. 5 Ensemble mean of the initial InK realizations and the updated InK realizations of
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Comparing the two scenarios, variance reduction is larger for scenario R2 and
the absolute deviations between reference and estimated conductivities are
smaller for R2, implying again that Bauser’s inflation method is a valuable
approach to reduce ensemble size and achieve similar (or better) results as
when a larger ensemble is used. Fig. 7 shows the evolution in time of the InK
RMSE, ES and RMSE/ES ratio for scenarios R1 and R2. Again, scenario R2
performs remarkably well as compared to scenario R1, with a similar RMSE,
smaller ES and a ratio RMSE/ES not too far from one.

Fig. 13 shows the evolution of the contaminant plume in the sandbox at the
10th, 40th, 60th and 90th time steps. Figs. 14 and 15 show the ensemble mean
of the contaminant plumes for scenarios R1 and R2, respectively, at the same
times steps as in Fig. 13 computed with all the parameters updated at the 90th
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Fig. 6 Ensemble variance of the initial InK realizations and the updated InK realizations
of all synthetic scenarios(S1 — S6) at the 90th time step

time step. The comparison of the simulated plumes with the observed ones is
very favorable, demonstrating that the estimated parameters are conditioned
on the observed concentrations, and that they are capable of giving a good
prediction of contaminant movement.

7 Discussion and Conclusions

Xu and Gomez-Hernandez (2018) showed the capabilities of the the restart
normal-score ensemble Kalman filter (rfNS-EnKF) for the simultaneous identi-
fication of source parameters and hydraulic conductivities in synthetic aquifers.
This work presents the first attempt to apply it to a non-synthetic exercise.
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An aquifer is mimicked by a laboratory sandbox in which geometry, initial
and boundary conditions are known. The first finding was that it was not
straightforward to apply the approach to the collected data; working under
laboratory conditions does not preclude measurement and other errors, what
prevented the filter to work properly on first attempts. The filter would col-
lapse, even for large ensemble sizes, what led to an analysis of a synthetic
case using solute concentrations generated by a numerical model, thus getting
rid of model or measurement errors. In this synthetic exercise, six scenarios
were compared showing the importance of a good selection of an approach to
prevent filter collapse. Of the four alternative approaches, Bauser’s covariance
inflation method appeared as the most appropriate, allowing to reduce the
ensemble size from 1000 members (without inflation) to 500 (with inflation)
to yield similar results. In these synthetic scenarios, it could be observed also
that the horizontal coordinate of the source was well identified, but that the
vertical one was estimated a little bit downwards from the original position.
The explanation must be due to the closeness of the source to a boundary
between the large glass beads and the small ones. The synthetic results also
showed that it is difficult to identify a binary conductivity field starting from
a continuous distribution of log-conductivities, yet, the two main zones of high
and low conductivities are well captured in the different scenarios, with the
scenario having 1000 realizations performing best, followed by the scenario
with 500 realizations and using Bauser’s covariance inflation method.

The application of Bauser’s inflation and 500 realization to the data ob-
served in the sandbox was compared with a non-inflated filter and 1000 real-
izations, with comparable results. The identification of the source parameters
is good in both cases, even for the vertical coordinate of the injection. A better
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identification of the source vertical position in the sandbox than in the syn-
thetic exercises could be explained by the larger measurement error variance
used in the sandbox observations than in the synthetic scenarios. A larger
measurement error gives the filter more flexibility to update the parameters
to fit the observations while resulting in a larger variance on the ensemble of
final parameters. It was also evident that the estimation of both injection rate
and injection concentration were biased; a further analysis showed that there
is a degree of indetermination in the estimation of these two parameters since
the parameter that really matters is their product, the mass loading rate. The
mass loading rate is well estimated with no bias and little uncertainty. As
in the synthetic case, the estimation of a binary conductivity field by a con-
tinuous one is almost impossible, but the final ensemble of log-conductivities
displays enough spatial heterogeneity to distinguish two main areas of high
and low conductivities, and, more importantly, the solution of the mass trans-
port equation in the final conductivity fields yields a contaminant plume that
moves in space and time in a very similar pattern as the one observed in the
sandbox.

It is important to notice that, in the sandbox experiment, the only avail-
able data was concentration data; no observations of either conductivities or
piezometric heads were available. In a practical case, both conductivity and
piezometric head data could also be assimilated resulting in an improved esti-
mation of all parameters being identified.

In conclusion, the rNS-EnKF has been demonstrated to work for the joint
identification of a contaminant source and conductivities beyond the synthetic
exercises were it had been tested previously. The demonstration is still far from
field conditions, where boundary and initial conditions, forcing terms or ge-
ometry are not necessarily known, but the sandbox exercise included a binary
heterogeneous conductivity spatial distribution, which is always difficult to
identify. Further work should focus on the application of the rNS-EnKF to a
field case.
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Fig. 8 Time evolution of the ensemble means of the updated contaminant source parameters
for the two sandbox scenario (R1, R2). Also shown the mass loading rate Ic- Ir.
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Fig. 9 Time evolution of the ensemble variances of the updated contaminant source pa-
rameters for the two sandbox scenario (R1, R2). Also shown the mass loading rate Ic- Ir.
Notice that each ensemble variance has been normalized by their values at time zero.
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Fig. 10 Ensemble mean (top row) and ensemble variance (bottom row) of updated InK of
scenarios R1 and R2 at the 90th time step
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Fig. 11 Ensemble mean of the absolute deviation between reference and updated InK in
scenarios R1 and R2 at the 90th time step
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Fig. 12 Time evolution of InK' RMSE, ES and the ratio of RMSE to ES for scenarios R1
and R2
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T10: contaminant plume T40: contaminant plume

T60: contaminant plume T90: contaminant plume

Fig. 13 Reference contaminant plume evolution at the 10th, 40th, 60th and 90th time steps
in the sandbox. Red triangle denotes the real injector.
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T10: contaminant plume T40: contaminant plume
T60: contaminant plume T90: contaminant plume

Fig. 14 Ensemble mean of contaminant plume evolution of scenario R1 at the 10th, 40th,
60th and 90th time steps with all parameters updated after the 90th time step. Red triangle
denotes the real injector.
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T10: contaminant plume T40: contaminant plume
T60: contaminant plume T90: contaminant plume

Fig. 15 Ensemble mean of contaminant plume evolution of scenario R2 at the 10th, 40th,
60th and 90th time steps with all parameters updated after the 90th time step. Red triangle
denotes the real injector.



