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Abstract: The aim of this work is to derive a formulation for linear two-dimensional elasticity
using just one degree of freedom. This degree of freedom is used to directly discretize the Airy
bipotential equation, which requires higher order basis functions. Isogeometric structural analy-
sis is based on shape functions of the geometry description in Computer-Aided design software.
These shape functions can easily fulfill the continuity requirement of the bipotential equation.
Thus, an Airy element formulation can be obtained through isogeometric methods. In this con-
tribution Non-Uniform Rational B-splines are used to discretize the domain and to solve the
occurring differential equations. Numerical examples demonstrate the accuracy of the evolved
formulation for a quadratic plate under different load situations.

1 INTRODUCTION

In 2005 Hughes et. al [1] introduced isogeometric analysis (IGA). The basic idea of IGA
is to use one common geometry model for design in Computer-Aided design (CAD) software
and analysis with the finite element method (FEM) to overcome model conversions between
design and analysis. Therefore the basis functions, commonly Non-Uniform Rational B-splines
(NURBS) basis functions, from CAD models are also utilized as the basis for the FEM. Besides
the exact description of the geometry, NURBS can also provide high inter-element continuity.
That is why results of equal accuracy to standard FEM can be achieved using less elements.
That points out the huge potential of IGA also for complex geometries. For further information
on basics of NURBS, see [2, 3].

Compared to classical FEM, the numerical effort in IGA is slightly shifted from solving to
assembly. Thus, currently a strong focus in IGA research is set on efficient integration rules,
since the total number of integration points scales very well with the assembly costs. Initially,
the use of full and reduced Gauss integration was proposed in [1, 4]. Currently, integration rules
which are computed from moment fitting equations for specific problems have shown highly
improved efficiency [5, 6, 7]. A very different idea to lower the computational effort for two-
dimensional linear elasticity might be to further make use of the high continuity and choose to
discretize not the standard weak form of equilibrium, but rather the well-known Airy equation,
which is able to describe two-dimensional linear elasticity with only one unknown. This partial
differential equation (PDE) combines the set of PDEs of the classical two-dimensional linear
elasticity formulation approach. Instead of the two unknown displacements per control point of
a standard two-dimensional elasticity formulation, with the discretized Airy formula only one
degree of freedom per control point is obtained.

2 BASIC NURBS TERMINOLOGY FOR 2D ELASTICITY

The considered parameter space is subdivided into knot spans, denoted as elements. The
knots are arranged as a non-decreasing array, the knot vector Ξ = {ξ1, ξ2, ..., ξn+p+1}. Here, n
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is the number of basis functions of polynomial order p needed for the B-spline construction. A
B-spline curve C(ξ) is constructed through control points Bi using a set of polynomial basis
functions Np

i (ξ) by

C(ξ) =
n∑
i=1

Np
i (ξ) Bi . (1)

The underlying p-th order basis functions Np
i (ξ) are defined as follows.

N0
i (ξ) =

{
1 if ξi ≤ ξ ≤ ξi+1

0 else
(2a)

p > 0 : Np
i (ξ) =

ξ − ξi
ξi+p − ξi

Np−1
i (ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Np−1
i+1 (ξ) (2b)

The derivatives of the basis functions are always a combination of lower order basis functions.
The k-th derivative of the i-th basis function can be generalized to

dk

dkξ
Np
i (ξ) =

p!

(p− k)!

k∑
j=0

αk,j N
p−k
i+j (ξ) (3)

with α0,0 = 1, αk,0 =
αk−1,0

ξi+p−k+1−ξi
, αk,k =

−αk−1,k−1

ξi+p+1−ξi+k
αk,j =

αk−1,j−αk−1,j−1

ξi+p+j−k+1−ξi+j
, j = 1, ..., k − 1.

Only a small step is necessary to transform the B-splines Np
i to NURBS Rp

i . Every control

point Bi =
[
XT
i , wi

]T
contains in addition to its coordinates Xi also a weight factor wi. The

B-spline basis has to be divided through the weighting function W (ξ) =
∑n

i=1N
p
i (ξ) wi.

Rp
i (ξ) =

Np
i (ξ) wi
W (ξ)

. (4)

For the two-dimensional case the parameter space is spanned by a tensor product of knot vectors
Ξ1 and Ξ2 in two directions which leads to the shape functions

NI(ξ
1, ξ2) = Rij(ξ

1, ξ2) =
Np1
i (ξ1)Np2

j (ξ2)wij∑n1

î=1

∑n2

ĵ=1
Np1
î

(ξ1)Np2
ĵ

(ξ2)wîĵ
. (5)

Thus, the parametric coordinates of a surface point can be interpolated as

X(ξ1, ξ2) =
nen∑
I=1

NI(ξ
1, ξ2)XI , (6)

where nen = (p1 +1)(p2 +1) is the number of control points per element. To obtain the element
formulation using the solution method of Airy, derivatives up to the 4th order are required. For
shape functions of two-dimensional spaces, partial derivatives have to be computed according
to [2, pp. 136-138].

3 CONTINUUM MECHANICAL FORMULATION

In a two-dimensional space only displacements in two directions exist. Let u1 = u(x, y)
be the displacement in x-direction and u2 = v(x, y) the displacement in y-direction. The
underlying mechanics for a two-dimensional body in this space are described through the three
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main conditions of kinematics, material and equilibrium. The kinematic relations state normal
strains and shear strains as derivatives of the displacements

εx =
∂u

∂x
, εy =

∂v

∂y
, γxy =

∂v

∂x
+
∂u

∂y
. (7)

The two mentioned displacements u and v cause normal stresses σxx and σyy in the directions
x and y and shear stresses τxy or τyx. Although we presupposed only displacements in two
directions and assume plane stress (σzz, τxz, τzx = 0), normal strains do also appear in the third
direction. These correlations between stresses and strains are covered by the following material
law for linear elasticity of a two-dimensional body

εx =
1

E
(σx − νσy), εy =

1

E
(σy − νσx), εz = − ν

E
(σx + σy) (8a)

γxy =
2(1 + ν)

E
τxy, γxz = γyz = 0 , (8b)

where Young’s modulus E and Poisson ratio ν are the material parameters. For applied loads
fx and fy, equilibrium is given in x-direction and in y-direction by

∂σxx
∂x

+
∂τxy
∂y

+ fx = 0 and
∂σyy
∂y

+
∂τyx
∂x

+ fy = 0 , (9)

respectively. In order to ensure a steady and cohesive displacement, also the compatibility
condition

∂2εx
∂y2

+
∂2εy
∂x2

− ∂2γxy
∂x∂y

= 0 (10)

between the single strain components has to be fulfilled. Combining Eqs. (7) to (10), a bihar-
monic equation is received. For fx = fy = 0, we obtain the Airy-equation

∆∆F = 0 , (11)

where F denotes the Airy stress function, a measure without a further physical meaning.
However, its second derivatives directly deliver the stresses

σxx =
∂2F

∂y2
, σyy =

∂2F

∂x2
, τxy = − ∂2F

∂x∂y
. (12)

Taking into account the definition of the Laplace operator ∆, Eq. (11) is extended to

F,xxxx + 2F,xxyy + F,yyyy = 0 (13)

with F,ijkl = ∂
∂i

∂
∂j

∂
∂k

∂
∂l
F . This equation marks the starting point for developing the element

formulation in the subsequent section.

4 NURBS-BASED ISOGEOMETRIC DISCRETIZATION

We suppose F to be a scalar field F ∈ S with S = {F ∈ H4(Ω)|F = 0 on δΩD} in the area
of Ω. The corresponding test function is chosen as δF ∈ S. Eq. (13) is multiplied with the test
function which yields three similar integrals of the type

∫
Ω
F,ijkl δFda. Partial integration is

applied two times and leads to:∫
Ω

F,ijkl δF da =

∫
Ω

(F,ijk δF ),l da−
∫

Ω

(F,ij δF,l),k da +

∫
Ω

F,ij δF,kl da (14)
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Using the divergence theorem for scalar values
∫

Ω
f,i da =

∫
∂Ω
f · ni ds, the integration space is

reduced to the boundaries ∂Ω and the associated normal vector ni is multiplied to the integral.
For a rectangular domain these boundary integrals are treated separately for each boundary.
At x-boundaries nx = 1, ny = 0 is valid and prescribed stresses σxx = σxx and τxy = τxy are
considered. Equally at y-boundaries nx = 0, ny = 1 is valid and σyy = σyy and τyx = τ yx are
possible prescribed stresses. The divergence theorem is applied to Eq. (14) and the boundary
terms are evaluated as mentioned. Thus, the final continuous element formulation is received:∫

Ω

F,xxxx δF da +

∫
Ω

F,yyyy δF da +
1

2

∫
Ω

F,xx δF,yy da

+
1

2

∫
Ω

F,yy δF,xx da +
1

2

∫
Ω

F,xy δF,yx da +
1

2

∫
Ω

F,yx δF,xy da

=

+
1

2

∫
∂Ωx

σxx δF,x ds +
1

2

∫
∂Ωy

σyy δF,y ds− 1

2

∫
∂Ωx

τxy δF,y ds

−1

2

∫
∂Ωy

τ yx δF,x ds +
1

2

∫
∂Ωx

τxy,y δF ds +
1

2

∫
∂Ωy

τ yx,x δF ds

(15)

4.1 Interpolation of geometry, unknowns and test functions

The geometry is interpolated as in Eq. (6). To solve the continuum formulation given in
Eq. (15), next to geometry also all other expressions in the function space are discretized as
an interpolation over all control points. The approximations F h and δF h of the unknown Airy
function and the corresponding test function are interpolated as follows:

F h =

nnp∑
I=1

NI FI , δF h =

nnp∑
J=1

NJ δFJ (16)

Eq. (15) requires up to the fourth derivative of the Airy function and up to the second derivative
of the test function. They are easily derived from Eq. (16) since FI and ∂FI are discrete values.
This leads to the following general derivatives with respect to global coordinates (x, y):

F h
,i =

nnp∑
I=1

NI,i FI , F h
,ij =

nnp∑
I=1

NI,ij FI , F h
,ijk =

nnp∑
I=1

NI,ijk FI , F h
,ijkl =

nnp∑
I=1

NI,ijkl FI (17)

δF h
,i =

nnp∑
J=1

NJ,i δFJ , δF h
,ij =

nnp∑
J=1

NJ,ij δFJ (18)

Later on, integration will be performed as Gaussian quadrature on a bi-unit parent element
using classical change of variables formulation taking into account the Jacobian determinant.
Computation rules of NURBS shape functions and their derivatives in Sec. 2 are based on the
(ξ1, ξ2) coordinate system as needed in the integration process. Thus a transformation rule for
the first, second and fourth derivatives of shape functions appearing on the left side in Eq. (15)
is required between (x, y) and (ξ1, ξ2) coordinate system. As shown in [3] it is useful to apply
the chain rule

∂N

∂xi
=
∂N

∂ξα
∂ξα

∂xi
. (19a)

The gradient of this mapping ∂xi
∂ξα

is computed as part of the Jacobian. To keep it simple yet
exact for our purposes which only include rectangular domains, higher order derivatives are
calculated as follows:

∂2N

∂xi ∂xj
=

∂2N

∂ξα ∂ξβ
∂ξα

∂xi

∂ξβ

∂xj
(19b)
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∂4N

∂xi ∂xj ∂xk ∂xl
=

∂4N

∂ξα ∂ξβ ∂ξγ ∂ξδ
∂ξα

∂xi

∂ξβ

∂xj

∂ξγ

∂xk

∂ξδ

∂xl
(19c)

4.2 Formulation of the condition matrix and final system of equations

Implementing the discretizations and moving the discrete values of Airy and test function
out of the integrals in Eq. (15) leads to

nnp∑
I

nnp∑
J

[(∫
Ω

NI,xxxx NJ da +

∫
Ω

NI,yyyy NJ da +
1

2

∫
Ω

NI,xx NJ,yy da

+
1

2

∫
Ω

NI,yy NJ,xx da +
1

2

∫
Ω

NI,xy NJ,yx da +
1

2

∫
Ω

NI,yx NJ,xx da

)
FI δFJ

]
=

nnp∑
J

[(
1

2

∫
∂Ωx

σxx NJ,x ds +
1

2

∫
∂Ωy

σyy NJ,y ds− 1

2

∫
∂Ωx

τxy NJ,y ds− 1

2

∫
∂Ωy

τ yx NJ,x ds

+

∫
∂Ωx

τxy,y NJ ds +

∫
∂Ωy

τ yx,x NJ ds

)
δFJ

]
.

(20)

The left side of Eq. (20) represents the system ”stiffness” B and as in most cases the right side
includes the loading. To avoid mistakes in the usage of F as Airy stress function, the loads are
marked as L. A loop over all nel elements will sum up the individual parts Be

IJ of the condition
matrix and load components LeJ . This changes Eq. (20) to

nel⋃
e=1

nnen∑
I=1

nnen∑
J=1

Be
IJ FI δFJ =

nel⋃
e=1

nnen∑
J=1

LeJ δFJ . (21)

For an efficient computation of results, Eq. (21) has to be brought into a system of equations.
Therefore, the element condition matrix and the load vector can be arranged as

Be =

 Be
11 . . . Be

1nen
...

. . .
...

Be
nen1 . . . Be

nennen

 , Le =

 Le1
...

Lenen

 . (22)

To solve the global system of equations all element matrices and load vectors have to be mapped
to a global condition matrix B and the global load vector L, respectively. In addition to that,

the discrete solution values are arranged in a vector F̂ =
[
F1, . . . , Fnnp

]T
, where nnp is the

number of global degrees of freedom. After converting Eq. (21) such that the test function is
dropped, the final system of equations

B F̂ = L (23)

can be solved for F̂ with standard routines.

4.3 Treatment of boundary conditions

The right side of the derived element formulation in Eq. (20) involves already prescribed
stresses. These stresses are handed in the process of computation as specified neumann bound-
ary conditions. They can be treated easily as they are well known. But it is much more of
interest how to prescribe dirichlet boundary conditions. They do not directly enter the formula-
tiom, but are necessary to receive full rank for the condition matrix. Without them a too wide
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solution space of possible stress functions, leading all to the correct stress state, is spanned. As
in all FEM formulations dirichlet boundary conditions are imposed for the unknown degrees
of freedom. For the presented element formulation this means some values for F have to be
prescribed without knowing the correct mechanical interpretation. Since within this work only
stress boundary conditions are treated, any dirichlet conditions can be set which yields a stable
computation. It is important that there are enough, yet not too many independent prescribed
values in order to obtain a stable solution. As in standard two-dimensional plane stress FEM,
it is required to set at least three nodal dirichlet conditions in order to prevent the three rigid
body modes. More boundary conditions should not be set in order to not overconstrain the
solution. As displacement boundary conditions are usually the dirichlet conditions in stan-
dard FEM formulations, it has to be stated out that displacements are not concerned and this
procedure does only guarantee accuracy for the stress state.

5 NUMERICAL EXAMPLES

For the following numerical examples, the derived element formulation was embedded in
a matlab working routine for IGA. The expressions τxy,y and τ yx,x are neglected since the
examples include only constant or even no shear. The formulation is tested on a quadratic
plate with the dimensions 2 × 2. As dirichlet condition, F was fixed in both bottom corners
and the upper left corner of the plate.

5.1 Quadratic plate under linearly varying uniaxial tension

A linearly varying tension along the vertical boundaries is applied in x-direction. At the
upper boundary a positive and at the lower boundary a negative stress of 10 is prescribed.
The exact solution for σxx is constant in x-direction and varies linearly in y-direction as the

Figure 1: System sketch for quadratic plate under uniaxial tension

prescribed stresses. σyy and τxy are equal to zero. The stress results using the developed element
formulation are provided in Figs. 2 to 4.

Figure 2: Stress σxx for quadratic
plate under uniaxial tension

Figure 3: Stress σyy for quadratic
plate under uniaxial tension

Figure 4: Stress τxy for quadratic
plate under uniaxial tension
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The mentioned exact analytic stress distribution can be found in all three stress plots. The
values of τxy and σyy are actually numerical zero, only small computing errors in the range
of the employed numerical precision appear. All discretizations yield the exact solution. This
was also tested by the L2-error norm. A negligible error in the range of 10−14 appeared for all
refinement steps. To fulfill the condition of a full rank matrix three nodal dirichlet conditions
have to be set.

5.2 Quadratic plate under pure shear

For the example of pure shear only shear stresses were prescribed at every boundary. As it
is shown in the system sketch in Fig. 5, the unit square is constantly loaded with shear stresses
of 10. The exact solution for τxy is constantly 10 over the whole plate while σxx and σyy are

Figure 5: System sketch for quadratic plate under pure shear

equal to zero. For all three stresses the results are shown in Figs. 6 to 8. In the case of pure

Figure 6: Stress τxy for
quadratic plate under pure shear

Figure 7: Stress σxx for quadratic
plate under pure shear

Figure 8: Stress σyy for quadratic
plate under pure shear

shear the L2-error norm is in the range of 10−13, see Figs. 6 to 8. Under pure shear, as shown
before under uniaxial tension, the exact solution can be obtained using just one element.

5.3 Quadratic plate under complex loads

A rectangular plate with the dimensions −b ≤ x ≤ b and −a ≤ y ≤ a is subjected to a
complex load, which is derived from a chosen load function. This procedure is analogous to
the method of manufactured solutions [8]. Here, a solution F is chosen, which is a simplified
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version of the Fourier solution

F =
∞∑
n=1

cos βnx [Bn cosh βny + Cnβny sinh βny]

+
∞∑
m=1

cosαmy [Dm coshαmx+ Emαmx sinhαmx]

(24)

for uniaxial loading in y-direction with arbitrary shape but opposite sign on top and bottom,
which is provided, e.g., in [9, pp. 175-178]. Since the complete Fourier solution is hard to
compute with high precision, we simply use the solution with one Fourier term only. The
stresses at the boundary are computed from this truncated solution and are applied as loading
at the boundaries. Thus, we have loading functions at the boundary and at the same time
we know the exact stress solution in every point within the domain. Since the occurring
trigonometric functions and hyperbolic functions cannot be exactly described by NURBS basis
functions, it is possible to study the convergence rates of the formulation.

The Airy function for this example is

F = cos βx [B cosh βy + Cβy sinh βy]

+ cosαy [D coshαx+ Eαx sinhαx] ,
(25)

where the constants are chosen in a way that the shear stresses τxy are zero along all boundaries.
This yields α = π/a, β = π/b,

D = −E(1 + αb coth
πb

a
) and B = −C(1 + βa coth

πa

b
) . (26)

Introducing Eq. (26) into Eq. (25) and using the required derivatives, the exact stresses are
given by

σxx = β2C cos βx
[
cosh βy + βy sinh βy − βa coth

πa

b
cosh βy

]
− α2E cosαy

[
αx sinhαx− coshαx− αb coth

πb

a
coshαx

]
σyy = −β2C cos βx

[
− cosh βy + βy sinh βy − βa coth

πa

b
cosh βy

]
+ α2E cosαy

[
αx sinhαx+ coshαx− αb coth

πb

a
coshαx

]
τxy = β2C sin βx

[
βy cosh βy − βa coth

πa

b
sinh βy

]
+ α2E sinαy

[
αx coshαx− αb coth

πb

a
sinhαx

]
(27)

and can directly be used for the validation of the presented element formulation.
For the chosen domain it holds a = 1 and b = 1. The constants C and E, which basically

govern the size of the load at the boundaries, are chosen to be C = 10 and E = 1. The resulting
(Neumann) boundary condition are

σ̄xx = ∓10β2 [cosh βy + βy sinh βy − π coth π cosh βy]

± α2 cosαy [π sinh π − cosh π − π coth π coshπ]
(28)

at x = ±b and

σ̄yy = ±10β2 cos βx [− cosh π + π sinh π − π cothπ cosh π]

± α2 [αx sinhαx+ coshαx− π coth π coshαx]
(29)
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at y = ±a. At all boundaries τ̄xy = 0 holds.
The following results in Figs. 9 to 11 are obtained from NURBS of order p = 8 using 50×50

elements within the patch. The error of the plotted stresses is in the range of 10−6.

Figure 9: Stress σxx for quadratic
plate under complex load

Figure 10: Stress σyy for quadratic
plate under complex load

Figure 11: Stress τxy for quadratic
plate under complex load

Figure 12: Convergence behaviour for the quadratic plate under complex load using orders p = 4, .., 8 for the
discretization. The slopes can be seen to be around p− 2 for each curve.

Using the plot of the L2-error norm in Fig. 12, the convergence behaviour of the proposed
element formulation is assessed. To receive maximum Cp−1 continuity, k-refinement is used.
After some refinement steps a proper convergence behavior is obtained. All considered orders
converge to the exact solution. The slope of the L2 error norm of the stresses for a computation
using basis functions of order p can be seen to be approximately equal to p− 2.

6 CONCLUSION

Within this work a one-degree of freedom formulation for two-dimensional linear elasticity
problems has been obtained. It is based on the Airy equation and allows to compute stresses
as direct solution of the underlying system of equations. Situations where only stress boundary
conditions are relevant can be computed without defining suitable displacement boundary con-
ditions. Thus, computations of that kind are strongly simplified. Possible applications could be
the analysis on the micro level in an FE2 formulation [10]. However, for that kind of applica-
tions it might be required to extend the formulation to handle non-rectangular meshes, which
will be subject of future research. Within the described method the need for higher derivatives
yields a more costly computation of the condition matrix, but the effort for the solution of the
global system of equations will be significantly lower since just one degree of freedom per con-
trol point is required. Thus, the method can be competitive to a standard displacement-based
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two-dimensional elasticity formulation. Future research will try to quantify this exactly. The
presented formulation yields the exact solution in the first two simple examples as expected and
shows proper convergence behavior in the third example with a very complex state of stress.
Future work will focus on a mathematical proof of the convergence rates, on the imposition of
displacement boundary conditions and the computation of arbitrarily shaped patches.
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