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Abstract

The aim of the Final Degree Project is the development and implementation of op-
timisation and machine learning techniques for the development of biosensors based on
transcription factors. The Project will focus on the development of machine learning tools
from a database of transcription factors responsive to molecules and metabolites.

The objectives of the Project are the following:

1. Collection of experimental data from biosensors based on transcription factors.

2. Use of machine learning algorithms for the development of predictive systems using
tools such as Keras with Tensorflow in Python to train learning sets from chemical,
biological and process data.

3. Development of an open source library based on the use of machine learning methods.

Keywords: biomanufacturing; automation; robotics; simulation; dynamic
process; optimization; metabolic engineering.
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Resumen

El objetivo del TFG es el desarrollo y la aplicación de estrategias de optimización y
técnicas de machine learning para el desarrollo de biosensores basados en factores de
transcripción. El TFG se centrará en el desarrollo de herramientas de aprendizaje au-
tomático a partir de una base de datos de factores de transcripción responsivos a moléculas
y metabolitos.

Los objetivos del TFG son los siguientes:

1. Recopilación de datos experimentales de biosensores basados en factores de trans-
cripción.

2. Empleo de algoritmos de machine learning para el desarrollo de sistemas predictivos
empleando herramientas como Keras con Tensorflow en Python para entrenar conjuntos
de aprendizaje a partir de datos químicos, biológicos y de proceso.

3. Desarrollo de una librería en código abierto basada en el empleo de métodos de
machine learning.

Palabras clave: biomanufactura; automatización; robótica; simulación; pro-
ceso dinámico; optimización; ingeniería metabólica.
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Resum

L’objectiu del TFG és el desenvolupament i l’aplicació d’estratègies d’optimització i
tècniques de machine learning per al desenvolupament de biosensors basats en factors de
transcripció. El TFG es centrarà en el desenvolupament de ferramentes d’aprenentatge
automàtic a partir d’una base de dades de factors de transcripció responsius a molècules
i metabòlits.

Els objectius del TFG són els següents:

1. Recopilació de dades experimentals de biosensors basats en factors de transcripció.

2. Utilització d’algoritmes de machine learning per al desenvolupament de sistemes
predictius fent ús de ferramentes com Keras amb Tensorflow en Python per entrenar
conjunts d’aprenentatge a partir de dades químiques, biològiques i de procés.

3. Desenvolupament d’una llibreria en codi obert basada en la utilització de mètodes
de machine learning.

Paraules clau: biomaufactura; automatització; robòtica; simulació; procés
dinàmic; optimització; enginyeria metabòlica.
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Chapter 1

Introduction

In this chapter, the main objectives of this Project will be described, as an
introduction of the steps to be followed to accomplish the development of the
proposed biosensors predictive model.

In order to achieve the development of a biosensor library based on a predictive system,
several steps must be followed. These will be guided through different main targets, which
will structure this Project and set the path to reach its final objective.

1. Collection of experimental data from biosensors based on transcription
factors.

For the development of this Project, a database containing information about molecules
and transcription factors (TF from this time forward) will be used as starting point (built
by the experimental director of this Project, Jonathan Tellechea). Here, some molecule
data is collected together with TFs (and its sequences) that can be, theoretically, used as
biosensors to sense the molecule they are associated with.

On the basis of this database, a data augmentation will be performed, as well as an
information search of the given molecules and TFs, in order to find data that might be
useful for the development of the predictive system.

The activities carried out for this purpose will be described in Chapter 3, but they
include a search of homologous of the available sequences, the clustering of homologous
found and obtaining the motifs for each sequence.

Moreover, a bibliography revision will be performed in Chapter 2 with the aim of un-
derstanding how TF based biosensors work and which features are currently being used
in the field of protein function prediction.
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2. Use of machine learning algorithms for the development of predictive
systems.

As machine learning algorithms are the order of the day, it has been considered appro-
priate to use them to develop the predictive model that will allow to build the biosensor
library.

Among all the available techniques (which will be reviewed in Chapter 2) it has been
decided to select those based on deep learning. The main reason is that it is believed that
neural networks will be able to find those features that best describe the relationships
between the TFs and the molecules they are intended to sense.

For this purpose, different strategies (described in Chapter 3) will be followed, concern-
ing each of the aspects to be taken into account to build a deep learning model. First of
all, the network architecture will be decided, as it is needed to plan the following steps. It
will be based on Long Short-Term Memory layers, which are suitable for sequential data
as the ones in question.

Secondly, different data codification processes will be carried out. On the one hand, for
exploring which data representations lead to a better model performance. On the other
hand, for adapting the codification to each type of data to be used. These include the TF
sequences, the molecules and the labels that will establish the relationship between both,
since the technique used involves a supervised learning.

Then, data will be prepared for training the model. Here, how its performance will be
evaluated must be considered, as it will condition how data is split. The K-Fold Cross-
Validation technique will be carried out, so the observations will be divided in training
data and test data, and then the firsts ones will be split again to obtain the validation
groups.

Last but not least, it is necessary to decide on different types of parameters in order to
build the model and ensure a good performance. On the one hand, parameters concerning
the layers of the model are of importance for the purpose of having a good acceptance of
the input data. On the other hand, the hyperparameters control how well the training
will perform.

3. Development of an open source library based on the use of machine
learning methods.

Once the model is built and working properly, it is of great interest to develop an open
source library based on the model that allows new predictions on the affinity between TFs
and molecules.

4
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To this effect, an attempt to implement the model in a web server will be carried out.
The platform in question is Sensbio, an online server for biosensor design developed for
the Dynamic BioDesign Lab (DBDL), belonging to the supervisor of this Project, Pablo
Carbonell (available at https://sensbio.carbonelllab.org).

Associated with this platform there is a database with different molecules and TFs. The
objective is to use the predictive model to find relationships between new molecules or
proteins introduced by the user and those already available in the database.

5





Chapter 2

State of the art

In this chapter, bibliography will be inspected to establish the current state
of biosensors based on TF and those protein function prediction techniques
based on machine learning. Also, some key concepts will be described for
better understanding of this Project.

2.1 Transcription factor-based biosensors

As described in Section 1, the main target of this Project is to obtain biosensor libraries
from a predictive model. Therefore, it is convenient to describe what biosensors are, how
they work and which applications they have nowadays, among other matters.

2.1.1 Biosensors description

Biosensors can be found naturally in cells, measuring its state and responding accord-
ingly to it, for instance, with pathway regulation. However, as synthetic biology and bio-
production are increasingly the order of the day, the engineering of biosensors for these
purposes has become essential (Michener et al. 2012). So, in the context of this Project, a
biosensor is described as a system that can detect the presence or absence of a determined
metabolite and generate a response which is used to regulate the bioproduction pathways.

Biosensors are sorted into two main groups: electrochemical, where the output is an
electrical signal, and optical, where the output is based on the fluorescence, the lumines-
cence or the absorbance (Wan, Marsafari, and Xu 2019).

In metabolic engineering, several types of biosensors can be found (Mehrotra 2016).
In first place, fluorescence resonance energy transfer (FRET) effect is used to sense the
presence of a determined ligand. FRET is the response generated when an interaction
between two fluorophores (a donor and an acceptor) occurs (Kikuchi, Takakusa, and
Nagano 2004). When a ligand-binding peptide is used together the fluorophores, and the
target ligand binds, the FRET effect generates the output.
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Secondly, riboswitches have been used since the beginnings of synthetic biology. They
consist in domains found in the non-coding portions of some mRNAs. Therefore, when a
metabolite binds, changes in processes of gene expression can be observed (Mandal and
Breaker 2004). In this way, it is possible to develop, for example, RNA-based fluorescent
biosensors.

Last but not least, transcription factors are proteins that regulate the transcription rate.
These will be explained in more detail below, as well as its utility as biosensors.

2.1.2 Biosensors based on TFs

As just mentioned, a transcription factor (TF) is a protein that is able to regulate
the transcription rate of a given gene by binding to a DNA sequence (Latchman 1997).
The transcription is regulated due to the fact that bound TFs recruit or block the RNA
polymerase responsible for the transcription.

TFs can act as repressors or activators of the transcription process (Wan, Marsafari,
and Xu 2019). In the first case, RNA polymerase is recruited when the protein is bound
to the transcription factor binding site on the DNA sequence, while in the second case,
polymerase is recruited in the absence of the TF. The binding or not of the TF to the
DNA depends on the presence or absence of a metabolite, which binds with the protein
to create the complete repressor or activator complex. These processes are represented in
Figure 2.1. In this way, if an output could be generated from the union of the metabolite
and the TF, these could be used as biosensors.

Page 2 of 13Wan et al. Microb Cell Fact           (2019) 18:61 

protein–protein (i.e. immunological interaction or GPCR 
receptor) [8], protein-DNA-RNAP (i.e. transcriptional 
regulation) [9], RNA–RNA (i.e. riboregulators and toe-
hold switches) [10–13], DNA/RNA-ligand (i.e. aptamers) 
interactions [14, 15].

Transcriptional factor (TF) based biosensors typi-
cally consist of a repressor or activator protein regulat-
ing the transcriptional activity of a specific promoter. A 
cis-regulatory DNA sequence (generally called operator 
or enhancer) adjacent to the promoter is the core DNA 
element that binds with a TF restricting or enhancing 
the access of RNA polymerase (RNAP) to the promoter. 
A repressor binds to the operator and prevents RNAP 
proceeding forward to decrease transcription (Fig.  1a, 
b); an activator binds to the enhancer elements and pro-
motes the formation of more stable RNAP-promoter 
complex to increase transcription (Fig.  1c, d) [16, 17]. 
Apart from the DNA-binding domain, TFs also contain 
a ligand-binding domain which is the sensor domain that 
responds to small molecules or environmental stress sig-
nal (salt, osmosis, pH, oxygen, redox, light or radiation 
etc.).

Repressor or activator protein typically transduces a 
C-terminal ligand-binding activity to the N-terminal 
DNA-binding activity. Upon interaction with a small mol-
ecule or environmental stress signal, TFs will undergo a 
conformational change leading to altered binding affinity 
between RNAP and the regulated promoter. The RNAP is 
typically designed to drive (actuate) the transcription of 
a reporter protein that outputs an easily measured opti-
cal or biochemical signal (absorbance, fluorescence or 

luminescence) [18]. In principle, small molecule or envi-
ronmental stimuli input will form a dose–response cor-
relation with reporter output. In a word, the C-terminal 
ligand-binding domain of TFs dictates the specificity 
of the input–output relationship, while the N-terminal 
DNA-binding domain of TFs dictates the sensitivity of 
the input–output relationship.

Recent development in metabolite-responsive tran-
scriptional factor (MRTF) based biosensors have 
expanded our ability to reprogram gene expression or 
control metabolic activity [19–22]. Most of these bio-
sensors are developed in bacterial system. Eukaryotic 
gene transcription typically involves many DNA-binding 
proteins associated together to recruit RNA polymer-
ase, bend/loop the template DNA, and stabilize the tran-
scriptional complex inside the nucleus (Fig. 2). Due to the 
complexity of transcriptional regulation and the physical 
barrier of nucleus membrane separating transcription 
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Fig. 1  Generalized principles of metabolite-responsible transcriptional factors (MRTFs) in biological systems. a Repressor binds with TFBS (typically, 
an operator) to block RNA polymerase for transcribing the target gene. Metabolite abolishes repression by removing the roadblock. b Repressor 
binds with metabolite (co-repressor) to form an active transcriptional roadblock and prevents transcription. c Activator binds with TFBS (typically, 
an enhancer element) to recruit RNA polymerase for transcribing the target gene. Metabolites abolishes activation by removing the activator. d 
Activator binds with metabolite (co-activator) to form an active transcriptional recruiter and accelerates transcription. TFBS: transcriptional factor 
binding sites

Fig. 2  Complex transcriptional factor interactions stabilize 
transcriptional bubble and recruit RNA polymerase to transcribe the 
downstream gene in eukaryotes. TBP TATA-binding protein

Figure 2.1: a TF as repressor. Transcription blocked in the absence of the metabolite. b TF as repressor.
Transcription blocked in the presence of the metabolite. c TF as activator. Transcription promoted in the
absence of the metabolite. d TF as activator. Transcription promoted in the presence of the metabolite. Figure
extracted from Wan, Marsafari, and Xu 2019.

It is in the basis of this principle that TF-based biosensors are generated. As mentioned
in Section 2.1.1, biosensors with an optical output are commonly used in metabolic engi-
neering, and thus it is the case for TFs. This is possible thanks to the use of an actuator
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in the architecture of the biosensor (Mahr and Frunzke 2016). Here, a fluorescent protein
as the superfolder GFP gene can be used to generate a response (Ding, Zhou, and Deng
2021). The architecture of this type of biosensors and how the output is obtained are
illustrated in Figure 2.2.

Figure 2.2: TF-based biosensor architecture. When the TF (sensor) is bound to the DNA sequence together with
the metabolite (blue triangle), the fluorescence response is activated. Figure extracted from Mahr and Frunzke
2016.

In relation with the applications of TF biosensors, several options can be found nowa-
days. Among these are:

– The measurement of metabolite concentrations (Baumann et al. 2018) (Chen et al.
2018),

– High-throughput screening (L. Li et al. 2019) (Binder et al. 2012), which allows
to screen through large chemical libraries to accelerate drug discoveries (Mayr and
Bojanic 2009),

– Biosensor-mediated adaptive evolution for increasing metabolite production (Stella
et al. 2019) (S.-D. Liu et al. 2017),

– and Dynamic pathway regulation (Xu et al. 2014), since metabolic fluxes can be
detected and regulated by TFs during bioproduction.

2.1.3 Relevance of biosensor libraries

One of the main problems found in TF-based biosensors is the limitation in the number
of known metabolites that can be sensed using such proteins (Mahr and Frunzke 2016).
There are some options to solve this matter. For instance, if an undetectable compound
is wanted to be sensed, this can be transformed into a detectable metabolite through
enzymatic pathways (Libis, Delépine, and Faulon 2016) (Delépine et al. 2016).

However, these pathways require to be tailor-made, which entails large costs in terms
of investigation. This is where the importance of the use of predictive models lies. Gen-
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erating biosensors libraries from predictions enables to reduce times of investigation, as
this can be directly focused towards the guesses made by the model.

2.2 Machine learning for protein function prediction from
sequences

In this section, a review of different machine learning methods will be performed, paying
special attention to how they have been used for protein function prediction. How the
data, which in this Project are sequences, are commonly prepared will also be discussed.

2.2.1 Why are machine and deep learning techniques needed in this field?

To understand why machine learning techniques are increasingly required for predicting
protein function, it is fundamental to define what “function” means. Traditionally, a
protein function was a single and local action on a molecule or state to transform it
into another. However, a post-genomic view of this term arose (Eisenberg et al. 2000).
Currently, the context in which the protein is involved is considered, and its function is
defined as how the protein relates with other proteins, taking into account each of the
interactions generated. Therefore, “each protein plays a role in an extended network of
interacting molecules” (Bonetta and Valentino 2020).

To define completely this new meaning of the function, Gene Ontology terms (Ashburner
et al. 2000) are used. In this way, three interdependent levels of the protein function are
defined:

– Molecular function, which refers to the traditional meaning of function and describes
the protein activity at a molecular level. It is commonly predicted using computa-
tional methods, for instance, homologous search.

– Biological process, which defines a set of molecular functions. A metabolic pathway
is an example of biological process. Genomic inference methods are used.

– Cellular component, which describes where a protein carries out its function in the
cell. It is important to predict the protein function as it can help to identify the drug
targets.
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sequence and/or structural data. Therefore, in silico approaches can

aid in the prediction of protein function.6 As discussed by Lee et al,

there are different interdependent levels of protein function, which

may be divided into three major types of GO categories: molecular

function, biological process, and cellular component (Figure 2).7

Molecular function refers to activity at the molecular level (eg, cataly-

sis), and is commonly predicted through computational methods,

which identify homologues or orthologues. Biological process

describes broader functions, which are performed by assemblies of

molecular functions, such as a particular metabolic pathway. Genomic

inference methods can identify the direct physical protein-protein

interactions and indirect functional associations, which are found in

biological processes. Finally, cellular component describes the

location(s) within a cell in which the protein performs its function. Pre-

diction of protein subcellular localization is an important component

of bioinformatics based prediction of protein function and genome

annotation, as it can aid the identification of drug targets.8 This com-

ponent can be predicted through methods that predict signal

sequences, residue composition, membrane association, or post-

translational modifications.

Protein information is stored in several databases, such as

UniProt,9 which is the leading protein sequence database or Pfam,

which is a database of protein function families, for which the protein

sequence is known but the function is unknown.10 The gap between

the amount of protein sequences and the functional annotations has

been growing continuously (Figure 3). There is an order of magnitude

more of protein sequences today than 10 years ago in the UniProt

Knowledgebase (UniProtKB). However, the number of manually

annotated and reviewed protein sequences (UniProtKB/SwissProt)

has only marginally increased.

Therefore, a main challenge in bioinformatics involves predicting

the role played by proteins in biological processes and disease, as well

as predicting mechanisms by which such functions are performed. As

new algorithms are developed to address these questions, it is essen-

tial to evaluate the performance of these different function prediction

algorithms with respect to more traditional, manual methods. The bio-

informatics community has sought to address the problem of auto-

mated protein function prediction through initiatives such as the

Critical Assessment of Function Annotation (CAFA) challenge.11 This

is an experiment designed to provide large-scale assessment of com-

putational methods used to predict protein function.

Since more than a decade ago, researchers have used or machine

learning techniques to derive sequence-function relationships.

Machine learning models of protein function have shown to provide

good predictive performance, even when the underlying mechanisms

were not well understood. Bernardes et al documented the growing

critical mass of literature in which machine learning techniques were

used to predict protein function in their review paper.12 However, fol-

lowing the trend in other domains, besides the use of established

methods like random forests, support vector machines (SVM) and

neural networks, the use of deep learning has also caught on, with

impressive results. Deep learning is well suited to big data problems,

and is now within reach due to the rapid evolution in computational

performance. Therefore, we extend the review of the literature

beyond the one performed by Bernardes et al in 2013 to include

novel sources of features and deep learning approaches, among

others. Other reviews have focused on specific taxonomies and ontol-

ogies, such as enzyme functional class prediction13 and subcellular

localization,14 whereas this review is intended to be more comprehen-

sive to cover a wide array of features and techniques which may be

interchangeable across different taxonomies.

The notion of protein function and a recapitulation of the existing

techniques used for function prediction were already provided in this

introduction. The next part of this review presents protein function

F IGURE 1 The evolution of the meaning of protein function. The

traditional view is illustrated on the left, and the post-genomic view
on the right. Adapted from Reference 1 [Color figure can be viewed at
wileyonlinelibrary.com]

F IGURE 2 Classification of protein function according to GO:
molecular function, biological process, and cellular component [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 3 Number of sequences deposited and experimentally
validated in UniProtKB over the past decade. The drop observed
between 2015 and 2016 is due to procedures deployed by curators
to identify and remove redundant proteomes

398 BONETTA AND VALENTINO

Figure 2.3: Number of sequences discovered (red) and with known function (blue) in UniProtKB over the last
years. Figure extracted from Bonetta and Valentino 2020.

Therefore, it has become a great challenge to define the function of a new protein, as
it is involved in a large number of biological processes. In fact, as observed in Figure
2.3, the number of sequences deposited in databases keeps growing each year, whereas
the number of proteins whose function has been experimentally validated remains almost
unchanged.

Consequently, a huge gap between the number of proteins with known and unknown
functions has been generated. This is where machine learning can play a role. By pre-
dicting protein functions, experiments to validate them can be directly focused towards
the solution.

Also, as interaction with all of the cellular processes could be highly complex, deep
learning techniques are of great relevance. These models are created with a large number
of relationships between their components governed by a series of weights that are updated
during training to learn how the data relates to each other. Thus, they have the ability
to learn characteristics and mechanisms that are even poorly understood by humans.

2.2.2 Machine learning techniques

As seen above, machine learning models can be of great help for protein function pre-
diction. Over the last years, several methods and algorithms have been used to solve the
classification problem that involves the association of a protein sequence to a determined
action. Some of the most popular machine learning methods are presented here, as well
as concrete examples of their usefulness in this field.

• SVM algorithm (Boser, Guyon, and Vapnik 1992). It is a supervised model (that
is to say, it requires output labels or ground truth) that aims to classify a set of
observations in two groups, maximizing the distance between them and establishing
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a maximum margin. It was first used when machine learning started to be considered
for protein function prediction (Cai et al. 2003) (Lanckriet et al. 2003).

• kNN algorithm (Altman 1992). The k-nearest neighbours algorithm classifies an
observation based on the classes to which the nearest observations pertain, using
the majority vote to decide the group. Some attempts to predict protein function
through kNN algorithm have been carried out (Hu et al. 2011) (De Ferrari and
Mitchell 2014).

• Logistic regression. It is also a supervised model, which uses a sigmoid function
to try to predict the class of a given observation depending on the values of other
independent variables (Kleinbaum et al. 2002). Due to its simplicity, it has been
used in some specific studies, as for protein interaction networks (Lee et al. 2006) or
protein function prediction based on protein-protein interaction (Ni et al. 2009).

• Naive Bayes. This type of classifiers can be trained by supervised learning and are
based on Bayes’ theorem. It assumes that each variable is independent from the
others when calculating the probability of belonging to a certain group (Rish et al.
2001). An extended version of this algorithm has been developed to predict protein
and gene functions (Campos Merschmann and Freitas 2013).

• Ensemble methods. This term refers to those methods that use more than one
algorithm together to perform predictions. There are mainly two types of ensemble
methods that have been used for protein function prediction.

– Bagging (Breiman 1996). It is a classification technique that tries to reduce
the error variance. It consists in training several classifiers, each with a slightly
different dataset, and then averaging the results. One of the most used methods
is the random forest technique (Breiman 2001), which combines several decision
trees. This has been used to predict glycosylation sites (F. Li et al. 2015) and
for enzyme function classification (Kumar, G. Li, and Choudhary 2009).

– Boosting. It is similar to the bagging technique, but this time trainings are
carried out in series, not in parallel. In this way, the result of a classifier is used
to train the next classifier. The most popular method is AdaBoost (Freund,
Schapire, et al. 1996). This gives more importance to those observations that
were misclassified in the previous iteration, trying to correct the errors in the
next classifiers. It has been used, for example, to predict protein structural class
(Niu et al. 2006).
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2.2.3 Deep learning techniques

Deep learning is a subtype of machine learning that uses a combination of algorithms
to learn about more abstract characteristics and data representations. As explained in
Section 2.2.1, this ability can be exploited in protein function prediction in order to
achieve models that take into account features and relationships that are beyond the
reach of humans.

The above-mentioned combination of algorithms allows to simulate non-linear classifiers,
which distinguishes them from the other methods explained in Section 2.2.2. Nevertheless,
the main difference between these two types of techniques lies in the feature engineering.
In machine learning methods, a previous process of feature extraction must be done to find
those variables that best explain the variability of the data in order to build and train the
model successfully. Meanwhile, although it is recommended sometimes, this process could
be skipped in deep learning techniques as the model is able to do the feature engineering
on its own. Otherwise, the level of abstraction that defines deep learning could not be
achieved.

Another fact that characterises deep learning is its architecture. Usually, these models
are built simulating a neural network, that is to say, they are made up of a series of
layers composed of a number of “neurons” that are interconnected with each other. A
representation of this concept is given in Figure 2.4. The term hidden layers refers to the
fact that, although the number of layers and some aspects of them can be decided, they
form a black box for the user in terms of the operations carried out in their neurons.

OUTPUT
LAYER

HIDDEN
LAYERS

INPUT
LAYER

Figure 2.4: Representation of a neural network example

As a representative example of how deep learning can contribute to the matter in
question, the software DeepGO (Kulmanov, Khan, and Hoehndorf 2017) is able to predict
protein function taking into account the sequence and protein-protein interaction data.
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For this purpose, it consists of three different models, one for each of the function levels
described by the Gene Ontology (explained in Section 2.2.1).

Moreover, two of the most common neural networks are CNNs and RNNs. These are
described here, as well as some models examples that can be of great use for protein
function prediction.

• Convolutional Neural Network (CNN). This consists in a specialized network where
some of its hidden layers perform an operation known as convolution (Albawi, Mo-
hammed, and Al-Zawi 2017). Convolution connects local regions of the data to the
neurons, so the total number of connections is reduced and the method becomes more
efficient. CNNs are commonly used in problems where the data are images. These,
and more specifically immunohistochemistry images, are used in cellular component
prediction (Shao, M. Liu, and Zhang 2016), one of the function levels described
in Section 2.2.1. The most popular CNN used is AlexNet (Krizhevsky, Sutskever,
and Hinton 2012), which has proved to have low error levels. It has been used, for
instance, to predict protein subcellular localisation (Su et al. 2021).

• Recurrent Neural Network (RNN). This type of networks have the ability to process
temporal information (Medsker and Jain 1999). That is to say, they are able to
storage information about data that has already been seen in previous states to
perform predictions. It is for this reason that RNNs are widely use for temporal
data and sequences, such as the protein amino acid sequences. Therefore, they are
useful for predicting protein function (X. Liu 2017). The best known type of RNN is
the one that includes LSTM layers (Hochreiter and Schmidhuber 1997), which can
remember previous states over a long period. So, they are useful with long sequences
as the amino acids ones.

2.2.4 Working with sequences

As seen through the different examples given in Sections 2.2.2 and 2.2.3, when machine
learning techniques were applied they required different types of input data, so the way in
which proteins were represented was different each time. The following question therefore
arises: which are the best features to represent proteins in order to get better models?

There is not a right answer, as each feature provides different advantages and disadvan-
tages in relation with the information that the model can use to perform its predictions.
A summary of these characteristic is shown in Table 2.1. The features considered are the
protein physicochemical properties, the amino acids sequence, the protein-protein inter-
action and text based features extracted from biomedical literature. Also, representation
learning is taken into account as it has been used in several studies (Gligorijević, Barot,
and Bonneau 2018) (Kulmanov, Khan, and Hoehndorf 2017).
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Table 2.1: Advantages and disadvantages of different types of features used to represent proteins for protein
function prediction. Adapted from Bonetta and Valentino 2020.

FEATURE ADVANTAGES DISADVANTAGES

Physicochemical properties Simple and numeric
Insufficient information about the 
protein

Sequence-based Capture plenty of information
Conversion process to numeric data 
required

PPI networks
Sharing functions with 
neighbouring proteins

Reliability of PPI data depends on 
the experimental source

Biomedical text Rich source of information
Results strongly affected by how 
informative the selected terms are

Representation learning
No need for manual feature 
engineering and selection

More computational power and 
larger datasets needed

It is worth paying attention to the representation with sequences, as it is the way in
which most of the information about the protein is provided. This is due to the close
relationship between the amino acids sequence and the protein function. Moreover, only
a data conversion is required with the aim of preparing the sequence for use in a model.

For this purpose, several techniques are available. One of the most popular is the one-
hot encoding. It consists in a vector of zeros where only a determined bit is a one. In
this way, for amino acids sequences the bit with a one would be the bit indicating which
amino acid is at a certain position in the sequence.
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Chapter 3

Methodology

In this chapter, the methods used to accomplish the objectives specified
previously will be described. These methods are grouped into the two major
steps that comprise the development of this Project: the preparation and
study of the data and the building of the neural network which will be used
to create the biosensor library.

3.1 Data preparation

In order to make the available data appropriate to be used to train the predictive
model, several steps must be taken. Those include an analysis of the database used, a
data augmentation, if more observations are required to train the model, and a search of
possibly useful information to improve the model performance.

3.1.1 Database initial analysis

The database used consists of a list of molecules which are identified by their com-
mon name, their International Chemical Identifier (InChI) and their SMILES (Simplified
Molecular Input Line Entry Specification). Other information about the organism of each
molecule is given. In addition, each molecule has associated a TF. These are identified
by their common name, the NCBI accession number and the amino acids sequence.

The most relevant information here are the molecule SMILES and the amino acid se-
quences, as they can be used to train the predictive model (how this data is prepared in
order to be used as input for the neural network will be discussed in Section 3.2).

Also, these variables will provide the necessary information to apply the following tech-
niques.
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3.1.2 Search of homologous

An important step to be taken in order to train a deep neural network is to make sure
that the amount of available data is enough to perform a successful training. Bearing this
in mind, a data augmentation must be carried out.

In this way, a homologous search of the TFs from the database is performed. As homol-
ogous, it is logical to expect that their functions will be similar, so they can be associated
with the same molecule that their corresponding TF has been associated with. Therefore,
the pair molecule - sequence needed for the data augmentation will be completed.

This search is performed using the BLAST algorithm (Altschul et al. 1990) through
the NCBI platform. BLAST (Basic Local Alignment Search Tool) is an algorithm which
allows to compare sequences rapidly, so computing times are reduced enough to make it
possible to look for a homologous sequence through a huge sequence database.

First of all, conditions to execute BLAST have to be set up. As the aim is to obtain
a large number of homologous to train the model, the number of hits decided for each
BLAST execution is the maximum that the NCBI server allows. That is 5000. Then, since
the inputs for the BLAST are proteins and so do the outputs, the type of algorithm used
will be blastp. Finally, NCBI’s databases where to search have to be decided. Looking
for a balance between the database size and its quality, two databases where chosen:
Reference proteins (refseq_protein) and UniProtKB/Swiss-Prot (swissprot).

With all the conditions established, several options are considered in order to execute
BLAST trough the 3498 different TFs found in the database. The first one and more
encouraging is based on using the Biopython library on Python (Chapman and Chang
2000), which allows to send querys directly to the NCBI site to avoid installing the BLAST
algorithm and its databases.

Another option considered is parallel computing, in order to make different searches
simultaneously to reduce even more times, as the list of sequences to search is extensive.
In order to do so, the Galaxy Europe platform is used, which implements a variety of
bioinformatic tools and allows to send multiple jobs which are executed in parallel (Jalili
et al. 2020). The workflow established to obtain the results would be:

1. Uploading a .txt file with the Accession Numbers of the TF extracted from the
database.

2. Obtaining the FASTA files from each Accession Number looking for them in GenBank
and RedSeq databases. The FASTA format stems from the program of the same name
(Pearson and Lipman 1988), and it is used to represent sequences simply and with
a header which describes them.

3. Sending in parallel the BLAST queries giving as input the FASTA files obtained.

4. Obtaining the BLAST results from the two databases selected.
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5. Obtaining the FASTA files from the BLAST hits for future tasks.

3.1.3 Clustering of sequences

For the purpose of organising the vast number of sequences obtained from the BLAST
search (5000 hits were looked for from 3498 sequences), a clustering of the found homol-
ogous is carried out. To this effect, the CD-HIT program is used (W. Li and Godzik
2006). This algorithm allows to cluster a huge number of sequences quickly, comparing
and grouping them according to their similarity.

To avoid downloading and installing the program, the web server CD-HIT Suite is used,
which also provides better accuracy, scalability and flexibility (Huang et al. 2010). The
regular version of the algorithm is run. This, clusters the sequences depending on a
threshold of similarity established by the user, and returns a FASTA file with the groups
generated, each of which has a representative sequence. This main sequence is meant to
be added to the data set to be trained along with the molecule associated to the TF of
which it is a homologous.

To study different possibilities, a total of seven searches are carried out, each of these
with a different similarity threshold. The cut-offs decided range between 0.6 and 0.9 (60%
and 90% of similarity, respectively).

3.1.4 Search of motifs

With the intention of guaranteeing a good performance of the model, a try to get useful
information about the sequences is done. In this way, motifs of the original TFs of the
database are looked for. A motif is a short sub-sequence of a protein which usually serves
to differentiate which family the protein belongs to (Bork and Koonin 1996). Therefore,
motifs are closely related to the protein’s function, so the model learning about which
part of the TF sequence contains the information about functionality might be useful.

The search of motifs is carried out using the PROSITE database, which collects a
large number of “biologically meaningful signatures” (Hulo et al. 2006), that is to say,
motifs. In order to compare the sequences with the PROSITE database to locate the
motifs, the software ScanProsite has been downloaded and run via Python (to iterate
over all sequences). This tool stands out from the rest as it implements totally the syntax
established by PROSITE and complies with all the pattern scanning rules (Gattiker,
Gasteiger, and Bairoch 2002).

Diagram in Figure 3.1 represents the whole process of data preparation prior to model
building.
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Figure 3.1: Complete data preparation diagram

3.2 Neural network: artificial intelligence model

Once all data is collected, it is time to prepare the artificial intelligence model. It is
developed using machine learning techniques, in particular, deep learning ones. In this
way, a neural network based on different layers has been established.

Moreover, different Python libraries have been used in order to develop the model. On
the one side, Tensorflow, and more specifically its API Keras, allows to build and train
the model giving a friendly and flexible interface. On the other side, Scikit-learn has been
used to perform the model validation.

The different aspects to be taken into account are the architecture decided for the neural
network, how the data is prepared to be acceptable as inputs for the net, the way the
validation will be developed and the parameter selection for an acceptable performance
of the model.
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3.2.1 Network architecture

When talking about the network architecture, it refers to which layers have been used
and how they have been set up. A diagram of the architecture selected can be found in
Figure 3.2. In this case, it has to be considered that two types of data will be given as
inputs: the amino acids sequences of the TFs and the molecules associated to each one.

For the first one, an LSTM layer has been applied. LSTMs (Long Short-Term Memory)
are a type of recurrent neural network, which have feedback connections, so they can learn
from earlier states (Hochreiter and Schmidhuber 1997). For this reason, they are ideal for
sequential data such as the ones in question.

For molecules, a simple dense layer is used. The term dense makes reference to a fully-
connected layer, which means that all neurons of the layer are connected with the previous
ones.

DATABASE

INPUT 1:
SEQUENCES

INPUT 2:
MOLECULES

LSTM

DENSE

DENSE OUTPUT:
DENSE

Figure 3.2: Network architecture diagram

After that, both inputs are concatenated and the model learns the relations between
them for the first time in another dense layer. Finally, the output of the network will be
given in the form of a last dense layer. This is expected to provide how much the sequence
is related to the molecule, establishing if the TF can be used as a biosensor or not.

Actually, more dense layers could be used, but in order to keep the architecture as
simple as possible, only the necessary ones have been set up. In this way, it will be easier
to the model to learn about the characteristics of each input and how to relate them.

3.2.2 Input 1: sequences

As mentioned, the model has two inputs which require a preparation for introduction
into the network. The first of them concerns the amino acid sequences of the TFs. Those
are composed of an alphabet of 20 characters, one for each amino acid. For the purpose
of simplifying the input information, a data conversion is carried out.

Instead of using 20 different characters, the amino acids are represented in a matrix
of ones and zeros using the one-hot encoding technique. In its columns, the position of
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each amino acid is represented, so the matrix will have as many columns as the sequence
length. Meanwhile, each row represents an amino acid, so there will be 20 rows. For each
column, that is to mean, each position, a one will be placed in the row corresponding to
the amino acid found in such position.

For understanding, an example is given. If a sequence starts with the amino acids
MRRNK... the first columns of the matrix will look as in Figure 3.3. Note that just a
few rows are represented.

0 1 2 3 4

K 0 0 0 0 1

M 1 0 0 0 0

N 0 0 0 1 0

R 0 1 1 0 0

Figure 3.3: Amino acids matrix example for the sequence MRRNK

In order to simplify even more the input, a reduction of the dimensions of the matrix is
considered. To achieve this, the amino acids can be grouped according to their character-
istics, even if this means a loss of information. The groups taken are nonpolar aliphatic,
nonpolar aromatic, polar uncharged, polar positively charged and polar negatively charged
amino acids.

Another aspect to keep in mind is that not all sequences have the same length. If each
matrix is built independently, dimensions will vary and this will lead to inconsistencies
for the model. To avoid that situation, zero padding is apply to each matrix, giving them
as many columns as positions has the largest sequence.

Furthermore, the information about motifs can be included in these matrices. There
have been considered several options in order to do so:

1. A row for each motif. That is to say, an extra row is added for each motif found as
explained in Section 3.1. In this way, there will be as many extra rows as different
motifs found. Then, a one is placed in the row corresponding to the motif of the
current sequence in the position where it begins.

2. Giving importance to the motifs’ amino acids. For instance, placing a two instead of
a one in positions where a motif is found in the sequence. This would mean matrices
are not longer binary.
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3. Not introducing the motifs. It could be possible that motifs do not give any relevant
information during the training of the model.

4. Introducing just motifs. As motifs are supposed to have the information on the
protein function, they might be enough to give the model the necessary knowledge
to relate them with the molecule.

3.2.3 Input 2: molecules

The second input to be introduced in the network refers to molecules. As commented
in Section 3.1, SMILES of each molecule will be used. However, it is necessary to carry
out a data transformation in order to make molecules understandable for the model.

Therefore, SMILES are converted into fingerprints, which are a way of representation
of molecules by bits. Each bit is meant to represent the presence or absence of an specific
characteristic (Bajorath 2001), so in this way the molecules are fully described. An
example of how the fingerprint of a single molecule would look like is given in Figure 3.4
Moreover, as bits are represented by ones and zeros, data is given to the network in its
simplest form.

Characteristics 1 2 3 4 5 6 ... 512

Fingerprint 0 1 0 0 1 1 ... 1

Figure 3.4: Example of fingerprint for a single molecule. Each bit indicates the presence or absence of a
characteristic

For obtaining these fingerprints, the Python RDKit library is used, which is an open-
source software for chemical informatics. A parameter to be described when using this
toolkit is the fingerprint size. Two different sizes will be tested in the model looking for
which one provides better performance: the default size (2048 bits) and a shorter size
(512 bits), the latter to simplify the input.

Diagram in Figure 3.5 represents how both types of inputs are codified to be used in
the model.

3.2.4 Labels: ground truth

As machine learning is a type of supervised learning, a set of labels is required to tell
the model which is the ground truth and to guide training based on these labels.

Bearing this in mind, a binary array is created to classify each pair sequence - molecule.
If the TF is associated as a biosensor to the molecule, a one is placed in the labels set.
Otherwise, a zero is used as label.
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So far, as described in Section 3.1, only positive sequence - molecule pairs have been
obtained. Though, negative labels are needed to train the model. Moreover, the number
of positive and negative cases must be balanced to ensure a good model performance. For
these reasons, each sequence of the data set is duplicated and associated to a selected
molecule, with which it will not be useful as a biosensor. There have been considered two
options to do this association: either the negative molecules are selected randomly or on
the basis of the Tanimoto index (Bajusz, Rácz, and Héberger 2015). The Tanimoto index
represents the similarity between fingerprints, so unalike molecules can be selected.

Figure 3.5: Data codification diagram

3.2.5 Training, test and validation

When developing a predictive model such as the one in question here, the data set must
be divided into two main groups: training data and test data. The first one will be used
by the model to learn the weights associated to each neuron in order to make a good
prediction. Meanwhile, the second one will be run through the trained model to obtain
how accurate the prediction is. In this case, 20% of data will be used for testing.

However, before using the test data, several different models are tried. In order to select
which one is the best, a validation process is carried out. This consists in using some of
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the training data to make priory tests, the results of which are used to select the definitive
model. Once the model is selected, the test data is used to obtain the actual accuracy of
predictions.

In this case, a K-Fold Cross-Validation technique is performed (Refaeilzadeh, Tang, and
H. Liu 2009). The training data is divided into k folds of the same size. Then, k model
trainings are carried out. For each one, k - 1 segments are used to train and the one left
is used to test the performance. The fold selected to test the model in each iteration is
different, so a different accuracy is returned each time. Once the k accuracies are obtained,
the mean of these is used as the model validation score. The Figure 3.6 illustrates this
process.

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

FOLD 1 FOLD 2 FOLD 3 FOLD 4 FOLD 5

Training data

Accuracy 1

Accuracy 2

Accuracy 3

Accuracy 4

Accuracy 5

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Iteration 5

Mean accuracy:

Validation


Figure 3.6: K-Fold Cross-Validation technique. For each iteration, green folds are used for training and red
folds for testing

3.2.6 Parameter selection

As explained above, the validation process aims to test different models. This includes
testing the parameters that will define it. There have been considered two types of
parameters: the number of units that each layer will have and the hyperparameters of the
model.

Regarding the units’ parameters, in the network structure there are four layers for which
the number of neurons has to be decided. First of all, the layers receiving the inputs are
found. The unique restriction taken into consideration here is that the number of units
in the molecule branch (Dense layer) has to be less than the units in the sequence branch
(LSTM layer). This is because it has been decided to give more emphasis on learning
about sequences, where most of the information is contained. Moreover, a dropout has
been applied to the LSTM layer in order to prevent overfitting (Srivastava et al. 2014).

Then, a Dense layer after the concatenation is found, but there are not restrictions on
the number of units here. And lastly, there is the output layer, which has only a unit
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as the result expected to be returned by the model is a single score about the affinity
between the sequence and the molecule.

About the hyperparameters, they are used to control how the model learns. The hyper-
parameters selected to modify in this Project are the learning rate (step size of the model
optimisation algorithm), the batch size (number of samples that the algorithm takes for
each iteration) and the number of epochs (how many times the optimisation algorithm is
run through all the data).

The range in which both, units’ parameters and hyperparameters, move is defined first
using a bayesian optimisation algorithm (Nogueira 2014), an then refined manually until
the best parameters are found (though avoiding adjusting the parameters too much to
prevent overfitting).

Finally, another two aspects to consider are the network optimisation algorithm and the
activation function. On the one hand, the optimiser tries to reduce the loss function, which
measures the differences between the predictions and the labels. The Adam algorithm
(Kingma and Ba 2014) has been used, a stochastic gradient descent method that requires
little memory, it is not computationally expensive and works well with large data. On
the other hand, the function activation generates the output of each neuron based on
its input. The ReLU (Rectified Linear Unit) function has been applied, as it avoids the
optimisation algorithm to get trapped in local minima and accelerates the convergence
(Hara, Saito, and Shouno 2015).

3.2.7 Model possibilities

Although all of the considerations about the model made in this section are focused on
a network where a sequence and a molecule are introduced as inputs and an affinity score
(depending on the accuracy) is returned as output, other possibilities were considered.
These are listed in Table 3.1.

Table 3.1: Model possibilities considered. The first one (darker blue) is the main model developed in this
Project. Seq: sequence, Mol: molecule.

INPUT OUTPUT

Seq, Mol Score

Seq Mol (score)

Mol Seq (score)

Seq Generate Mol

Mol Generate Seq

Seq, Mol Mutations required

26



Development of a predictive system for the generation of biosensor libraries with
application to the dynamic regulation of bioproduction pathways

The other possibilities include: entering a sequence or a molecule and obtaining its
corresponding match from a database and its score, entering a sequence or a molecule
and generating a likely corresponding match, or entering a sequence and a molecule and
receiving the mutations required to be a match.

3.3 Model implementation

The last aspect to consider is the implementation of the model to generate the biosensor
library. For this purpose, the web server Sensbio will be used, as explained in Section 1.
This consists on a database where new relationships between TFs and molecules can be
found by introducing new inputs.

The platform is divided into three main sections:

– The first one just provides a visualization of the database.

– The second one enables to search similarity between molecules. The user can in-
troduce a new molecule in SMILES format and the Tanimoto index for each of the
molecules in the database is calculated. Then, it returns the most similar molecules.
The implementation of the model here consists on calculating the affinity of the
molecule introduced with each of the TFs in the database.

– In the third section the user introduces the amino acids sequence of a protein and then
the BLAST algorithm is run to obtain a score for similar proteins in the database,
that is to say, likely homologous. In the same way, the prediction model developed
will look for molecules in the database with high affinity with the sequence intro-
duced.

Since a prediction score for each of the observations in the database is calculated each
time, this leads to maybe expensive computing times. To avoid this situation, an option
to run the model just through a selected number of observations will be included in the
web server. The observations selected will depend on the most similar molecules according
to the Tanimoto index in the second section, or on the most similar sequences according
to the BLAST score in the third section.

It should be noted that a successful implementation of the model on the web server
would accomplish two further possibilities for the use of the model, which were described
in Table 3.1. These would be the second and the third options.
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Chapter 4

Results

In this chapter, results for every step taken to develop this Project will
be presented. These will also be discussed in order to relate which of the
methodologies described in Chapter 3 gives the best outcomes.

4.1 Data analysis

A particularly important aspect when planning to train a predictive model is the avail-
able data and its quality. Therefore, it is essential to ensure that results from homologous
and motifs searches are consistent, as well as that the initial database provides sufficient
information.

4.1.1 Analysis of initial database

Although a data augmentation is performed in case more observations are needed to
train the network, mainly the initial data from the database will be used. After its
analysis, there are a total of 5438 pairs molecule - TF available. These will turn into
10876 observations to be used in the training process, after the negative cases are created
as described in Section 3.2.4.

4.1.2 Data augmentation: homologous

As described in Section 3.1.2, two different methods were considered in order to find
the homologous sequences via the BLAST algorithm. First of all, Biopython library was
used. This made it possible to iterate through the sequences and send them, one by one,
to the NCBI site where searches were executed. However, as this algorithm is widely used
by the bioinformatic community, this process was extremely slow, although there was no
problem with the results obtained. Finally, this option was discarded.
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Secondly, bearing in mind the time issue, parallel computing was used. As Galaxy
platform allowed to establish a work flow for obtaining the FASTA files needed and sending
the BLAST queries, this method proved to be much faster.

The quality of the hits (homologous found) done by BLAST is measured with the E-
value, which represents how many similar hits could have been found by chance. So, the
lower the E-value is, the better. In Figure 4.1, the histogram of the maximum E-value
obtained for each BLAST search is represented.

It is noted that the area with the highest density in the histogram is between the
values -7 and -75 of the E-value logarithm, which corresponds with the E-values 10−3 and
3 · 10−33, respectively. Considering these are just the maximum values of each query, it
can be concluded that such low values represent a well performed search.

Figure 4.1: Maximum E-value histogram obtained for each BLAST search

In relation to the number of homologous found, there were more than 16 million hits
found across all searches. However, the number of hits that are repeated in several searches
is quite high, so the total number of hits obtained without repeating each other was almost
1.5 million.

With these results, another step taken was the homologous clustering. As described
in Section 3.1.3, this was performed with different similarity thresholds. The number of
clusters obtained for each cut-off is represented in Figure 4.2. As expected, when the
threshold is more restrictive, less sequences are grouped together so more cluster are
generated.

30



Development of a predictive system for the generation of biosensor libraries with
application to the dynamic regulation of bioproduction pathways

Figure 4.2: Number of clusters obtained depending on the threshold selected

A reference sequence for each cluster is selected to be used as training data, as explained
in Section 3.1.3, so the number of clusters represents the number of observations which
will be given as inputs for the neural network. Therefore, depending on the number of
observations required, a different cut-off will be selected.

Whether the data augmentation is finally necessary or not will be discussed in Section
4.3, depending on the results of the training processes.

4.1.3 Database extension: motifs

As explained in Section 3.1.4, motifs from the original sequences were extracted. Among
these, a total of 5205 motifs were found, although they are repeated and just 49 are
different. The frequency of occurrence of each one can be found in Figure 4.3. It can be
observed that 29 of them have been found less than 50 times, while the rest have a higher
frequency of occurrence. The motifs PS50949 and PS50932 stand out from the rest.

It should be noted that there are some sequences with more than one motif, whereas
there are others with no motifs. Therefore, while training, the neural network will not
have the same amount of information for each sequence.

Whether the information provided by motifs is useful or not in order to obtain a better
accuracy in the model will be discussed in Section 4.3. There, the different options
considered in Section 3.2.2 to introduce the motifs information as inputs will be evaluated
depending on the model performance.
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Figure 4.3: Frequency of occurrence of each motif found among the initial sequences in the database

4.2 Data preparation as inputs for the neural network

On the one hand, sequences’ matrices were constructed as described in Section 3.2.2.
Since different options were considered, the generated inputs have different sizes. These
are represented in Table 4.1.

To understand them, it is necessary to take into account several aspects. Regarding
the number of observations, as initially just sequences from the original database will be
used to train the model, 5438 sequences are available. Since negative cases were included
as described in Section 3.2.4, the number of observations is doubled. About the number
of columns, zero padding was applied to make all sequences of the same length and the
largest sequence was made of 978 amino acids. The latter does not apply to the last case.

Table 4.1: Matrices shapes for each of the inputs considered. Shapes are represented as number of (observations,
rows, columns).

TYPE OF INPUT SHAPE

All amino acids (no motifs) (10876, 20, 978)

Amino acids grouped (no motifs) (10876,   5, 978)

Each motif in a row (all aa) (10876, 69, 978)

Motifs in sequence (all aa) (10876, 20, 978)

Just motifs (all aa) (10876, 20, 255)
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It is in the number of rows where differences appear. The first case is the base one, where
motifs are not included and all the information about the amino acids is represented. As
there are 20 amino acids, this is the number of rows for the matrices. When amino acids
are clustered as described in Section 3.2.2, 5 groups are formed in the second case.

Then, the addition of motifs is considered. As seen above in Section 4.1.3, 49 different
motifs were found. When a row is added for each motif, the number increases to 69 rows.
Meanwhile, if motifs information is added in the sequence itself, there are not shape
modifications. Lastly, if just motifs are introduced, it is the length of the sequences that
is modified, having as many columns as the number of amino acids of the longest motif.

Note that this input is 3-dimensional, since the matrices for each sequence are stored
together.

On the other hand, in Section 3.2.3 was described how molecules have to be converted
into inputs. The fingerprints generated are also placed in a matrix, where columns repre-
sent the bits with the information about the characteristics of the molecules and in rows
each molecule fingerprint is introduced. In this way, there are as many rows as obser-
vations (10876), while the number of columns depends on the number of bits decided to
create the fingerprints (2048 and 512 bits were considered).

Finally, labels indicating whether the TF is valid to sense the molecule or not are set
in a single array of 10876 observations.

Bearing in mind the amount of observations and the fact that inputs have up to three
dimensions, it is to be expected that computing times during the training will not be
short. Taking into consideration that Cross-Validation is performed too, a training lasts
up to one hour.

4.3 Development of the predictive model

In this section, exploration through the different possibilities the model provides will
be described. These encompasses the different types of inputs seen, the content of each
layer of the network and the value of the hyperparameters.

To check the performance of the the model in each possibility, a Cross-Validation process
(described in Section 3.2.5) is carried out. The number of folds selected (k) is 5, so each
model is validated five times.

The metrics used during the validation are the loss function and the accuracy. The loss
function selected is the binary cross entropy, as the labels represent a binary classification:
whether the pair sequence - molecule is valid or not.
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4.3.1 Best inputs

The first input tried was the one with all amino acids represented and the motifs placed
each in a row (option 1 in Section 3.2.2). The reason why it was first used is that
this represents all the possible information, as all amino acids are set and motifs are
differentiated between them.

Later, in an attempt to reduce the matrix size to make things easier to the model, the
motifs were marked in each sequence (option 2 in Section 3.2.2), losing its differentia-
tion but winning importance about its place in the sequence. However, no significant
improvement was observed.

At this point, the quality of information given by motifs was questioned, so they were
removed from the matrix (option 3 in Section 3.2.2), leaving just the raw sequences. Again,
no changes were perceived in the model accuracy. Therefore, it could be concluded that
motifs do not give any relevant information to the model that could be used to ensure a
better performance.

Despite these findings, introducing just the motifs sub-sequences was tried. In this way,
matrix size is reduced and the model can be focused on the information about sequences
function. Nevertheless, the model performance was even worse, so it was conclude that it
is necessary to have the entire sequence and the irrelevance of motifs role was confirmed.

Another aspect considered when constructing the sequences matrix was whether to
use all amino acids or to group them as explained in Section 3.2.2. Both options were
tried with no significant changes, so it was decided to conserve all amino acids since the
information remains complete.

In relation with the molecules input, two decisions had to be taken. The first one refers
to the number of bits used to obtain the fingerprints and it is described in Section 3.2.3.
Initially, this was set to 2048 bits as it was expected to provide more information about
molecules characteristics. However, most of the fingerprints were plenty of zeros. So, to
simplify the inputs, fingerprints were rearranged to 512 bits. This was a determinant
decision, since the model accuracy went from poor levels around 56% to better results of
around 73% of accuracy.

The second issue to be discussed is described in Section 3.2.4 and it is related to the
selection of molecules for the negative cases. When chosen randomly, the results were
not bad at all, as accuracy levels remained unchanged. Nevertheless, when the Tanimoto
index was used to select particularly different molecules, performance increased up to
84%.

Note that the percentages given are not the final metrics which describe the model per-
formance, because the discussion on parameter values has yet to be carried out (Sections
4.3.2 and 4.3.3).
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To sum up, the inputs finally used are:

• Input 1: sequence matrices with a row for each of the 20 amino acids and the
information about motifs not included.

• Input 2: fingerprints matrix with 512 bits and negative cases selected by little simi-
larity.

4.3.2 Units of the layers

When describing the parameter selection in Section 3.2.6, several restrictions were made
about the number of units that each layer of the network architecture should have. Using
the bayesian optimisation algorithm mentioned in the same Section and through several
validation process, the units that best fit the model were decided.

In Figure 4.4, the units selected for each layer are represented. The term “output shape”
makes reference to the fact that each unit generates a weight to be used by the neural
network during the training, so the number of units represents the number of weights
generated at the output of that layer.

LSTM

Output Shape: 90

DENSE

Output Shape: 70 DENSE

Output Shape: 70

OUTPUT: DENSE

Output Shape: 1

Concatenation

Output Shape: 160

INPUT 1: SEQUENCES

Output Shape: (20, 978)

INPUT 2: MOLECULES

Output Shape: (512)

Figure 4.4: Network architecture. The number of units selected for each layer is represented as the shape of the
output of the layer

One of the most relevant aspects here is the units of the first Dense layer, in the molecules
branch (blue). It was determinant for a better model performance to select a lower number
than the selected for the sequences branch (yellow). In that way, it was ensured that the
network focused on learning about the sequential naturalness of the first input.
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4.3.3 Network hyperparameters

In Section 3.2.6 was established that three hyperparameters would be modified in order
to obtain a good model performance. The final values selected for each one are here
indicated, as well as the reasoning that has led to their election.

• Learning rate: 0.0001

This is indicated to the optimisation algorithm. As explained in Section 3.2.6, Adam
was used. The learning rate indicates the magnitude in which the gradient descent
method corrects the network weights, so when greater values were used the model
converged too quickly and the optimal solution was not achieved. On the contrary,
when the learning rate was too small, the method got stuck in a local minimum and
results did not change over iterations.

The value selected finds a balance between this two situations and achieves an optimal
result.

• Batch size: 50

As it refers to the number of observations taken in each iteration, the batch size value
compromises the speed and accuracy of the training. When lower, more iterations
are required, so performance is better and the training time is longer. Oppositely,
if it is larger it takes less iterations, so it is faster to train the model but it is more
difficult to obtain an optimal accuracy.

After several validation processes testing values, it resulted that batches of 50 samples
balanced the training speed and the model accuracy.

• Epochs: 30

It is important to select an appropriate number of epochs, not only for the computing
time, but for the model performance. A low value might lead to a sub-optimal
solution, while a very large value can result in over-training. The latter situation
refers to the case where the model has seen the training data so many times that it
overfits them.

30 epochs have been enough to obtain acceptable accuracies while avoiding overfit-
ting.
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4.3.4 Performance evolution

At the beginning of this section it has been indicated that loss and accuracy are the
metrics used to evaluate the models. Both values have been studied closely during all
the possibilities of the model tried. The last results obtained during the validation pro-
cess, which describe the model performance when the training is carried out taking into
consideration the decisions made in Section 4.2 and previously in this one, are shown in
Table 4.2.

Table 4.2: Loss and accuracy scores obtained during the definitive validation process of the model. Folds make
reference to the cross validation technique carried out

FOLD NUMBER LOSS ACCURACY

Fold 1 0.460 89.31 %

Fold 2 0.331 89.43 %

Fold 3 0.505 83.97 %

Fold 4 0.399 88.56 %

Fold 5 0.297 89.77 %

Average 0.399 88.21 %

Not only its final value at the end of each attempt carried out, but also the accuracy and
loss evaluation during the training process has been observed. Its visual analysis provides
information about how the network is performing the learning, so undesirable events as
overfitting or artifacts can be detected.

Figure 4.5: Example of accuracy curve for one of the validation processes of the final model
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In Figure 4.5 a representative example (taken from one of the folds during the cross
validation process) of the evolution of the accuracy curve is shown. As expected, a growth
of the curve can be observed as the number of epochs increases, and then it stabilises.
This effect demonstrates that the number of epochs is enough and, since the stabilisation
is not long, it also proves that it is not too large.

Moreover, the validation curve is under the train one. This is a good sign because an
overfitted model would not produce this effect as clearly.

Lastly, in Figure 4.6 the loss curve is represented. The fact that the validation curve
goes over the train one could be disturbing as it could mean a case of overfitting. However,
taking into account the discussion made above about the accuracy curve and the fact that
loss curves stabilise (an actual case of over-training would produce a late rise in curves),
overfitting can be discarded.

Figure 4.6: Example of loss curve for one of the validation processes of the final model

Therefore, bearing in mind the scores obtained by each of the validation process and the
performance evolution, which demonstrates there is no overfitting and neither apparent
artefacts, it can be concluded that the model validation has been carried out successfully.
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4.4 Model testing

Now that the best parameters for the model have been selected and properly validated,
the actual training is carried out. It is important to distinguish between the validation
process and the training process. While the former is used to train several model possi-
bilities and to explore which parameters best fit the problem, the latter is used to train
the model when all its aspects have been decided. The difference lies in the fact that the
train data is not split in folds the second time: the entire set is used for training.

Once the model is fully developed and trained, it is time to test its actual performance.
As it was explained in Section 3.2.5, data was split in order to preserve some observations
that have never been seen by the model. Consequently, there is no way the model could
return its predictions based on a previous learning of that concrete data, so these results
are a reliable representation of how the model would actually work with new data.

4.4.1 Accuracy and loss

The scores obtained when predictions were made with the test data have been 0.323
of loss and 89.84% of accuracy. As expected, these values are around the average
validation scores (Table 4.2). This leaves an error of slightly more than 10% of the cases,
which is considered to be a desirable performance.

4.4.2 The ROC curve and the AUC value

Another aspect considered to evaluate the model performance has been the Receiver
Operating Characteristic (ROC) curve. This is used to evaluate a binary classification
such as the one in question (whether there is affinity between the TF and the molecule
or not). To understand its meaning, some statistical terms must be defined first.

– Recall: it is the model’s ability to find all positive cases. That is to say, the recall
represents how many positive cases have been correctly labeled among all the positive
cases. It is calculated by the formula TP/(TP+FN). It is also known as the true
positive rate.

– Specificity: it is the model’s ability to find all negative cases. That is to say, the
specificity represents how many negative cases have been correctly labeled among all
the negative cases. It is calculated by the formula TN/(TN+FP). It is also known
as the true negative rate.

It is also important to bear in mind what the model is intended to do with its training.
The main objective is to distinguish as best as possible between two populations of data,
in this case TF - molecule affinity or not. If the model was totally inefficient, the two
populations would be completely superimposed. On the contrary, if the model was ideal,
there would be no overlap between them.
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When trying to classify a new observation, a threshold has to be defined to decide to
which population it belongs in case it is in the overlapping section. Depending on where
the threshold is located, the recall and specificity will change its values when testing the
model.

The relation between the values of this two metrics according to the threshold location
is that the ROC curve represents. However, instead of using specificity, it uses its com-
plementary value. In this way, the ROC curve is a graph that plots the true positive rate
against the false positive rate.

Figure 4.7: ROC curve resulting from test and its AUC value

In the worst of cases, the ROC curve would look as the striped line in Figure 4.7, whereas
if the model performs well, the curve departs from the diagonal. The actual ROC curve
obtained when using the test data to make predictions is shown in the same figure. As it
can be observed, the recall increases rapidly, so the model is able to distinguish between
the two groups.

The AUC value (area under the curve) is useful too. It ranges from 0.5 to 1 and the
higher it is the better the performance of the model. In this case, its value is 0.963, which
confirms that the model has been properly trained.
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4.4.3 Group comparison

Finally, other metrics have been evaluated to explore how well the model performs
concretely with each of the groups. It is valuable information in order to find biases
between classes. The metrics extracted have been:

– Precision: it is the model’s ability to not label positive cases as negative. That is
to say, the precision represents how many positive cases have been correctly labeled
among all the observations predicted as positive. It is calculated by the formula
TP/(TP+FP).

– Recall: already explained in Section 4.4.2.

– F1-score: it is is the harmonic mean of precision and recall.

The values obtained are shown in Table 4.3. As it can be observed, all of them are quite
similar for both groups, specially the F1-score. This fact leads to the conclusion that the
model is well balanced for predicting either the affinity between a TF and a molecule or
the impossibility of using the TF to sense the molecule.

Table 4.3: Precision, recall and F1-score for prediction with the test data. The terms “no match” and “match”
refer to whether the pair TF - molecule was supposed to have a negative label (0) or a positive one (1)

TF - molecule Precision Recall F1-score

No match 0.92 0.87 0.89

Match 0.88 0.93 0.9
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Chapter 5

Conclusions

In this last chapter, several conclusions found during the development of
this Project will be presented. In addition, the accomplishment of the objec-
tives explained in Section 1 will be reviewed. Finally, future lines of work
will be considered.

5.1 Convenience of using deep learning techniques

The choice of using deep learning methods instead of other machine learning techniques
has proved to be a success. Here, some aspects of the processes carried out in relation
with the model development will be discussed.

5.1.1 Deep learning abilities

One of the most important difficulties found during this Project was the fact of working
with sequences. Whether with the use of bioinformatic tools for the data augmentation
or with the preparation of inputs for the model, the long sequences and the large number
of them were something difficult to work with.

Along the same lines, the information the TFs have in order to relate them with the
metabolites that they can sense is highly abstract. Therefore, if feature characterisation
had been necessary, it would have been an added difficulty.

Thanks to deep learning techniques, this process was not required. The neural network
ability to extract the characteristics that better fit the model objective was of great help in
order to develop a well-performing model. Also, it has been able to find data relationships
which are perhaps currently unattainable for human understanding.

It should be noted that this was possible thanks to the fact that enough data observa-
tions were available.
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5.1.2 Importance of simplicity in the architecture

When the model architecture was described in Section 3.2.1, it was mentioned the fact
that only the necessary layers were used to keep it as simple as possible. This has resulted
to be vitally important.

Thanks to the structure simplicity, the model was able to learn the required features
avoiding to learn too much of the data, so there was not overfitting. Furthermore, it has
led to relatively short computing times. Although each validation process needed almost
an hour to be complete, the final model training lasted no more than fifteen minutes.
Consequently, predictions with new data are carried out in reasonable periods of time.

Actually, other architectures with more layers were tested. However, there was not a
significant improvement in the performance and it took more time to train the models.

5.1.3 Importance of the validation process

It has also been considered important to highlight how the validation processes carried
out to find the best model were of great help in order to achieve a good performance and,
most importantly, to avoid false results.

Thanks to the different tests carried out with different groups of data, it could be
detected when a model configuration was acceptable for a concrete fold but not for the
rest. Or vice versa, which is a more dangerous situation if some results are presumed as
correct. When the average accuracy seemed to be proper, the validation process enabled
to check if there was any fold with poor performance, which would have meant that the
model was wrongly trained.

5.2 Importance of data codification

The most relevant aspect in order to achieve an acceptable performance of the model was
the way in which the data was prepared to be used as inputs for the network. Although
the parameters selection and the network architecture were important to achieve better
results, the main key was the data codification.

5.2.1 Simplicity in input codification

The philosophy followed when preparing data as inputs was to keep them as simple as
possible. For instance, this is the reason why one-hot encoding was used with sequences,
since it can represent them in binary form.

However, it was the molecules codification that finally was of most importance. As
explained in Sections 3.2.3 and 4.3.1, first the default size for fingerprints was used. When
training models with fingerprints of 2048 bits, the performance results were incredibly
poor. It was the size reduction that let the model to obtain better accuracies.
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Until this fact was discovered, no change on the model parameters were useful to enable
the model learn about the relationships between sequences and molecules. This is therefore
a representative example of the importance of proper data preparation.

5.2.2 Relevance of motifs

At the beginning of this Project it was thought that motifs would be important in order
to facilitate the network’s extraction of protein function characteristics. However, as seen
in Section 4.3.1, this was not the case. Two possible explanations can be concluded from
this fact:

– Motifs were not correctly codified. That is to say, the methodologies applied (which
were described in Section 3.2.2) were not able to extract the motifs information from
the sequences in a useful way for the neural network.

– Motifs are not vitally important in this field. Although they theoretically contain
the information about the protein function, these sub-sequences may not be of great
relevance for predicting the affinity between a protein and a molecule. In other words,
it is more important to consider the entire TF sequence to find which molecules it
can sense.

Anyway, not using the motifs information has not been an impediment to achieve a
well-performing model.

5.2.3 Class balance

Another aspect that often poses difficulties in deep learning classification problems is
the class balance, that is to say, the balance between the number of observations of each
group.

Luckily, as the negative cases were created manually (as explained in Section 3.2.4),
it was possible to have exactly the same number of positive and negative observations.
This turned out to be important to avoid biases between classes when new predictions
are performed, as the model has no preferences when classifying the new observation. For
example, if the available data had been unbalanced in favour of the positive cases, the
model would tend to predict new cases as positive, resulting in false positives.

An evidence that this problem has been avoided can be observed in Table 4.3, where
metrics for both classes are similar and acceptable.

45



Development of a predictive system for the generation of biosensor libraries with
application to the dynamic regulation of bioproduction pathways

5.3 Final results

Taking into account the different evaluations carried out about the model performance,
it can be concluded that it has been developed successfully.

The performance evolution during the final validation process demonstrates a properly
training. As seen in Section 4.3.4, the values of loss and accuracy in every fold were similar,
so there are not any specific data to which the model is overfitted. Also, the discussion
carried out about how these values changed over the epochs (Figures 4.5 and 4.6) leads
to the conclusion that there are not artefacts that may lead to wrong predictions.

Moreover, the results from using the test data were also good enough. The accuracy and
loss values from the testing process were similar to those obtained while the validation
process. They are a little better, perhaps because of the fact that more observation were
used when training (train data is not split to obtain validation data). The ROC curve
and the AUC value proved good performance too when distinguishing observations of
each class. Lastly, the group comparison demonstrated a balanced model, as mentioned
above.

5.4 Objectives accomplishment

In this section, a review of the objectives set out at the beginning of this report will be
performed, checking if they have been fulfilled successfully.

1. Collection of data from TF based biosensors. A series of bioinformatic tools
have been used during the data augmentation and the search of sequence information.
These were used with success, collecting experimental data that could have been
useful. Even if neither the homologous found nor the motifs of the sequences have
been used finally for this model, it has been an enriching and formative experience.

2. Use of machine learning algorithms for predictive model development. As
the results shown in Section 4.4 are satisfactory, it could be concluded that this
objective has been fulfilled successfully. The predictive model is ready to be used
with new data.

3. Biosensor open source library development. With the implementation of the
model in the Sensbio web server, this tool is ready to generate biosensor libraries
that can be useful for dynamic regulation of bioproduction pathways. Moreover, the
results obtained in the web server when introducing new proteins or molecules are
apparently reasonable: the prediction scores range between 0 and 1 with different
values for each comparison.

46



Development of a predictive system for the generation of biosensor libraries with
application to the dynamic regulation of bioproduction pathways

5.5 Future lines

There are some tasks that could be carried out in the future if this Project were to be
continued. Some of them are exposed here:

– Use of the data augmentation performed. Although it was not necessary for obtaining
acceptable performance values, the neural network could be trained with all the data
collected from the homologous search and its clustering. In this way, the model would
have a wider range of work and possibly the quality of its predictions would increase
when using new data. Computing times and resources limitation were the reasons
for not further exploring the use of this data set at present.

– Model updating. As new coincidences between TF and metabolites to be sensed
are discovered continuously, keeping up to date the model is a necessary task. This
would ensure the quality of predictions, avoiding leaving the model useless.

– Experimental testing. This comprises the evaluation of new TFs based biosensors
predicted by the model. If predictions are tested in the laboratory, the model quality
could be confirmed.
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Budget





Chapter 1

Budget breakdown

In this chapter, the different costs linked to the development of this Project are pre-
sented. For this purpose, the labour and materials costs are described first. Then, how
they contribute to each development phase is explained.

1.1 Labour costs

In order to establish the salaries corresponding to the supervisor of this Project, the
experimental director and the author (junior biomedical engineer), data shared by the
UPV Human Resources Service have been used. The three roles have been considered to
belong to the Teaching and Research Staff (PDI) of the UPV. Taking this into account
and defining the most accurate profile for each one, an estimation of their annual salary
was made. Then, the price per hour for each case was calculated considering that there
are 1696 working hours per year.

The total cost from labour is presented in Table B.1.

Table B.1: Labour price table

No. Id. Labour description Price (€/h) Hours (h) Total (€)

1 L.01 Supervisor labour 20.39 26 530.14

2 L.02 Experimental director labour 19.37 13 251.81

3 L.03 Junior biomedical engineer labour 11.79 488 5753.52

6535.47

Labour table

Total labour (€):
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1.2 Materials costs

Here, the different materials that were necessary for the development of the Project
are listed (Table B.2). even if many were free of charge, it has been considered useful to
include them in the budget to describe how they have contributed to each phase.

Table B.2: Materials price table

No. Id. Material description Price (€/u) Quantity (units) Total (€)

1 MAT.01 Microsoft 365 licence 140.00 1 140.00

2 MAT.02 PC: Intel(R) Core(TM) i7, 8 GB RAM 650.00 1 650.00

3 MAT.03 Anaconda (Python) licence 0.00 1 0.00

4 MAT.04 Google Colab licence 0.00 1 0.00

5 MAT.05 Overleaf (Latex) licence 0.00 1 0.00

790.00

Material price table

Total materials (€):

1.3 Unit costs

In Table B.3 the different phases carried out for the Project development are listed,
including the steps followed. Each of these has an associated cost, which will be described
in Section 1.4.
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Table B.3: Unit prices table

No. Description Price in numbers (€) Price in words

1 Preliminary study

1.1 Project definition 107.22

One hundred and seven euros and 

twenty-two cents

1.2 Project planning 214.45

Two hundred and fourteen euros and 

forty-five cents

1.3 Investigation of the problem 68.07 Sixty-eight euros and seven cents

2 Data processing

2.1 Initial study of the database 43.54 Forty-three euros and fifty-four cents

2.2 Homologous search 551.30

Five hundred and fifty-one euros and 

thirty cents

2.3 Homologous clustering 303.56

Three hundred and three euros and fifty-

six cents

2.4 Motifs search 495.50

Four hundred and ninety-five euros and 

fifty cents

2.5 Follow-up meeting 99.34 Ninety-nine euros and thirty-four cents

3

3.1 Programming language learning 247.75

Two hundred and forty-seven euros and 

seventy-five cents

3.2 Model planning 68.07 Sixty-eight euros and seven cents

3.3 Data codification 439.69

Four hundred and thirty-nine euros and 

sixty-nine cents

3.4 Model training 1430.69

One thousand four hundred and thirty 

euros and sixty-nine cents

3.5 Follow-up meeting 33.47 Thirty-three euros and forty-seven cents

4 Study of results

4.1 Models validation 340.34

Three hundred and forty euros and 

thirty-four cents

4.2 Model test 55.81 Fifty-five euros and eighty-one cents

4.3 Interpretation of results 481.21

Four hundred and eighty-one euros and 

twenty-one cents

4.4 Follow-up meeting 37.70 Thirty-seven euros and seventy cents

5 Model implementation

5.1 Web server implementation 92.59 Ninety-two euros and fifty-nine cents

5.2 Follow-up meeting 88.21 Eighty-eight euros and twenty-one cents

6 Documents writing

6.1 Project report writing 1517.78

One thousand five hundred seventeen 

euros and seventy-eight cents

6.2 Budget writing 277.00 Two hundred and seventy-seven euros

6.3 Follow-up meeting 38.50 Thirty-eight euros and fifty cents

Model development
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1.4 Decomposed prices

In this section, how each of the components listed in Tables B.1 (labour cost) and B.2
(materials cost) contribute to each of the project phases is described. This justifies the
costs found in Table B.3 (unit costs). Tables from B.4 to B.9 decompose the prices of
each phase.

It should be mentioned that the percentage considered for the indirect costs has been a
4%. Also, the use of each material has been divided proportionally in each phase.

Table B.4: Phase 1 price table

No. Id. Unit Description Quantity Price per unit of resource (€) Total (€)

1 1 Preliminary study

1.1 01.01 U Project definition

L.01 h Supervisor labour 2 20.39 40.78

L.02 h Experimental director labour 2 19.37 38.74

L.03 h Junior biomedical engineer labour 2 11.79 23.58

% Indirect costs 4 103.10 4.12

Total price per U (€): 107.22

1.2 01.02 U Project planning

L.01 h Supervisor labour 4 20.39 81.56

L.02 h Experimental director labour 4 19.37 77.48

L.03 h Junior biomedical engineer labour 4 11.79 47.16

% Indirect costs 4 206.20 8.25

Total price per U (€): 214.45

1.3 01.03 U Investigation of the problem

L.03 h Junior biomedical engineer labour 5 11.79 58.95

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.01 650.00 6.50

% Indirect costs 4 65.45 2.62

Total price per U (€): 68.07
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Table B.5: Phase 2 price table

No. Id. Unit Description Quantity Price per unit of resource (€) Total (€)

2 2 Data processing

2.1 02.01 U Initial study of the database

L.03 h Junior biomedical engineer labour 3 11.79 35.37

MAT.03 u Anaconda (Python) licence 0.1 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.01 650.00 6.50

% Indirect costs 4 41.87 1.67

Total price per U (€): 43.54

2.2 02.02 U Homologous search

L.03 h Junior biomedical engineer labour 40 11.79 471.60

MAT.03 u Anaconda (Python) licence 0.025 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.09 650.00 58.50

% Indirect costs 4 530.10 21.20

Total price per U (€): 551.30

2.3 02.03 U Homologous clustering

L.03 h Junior biomedical engineer labour 22 11.79 259.38

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.05 650.00 32.50

% Indirect costs 4 291.88 11.68

Total price per U (€): 303.56

2.4 02.04 U Motifs search

L.03 h Junior biomedical engineer labour 36 11.79 424.44

MAT.03 u Anaconda (Python) licence 0.1 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.08 650.00 52.00

% Indirect costs 4 476.44 19.06

Total price per U (€): 495.50

2.5 02.05 U Follow-up meeting

L.01 h Supervisor labour 2 20.39 40.78

L.02 h Experimental director labour 1 19.37 19.37

L.03 h Junior biomedical engineer labour 3 11.79 35.37

% Indirect costs 4 95.52 3.82

Total price per U (€): 99.34
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Table B.6: Phase 3 price table

No. Id. Unit Description Quantity Price per unit of resource (€) Total (€)

3 3 Model development

3.1 03.01 U Programming language learning

L.03 h Junior biomedical engineer labour 18 11.79 212.22

MAT.03 u Anaconda (Python) licence 0.1 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.04 650.00 26.00

% Indirect costs 4 238.22 9.53

Total price per U (€): 247.75

3.2 03.02 U Model planning

L.03 h Junior biomedical engineer labour 5 11.79 58.95

MAT.03 u Anaconda (Python) licence 0.1 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.01 650.00 6.50

% Indirect costs 4 65.45 2.62

Total price per U (€): 68.07

3.3 03.03 U Data codification

L.03 h Junior biomedical engineer labour 32 11.79 377.28

MAT.03 u Anaconda (Python) licence 0.4 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.07 650.00 45.50

% Indirect costs 4 422.78 16.91

Total price per U (€): 439.69

3.4 03.04 U Model training

L.03 h Junior biomedical engineer labour 104 11.79 1226.16

MAT.04 u Google Colab licence 0.7 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.23 650.00 149.50

% Indirect costs 4 1375.66 55.03

Total price per U (€): 1430.69

3.5 03.05 U Follow-up meeting

L.01 h Supervisor labour 1 20.39 20.39

L.03 h Junior biomedical engineer labour 1 11.79 11.79

% Indirect costs 4 32.18 1.29

Total price per U (€): 33.47
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Table B.7: Phase 4 price table

No. Id. Unit Description Quantity Price per unit of resource (€) Total (€)

4 4 Study of results

4.1 04.01 U Models validation

L.03 h Junior biomedical engineer labour 25 11.79 294.75

MAT.03 u Anaconda (Python) licence 0.1 0.00 0.00

MAT.04 u Google Colab licence 0.2 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.05 650.00 32.50

% Indirect costs 4 327.25 13.09

Total price per U (€): 340.34

4.2 04.02 U Model test

L.03 h Junior biomedical engineer labour 4 11.79 47.16

MAT.03 u Anaconda (Python) licence 0.05 0.00 0.00

MAT.04 u Google Colab licence 0.1 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.01 650.00 6.50

% Indirect costs 4 53.66 2.15

Total price per U (€): 55.81

4.3 04.03 U Interpretation of results

L.03 h Junior biomedical engineer labour 30 11.79 353.70

MAT.01 u Microsoft 365 licence 0.5 140.00 70.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.06 650.00 39.00

% Indirect costs 4 462.70 18.51

Total price per U (€): 481.21

4.4 04.04 U Follow-up meeting

L.01 h Supervisor labour 1 20.39 20.39

L.02 h Experimental director labour 0.2 20.34 4.07

L.03 h Junior biomedical engineer labour 1 11.79 11.79

% Indirect costs 4 36.248 1.45

Total price per U (€): 37.70
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Table B.8: Phase 5 price table

No. Id. Unit Description Quantity Price per unit of resource (€) Total (€)

5 5 Model implementation

5.1 05.01 U Web server implementation

L.03 h Junior biomedical engineer labour 7 11.79 82.53

MAT.03 u Anaconda (Python) licence 0.025 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.01 650.00 6.50

% Indirect costs 4 89.03 3.56

Total price per U (€): 92.59

5.2 05.02 U Follow-up meeting

L.01 h Supervisor labour 1 20.39 20.39

L.02 h Experimental director labour 1.5 19.37 29.06

L.03 h Junior biomedical engineer labour 3 11.79 35.37

% Indirect costs 4 84.815 3.39

Total price per U (€): 88.21

Table B.9: Phase 6 price table

No. Id. Unit Description Quantity Price per unit of resource (€) Total (€)

6 6 Documents writing

6.1 06.01 U Project report writing

L.03 h Junior biomedical engineer labour 110 11.79 1296.90

MAT.05 u Overleaf (Latex) licence 0.7 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.25 650.00 162.50

% Indirect costs 4 1459.40 58.38

Total price per U (€): 1517.78

6.2 06.02 U Budget writing

L.03 h Junior biomedical engineer labour 15 11.79 176.85

MAT.01 u Microsoft 365 licence 0.5 140.00 70.00

MAT.05 u Overleaf (Latex) licence 0.3 0.00 0.00

MAT.02 u PC: Intel(R) Core(TM) i7, 8 GB RAM 0.03 650.00 19.50

% Indirect costs 4 266.35 10.65

Total price per U (€): 277.00

6.3 06.03 U Follow-up meeting

L.01 h Supervisor labour 1 20.39 20.39

L.02 h Experimental director labour 0.25 19.37 4.84

L.03 h Junior biomedical engineer labour 1 11.79 11.79

% Indirect costs 4 37.0225 1.48

Total price per U (€): 38.50

66



Development of a predictive system for the generation of biosensor libraries with
application to the dynamic regulation of bioproduction pathways

1.5 Measurements

In Table B.10, the number of work units necessary to complete each of the steps des-
cribed above is shown. This will condition the final price of each phase.

Table B.10: Measurements price table

No. Unit Description Measurement (U)

1.1 U Project definition 1

1.2 U Project planning 1

1.3 U Investigation of the problem 1

No. Unit Description Measurement (U)

2.1 U Initial study of the database 1

2.2 U Homologous search 1

2.3 U Homologous clustering 1

2.4 U Motifs search 1

2.5 U Follow-up meeting 2

No. Unit Description Measurement (U)

3.1 U Programming language learning 1

3.2 U Model planning 1

3.3 U Data codification 1

3.4 U Model training 1

3.5 U Follow-up meeting 5

No. Unit Description Measurement (U)

4.1 U Models validation 1

4.2 U Model test 1

4.3 U Interpretation of results 1

4.4 U Follow-up meeting 5

No. Unit Description Measurement (U)

5.1 U Web server implementation 1

5.2 U Follow-up meeting 2

No. Unit Description Measurement (U)

6.1 U Project report writing 1

6.2 U Budget writing 1

6.3 U Follow-up meeting 4

1. Preliminary study

2. Data processing

3. Model development

4. Study of results

5. Model implementation

6. Documents writing
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1.6 Partial budgets

To finish with the budget breakdown, the partial budget for each of the phases is
calculated in Table B.11.

Table B.11: Partial budgets

No. Unit Description Measurement Price (€) Total (€)

1.1 U Project definition 1 107.22 107.22

1.2 U Project planning 1 214.45 214.45

1.3 U Investigation of the problem 1 68.07 68.07

389.74

No. Unit Description Measurement Price (€) Total (€)

2.1 U Initial study of the database 1 43.54 43.54

2.2 U Homologous search 1 551.30 551.30

2.3 U Homologous clustering 1 303.56 303.56

2.4 U Motifs search 1 495.50 495.50

2.5 U Follow-up meeting 2 99.34 198.68

1592.58

No. Unit Description Measurement Price (€) Total (€)

3.1 U Programming language learning 1 247.75 247.75

3.2 U Model planning 1 68.07 68.07

3.3 U Data codification 1 439.69 439.69

3.4 U Model training 1 1430.69 1430.69

3.5 U Follow-up meeting 5 33.47 167.35

2353.55

No. Unit Description Measurement Price (€) Total (€)

4.1 U Models validation 1 340.34 340.34

4.2 U Model test 1 55.81 55.81

4.3 U Interpretation of results 1 481.21 481.21

4.4 U Follow-up meeting 5 37.70 188.5

1065.86

No. Unit Description Measurement Price (€) Total (€)

5.1 U Web server implementation 1 92.59 92.59

5.2 U Follow-up meeting 2 88.21 176.42

269.01

No. Unit Description Measurement Price (€) Total (€)

6.1 U Project report writing 1 1517.78 1517.78

6.2 U Budget writing 1 277.00 277.00

6.3 U Follow-up meeting 4 38.50 154.00

1948.78

Total partial budget 5. Model implementation (€):

Total partial budget 6. Documents writing (€):

Total partial budget 1. Preliminary study (€):

Total partial budget 2. Data processing (€):

Total partial budget 3. Model development (€):

Total partial budget 4. Study of results (€):
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Chapter 2

Contractual execution budget

Considering the cost for each of the phases obtained previously, the total cost of this
Project is calculated. For this purpose, it has been considered a 13% of overheads and
an industrial profit of 6%. Also, the value-added tax (IVA in Spanish) of 21% has been
applied.

Table B.12: Summary price table

Chapter Price (€)

1. Preliminary study 389.74

2. Data processing 1592.58

3. Model development 2353.55

4. Study of results 1065.86

5. Model implementation 269.01

6. Documents writing 1948.78

Material execution budget 7619.52

13 % of overheads 990.54

6 % of industrial profit 457.17

Addition 9067.23

21 % IVA 1904.12

Contractual execution budget 10971.35

The total contractual execution budget is TEN THOUSAND NINE HUNDRED AND
SEVENTY-ONE EUROS AND THIRTY-FIVE CENTS.
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