
Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Reducing computational time for FEM post-processing through the
use of feedforward neural networks

Martin Zlatić∗, Marko Čanađija†

∗ Faculty of Engineering
University of Rijeka

Rijeka, Croatia
e-mail: mzlatic@riteh.hr

† Faculty of Engineering
University of Rijeka

Rijeka, Croatia
e-mail: marko.canadija@riteh.hr

Key words: Machine Learning, FEM, Postprocessing

Abstract: With the recent surge in neural network usage, machine learning libraries have
become more convenient to use and implement. In this paper the possibility of using neural
networks in order to faster process displacements obtained from finite element calculation and
replace existing post-processing procedures is investigated. The method is implemented on 2D
membrane finite elements for their relative simplicity. A speed up is observed in comparison
to traditional methods of post-processing. Possible further applications of this method are also
presented in this paper.

1 INTRODUCTION

As the performance of central processing units (CPUs) and graphics processing units (GPUs)
increased in the past decades, neural networks have gained momentum since they can be im-
plemented easier than ever before. This has given rise to code such as TensorFlow [1] and
wrappers around the code to make it easier to use such as Keras [2]. Finite element calcula-
tions are commonly used by engineers in a plethora of fields [3] and the two are recently being
combined and commonly used in describing constitutive models, multiscale simulations and
other fields [4–12].

This paper has been inspired mainly by the work of Jung et al. [11] where neural networks
are used to generate the finite element strain-displacement matrix in order to construct the
element stiffness matrix. In this paper the possibility of calculating stress directly from nodal
displacements using neural networks is presented as well as the speed increase over the FEM
software Abaqus’ post-processing. All the necessary data will be generated from Abaqus and
Python with Keras will be used to train and evaluate neural networks.

2 PROBLEM STATEMENT

The goal of this paper is to correctly model linear elasticity trained on 2D membrane elements
and directly obtain stress results from nodal displacements. A stiffness matrix of any finite
element is given in eq. 1, where B is the strain displacement matrix and C is the material
matrix.

K =

∫
V

BTCB dV (1)

In the paper by Jung [11] the strain displacement matrix is generated with neural networks,
while in Huang et. al [12] only the material behaviour is captured. In Eq. 2 u are the nodal
displacements of an element. Thus the need for having separate networks for generating a

https://doi.org/10.4995/YIC2021.2021.12473

             397



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

strain displacement or material matrix can be eliminated and help speed up the calculation.
Obtaining stresses from finite element calculations the following expression is used:

σ = CBu (2)

3 DATA GENERATION AND PREPARATION

The data for training the neural network was obtained through the software Abaqus. First,
a case was prepared through a script where a simple 4 point plate meshed with 2D membrane
elements (type M3D4) was constrained at one edge and loaded on a different edge, Fig.1. The
coordinates xi, yi on the plate were chosen randomly between 0.5 and 1.5 metres in their
respective quadrants, and the nodal loads on the edge are all equal and are randomly chosen
from F n

x ∈ {−3000, 3000} N , and F n
y ∈ {−3000, 3000} N with the individual nodal force then

being F n = F n
x · i + F n

y · j. A structured mesh of element size 50 mm was used. The force
varies from case to case, as well as the edge to which the load or the constraint is applied. The
minimum force applied to an edge can be 84 kN, while the maximum force can be 254 kN.
The load direction also varies from case to case. In total 800 plates were auto-generated for
obtaining training data, in total around 800 000 training samples.

O

(x  , y )1 1

(x  , y )
2 2

(x  , y )
3 3

(x  , y )4 4

Fixed Displacements

Fixed Displacements

Nodal Loads

x

y

Figure 1: Plate geometry and boundary conditions for generating training data.

Once all the simulations are finished the data is processed in the following manner:

1. Nodal positions are obtained from the Abaqus input file

2. The intersection of the diagonals is found.

3. Distances between the intersection and nodes are found and stored in an auxiliary vector.

4. Displacements of the nodes are found and stored in an auxiliary vector.

5. Nodal positions and displacements and Poisson’s ratio are added to the input vector for
training.

6. Stress results from integration points are added into an output vector for training.

398



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Data preparation is shown on Fig. 2. In total the input vector contains 17 values, nodal
positions, displacements, and Poisson’s ratio, see Eq. 3.

1 2

3
4

x

x x

x 4 3

21

1
4

2
3

Figure 2: Illustration of diagonals intersection and nodal distances.

u = (x1, y1, x2, y2, x3, y3, x4, y4, u
1
x, u

1
y, u

2
x, u

2
y, u

3
x, u

3
y, u

4
x, u

4
y, ν) (3)

The output vector contains 12 values, 2 normal stresses and 1 shear stress per integration
point, see Eq. 4. The lower indices refer to the stress component, and the upper indices refer
to the integration point.

σ = (σ1
x, σ

1
y , τ

1
xy, σ

2
x, σ

2
y , τ

2
xy, σ

3
x, σ

3
y, τ

3
xy, σ

4
x, σ

4
y, τ

4
xy, ) (4)

4 TRAINING AND EVALUATING THE NETWORK

The hyperparameters of the network (number of layers, neurons per layer, activation func-
tion, kernel initialization) were determined through trial and error. An illustration of a general
feed-forward neural network is given in Fig. 3 The best performing hyperparameters were:

• Number of hidden layers: 2

• Neurons per layer: 100

• Activation function: Parametric Rectified Linear Unit (PReLU)

• Kernel initialization: Glorot normal [13]

• Kernel regularizer: L2 regularization

• Bias: None

• Optimizer: Adam

• Loss measure: Mean squared error

             399



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Input layer Output layer

Hidden layers

Layer 3

Layer 2

Layer 1

Layer 4

Layer 5

In
pu

t 
da

ta

O
u

tp
u

t d
a

ta

Biases

Figure 3: Illustration of a feed-forward neural network.

For each of the stress components a separate network was trained, due to this the output
was subdivided into three outputs each consisting of 4 values.

σx = (σ1
x, σ

2
x, σ

3
x, σ

4
x) (5)

σx = (σ1
y, σ

2
y, σ

3
y, σ

4
y) (6)

τxy = (τ 1xy, τ
2
xy, τ

3
xy, τ

4
xy) (7)

The networks were then trained with early stopping enabled in case the validation loss does
not improve for 10 epochs.

A few additional cases were generated that have not been in the training or validation set,
these cases are declared to be the holdout set. As a general measure of accuracy the R2 values
are given in Table 1. The values were obtained on the holdout set.

Table 1: R2 values for each stress component.

σ1
x σ1

y τ 1xy σ2
x σ2

y τ 2xy σ3
x σ3

y τ 3xy σ4
x σ4

y τ 4xy
0.9906 0.9901 0.988 0.9915 0.975 0.978 0.9909 0.987 0.969 0.9905 0.975 0.969

A visual representation is given on Fig. 4. For brevity other plots like the one in Fig. 4 are
not shown as they are very similar, as can be seen in Table 1.

400



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

Figure 4: Plot of σ1
x, predicted vs Abaqus stress.

5 TIME REDUCTION

Time was measured for Abaqus needed to complete the analysis of a plate with a set number
of elements. Afterwards the simulation was rerun, but with the option to output stress results
unchecked. The time difference between these two simulations is taken as the time necessary
for Abaqus to post-process stress results. Then a dataset of the same size was processed by
the previously obtained neural network and the execution time was measured. Given that 3
separate networks are used (one for each stress component) the execution time listed for the
neural network is the total time for all 3 networks.

The time required for Abaqus to post-process stress results is 11 seconds while the execution
time for the neural networks is 1.89 seconds. This translates into a time reduction of 82.8% or
an acceleration of 5.82 times. Time required for saving the results from the networks to a file
is also included in the neural network execution time (0.01 seconds per file save in NumPy).

6 CONCLUSION

Neural networks are a viable option for post-processing displacements of finite element cal-
culations especially given the observed time reduction. In this paper they have been used in
conjunction with 2D membrane finite elements and a linearly elastic material model. Applying
neural networks to more complex material models such as those presented in Huang et al. [12]
or du Bos et al. [9] and implementing them in non-linear solvers has the potential to reduce
the computational time by a large margin.

Acknowledgments

This work has been fully supported by Croatian Science Foundation under the project IP-
2019-04-4703. This support is gratefully acknowledged.

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard,
Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,

             401



Book of Extended Abstracts of the 6th ECCOMAS Young Investigators Conference
7th-9th July 2021, Valencia, Spain

K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, software available from tensorflow.org. [Online].
Available: http://tensorflow.org/

[2] F. Chollet et al., “Keras,” https://keras.io, 2015.

[3] K. Bathe, Finite element procedures. Place of publication not identified: publisher not
identified, 2006.

[4] J. Ghaboussi, D. A. Pecknold, M. Zhang, and R. M. Haj-Ali, “Autoprogressive training
of neural network constitutive models,” International Journal for Numerical Methods in
Engineering, vol. 42, no. 1, pp. 105–126, may 1998.

[5] L. Liang, M. Liu, C. Martin, and W. Sun, “A deep learning approach to estimate stress
distribution: a fast and accurate surrogate of finite-element analysis,” Journal of The Royal
Society Interface, vol. 15, no. 138, p. 20170844, jan 2018.

[6] J. He, L. Li, J. Xu, and C. Zheng, “ReLU deep neural networks and linear finite elements,”
Journal of Computational Mathematics, vol. 38, no. 3, pp. 502–527, 2020.

[7] G. Capuano and J. J. Rimoli, “Smart finite elements: A novel machine learning applica-
tion,” Computer Methods in Applied Mechanics and Engineering, vol. 345, pp. 363–381,
mar 2019.

[8] E. Haghighat, M. Raissi, A. Moure, H. Gomez, and R. Juanes, “A deep learning framework
for solution and discovery in solid mechanics,” 2020.

[9] M. L. du Bos, F. Balabdaoui, and J. N. Heidenreich, “Modeling stress-strain curves with
neural networks: a scalable alternative to the return mapping algorithm,” Computational
Materials Science, vol. 178, p. 109629, jun 2020.

[10] P. Carrara, L. D. Lorenzis, L. Stainier, and M. Ortiz, “Data-driven fracture mechanics,”
Computer Methods in Applied Mechanics and Engineering, vol. 372, p. 113390, dec 2020.

[11] J. Jung, K. Yoon, and P.-S. Lee, “Deep learned finite elements,” Computer Methods in
Applied Mechanics and Engineering, vol. 372, p. 113401, dec 2020.

[12] D. Huang, J. N. Fuhg, C. Weißenfels, and P. Wriggers, “A machine learning based plasticity
model using proper orthogonal decomposition,” Computer Methods in Applied Mechanics
and Engineering, vol. 365, p. 113008, jun 2020.

[13] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward neural
networks,” Journal of Machine Learning Research - Proceedings Track, vol. 9, pp. 249–256,
01 2010.

402


	12473



