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Abstract In the mid-1980s, still in his young 40s, André Journel was already recog-
nized as one of the giants of geostatistics. Many of the contributions from his new
research program at Stanford University had centered around the indicator methods
that he developed: indicator kriging and multiple indicator kriging. But when his sec-
ond crop of graduate students arrived at Stanford, indicator methods still lacked an
approach to conditional simulation that was not tainted by what André called the
‘Gaussian disease’; early indicator simulations went through the tortuous path of con-
verting all indicators to Gaussian variables, running a turning bands simulation, and
truncating the resulting multi-Gaussian realizations. When he conceived of sequential
indicator simulation (SIS), even André likely did not recognize the generality of an
approach to simulation that tackled the simulation task one step at a time. The early
enthusiasm for SIS was its ability, in its multiple-indicator form, to cure the Gaus-
sian disease and to build realizations in which spatial continuity did not deteriorate
in the extreme values. Much of Stanford’s work in the 1980s focused on petroleum
geostatistics, where extreme values (the high-permeability fracture zones and the low-
permeability shale barriers) havemuch stronger anisotropy, andmuch longer ranges of
correlation in the maximum continuity direction, than mid-range values. With multi-
Gaussian simulations necessarily impartingweaker continuity to the extremes, SISwas
an important breakthrough. The generality of the sequential approach was soon recog-
nized, first through its analogy with multi-variate unconditional simulation achieved
using the lower triangular matrix of an LU decomposition of the covariance matrix as
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the multiplier of random normal deviates. Modifying LU simulation so that it became
conditional gave rise to sequentialGaussian simulation (SGS), an algorithm that shared
much in common with SIS. With nagging implementation details like the sequential
path and the search neighborhood being common to both methods, improvements in
either SIS or SGS often became improvements to the other. Almost half of the contrib-
utors to this Special Issue became students of André in the classes of 1984–1988, and
several are the pioneers of SIS and SGS. Others who studied later with André explored
and developed the first multipoint statistics simulation procedures, which are based
on the same concept that underlies sequential simulation. Among his many significant
intellectual accomplishments, one of the cornerstones of André Journel’s legacy was
sequential simulation, built one step at a time.

Keywords Random functions · Large grids · Stochastic processes

1 Introduction

This paper presents a review of the evolution of conditional stochastic simulation
of random fields, from the early works by Journel (1974) until the most recent
multiple-point and pattern-based simulations, with sequential simulation acting as
the conductor. After its introduction in the late 80s of the past century, sequential
simulation has become the cornerstone of many or most of the simulation algorithms
of today. This paper, as the rest of the papers in this issue, is a tribute to André Journel
and his ingenuity and it is largely biased towards geostatistics. It happens that the two
co-authors were classmates and wrote the first code of sequential indicator simulation
that was made publicly available under the clear understanding by André of the impor-
tance of public domain code for its widespread use and the advancement of research
and development.

2 Before

Before simulation, there was estimation, and kriging is the paradigmatic estimation
method in geostatistics.

Consider a random function {Z(u), u ∈ D}, characterized by all the n-variate
distribution functions for any n-tuple of points within D

F(Z(u1), Z(u2), . . . , Z(un)),∀n|(u1, u2, . . . , un) ∈ D. (1)

This definition is the classical one, but a random function can also be defined as the
rule that assigns a realization z(u, θ) to the outcome θ of an experiment

Z(u) ∼ {z(u, θ)},∀θ ∈ S, u ∈ D. (2)

The interest of this definition is that the random function can be seen as a collection of
realizations, and the n-variate distribution functions for any n-tuple of points within
D could be obtained from these realizations.
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With the concept of a random function as a collection of realizations, it is
simple to distinguish an unconditional random function (the one given by Eq.
(1) or (2)) from a random function conditional to a set of no observations
{z(u1), z(u2), . . . , z(uno); (u1, u2, . . . , uno) ∈ D}. The latter is made up by the sub-
set of outcomes of the experiment θ ∈ S, that is, by the subset of realizations in Eq.
(2) that match observed values at observation locations, and it will be represented by
{Z(u)|(no), u ∈ D}.

A conditional estimate, z∗(u), can be obtained, for instance, as the expected value
of all the conditional realizations

z∗(u) = E{Z(u)|(no)}. (3)

This is what kriging does, after imposing certain conditions to the random function
such as stationarity of second order. But kriging, which has proven quite valuable in
mining, is a locally optimal estimate (Journel 1989); each estimated value is the best
estimate (in a least-squares sense) of the variable at a location given the conditioning
data, but when considered pairwise, or in groups of three or more, the optimality
is lost, and kriging maps are characterized by a variance much smaller than that of
the underlying random function, and also a smooth spatial variability that cannot
be observed in any of the realizations. For these reasons, an estimated map should
never be used to evaluate the state of a system for which the short scale variability
is of paramount importance, such as is the case for the transport of a solute in an
aquifer, where the short scale variability of hydraulic conductivity will determine the
movement of the solute plume in the aquifer and will never match the movement of the
plume in a smooth estimated map (Gómez-Hernández and Wen 1994). In these cases,
there is a need to evaluate the system performance on the conditional realizations, and
then, from the outcomes computed on these realizations, retrieve an estimate (as the
expected value, for instance). The travel time for a solute to go from A to B estimated
in an aquifer with conductivities obtained by kriging will be a very poor estimate of
the actual travel time, which would be better estimated by taking the average of the
travel times computed on each one of the conditional realizations.

The question is then how to generate realizations from the random function.

2.1 Unconditional Realizations

The generation of unconditional realizations was addressed as early as Matérn (1960),
but, until the spread of numerical computation, it went unnoticed. Three main
approaches could be mentioned for the generation of unconditional realizations before
the advent of sequential simulation: spectral methods, matrix factorization and turning
bands.

The spectral methods, led by the work by Shinozuka and Jan (1972), are based
on the spectral decomposition of the covariance matrix. Once the spectrum is known,
finite ranges of frequencies along each dimension are determined containing as close
as possible to 100% of the energy, then a realization of the random field is generated
according to the expression
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z(u) = √
2

N1∑

k1=1

· · ·
Nd∑

kd=1

A(ωk) cos(ω′
k · u + φk), (4)

where d is the space dimension, N1, . . . , Nd are the number of frequency increments in
which each axis is discretized, k = {k1, . . . , kd}, φk is an independent phase randomly
distributed between 0 and 2π , ω′

k = ωk + δω, with δω being a small perturbation to
avoid periodicity, and

A(ωk) = (S0(ωk)�ω1 . . . �ωd)
1
2 , (5)

where S0 is the spectrum, and�ω1 . . . �ωd are the increments in which the frequency
axes have been discretized.

Of the matrix factorization methods, the best known is the Cholesky decomposi-
tion of the covariance matrix (Davis 1987), whereby any self-adjoint positive definite
matrix can be decomposed into the product of a lower triangular matrix by its trans-
pose, C = L · LT . When the matrix C represents the covariances of any pair of points
on a given set, then it can be shown that

z(u) = L · φ (6)

results in a realization of the random function with covariance C , where φ is a vector
of random uncorrelated values drawn from a distribution with zero mean and variance
of one.

The turning bandsmethod, introduced byMatheron (1973) and described in Journel
and Huijbregts (1978), uses a clever idea that made it, at the time, the only one capable
of generating realizations over very large domains in two and three dimensions. In
the turning bands method, the multidimensional simulation is replaced by a (small)
number of one-dimensional simulations along lines oriented in different directions.
The orientation of the lines is chosen trying to keep a homogeneous density in the
circle or in the sphere. The simulated values are obtained by projecting each point
u onto the lines and linearly combining the values from the lines. A realization is
obtained as

z(u) = 1√
N

N∑

k=1

z1,k(〈u, θk〉), (7)

where N is the number of lines, z1,k is a one-dimensional realization along line k that
has been generated with a covariance that is derived from the covariance of the random
function, and 〈u, θk〉 represents the projection of vector u onto line k.

2.2 Conditional Realizations

Unconditional realizations are attractive for theoretical studies, but the practitioner
needs realizations that honor the data at data locations. The generation of conditional
realizations was introduced by Journel (1974) using an indirect approach that com-
bines unconditional simulations and kriging. It can be shown that the deviations of a
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conditional realization from the map obtained by kriging are independent of the val-
ues at data locations. This property permits the computation of these deviations from
an arbitrary unconditional realization simply by kriging the values from the same
locations at which the data are sampled. Then, the deviations on the unconditional
realization are added to the kriging map obtained with the observed data. The pro-
cedure to generate a conditional realization can be summarized with the following
algorithm:

1. Generate an unconditional realization zunc(u),
2. Sample the unconditional realization at data locations and, with the sample values

as data, perform kriging z∗unc(u),
3. Subtract both fields to obtain the residual field r(u) = zunc(u) − z∗unc(u),
4. Perform kriging with the observed values z∗(u),
5. Add the residual field to the kriging map, z(u) = z∗(u) + r(u).

As an alternative approach to conditioning, the matrix factorization method was
extended by Davis (1987) and Alabert (1987) for the generation of conditional real-
izations using a smart partitioning of the covariance matrix. Consider a point set split
into two subsets; subset 1 contains all points where data are located, and subset 2 all
points where the conditional realization has to be generated. Davis (1987) proves that

z(u2) = L21L
−1
11 z(u1) + L22φ (8)

results in a conditional realization, where u1 are the points where data were observed,
u2 are the pointswhere the realization is generated,φ is a vector of randomuncorrelated
values drawn from a distribution with zero mean and variance one, and L11, L21 and
L22 are the submatrices partitioning the lower triangular matrix of the covariance
factorization

C =
[
C11 C12
C21 C22

]
=

[
L11 0
L21 L22

] [
LT
11 LT

21
0 LT

22

]
, (9)

where the first rows and columns are associated to point subset 1 and the last rows and
columns to the point subset 2.

3 Sequential Simulation

In the 1980s, while the new framework of indicator geostatistics (Journel 1983) was
taking shape, an interest developed in generating realizations from a random function
built on the idea of transforming a continuous variable into a collection of indicator
variables. The indicator formalism is quite simple; any random function {Z(u), u ∈ D}
can be transformed into a set of K indicator random functions, {Ik(u), k = 1, . . . , K }
corresponding to K thresholds zk according to the following expression

Ik(u) =
{
1, if Z(u) ≤ zk
0, otherwise

. (10)

Drawing a realization z(u) would be equivalent to drawing K realizations {ik(u), k =
1, . . . , K } and transforming them into z(u).
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The issue of how to generate a realization from an indicator random function was
solved by Journel and Isaaks (1984), who use the truncation of a Gaussian realization
to generate the indicator realization. In their paper, they explain how to choose the
truncation value zk , and how to determine the covariance function of the Gaussian
random function that will yield the desired covariance for the indicator realization.
They also describe the conditioning process, which is based on the technique described
by Journel (1974) and recapped at the beginning of Sect. 2.2.

But the extension of Journel and Isaaks (1984) approach to generate multiple indi-
cator realizations and then transform them into a realization z(u) never took place.
There was a fundamental need to devise a new conditional simulation algorithm that
could overcome the problems of the existing ones, namely,

1. The difficulty of generating very large conditional realizations,
2. The difficulty of generating non-Gaussian realizations.

Of all the unconditional methods described above, only the turning bands method
coupled with the conditioning approach by Journel (1974) could generate very large
conditional realizations. The problems with this method were that it needed many
bands to produce realizations that did not display artificial continuities in the directions
of the lines onwhich the one-dimensional random functions are generated, and that the
linear combination of randomvalues frommany lines necessarily results in realizations
of a multivariate Gaussian random function.

It was in the Fall of 1988 during one of the Topics in Advance Geostatistics classes
at Stanford University when André presented the seminal idea of indicator sequen-
tial simulation, a revolutionary concept in stochastic simulation that would allow the
generation of very large conditional realizations of non-Gaussian random functions.
We were a handful of students in the class, one of whom was Mohan Srivastava,
who, over the next weekend, wrote a prototype in FORTRAN of the simulation algo-
rithm. The following week, he made a presentation of the problems he found for
the implementation and showed some of the first successful realizations; then, Jaime
Gómez-Hernández picked it up from there towrite anANSI-C code, ISIM3D,whowas
eventually published (Gómez-Hernández and Srivastava 1990) and became the first
publicly available sequential simulation code. The sequential simulation algorithm
was born to address the problem of generating conditional realizations of indicator-
based random functions, but it would quickly become evident that it could be used for
the generation of realizations of many other random functions, including the multi-
Gaussian one.

The ideabehind sequential simulation is quite simple: anymultidimensional random
function distribution can be rewritten as the product of univariate distributions by
recursively applying the definition of conditional probability. Indeed, Eq. (1) can be
rewritten as

F(Z(u1), Z(u2), . . . , Z(un)) = F(Z(u1)) ·
F(Z(u2)|Z(u1)) ·
F(Z(u3)|Z(u1), Z(u2)) · · ·
F(Z(un)|Z(u1), . . . , Z(un−1)), (11)
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where each component is the conditional distribution of a random variable given
all the random variables that appear before in the product. The problem of drawing a
realization from the multivariate distribution (1) is replaced by the problem of drawing
n values from univariate conditional distributions. This transformation was already
proposed by Rosenblatt (1952) and mentioned by Johnson (1987). The extension to
generate realizations conditional to a set of (no) data is trivial

F(Z(u1), Z(u2), . . . , Z(un)|(no)) = F(Z(u1)|(no)) ·
F(Z(u2)|(no), Z(u1)) ·
F(Z(u3)|(no), Z(u1), Z(u2)) · · ·
F(Z(un)|(no), Z(u1), . . . , Z(un−1)). (12)

There is only a need to replace the previous conditional distributions by distributions
that are also conditional to the data.

The sequential simulation algorithm for the generation of a realization of a random
function over a point set of size N conditional to no observation data would be as
follows

1. Define a permutation of the numbers 1 to N that will identify the sequence in
which the conditional univariate distributions will be built.

2. Sequentially visit all nodes according to the previous ordering and compute, at each
node i , the conditional distribution of variable Z(ui ) given the (no) data and all
previously simulated random variables {Z(u1) = z1, Z(u2) = z2, . . . , Z(ui−1) =
zi−1}

F(Z(ui )|(no), Z(u1) = z1, Z(u2) = z2, . . . , Z(ui−1) = zi−1)).

3. Draw a value zi from this distribution and incorporate it to the conditioning data
set for the simulation of the next node.

4. Go back to step 2 until all nodes have been simulated.

The algorithm is ready to implement if there is a way to compute the conditional
distribution of any of the random variables Z(ui ), given any number of conditioning
random variables.

The reason sequential simulation was first developed for the simulation of realiza-
tions from indicator-based random functions is that the introduction of non-parametric
geostatistics (Journel 1982, 1983) was aimed, precisely, at the computation of the
conditional distribution of a random variable given a number of data using a non-
parametric indicator-based approach. Later, it was realized that sequential simulation
could be extended to the simulation of multi-Gaussian random functions, since the
univariate conditional distributions, in this case, are Gaussian with mean and variance
given by the solution of a set of normal equations (Anderson 1984).
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3.1 Implementation Issues

While the theory was simple and the core of the algorithm was straightforward, some
implementation issues had to be addressed.

3.1.1 Size of Conditioning Data Set

Whether an indicator-based random function or a multi-Gaussian was chosen, the
calculation of the conditional distributions required the solution of a set of kriging
equations: indicator kriging for the non-Gaussian random function and simple kriging
for the Gaussian one. The kriging system has as many equations as the number of
conditioning data. Therefore, it seems impossible to strictly apply the decomposition
(12) when n is large. The size of the kriging systems must be limited to a maximum
value for the algorithm to be practical for the generation of realizations over hundreds
of thousands or millions of points.

Following a criterion similar to the standard implementation of kriging, the system
of equations is limited to the closest conditioning values within a search neighborhood
up to a predetermined maximum number.

All conditional distributions in (12) are approximated as

F(Z(ui )|(no), Z(u1) = z1, Z(u2) = z2, . . . , Z(ui−1) = zi−1))

≈ F(Z(ui )|Z(v1) = z1, Z(v2) = z2, . . . , Z(vnmax) = znmax)), (13)

where {v1, v2, . . . , vnmax} is a location subset selected out of the set of locations made
up by the no conditioning data and the i−1 previously simulated points that are within
the search neighborhood centered at the location for which the conditional distribution
is being estimated.

3.1.2 Random Path

Once the decision of limiting the number of conditioning points is taken, the decompo-
sition of themultivariate random function is no longer exact. This approximation raises
the concern of whether the order in which the nodes are visited has an adverse effect
on important spatial statistical properties of the realizations. In the first implementa-
tions, a random path was used, and this is the common approach used in most code.
The way to generate such a random path is not trivial; the first approach, proposed by
Gómez-Hernández and Srivastava (1990), was to use a congruential generator (Brat-
ley et al. 1983) to produce all numbers between 1 and a sufficiently large power of
2 to cover all nodes. The problem with this approach is that subsequent realizations
always use exactly the same path, changing only the starting point. A better approach
is to generate a random permutation of all integers between 1 and N , which can be
achieved with N random swaps in an ordered sequence (Durstenfeld 1964).

The decision to implement a random path was motivated largely by the observation
of artificial stripes in the realizations when the sequence moved from one node to an
adjacent neighbour along the rows or columns of the grid.While immediately obvious,
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and usually undesirable, thiswas an artifact that cannot be identified or corrected solely
through two-point statistics; it is a higher-order artifact in a simulation procedure
governed by two-point statistics.

Liu and Journel (2004) studied the possibility of using a structured path to facilitate
the reproduction of very large correlation ranges, and recently, Nussbaumer et al.
(2018) have analyzed exhaustively the impact of path choice, concluding that the
traditionally-used random path generates realizations with small biases regarding the
underlying covariance functions.

3.1.3 Computational Speed

With the need to solve N kriging equations, it was clear that the covariance function
had to be evaluated numerous times. A way to speed the computation time was to
precalculate, and store in a lookup table, all of the covariance values that would
repeatedly be required during the simulation process. These covariance functions can
be precomputed easily when the realization is performed on a regular grid and all the
available conditioning data are assigned to the nearest grid node.

These and a few other implementation issues along with verification tests can be
found in Gómez-Hernández and Cassiraga (1994), Gómez-Hernández and Journel
(1993), Journel (1989) or Deutsch and Journel (1992).

4 After

The concept of sequential simulation was so simple and so potent that it quickly
became the workhorse for the generation of realizations from many different types of
random functions.

4.1 Sequential Gaussian Simulation

After the first applications of indicator conditional simulations (Gómez-Hernández
1989; Journel and Gómez-Hernández 1993), it became evident that the algorithm
could be implemented for the multivariate simulation of multi-Gaussian random func-
tions (Deutsch and Journel 1992; Gómez-Hernández and Journel 1993; Verly 1993).
As already mentioned, the univariate conditional distributions associated to a multi-
Gaussian distribution are always Gaussian, the mean and the variance of which are
obtained by the solution of a set of simple kriging equations (Journel 1989) built with
the conditioning variables. In the case of a multivariate simulation, the conditional
distribution remains Gaussian and its mean and variance result from the solution of a
set of cokriging equations (Gómez-Hernández and Journel 1993).

4.2 Transition Probabilities

An alternative implementation to the indicator sequential simulation was presented by
Carle and Fogg (1996) and developed into computer code by Carle (1999). They work
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with transition probabilities instead of indicator variograms, aware that they contain
the same statistical information but are easier to interpret when looking at the spatial
distribution of facies. In addition, the implementation of the full cokriging equations,
whereby each indicator variable is estimated not only using the indicator data for the
given threshold but also for the indicator variables for all other thresholds, was easier
to perform. The concept of sequential simulation remains the same, it only changes
the way the conditional distributions in Eq. (12) are obtained.

4.3 Direct Sequential Simulation

Sequential Gaussian simulation would generate realizations with a given mean and a
given covariance. In theory, both the mean and the covariance could be non-stationary,
but they must be known, and seldom this possibility is considered. The realizations
generated with this algorithm will have all the Gaussian features associated to a multi-
Gaussian distribution; in particular, all univariate distributions will be normal. When
the starting data set has a clearly non-Gaussian histogram, it does not seem appropriate
to use a Gaussian simulation algorithm, since the histogram of the final realizations
will be normal rather than non-Gaussian. To circumvent this problem, there exists
the possibility of transforming the original data into their normal scores (that is, each
value becomes the score of a standard Gaussian distribution with the same cumulative
probability), computing the covariance of the normal scores, performing a Gaussian
simulation in normal-score space, and then transforming back the results to the original
space. The final realizations would have univariate distributions conforming with the
non-Gaussian histogram of the data. But, the covariance deduced from the realizations
wouldnot necessarily coincidewith the onededuced from thedata, since the covariance
that was used for the simulations was that of the normal scores.

The question that arose was, could sequential simulation still be used to generate
realizations with a given covariance and a given histogram different from a Gaussian
bell? The response came with the finding by Journel (1994) that in order to reproduce
a given covariance, the conditional distributions in Eq. (12) need not be Gaussian;
any univariate distribution with mean and variance given by the solution of the simple
kriging equations would yield realizations with the desired covariance. This was a
surprising claim to the many who believed, incorrectly, that simple kriging requires
normality; it was Journel who pointed out that the second-order properties of the dis-
tribution defined by the simple kriging mean and variance are correct, regardless of
the univariate distribution of the data values. All that the assumption of normality
achieves is an easy and convenient specification of the entire distribution from its first
and second ordermoments. Journel suggested that by smartly selecting the shape of the
conditional distribution, the desired histogram could be obtained without sacrificing
the reproduction of the target covariance. Later, Nowak and Srivastava (1997) demon-
strated its application in a mining context, Soares (2001) presented direct sequential
co-simulation, and Oz et al. (2003) wrote a software program in FORTRAN.

With direct sequential simulation it is possible to generate realizations with a given
covariance and a given histogram,without the need of any forward and back transforms
to and from normal space.

123



Math Geosci (2021) 53:193–209 203

4.4 Faster Sequential Simulation

By approximating the conditional distribution of Eq. (12) by Eq. (13), sequential
simulation turned out to be a fast algorithm capable of generating multiple realizations
over very large domains. Dimitrakopoulos and Luo (2004) reported the number of
floating-point operations needed to generate a realization over N points when using an
approximation to the conditional distribution using only the closest nmax conditioning
points to be in the order of O(Nn3max), a very substantial reduction from the O(N 4)

needed if the exact equation would be used. Yet, Dimitrakopoulos and Luo (2004)
claimed that further speed improvements could be achieved by embedding the matrix
factorization approach by Davis (1987) into the simulation process. Their main idea is
to generate the realizations not one point at a time, but by groups of nearby points that
would be conditioned to the same subset of conditioning data. Each simulation of a set
of points would be performed using matrix factorization. There is an optimal number
of points to be simulated at once to achieve themaximum reduction in simulation time.
This value is quantified by the authors at 80% of themaximum number of conditioning
points retained. The combined use of matrix factorization and sequential simulation
is termed generalized sequential simulation.

4.5 Multipoint Geostatistics

The International Geostatistics Conference of Tróia was memorable. Not only were
some of the previous works presented there but, most remarkably, the Tróia proceed-
ings also included the seminal paper that gave birth to multipoint geostatistics. The
work by Guardiano and Srivastava (1993) established the premises on how to gener-
ate realizations drawn from random functions imposing higher-order statistics than a
covariance. Their approach required a dramatic shift in the computation of the uni-
variate conditional distributions involved in Eq. (12) from a theoretical result (i.e., the
solution of a kriging system) to a training-image-based approach.

Equation (12), or better, its approximation (13), is also the foundation of multipoint
sequential simulation. But now, computing the probability that a random variable at a
given location is below a certain threshold conditional to a set of nearby values is not
derived from the expression of a multivariate random function, but rather experimen-
tally calculated by searching a training image for all places where the same pattern of
conditioning data repeats. The analysis of the values that in the training image fall at
the same relative location with respect to the conditioning pattern serves to build the
local conditional distribution.

Again, another brilliant idea coming from Journel’s lab at Stanford, easy to describe,
but not so easy to implement. It is worth pointing out that André always refused to co-
sign a paper unless he was instrumental in the implementation of the ideas presented.
Multipoint geostatistics was one of those ideas, and credit should be given to him, but
André always said “ideas are worth nothing unless they are implemented” and this is
the reason why he does not appear as co-author of any of the early papers: he did not
work hands-on in writing the code and running the tests, he was “only” a supervisor.
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It was not until much later that a paper by him was published explaining why and how
multipoint geostatistics were born (Journel 2005).

4.5.1 Training Image

The concept of a training image as a substitute for a random function model was
new. It was received with skepticism, and it is still today subject to criticism by some
researchers. A training image is a point set, generally depicted as a raster image over
a regular grid, large enough to be able to find multiple replicates of n-tuples of given
values from which to construct a frequency distribution at the nearby locations that
will approximate the conditional distributions at those locations. If the size of the n-
tuple is small, it will be easy to find several replicates of it in the training image and to
build a conditional frequency distribution, but if n is large, for instance, above six or
seven, the training image must be very large to find a sufficient number of replicates
to allow a meaningful approximation of a probability distribution.

The size and shape of the set made up by the n-tuple plus the point being simulated
will determine the order of the statistics that are being extracted from the training image
and infused into the realization, as well as the ranges over which these multipoint
statistics are under control.

The construction or the selection of a training image is another issue subject to
much debate, which will not be discussed here (see, for instance, Mariethoz and Caers
2014).

4.5.2 Lookup Tables

Scanning the training image for each point being simulated to find the replicates
of the conditioning data was very computationally intensive. Strebelle (2000, 2002)
devised a lookup table approach coupled with a tree search to first build the conditional
distributions of all possible conditioning data configurations and, second, retrieve
quickly a given distribution from the table.

Building the lookup table was time consuming and limited the high-order statistics
that would be used to generate the realization. This problem was solved by Mariethoz
et al. (2010) with their direct sampling approach. They realized that exhaustively
searching the training image for all replicates of a given conditioning set and then
drawing a random value from this set was the same as doing a random search and
retaining the first replicate, thus speeding up considerably the drawing from the con-
ditional distribution.

4.5.3 Continuous Variables

Most of the first implementations of the multipoint sequential simulation were done
for a binary variable (Guardiano and Srivastava 1993; Strebelle 2000, 2002). It is
easier to find replicates of a conditioning data set when the data values can only
be ones or zeroes. The extension to categorical variables with more than two cate-
gories was obvious in theory, but the construct of the lookup tables and the search
tree becomes cumbersome and inefficient. Attempting to perform the simulation of
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continuous variables was out of the question, even considering a binning approach
that would transform the continuous variable into a categorical one.

Again, the direct sampling approach byMariethoz et al. (2010) solved the problem.
Once the conditioning data set is defined, some tolerances are applied to the condi-
tioning data values and the training image is scanned to find replicates in which the
values are within the tolerance limits; once a match is found, the value at the position
of the point being estimated is retrieved and assigned to the simulating node.

A thorough analysis of all the implementation issues and the sensitivities to some
of the tuning parameters in the direct sampling algorithm can be found in the work by
Meerschman et al. (2013).

4.6 Sequential Simulation with Patterns

The concepts of multipoint geostatistics and training images are taken one step fur-
ther by considering the simulation of blocks of neighboring points all at once (Arpat
2005; Arpat and Caers 2007). The concept of sequential simulation remains but the
decomposition of the multivariate random function (12) is replaced with

F(Z(u1), Z(u2), . . . , Z(un)|(no)) = F(B(v1)|(no)) ·
F(B(v2)|(no), B(v1)) ·
F(B(v3)|(no), B(v1), B(v2)) · · ·
F(B(vnb)|(no), B(v1), . . . , B(vnb−1)), (14)

where {v1, v2, . . . , vnb } are the centroids of the blocks {B(v1), B(v2), . . . , B(vnb )}
that fully tessellate the initial point set {u1, u2, . . . , un}, with nb � n. The above
expression is simplified as in Eq. (13), and only the closest simulated blocks and
conditioning data are retained to build the conditioning pattern that is scanned on the
training image in search of replicates. By simulating blocks of points, the number of
steps in the sequential simulation is reduced and therefore the speed is increased; also,
accordingly to the authors, this approach is able to capture curvilinear and complex
features from the training image.

The concept of simulation with patterns was further developed by Mahmud et al.
(2014), who used conditional image quilting.

4.7 Sequential Simulation with High-Order Spatial Cumulants

An interesting alternative to the multipoint sequential simulation approach described
above is sequential simulationusinghigh-order spatial cumulants as proposedbyDimi-
trakopoulos et al. (2010) andMustapha andDimitrakopoulos (2010, 2011). Cumulants
can be regarded as a generalization of the covariance function to orders higher than
two; as a matter of fact, the cumulant of second order is the covariance. Any multi-
variate probability function can be expressed in terms of its moments or in terms of
its cumulants. Dimitrakopoulos et al. (2010) show that the cumulants of order three
to five can capture the same complex features as the multipoint approach. Cumulants
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can also be used to determine the conditional distributions in Eq. (12). Mustapha and
Dimitrakopoulos (2010) write these conditional distributions as Legendre polynomial
expansions, where the coefficients of the expansion are written in terms of the cumu-
lants. The cumulants are derived from the data in a similar way as a covariance or a
variogram; however, they contain higher-order moment information and can be used
for the generation of realizations from non-Gaussian random functions. Recently, the
technique has been extended to the joint simulation of several variables (Minniakhme-
tov and Dimitrakopoulos 2017) and an alternative formulation has been proposed in
which, instead of using Legendre polynomials, orthogonal splines are employed and
cumulants are replaced by alternative coefficients that can be estimated from the data
(Minniakhmetov et al. 2018).

A key aspect of this high-order spatial cumulant approach is that it is data-driven,
as opposed to the multipoint approach that is training-image driven; the latest work
in this regard proposes a training-image-free approach to high-order simulation (Yao
et al. 2021).

5 Non-sequential Simulation

Sequential simulation is a widely spread concept for the drawing of realizations from
random functions of different kinds, from Gaussian to indicator-based to training-
image-based to non-Gaussian of other types. But there are other approaches that are
also being used that are not based on the sequential simulation concept. Without trying
to be exhaustive, someof those alternativemethods are gradual deformation (Hu2000),
pluri-Gaussian simulations (Armstrong et al. 2011; Galli et al. 1994), or Markov chain
Monte Carlo (Fu and Gómez-Hernández 2009).

6 Conclusions

The sequential simulation algorithm has dominated the field of stochastic simulation
of spatial random functions since the late 1980s. Its implementation for the generation
of realizations drawn from random functions defined non-parametrically on the basis
of indicator variables was the spark that initiated a surge of variants aimed at the
simulation from random functions that were getting far from the standard stationary
multi-Gaussian one. The co-authors of this paper witnessed the birth of sequential
indicator simulation andwere fundamental during thefirst stages of that newalgorithm,
an algorithm that is based in the simple concept of breaking a complex problem into
many simple ones and then progressing one step at a time.

One of the great talents ofAndré Journel is that, throughout his career, hewas able to
find the core of an idea, to understand why it worked well (or didn’t work so well), and
to construct a generalization that allowed the idea to flourish in other applications. And
so it was with sequential simulation: what began as a method for indicator simulation
that was freed from the constraints of an unnecessary intermediate Gaussian random
function soon became recognized by André as a rich paradigm, the idea that you can
create a simulation simply by correctly sequencing a series of random drawings, one
step at a time. When the first multipoint simulation algorithm was written, it was
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André who recognized that it was, at its core, a sequential algorithm which opened up
many new branches of inquiry based on all that had already been learned about other
sequential algorithms.
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