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Resum
Els sistemes de recomanació ajuden als usuaris a trobar elements rellevants i ade-

quats entre l’enorme quantitat d’opcions disponibles. En aquest projecte, explorem de
quina manera es pot construir un sistema de recomanació utilitzant Xarxes Neuronals
basades en Grafs (GNNs), un nou tipus de xarxes neuronals que operen directament en
l’estructura nativa de les dades. En particular, utilitzant el conjunt de dades de Movie-
Lens, compararem dos enfocaments diferents. El primer enfocament es basa en un graf
bipartit on els nodes representen usuaris i pel·lícules, i les arestes indiquen les relacions
entre estos i, l’altre enfocament es centra en el Processament de Senyals de Grafs. En
ambdós enfocaments, realitzem diferents experiments a fi de comparar els resultats. Tot
el codi desenvolupat en aquest projecte està escrit en PyTorch Geometric, una biblioteca
basada en PyTorch que facilita la manipulació de les GNNs.

Paraules clau: Sistemes de Recomanació, Xarxes Neuronals de Grafs, Machine Learning,
Processament de Senyals de Grafs
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Resumen
Los sistemas de recomendación ayudan a los usuarios a encontrar elementos rele-

vantes y adecuados entre la enorme cantidad de opciones disponibles. En este proyecto,
exploramos de qué manera se puede construir un sistema de recomendación utilizando
Redes Neuronales basadas en Grafos (GNNs), un nuevo tipo de redes neuronales que
operan directamente en la estructura nativa de los datos. En particular, utilizando el con-
junto de datos de MovieLens, compararemos dos enfoques diferentes. El primer enfoque
se basa en un grafo bipartito donde los nodos representan usuarios y películas, y las aris-
tas indican las relaciones entre estos y, el otro enfoque se centra en el Procesamiento de
Señales de Grafos. En ambos enfoques, realizamos diferentes experimentos con el fin de
comparar los resultados. Todo el código desarrollado en este proyecto está escrito en Py-
Torch Geometric, una biblioteca basada en PyTorch que facilita la manipulación de las
GNNs.

Palabras clave: Sistemas de Recomendación, Redes Neuronales de Grafos, Machine Lear-
ning, Procesamiento de Señales de Grafos
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Abstract
Recommendation systems help users find relevant and suitable items among the enor-

mous amount of selectable choices. In this project, we explore how a recommendation
system can be built using Graph Neural Networks (GNNs), a new type of neural net-
work that operates directly on the native graph structure of the data. Particularly, using
the MovieLens dataset, we will compare two different approaches. The first approach is
based on a bipartite graph where nodes represent users and movies, and the edges denote
relationships among them. The other approach is centered on Graph Signal Processing.
In both approaches, different experiments will be carried out in order to compare the re-
sults. All the code developed in this project is written in PyTorch Geometric, a library
built upon PyTorch that eases the manipulation of GNNs.

Key words: Recommendation Systems, Graph Neural Networks, Machine Learning,
Graph Signal Processing
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CHAPTER 1

Introduction

Nowadays, we have an overwhelming offer of products and services. Google, Amazon,
Netflix(source), Instagram, Facebook, YouTube [2], Tinder ... the vast majority of plat-
forms have integrated recommendation systems that guide and advise their users. And
they represent big advantages both for users and companies (source).

The existence of a recommendation system represents an advantage as they allow
users to discover products of interest in the shortest possible time. In addition, it serves
to promote new products that may be of interest as well as to remember when they are
on sale.

Furthermore, companies are also critically impacted by this type of systems since the
income is usually boosted with the use of an appropriate recommendation system. Users
find in shortest time what they need, and in exchange, a large number of purchases is
accomplished [3].

That being the case, there is no doubt about the importance of the role of recom-
mender systems in web platforms and services. The vital information to be able to create
a recommendation system is usually represented as a series of relationships or interac-
tions (buying, clicking, rating, adding it to a wish list, etc.) of a user with a product.
Moreover, we can also take into account particular characteristics of both products and
users to make a very fine-grained recommendation. However, this information is not
easy to represent nor manipulate in the strict way of machine learning, being the easiest
way to represent both the characteristics of user, items and its relationships as a graph.

In this way, we will explore how a recommendation system can be built using Graph
Neural Networks (GNNs), a new type of neural network that operates directly on the
native graph structure of the data.

For this case, using the MovieLens dataset [4], two different approaches will be ex-
plained and compared in order to find out if this type of system really manages to take
advantage of all the available information and its relationships.

1.1 Motivation

This project arises as an initiative for a VRAIN research project to evaluate GNNs as a
possible tool for a recommender system. In particular, the objective of the project is to
create a recommendation system in order to encourage sustainable tourism around the
community of Valencia. Unfortunately, due to certain complications, we have not been
able to train a model with the expected data.

1
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2 Introduction

Nevertheless, on a personal level, the idea of working with GNNs, which have a
different approach of what I have learnt throughout the course, was very interesting to
me. They are innovative and dynamic networks, that consume very few resources and
help process graph-like data. On the other hand, at a professional level I consider that
they are not simply interesting, but that they have potential, since despite their novelty,
they have already achieved results comparable to the state of the art within the field of
recommendation with relatively simple architectures. Several GNN applications have
obtained excellent results:

• Decathlon Canada, a general sporting goods retailer with online shopping capabili-
ties, conducted an experiment to contrast GNNs with conventional models (matrix
factorization, RNN, nearest neighbours, etc). Results show that the most popu-
lar items baseline is considerably outperformed by the GNN model. Decathlon
subject-matter experts claim that the GNN model produces outcomes that are com-
parable to those of the already-in-use models. Additionally, GNN approach em-
ploys representational learning, and therefore, the learnt embeddings may be help-
ful for other tasks.

• Another work proposes a Graph Neural Networks in order to predict user actions
based on anonymous sessions [5]. In the proposed method, information about the
session sequences is modeled as graph. Based on this session graph, GNN can cap-
ture complex transitions of items, which are difficult to be revealed by previous
conventional sequential methods. Each session is then represented as the compo-
sition of the global preference and the current interest of that session using an at-
tention network. Extensive experiments conducted on two real datasets show that
SR-GNN evidently outperforms the state-of-the-art session-based recommendation
methods consistently.

• The results of some investigations showed to outperform state of the art results, by
proposing a novel Graph Neural Network that uses different node types as well
as rich node attributes to model data in the recommendation system [6]. In this
proposal, they design a component connecting potential neighbors to explore the
influence among neighbors and provide two different strategies with the attention
mechanism to aggregate neighbors’ information.

Given the interest on this type of network and the inconvenience of the original
dataset, MovieLens has served as the dataset to experiment and evaluate the results.

1.2 Objectives

In this section, we present the objectives for this project:

• Be able to interpret the underlying theoretical concepts of Graph Neural Networks.

• Create two recommendation system using two specific different types of GNN.

• Evaluate obtained results using MovieLens dataset.

• Compare both approaches results.

https://medium.com/decathlontechnology/building-a-recommender-system-using-graph-neural-networks-2ee5fc4e706d
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1.3 Memory Structure

This section proceeds to present an annotated index of the memory structure:

• Chapter 1: Introduction

This chapter introduces the main subject of this project, as well as the motivation
that has propelled the realization of the project and the objectives pursued with it.
The structure of the memory that will be followed throughout is also defined.

• Chapter 2: Background

In this third chapter, the basic concepts and principal notions of Graph Neural Net-
works are explained in order for the reader to understand the contribution of this
project.

• Chapter 3: Recommendation with Graph Signal Processing

Fourth chapter exposes the model build using GSP, describing the machine learn-
ing pipeline and some implementation details. A series of experiments are also
presented, with their respective results in order to evaluate the model and its effec-
tiveness.

• Chapter 4: Recommendation with Bipartite Graph

Fifth chapter exposes the model build using structuring available information as a
bipartite graph, describing the machine learning pipeline and some implementa-
tion details. A series of experiments are also presented, with their respective results
in order to evaluate the model and its effectiveness.

• Chapter 5: Conclusions and future work

In this last chapter, we present the conclusions of this project, comparing both ap-
proaches and their respective results and highlighting the objectives that have been
achieved. Finally, possible future lines of work are presented.





CHAPTER 2

Background

This chapter is intended to provide the reader the principal concepts and notions on
Graph Neural Networks (GNNs) with the aim to understand the contribution of this
project, which are presented in the following two chapters.

This chapter is structured as follows; section 2.1 presents an overview on GNNs; sec-
tion 2.2 introduces basic concepts of Spectral GNNs and Graph Signal Processing; section
2.3 introduces the basic theory of Spatial based Graph Neural Networks; section 2.4 explains
how to adapt both approaches in order to create a recommendation system; and section
2.5 presents the dataset we will use in our experimentation.

2.1 Overview of Graph Neural Networks

A Graph Neural Network (GNN) is a type of neural network which directly operates on the
graph structure and helps resolve problems where data is naturally presented as a graph.
This advantage alleviates the loss of information on the relationships among data when
using neural networks.

A graph G is a structure made of a set of vertices V , a set of edges E between those
vertices, and a set of weights W for each edge. Specifically:

• Vertices or nodes are a set of n labels from {1, ..., n}.

• Edges are ordered pairs of labels (i,j), where each label represents a node. An edge
(i,j) means that node i has a connection to node j or that i can be influenced by j.

• Weights wij ∈ R represent the strength of the influence of node j on node i. If no
weights are specified on a graph, all edges have the same relevance or influence.

Graphs can be directed or undirected, and weighted or unweighted. We will mostly
work with undirected graphs (both weighted and unweighted versions). An exemplifi-
cation of the two types of graphs can be found in Figures 2.1 and 2.2. Undirected edges
are represented as a straight line with no arrows between two nodes or, as shown in the
Figures, as a bidirectional arrow between two nodes (↔). Additionally, GNNs work over
graphs that have features associated to the nodes and/or to the edges.

5
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Figure 2.1: Undirected weighted graph Figure 2.2: Undirected unweighted graph

Several different types of tasks can be solved with GNNs [7]: node-level tasks (node
regression and node classification), edge-level tasks (edge classification and link predic-
tion) and graph-level tasks (graph classification). Although semi-supervised and unsu-
pervised learning is possible, in this project we will work with supervised learning.

There exists different types of GNNs. One possible categorization based on the archi-
tecture separates GNNs into Recurrent Graph Neural Networks, Graph Convolutional Net-
works, Graph Autoencoders and Spatial-Temporal Graph Neural Networks [7]. Amongst all the
mentioned types of GNN, we will be focusing on Graph Convolutional Networks (GCN),
a type of GNN that generalizes the convolution operation from grid data to graph data.
The main idea of a GCNs is to generate the representation of a node by aggregating its
own features with its neighbors features. GCNs fall into two categories: spectral-based
approaches and spatial-based approaches.

In this project, we will work with Spectral GCNs and Spatial GCNs. Both approaches
can be implemented as a message passing network. The intuition behind GCNs is that
nodes are naturally defined by their neighbors and connections. Therefore, several com-
mon steps are performed in these networks:

1. Message Passing: Message passing networks were introduced in [8] and constitute
the basis of the information flow in GNNs. For simplicity, let us assume that node i
has an initial feature vector h0

i . A feature vector associated to a node represents the
features of that node. However, though message passing, our aim will be to learn an
embedding hk

i for each node, which encodes information of the node itself in a low-
dimensional space. Even though both will be represented by the letter h, the feature
vector h0

i is only associated with time 0, as it represents the initial information of the
node itself. In order to learn embeddings, information is propagated a fixed number
of times. This information is propagated following three steps:

• Transform: Each node i computes the message for its neighbors. Messages are
functions that help summarize the node’s information. Once the message is
prepared for each neighbour, they are all sent simultaneously.

• Aggregate: At each node, neighbor’s messages arrive. This step aims to ap-
ply a function that aggregates all the received messages, using a permutation-
invariant function (usually average or sum).

• Update: combining the aggregated final message of the neighbours and the
current embedding of the node, it updates itself.

The previously explained parts can be mathematically viewed as:

h(k+1)
i = UPDATE(hk

i , AGGREGATEj∈N(i)TRANSFORM(hk
j )) (2.1)

This process occurs synchronously for every node in the graph, updating nodes
at every message passing step k. Each step is called a graph convolutional layer.
Several layers can be applied sequentially.
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2. Readout: Once several layers have been applied, a fully-connected layer or MLP is
used to predict our target.

In the following sections we will focus on the two approaches that will be used in this
project: Spectral GCN based on Graph Signal Processing and Spatial-based GCNs.

2.2 Spectral GCN: Graph Signal Processing

Spectral Graph Convolutional Networks are a type of GCN that facilitate the understand-
ing of the underlying structure of the graph by identifying clusters or sub-groups in the
spectral domain. Intuitively, these networks help predict how the information will prop-
agate over a graph. The methods that define the convolution operator in spectral GCN
are based on the Graph Signal Processing theory.

The contents of this section are mostly taken from [9], a course that explains in a sim-
ple and very transparent way how to use GNNs combined with Graph Signal Processing
for recommendation. In fact, most of the papers found on this field are basically from the
same research group and it appears that this is still an ongoing research line.

Graph Signal Processing is a research field that deals with signals whose domain is not
ordered along some axis but on a graph. Therefore, signal processing applied on graphs
studies data over irregular structures. Graph Signal Processing provides the necessary
tools to analyze the effects of a changing property or attribute of an object which is related
somehow to other objects of the same type or different type.

A graph signal is a vector x ∈ Rn in which component xi is associated with node i.
Graph signals are the objects to be processed when information is propagated.

Figure 2.3 shows a five-node undirected and weighted graph G (n = 5). The graph
G represents an expectation of proximity or similarity between components. The weight
w12 of the edge between node 1 and node 2 denotes the similarity between these two
nodes. Similarly, the absence of an edge represents the lack of similarity between the
nodes. For example, in G, node 2 and node 4 are not found to be similar in any way.

Figure 2.3: Graph G

Let’s suppose that the nodes in the graph G represent movies and weights on edges
express the similarity between movies; and a user has seen some of the movies, rating
them from 1 to 5. Specifically:

• Movie 1: 3 stars

• Movie 2: 4 stars

• Movie 3: Not seen.
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• Movie 4: Not seen.

• Movie 5: 1 star.

The user’s preferences would be represented as a graph signal vector of 5 compo-
nents, where each position contains a scalar associated to the corresponding node (movie)
in the graph: [3, 4, 0, 0, 1]. This graph signal is represented in Figure 2.4.

Figure 2.4: Graph signal representation in graph G

In this example, a graph signal represents the preferences of a user, so we would have
as many graph signals as users rating the different movies.

2.2.1. Graph Shift Operator

Given that the native structure of our target data is represented via a graph, we need a
mechanism that allows us to represent and work with the graph.

In the context of Graph Signal Processing, the Graph Shift Operator (also known as
GSO) is a matrix representation of the graph. The GSO is intrinsic to the graph signal as
it represents similarities between the nodes indexed in the signals. Specifically, the GSO
acts as a support for the data comprised in the graph signal describing the arbitrary pair-
wise relationships between the data elements. Standard GSO matrices are the Adjacency
and Laplacian matrices, as well as the respective normalized versions.

• Adjacency Matrix A: Sparse matrix A defined as:

Aij = wij ∀(i, j) ∈ E (2.2)

• Laplacian Matrix L: Sparse matrix L defined as:

L = D − A (2.3)

where D represents the degree matrix. The degree matrix is a diagonal matrix
where each entry is defined as:

D(i, j) =
{

deg(vi), if i = j
0, otherwise

}
(2.4)

where the degree deg(vi) of a vertex sums the weights of the incidents edges.

The Laplacian Matrix L measures to what extent a vertex in the graph differs from
the values of the nearby vertices.
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Since matrices A and L are used to diffuse graph signal components across their re-
spective neighbours, they will typically contain large values that could eventually end
up in the so-called exploding gradient problem, where optimization is very difficult. To
solve this problem, matrix normalization is used, which consists in multiplying the target
matrix before and after by the degree matrix D− 1

2 . Adopting the normalized versions of
the GSO help overcome the difficulties that arise by the vanishing and exploding gradient
problem.

• Adjacency Normalized Matrix Ā:

Ā = D− 1
2 AD− 1

2 (2.5)

• Laplacian Normalized Matrix L̄:

L̄ = D− 1
2 LD− 1

2 (2.6)

Shortly, this normalization averages the neighbours of a node while taking into ac-
count the number of neighbours of its neighbours. This means that matrix normalization
will weigh the importance of a connection: if a node is connected to a node that is highly
connected, the connection is less relevant than if it is linked to a node with fewer connec-
tions. Mathematically, given our GSO and its respective degree matrix D, the operation
D− 1

2 (GSO)D− 1
2 effectively accomplishes the previously explained normalization. Once

the GSO is normalized, its values will be in a similar range, which will aid to alleviate the
vanishing and exploding gradient problem.

The specific choice of GSO matters in practice but most of the results and analysis
hold for any type of GSO.

2.2.2. Graph Signal Diffusion

In this section we will explain how information is propagated across the nodes of the
graph, providing both an intuitive explanation and a mathematical foundation.

The aim is to build a model that, given a graph signal, predicts the values for the
non-observed (unknown) components of the signal. For example, if the nodes of a graph
denote movies, and a graph signal represents the ratings given by a user to those movies,
the objective will be to predict the ratings of the movies the user has not seen by taking
into account the movies that the user did see.

In order to accomplish this behaviour, we need a way to propagate information be-
tween nodes using the similarity value between them. This is done through a mechanism
called diffusion. Diffusion consists in multiplying the Graph Shift Operator (we will de-
note the GSO with the letter S hereafter) by a graph signal. This operation accomplishes
the diffusion of a graph signal over the graph. Therefore, the diffused signal y is ex-
pressed as y = Sx; for a particular component i of the signal, given that n(i) are the
neighboring components associated, we have:

yi = ∑
j∈n(i)

wijxj (2.7)

Specifically, the components of a graph signal are only affected by the components
which are marked to be similar in the graph. Figure 2.5 shows a situation where the focus
is on the second position of the signal (node 2). This position will only be affected by the
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neighbours marked in green (that is 1, 3 and 5), whereas 4 will not have any influence
on its diffused value. Obviously, stronger weights will contribute more to the diffusion
output.

Figure 2.5: Nodes involved in the diffusion of node 2

Applying the diffusion operation to an already diffused graph signal produces a dif-
fusion sequence. Basically, this can be viewed as applying k times the diffusion operation
over the same graph signal. Mathematically, this process is equivalent to:

x(k+1) = Sxk with x(0) = x (2.8)

We must remark that diffusion is a local operation wherein each graph signal com-
ponent is combined with the components associated to its neighboring nodes. Thus, a
diffusion sequence x(k) diffuses information to and from k-hop neighbourhoods. For
low values of k, the entries of the diffusion sequence represent local information only,
whereas, for large values of k, the entries of the diffusion sequence represent global in-
formation. This trade off between local and global information is beneficial and will be
used in the definition of graph convolutions.

2.2.3. Graph Convolutional Filters

In this section we will explain how the diffusion mechanism is used to create a Graph
Convolutional Filter.

Let us start with the definition of a filter. A filter H is a vector of K components
[h0, h1...., hK−1] where hi is known as a filter tap and K is the number of diffusion opera-
tions that are applied. A Graph Convolutional Filter is an operator that, given a graph
signal, applies a diffusion sequence to such signal, weighing each propagation with the
corresponding filter tap of H. Mathematically, it can be viewed as:

y =
K−1

∑
k=0

hkSkx (2.9)

Intuitively, the graph signal x is propagated K times, giving different relevance to each
and every propagation. By doing so, depending on the particular characteristics of the
task, the filter can help discern more critical diffusion steps from the ones that may not
handle that much information. The first diffusion step may not have the same relevance
as the further ones, depending on which information is more relevant for the task (local
or global information).
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Let us exemplify how the information is propagated, making a trade off between local
and global information, by looking at the example of Figure 2.6. We will exclusively focus
on a particular node, node x4, but the same process is applied to all the nodes.

Figure 2.6: Reference Graph

As can be seen in Figure 2.7, we begin with the value of the node itself which is the
associated component of the graph signal x4.

Figure 2.7: y = h0S0x = x

It must be noticed that the formulas exposed in Figure 2.7 are representing the shifted
graph signal, where the component y4 will be a value transformed by the average of the
GSO application over x3 x2 x5 and x6. Therefore, in order to add information about one
hop neighbours, we add to this graph signal the diffusion Sx multiplied by h1 (following
Equation 2.9). The convolution output on x4 becomes a diffusion sequence affected by all
of its one-hop neighbours (the ones marked in red in Figure 2.8). Mathematically, after a
one-hop neighbour diffusion, the diffused signal y will be equal to h0S0x + h1S1x.
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Figure 2.8: y = h0S0x + h1S1x

For taking into account information about two hop neighbors, again we add again
h2S2x (as can be seen in Figure 2.9). Mathematically, graph signal x propagated through
its two hop neighbors would be equal to y = h0S0x + h1S1x + h2S2x.

Figure 2.9: y = h0S0x + h1S1x + h2S2x

Summarizing, a graph convolutional filter is a weighted linear combination of the
elements of the diffusion sequence. Similarly to image convolutions, depending on the
number of convolutions applied, local or global information will be considered. Our aim
will be to learn the most appropriate filters in order to weigh which convolutions and
neighbors are the most important [10].

We can extend the descriptive power of graph signals by assigning an F-dimensional
vector to each node instead of a simple scalar, resulting in feature vectors associated for
each node. As we can notice, the diffusion mechanism is actually doing the same process
as the message passing phase, whereas the linear layers will be added at the end of the
process in order to compose the MLP for readout phase.

2.3 Spatial-based GCN

As we have previously explained, Graph Convolutional Networks can be divided into spectral-
based approaches and spatial-based approaches. In this section we address the second
type of GCN.

Spatial-based GCNs define graph convolutions based on the spatial relations between
nodes. In other words, the feature vector or embedding of a node is given a geometric in-
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terpretation (spatial position) and the distance between nodes is leveraged for the task of
link prediction. Link prediction is essential in social networks to infer social interactions
or to suggest possible friends to the users, and it is also used in recommendation system
and in predicting criminal associations.

For this task, the goal is to train a GNN that is capable to predict not only if a link
exists between two given nodes, but to quantify its relationship. This is done by using
the information of the node feature vectors as well as the edge features.

Given a set of attributes or features, GNNs use Message Passing to gather and learn
the node embeddings. Similarity scores of node embeddings are used to determine
whether or not two nodes should be connected. The weights of the neural network will
be tuned through a loss function computed on predictions during the training phase [11].
Following we present an example to show the functioning of this procedure.

Let us consider the graph shown in Figure 2.10. Nodes represent elements of the
problem with associated features. In our particular example, nodes denote people and
features represent aspects associated with the person (gender, age, job, etc). It is impor-
tant that all nodes of the same type have the same information represented in their feature
vectors, as they will be used to compute the similarity between them.

Figure 2.10: Social network

With this information, we want to predict whether two nodes will be connected, par-
ticularly whether there should be a link between Tomas and Carmen. To this end, we
need to apply Message Passing. Let us put the focus on Tomas. The current neighbours
of node Tomas (Raquel, Jose and Claudia) prepare and send a message. The information
from all the received messages is summarized (sum, average, etc); then, according to
some update function that takes into account both the feature vector of Tomas and the
summarized info, a new feature embedding is assigned to Tomas. This process is shown
in Figure 2.11.
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Figure 2.11: Message Passing for node Tomas

This process is mathematically expressed in equation 2.10 where ht
i is the embedding

associated with node i at time t, W and U are trainable parameters that ponderate the im-
portance of both the node itself and its neighbors respectively, and N(i) are the neighbors
of i:

hk+1
i = σ(Whk

i + U ∑
j∈N(i)

ht
j

|N(i)| ) (2.10)

The message passing occurs for every node simultaneously K times or layers. After
that, hK

i is the final embedding of node i. Finally, to train the model we need a readout
layer that generates the predictions. Then, a loss function will be applied, back propagat-
ing the error in order to train the weight parameters W and U. The formula presented is
a simple general convolution, but specific convolutions will be defined in future sections.

2.4 GNNs in recommendation

In this section we will explore the application of GNNs to address the problem of recom-
mending items to a user.

Recommendation Systems (RSs) help users find desired items using the product sim-
ilarities and closeness of the user preferences. Three main approaches are considered
in RSs: content-based approach (where recommendation is based on similar items with
similar features); collaborative filtering approach (where recommendation is based on
items rated by similar users); and hybrid approaches that combine content-based and
collaborative filtering techniques. Typically, collaborative filtering requires fewer as-
sumptions than content filtering and yields a superior performance in real datasets. There
exists two main techniques to implement a collaborative filtering algorithm: Latent Lin-
ear Factor (Matrix Decomposition) and the Nearest Neighbour algorithm [12].

2.4.1. Recommendation with Graph Signal Processing

In this project, we focus on the implementation of the Nearest Neighbour approach using
Graph Signal Processing. Let us assume we have:
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• U users indexed by u.

• I items indexed by i.

• A rating matrix X where Xui represents the rating that user u has given to item i.

• A rating matrix X where Xui represents the rating that user u would give to item
i (unobserved). Notice that while matrix X represent already stated ratings by the
user, matrix X represent hypothetical ratings if user had rated all the items.

• A rating matrix X̂ where X̂ui represents the predicted rating of the user u on item i.

• Ratings by the u-th user: xu = [Xu,1, ..., Xu,I ]

• Ratings to the i-th item: xi = [X1,i, ..., XU,i]

Our problem, using Collaborative Filtering, will be that given the observed ratings in
the matrix X, we should predict X̂, as similar as possible to the real unobserved matrix X
[12].

In order to illustrate this problem, let us introduce Figure 2.12, where several matrices
are shown. In these matrices, rows represent users, columns represent items and colors
represent different type of ratings assigned from users to items. The first matrix, X, repre-
sents all the ratings that the users would give to all of the items in an hypothetical world.
Second matrix, X, represents observed ratings, the available information that we have.
Through the exploitation of similarities of users, and given a graph signal xu, our aim
will be to predict matrix X̂ as similar as possible to X.

In other words, our aim is to estimate predictions of unobserved ratings exploiting
the similarities between users or between items.

Figure 2.12: Problem 1 graphically represented

To this end, we need first to decide if our graph embodies similarities between users
or items.

• User-based approach: In this approach, nodes in the graph represent users, edges
represent similarities between users, and the graph signals are the ratings given to
one item xi by all the users.
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Figure 2.13: Graph representing similarities between users.

• Item-based approach: In this approach, nodes in the graph represent items, edges
represent similarities between items, and the graph signals are the ratings given by
one user xu to all the items.

Figure 2.14: Graph representing similarities between items.

For a given graph signal x (user or item), applying a graph convolutional filter will
result in a linear transformation that propagates information through the neighbours.
This way, most similar users or items will be used to guide when making predictions,
just like in the classical Nearest Neighbour approach.

The graph convolutional filters can be seen as typical image convolutions. Intrinsi-
cally, the same is done in both approaches, combining neighborhood information and
weights in order to make the best predictions. However, images usually have predefined
neighbours, as in a grid. For this reason, GCN make a neighboring structure and adapt it
to work practically the same as CNN [10].

2.4.2. Recommendation with Bipartite Graph Neural Networks

In this section we present how to apply the Spatial based Graph Neural Networks in the
design of a recommendation system.

When designing a recommendation system, a variety of information may be avail-
able. In most cases, we are provided with the ratings of some items by a set of users. In
other cases, metadata about the users or items is also given. This information needs to be
present in our graph. When we dispose of information of both users and items, we need
to represent such information in a bipartite graph.

According to Wikipedia, in the mathematical field of graph theory, a bipartite graph
(or bigraph) is a graph whose vertices can be divided into two disjoint and independent
sets. In this type of graph, the two vertices i and j of an edge (i, j) must belong to the two
opposite sets. We note that the graph could even have more than two types of entities
(heterogeneous graph), but bipartite graph will be considered for simplicity. However,
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it must be noticed that for this type of graphs, convolutions are a bit more difficult, as
different types of entities are considered. More detailed information will be given in
Chapter 4.

With this in mind, a general architecture as the one shown in Figure 2.15 can be used
to solve this problem.

Figure 2.15: The general design pipeline for a GNN model found in [1]

According to Figure 2.15, we define first the entities (nodes) of the problem and the
relationships between them. Then, several layers are applied. After that, some sort of
embeddings are obtained for each node. With these embeddings, a readout MLP is de-
fined according to the task and connected to a loss function, in order to maximize the
accuracy of the embeddings.

2.5 MovieLens version specification

In order to evaluate the performance of the different approaches we will use MovieLens
100K [4], a dataset collected by the GroupLens Research Project at the University of Min-
nesota and released in 1998. This dataset consists of 100,000 ratings from 943 users on
1682 movies. The details of this dataset are the following:

• Ratings go from 1 to 5 (increasing by units of 1).

• Each user has rated at least 20 movies. However, there is no restriction on the
number of ratings a movie has received, so it could be possible for a movie to have
only one available rating.

• Available user meta information: age, gender and occupation.

• Available movie meta information: genres, the title and the IMDb (Internet Movie
Database) link to the movie.





CHAPTER 3

Recommendation with Graph
Signal Processing

In this chapter, based on the theory presented in Chapter 2, we describe the implemen-
tation of a recommendation system using Graph Signal Processing, as well as the experi-
ments performed with the MovieLens dataset [4].

As explained in section 2.2, two approaches can be used for designing a recommenda-
tion system based on Graph Signal Processing: user-based and item-based collaborative
filtering. In this chapter, we will only describe the item-based approach as the user-based
approach basically follows the same process.

The structure of this chapter is as follows: section 3.1 overviews the objectives we pur-
sue with a Graph Signal Processing model as well as its usage in a recommendation appli-
cation; section 3.2 explains the training procedure step by step; section 3.3 describes the
model architecture; section 3.4 specifies the implementation process and finally sections
3.5 and 3.6 show the experiments performed as well as the obtained results. Through the
experiments, we aim to identify the best model for recommendation.

3.1 Objectives

In this project, our aim is to build a model that predicts the rating that a user would
give to one particular movie, given the values of the movies that the user did rate. In
other words, given the graph signal of a user, we will handle the recommendation of one
specific movie.

The reason that the recommendation of multiple movies for a user is not addressed
in this work is because it would require lots of data, memory and time. Our goal is to
investigate the design of a recommendation system with Graph Signal Processing, and to
this end we put the focus exclusively in one movie.

Typically, recommendation applications suggest various items (movies in our case) to
the user. Since our approach is aimed at building a model for a single movie, we need
to build a model for each movie in the system. Then, given a user (which is represented
as a graph signal), we will run all the available movie models and predict the rating for
each movie, finally recommending the movie(s) with higher prediction ratings.

We split the available users in the system into two sets: the users in the training set
will be used to build the model and the users in the test set will be used to evaluate
the model predictions. The training users must be seen as a set of movie viewers that

19
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represent the likes of a general population, and from whom valuable information about
the movies and their relationships can be extracted.

For learning the model for a movie m, we remove from the training set those users
who have not seen the movie m, thus leading to a training set exclusively composed of
users who did see m. This is so because we want to learn a model that helps recommend
the movie m to people who has not seen it by predicting the score of m for such people
on the basis of the information extracted from people who did see the movie. The way of
working with the training set is as follows: we mask the ratings of the movie m in all the
users, and the objective is to approximate the scores as close as possible to the real ones.

Users of the test set are only used for evaluating the model thus ensuring model
generalization. As with the training users, in the test set we consider users who have
seen movie m as our purpose is to check how the predicted scores of the model differ
from the real ratings.

Finally, once the model for movie m is built and evaluated, it can be used for rec-
ommending the movie to a target user. To this end, we run the model over the graph
signal of the target user, who has seen movies other than m, and the model will return
the predicted score of movie m for the user.

3.2 Model setup

This section details the elements needed to build an item-based collaborative filtering
recommendation model based on Graph Signal Processing.

The information of the system is represented in a graph where nodes represent movies
and edges between two nodes are assigned a weight which denotes the similarity be-
tween the corresponding movies. The weight of the edges is computed applying the
Pearson correlation coefficient of the ratings given by the available users to the movies.

Users are represented as graph signals; that is, vectors of M components where M is
the total number of movies and each component of the vector is associated with one node
of the graph. Particularly, a graph signal is denoted as xu and a signal component as xu,i,
which meaning is the rating that user u has given to movie i.

We decided to use the Pearson correlation matrix as the GSO of our graph, as it ex-
presses similarities between the movies. However, in further experiments we will also
consider the Adjacency and Laplacian matrices as well as their normalized versions.

The steps to train the model are the following:

1. Split the user graph signals into training and test. When splitting, we must ensure
that both sets contain among others, graph signals of users who have rated m. This
is so because on step 3, we will clear out all users who have not seen m and we want
to avoid an empty set.

2. Use the training signals to compute the similarities between movies applying the
Pearson correlation coefficient. All the training signals are used so as to capture the
general relationships between movies.

3. We remove from the training and test sets the graph signals of users that have not
rated m as we want to learn predicting the movie m to people who has not seen the
movie.

4. Mask the target rating of m in all the graph signals that will be used for training
and evaluation.
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By training the graph signals we learn the weights of the model for movie m to
make useful recommendations. For each train signal, a prediction regarding the
rating of the movie m is computed through the model. The real rating is available,
as we have previously masked it, so the difference between the real rating and the
predicted score is used to fine-tune the model’s weights through back-propagation.
Particularly, we use the criterion MSELoss to measure the mean squared error be-
tween the predicted rating and the real rating for all the users in the training set
(MSELoss).

Similarly, test graph signals are used to evaluate the model, ensuring that the model
is not just memorizing results. RMSE (Root-mean-square deviation) is used for this
purpose (RMSE).

This procedure is described graphically in Figure 3.1.

Figure 3.1: Graph signals processing for model m

3.3 Model architecture

The architecture of the process that builds the model is exposed in Figure 3.2.

Figure 3.2: Description of model’s architecture for the movie Men in Black

This process takes two arguments as input. The first argument is a set of graph signals
of users who have seen m. This set is treated as a matrix of shape N_signals × N_movies,
where each row represents a graph signal (being N_signals the number of graph sig-
nals) and each column represents the ratings of a movie given by all the users (being

https://pytorch.org/docs/stable/generated/torch.nn.MSELoss.html
https://docs.oracle.com/cloud/help/es/pbcs_common/PFUSU/insights_metrics_RMSE.htm#PFUSU-GUID-FD9381A1-81E1-4F6D-8EC4-82A6CE2A6E74
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N_movies the number of movies). The second argument is the precomputed GSO S. Both
arguments are used in the graph convolutional filter to create a diffused signal projec-
tion into a 64-dimension latent space. Next, we apply batch normalization to the result
of the graph convolutional filter (which will normalize the range of values of the result)
followed by a Rectified Linear Unit (which will clear out all negative values). Following,
a series of linear layers are applied that output a scalar for each graph signal, which will
be the prediction of the rating of the movie m for each signal. If the graph signals belong
to the training set, MSELoss is computed and backpropagated to fine-tune the weights of
the filter and linear layers. However, if the graph signals are from the test set, RMSE is
computed to check the model performance.

In this process, two components can be distinguished: a Graph Convolutional Filter and
different Linear Layers:

• Graph Convolutional Filter: This filter basically performs the operation stated in
Equation 2.9. The graph signals are propagated all the needed times, saving each
propagation into x. Then, we multiply x by H (the filter itself), and reshape in order
to obtain the desired output. Figure 3.3 show the operations involved in the graph
convolutional filter.

Figure 3.3: Implementation details of graph convolutional filter

Our aim through graph filters (propagating and projecting) is to learn which neigh-
bours have a more critical roe in order to help predict the desired rating. Actually,
filters also weigh the relevance of the diffusion steps with the aim to find patterns
in the latent space.

• Linear Layers are used to reduce dimensionality. Particularly, the first lineal layer
converts the ratings from the latent space back to the original value, and the final
layer simplifies the graph signal into a single number, which is the predicted rating
for the signal.

3.4 Implementation details

The previously explained model has been implemented with Pytorch Geometric (PyG)
[13], a library built upon PyTorch to easily write and train Graph Neural Networks

https://pytorch.org/docs/stable/generated/torch.nn.BatchNorm1d.html
https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
https://pytorch-geometric.readthedocs.io/en/latest/
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(GNNs) for a wide range of applications related to structured data. We will chronolog-
ically describe the implementations carried out to implement the item-based approach
without going into too much detail in the construction of the system.

We remark that our aim is to train a model to predict the ratings of a movie m given
the user previously stated preferences. For that, several steps have been followed.

Firstly, we convert the data that come in the form of a csv format into graph signals.
The signals are split (in a balanced way) into training and testing sets.

Once the data is partitioned into two sets, we compute the movie similarities via the
Pearson correlation matrix using the training set. Pearson correlation computes a value
between −1 to 1: a value of −1 means a total negative linear correlation, 0 no correlation,
and +1 means a total positive correlation. In our case, the edges of the graph are labeled
with the positive Pearson correlations between movies of the training set users. This
is because positive correlations indicate similar trends between variables (If I like this
movie, someone else will likely also like this movie). Negative correlations, on the other hand,
have the opposite meaning. We are not concerned with negative values as they represent
conflicting tastes which is out of the scope of this work.

For each node, only the most similar neighbors are considered (5 nodes by default).
In case of using the Adjacency matrix as GSO, it suffices to construct it from the found
graph similarities, setting to 1 the matrix elements corresponding to pairs of movies with
a positive correlation. Similarly, we can use the Laplacian matrix or any normalized matrix
version. All of them were implemented and the results are shown in section 3.5 .

To implement the model training, a convolution was created with the module of PyG
to create particular convolutions. This convolution represents the Graph Filter Convolution
of Figure 3.3. All details of implementation are available at GitHub.

3.5 Experiments definition

We carried out several experiments in order to evaluate the performance of this approach.
Specifically, we used the measure RMSE as it is popularly used in the evaluation of Rec-
ommendation Systems.

We used three movies to test the behaviour of the models: Men in Black (1997), Toy
Story (1995) and Scream (1996). To compute graph similarities, a total of 802 signals were
used:

• For the movie Men in Black, 263 signals are used for training, and 40 for testing.

• For the movie Toy Story, 380 signals are used for training and 72 for testing.

• For the movie Scream, 413 signals are used for the training and 65 for testing.

Note that graph signals from training and testing correspond to users who saw and
rated the target movie. A maximum of 100 epochs were used in all the experiments as
models usually converge very fast.

The first experiment consists in training and testing a model for each movie with the
default parameters in order to get a baseline of the RMSE. By default, a neighborhood
of 5 nodes is used, 5 filter taps are applied and data is projected into a 64-dimension
latent space. We used the Adam optimizer with learning rate of 0.005. Also, technique
ReduceLROnPlateau with patience 20 is being used for training. This technique dynam-
ically reduces the learning rate when the RMSE has stopped improving for 20 epochs.
This technique helps approach a minimum error.

https://github.com/vicbeldo98/TFM
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In order to check and analyze the potential of this approach, we also tested the model
as a classifier. To do so, we changed the last layer of the model shown in 3.2 to predict not
only a number, but a vector of 5 elements since there are 5 classes to predict (1-star, 2-star,
3-star, 4-star and 5-star movies). Each element of the vector will represent the probability
that the predicted score for the movie is equal to the corresponding class given the graph
signal. For the probabilities to be normalized, we add a Softmax layer.

Additionally, some experiments were carried out in order to perform some sort of fine
tuning regarding the Graph Shift Operator. To this end, we considered different levels of
sparsification (number of neighbours of each node), different number of filter taps and
different number of dimensions of the latent space.

Finally, a weighted MSELoss will be tried out in order to check if better results can be
accomplished.

In summary, the series of experiments carried out in this project are:

1. Basic approach with default parameters.

2. Problem as classification.

3. Graph Shift Operator and sparsification level

4. Number of filter taps K and dimension projection

5. Weighted MSELoss

3.6 Results

This section shows the results for the experiments described in the previous section. The
results correspond to the median of three runs.

3.6.1. Basic approach with default parameters

Results for this approach are shown in the following table:

Movie Train RMSE Test RMSE
Men in Black 0.89 0.945

Toy Story 0.88 1.01
Scream 0.80 1.03

Table 3.1: RMSE results for the item-based approach with default parameters

A RMSE of 0.95 for Men in Black, 1.01 for Toy Story and 1.03 for Scream is accomplished,
which can be interpreted as accurate results. The evolution of the RMSE through the
training of the three models is shown in the following figures.
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Figure 3.4: Evolution of RMSE in Men in Black training

Figure 3.5: Evolution of RMSE in Toy Story training

Figure 3.6: Evolution of RMSE in Scream training
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The model for Men in Black (Figure 3.4) and Toy Story (3.5) converge on 40 epochs.
The model for Scream (Figure 3.6) does not fully converge, but the value of RMSE starts
decreasing very slowly from epoch 60.

Looking at the predicted ratings, the model for Men in Black learns a score between
3 and 4 (mainly 3.7) in order to minimize the RMSE. The effect of using MSELoss is that
to minimize the loss, it always predicts a value around 3.7 as this is the mean of the
distribution of the ratings of the movies. This is because MSELoss penalizes large errors,
so why should the system risk to predict 5 or 1 and make a very big mistake when 3 is the
mean? The same behaviour is observed in the Toy Story model and in the Scream movie.

The system is not able to learn the proper triggers for the rating prediction. Even
though we get a low RMSE value, this model is not useful for recommendation. Some
additional trials were made to overcome these limitations:

• Lower the learning rate: We experimented with a learning rate lower than 0.005
but it turns out we got the same results at a slower convergence.

• Early stopping: during the training process, the system learns on every epoch
which predictions are more helpful to minimize the RMSE. Several epochs lead the
model to predict a value between 3 and 4 as it interprets this is the optimal value to
minimize the loss.

In this experiment we stopped the training before the system realizes of an optimal
value between 3 and 4 for reducing the RMSE. Our intention is to find out if an early
stop allows us to get a variety of ratings rather than consistently a value around 3.7.

The results showed that the predictions obtained with the initial epochs accomplish
a more diverse recommendation. However, it turns out that the RMSE is higher
both in training and testing. Particularly, for Men in Black, around epoch 10, the
RMSE is 1.16 in training and 1.5 in testing, and the predicted ratings are not that
homogeneous. On epoch 12, Toy Story accomplishes a RMSE of 1.61 in training and
1.55 in testing, but it returns ratings that vary from 1 to 5. The same happens in
Scream on epoch 20, with a value of RMSE in training of 1.55 and 1.41 in testing.
The statistics regarding the percentage of appearance of predictions are: rating 1 is
predicted 2.76%, rating 2 is predicted 14.36%, rating 3 is predicted 33.14%, rating 4
is predicted 39.77% and rating 5 is predicted 9.97%.

Summarizing, stopping the system before convergence results in a proper approach
to obtain a variety of ratings. The model is trained fewer epochs, it does not over-
fit the training but it returns a higher RMSE. As a result we need to find at which
epoch there is a balance between RMSE and diversity of ratings in order to obtain
an acceptable recommendation system.

• Transform the problem into a classification problem: using RMSE in regression
problems is hard because the model can lead to tricky local minima results. We can
transform the regression problem into a classification problem so that the system
classifies signals into five classes (1, 2, 3, 4 and 5), each corresponding to a number
of stars that movies can receive. This will be studied in next subsection.

We also tested a user-based approach obtaining the same behaviour but with higher
values of RMSE. This is due among other reasons to the fewer available training signals.

Next experiments will only be carried out for movie Men in Black, as the same be-
haviour has been proved regardless of the target movie.
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3.6.2. Classification problem

In this experiment we transform the prediction problem into a classification problem in
order to check if more information could be learnt. It must be noticed that CrossEntropy-
Loss will be used instead of MSELoss.

The results of the classification will be measured through accuracy instead of RMSE.
That is so because RMSE is a performance measure, and it is mostly used for regression
problems. For classification, accuracy is a more appropriate measure. In fact, the aim
of transforming the problem from regression into classification is to train using CrossEn-
tropyLoss to check if better results could be achieved. CrossEntropyLoss is commonly
used to quantify the difference between two probability distributions, whereas RMSE is
the standard deviation of the prediction errors.

Results are shown in the Table 3.2, alongside with the evolution of the accuracy dur-
ing the training (Figure 3.7):

Approach Train Acc Test Acc
Men in Black model with classification 0.93 0.275

Table 3.2: Accuracy results for the Men in Black model with classification

Figure 3.7: Evolution of accuracy for Men in Black model with classification

As we can see, even though the accuracy in training is higher than 90%, in testing it
hardly passes the 25%. Results suggest that the model is not learning, but memorizing
the training data, phenomenon known as overfitting. The training phase is not capable
of finding any pattern in the data which might be due to the sparsity of the graph signals.
In general, the model is not appropriate for our purposes, as it simply memorizes.

No experiments have been made with the user-based approach, as this approach has
even fewer signals and the same behaviour is expected that the one observed on item-
based classification.

All in all, even though the regression approach had its issues, it accomplished better
results. For that reason, from now on experiments will be done with the original regres-
sion approach but limiting training epochs to 10.

https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html
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3.6.3. Graph Shift Operator and sparsification level

In this section, our aim is to check the Graph Shift Operator that works best on the model
for the movies Men in Black, Toy Story and Scream, as well as how the number of consid-
ered neighbors affect the value of RMSE for each movie.

We will evaluate the results obtained in training and testing for 10 epochs with learn-
ing rate of 0.005 and considering only 5 best neighbors. The same partitions will be used
in order to assure available data is equal for every run. Results are shown in next table:

Movie GSO Train RMSE Test RMSE
Pearson 0.90 1.05

Adjacency 2.19 1.90
Men in Black Adjacency Normalized 1.38 1.58

Laplacian 0.88 2.23
Laplacian Normalized 1.34 1.12

Pearson 1.25 1.46
Adjacency 1.85 1.98

Toy Story Adjacency Normalized 1.52 1.19
Laplacian 1.71 1.59

Laplacian Normalized 1.56 1.57
Pearson 1.48 1.62

Adjacency 2.1 1.78
Scream Adjacency Normalized 2.13 1.60

Laplacian 1.84 1.87
Laplacian Normalized 1.66 1.67

Table 3.3: RMSE results depending on the GSO for the used and the target movie

As we can see, using Pearson as GSO in testing (the one we have been using so far) is
the measure that works best on Men in Black. However, Adjacency Normalized is the one
that achieves better performance on testing for both Toy Story and Scream. The Laplacian
also achieves best RMSE in training for Men in Black, but we can observe that it helps
the system over-fit faster in testing. Using the Laplacian normalized, also allows for low
values of RMSE.

As a conclusion, both Pearson and the normalized versions of Adjacency and Lapla-
cian seem to be an acceptable GSO for this problem.

Following, we will vary the number of neighbors to be considered in order to check
if there really exists a trade-off: more neighbors consume more time and resources but
accomplish better results or it just add noise to the prediction? Results are shown in the
following table:
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Movie Neighbors Train RMSE Test RMSE
5 0.90 1.05
10 1.51 1.80

Men in Black 50 1.21 1.25
200 2.77 2.10
500 2.68 2.60

5 1.25 1.46
10 1.34 1.39

Toy Story 50 1.72 1.55
200 2.71 2.38
500 2.98 2.81

5 1.48 1.62
10 1.78 1.98

Scream 50 1.88 1.18
200 1.96 1.63
500 2.67 2.75

Table 3.4: RMSE results depending on the neighbors considered and the target movie

The three target movies accomplish the lowest train RMSE using 5 neighbors. It
makes sense that if the system manages less information per node, it learns the train
faster. Nevertheless, we want the system to predict accurate results for unseen signals,
so we will focus on test RMSE. The best test RMSE is accomplished with 5 neighbors for
Men in Black, 10 neighbors for Toy Story and 50 neighbors for Scream.

It looks like between 5 and 50 neighbors is good representation of the data depending
on the particular signals of the movie. However, if more neighbors are taken into account,
some sort of noise is generated, and this will hinder the system to find patterns between
all the connections.

3.6.4. Number of filter taps K and dimension projection

Finally, a study on the best parameters will be carried out in order to check if some sort
of improvement can be achieved. Again, movies Men in Black, Toy Story and Scream with
default parameters will be tested.

Firstly, we study the impact of the number of filter taps (see Table 3.5). According to
the table, an ideal number of filter taps is around 5. A very low number of diffusions
will not help the system to learn the embeddings, but too many is also not helpful for the
model, as results are worse.
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Movie K (Filter taps) Train RMSE Test RMSE
2 1.61 1.21
5 0.90 1.05

Men in Black 10 2.28 2.00
25 2.6 2.57
50 0.99 2.75
2 2.92 1.56
5 1.26 1.46

Toy Story 10 1.29 1.97
25 1.73 1.55
50 1.01 1.96
2 2.07 1.62
5 1.48 1.15

Scream 10 2.11 1.58
25 2.46 2.04
50 1.56 1.78

Table 3.5: RMSE results depending on the filter taps and the target movie

Regarding the latent space dimensions where the data is projected, the results can be
observed in Table 3.6. A dimension around 32 would be a good number. Again, a lower
dimension may not be sufficient, and a higher dimension may be too complex for the
system to find a pattern.

Movie Latent space dimensions Train RMSE Test RMSE
256 2.62 2.87
128 2.17 2.43

Men in Black 64 1.92 1.92
32 1.46 1.61
16 2.05 1.67

256 2.37 1.87
128 1.60 1.26

Toy Story 64 1.26 1.46
32 1.33 1.10
16 1.19 1.78

256 2.29 2.59
128 1.24 1.38

Scream 64 1.48 1.62
32 1.18 1.21
16 2.11 1.60

Table 3.6: RMSE results depending of the dimensions of the latent space and the target movie

3.6.5. Weighted MSELoss

In this last experiment, we used a weighted version of MSELoss in order to avoid homo-
geneous predictions. Weighted MSELoss gives more importance to errors from predic-
tions that are less common like 1 or 5. With the unweighted MSELoss, the system tends
to learn predictions around 3.7 because this value is close to the mean of the distribution
of the ratings. With the new loss function, predicting a wrong 1 or 5 has a large penalty,
making the error even bigger and thus the system gives more importance to predict the
right numbers instead of the mean.
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For this final experiment, we will show the results from the best model out of three
trials. As some experiments have been carried out previously, information obtained from
those is going to be applied. In this experiment, we will project into a 32 dimensional
latent space, as it has proven to be more effective. Pearson, normalized Adjacency and
normalized Laplacian will be used as GSO, as they have shown to be the most effective
GSO for this problem. The rest of the parameters will be used with the default value. The
results for each option of GSO are shown in Table 3.7, Table 3.8 and Table 3.9.

• Pearson:

Movie Train RMSE Test RMSE Rating distribution
Men in Black 1.54 1.34 2(2.5%), 3(70%), 4(17.5%), 5(10%)

Toy Story 1.46 1.25 2(2.77%), 3(70.83%), 4(20.83%), 5(5.57%)
Scream 0.73 1.06 1(4.5%), 2(8.1%), 3(30.7%), 4(49%), 5(7.7%)

Table 3.7: RMSE results using weighted RMSE with Pearson GSO

• Normalized Laplacian:

Movie Train RMSE Test RMSE Rating distribution
Men in Black 0.81 1.26 3(62.5%), 4(25%), 5(12.5%)

Toy Story 0.43 1.24 2(6.95%), 3(26.38%), 4(56.95%), 5(9.72%)
Scream 0.69 1.0 2(10.76%), 3(49.25%), 4(26.15%), 5(13.84%)

Table 3.8: RMSE results using weighted RMSE with Laplacian Normalized GSO

• Normalized Adjacency:

Movie Train RMSE Test RMSE Rating distribution
Men in Black 1.50 1.36 3(72.50%), 4(15%), 5(12.5%)

Toy Story 1.46 1.36 2(19.44%), 3(52.77%), 4(16.68%), 5(11.11%)
Scream 0.71 0.95 2(7.71%), 3(52.30%), 4(32.30%), 5(7.69%)

Table 3.9: RMSE results using weighted RMSE with Normalized Adjacency GSO

As we can see in the tables, low RMSE values are obtained without giving up on
diversity on the obtained predictions. For the movies Men in Black and Toy Story, normal-
ized Laplacian is the GSO that alongside the weighted MSELoss accomplishes the lowest
RMSE in both training and testing. For the movie Scream, normalized Laplacian is the one
obtaining lowest train RMSE but normalized Adjacency is the one accomplishing better
results on testing.

It must also be noticed that Pearson GSO is the only alternative that predicts a value
of 1. We hypothesize that a 1-star score is a very uncommon rating, and thus it is difficult
for the system to learn how to handle it. It could be possible that with a bigge r set of
signals, the system was capable of obtaining even lower RMSE.





CHAPTER 4

Recommendation with Bipartite
Graph

In this chapter, we describe the implementation of a recommendation system using bipartite-
graphs through spatial-based GCN based on the theory exposed in section 2.3 as well as
the experiments performed with the Movielens dataset [4].

The structure of this chapter is as follows: section 4.1 overviews the objectives we
pursue with a Spatial-based GCN recommendation systems as well as its usage in a
real applications; section 4.2 explains the training procedure step by step; section 4.3
describes the model architecture; section 4.4 specifies the implementation process and fi-
nally sections 4.5 and 4.6 show the experiments performed as well as the obtained results.
Through the experiments, we aim to identify the best model for recommendation.

4.1 Objectives

In this approach, we will use a bipartite graph, an undirected weighted graph that is
composed of two different types of nodes (users and movies). In this graph, weighted
edges connect nodes of type user with nodes of type movie. An edge between a user and
a movie means that the user has seen and rated the movie. The rating that the user has
given to the movie is encoded as the weight of the edge connecting both entities. No
connections of type user-user or movie-movie will be considered in this implementation.

The task to solve in this approach consists in, assuming an edge exists between two
nodes, predicting the weight of such edge. Unlike the common link prediction in GNNs,
our task is not predicting whether or not a link exists between two nodes but to assume
the edge existence and quantify its weight. Therefore, our aim is to build a model which
predicts the weights of target links. The model will learn relations from the ratings given
by the users to the movies using both the initial features of the nodes and a set of edges
which weight we already know. Briefly, several steps can be identified:

1. Train and evaluate a model: The initial features of the nodes as well as a bipartite
graph with the available ratings will be used to learn the relationships between the
different users and movies in the system.

2. Recommendation: In order to recommend one movie from the available set of
movies present in the system to a target user a, we use the previously trained model.
To this end, the input to the model will be the initial feature vectors of nodes and an-
other bipartite graph. This graph will consist of the same nodes than the graph used
for learning the model but with a different set of edges since in recommendation an
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edge denotes the rating that the target user would give to a movie. Therefore, an
edge will be present between the user and all the non-seen movies by the user (as
these are the edges whose weight we wish to predict). The model will predict for
each edge an specific weight from 1 to 5, and the movie with the highest weight
will be recommended to the user.

4.2 Model setup

This section describes the elements needed to build a recommendation system based on
a bipartite graph.

Let us briefly remember the available information described in section 2.5. We have
information about users, movies and their interactions. The knowledge available about
users is the age, the gender and the occupation, whereas for the movies we have the
genres, the title and the IMDB link. Interactions are of the type user-movie and they
consist of the rating that the users have given to the movies they have seen.

The first thing to do is to represent the information in a bipartite graph which is
formed by two types of nodes: users and movies. Both types of nodes will be associ-
ated to different information (feature vectors) but every node of the same type will have
the same information.

• Nodes of type movie: the genre and the title make up the encoding of the initial fea-
ture vectors of nodes of type movie. Genres will be managed as one-hot encoded
vectors, and the title will be transformed into a vector using a pre-trained trans-
former. The final feature vector of a movie will be the concatenation of its one-hot
encoded genres with the sentence embedding associated to its title.

• Nodes of type user: By default we will not use information about the users other
than a number to identify them. The initial feature vector of a user is a one-hot
encoding of the number of users.

Once the nodes and their initial feature vectors have been specified, we must define
the links between nodes. A link will exist between a user and a movie if the user has seen
and rated the movie. The rating will be reflected on the edge weight. In this approach, we
aim to predict the edges weights. Figure 4.1 shows all the previously mentioned aspects.

Figure 4.1: Bipartite graph showing available information

Users and movies are connected through links, and each nodes has its associated ini-
tial feature vector. Notice that Figure 4.1 shows initial feature vectors in natural language
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in order to ease the understanding, but in reality, it would be a vector encoding that
represents that information.

A set of the edges from this graph will be used for training the model, another set for
validation and another set for testing. The steps to train the model are:

1. Definition of the initial feature vectors of the nodes.

2. We split the edges into training, validation and testing sets, and mask its respective
weights.

3. Training of the model. This process can be further subdivided in different steps:

(a) The model receives the initial feature vectors of the nodes as well as the train-
ing edges with masked weights.

(b) The system propagates the feature vectors of the different nodes a specific
number of times in order to generate node embeddings.

(c) Compute an embedding for each edge. An edge embedding is the concatena-
tion of its respective user embedding and movie embedding.

(d) Transform the edge embedding into a number through a MLP. This number
will represent the predicted weight for the edge.

(e) Compute MSELoss of the learnt weights with respect to the real ones and back-
propagate.

This process will be repeated a specific number of epochs. At the end of each
epoch, RMSE will be computed with validation edges. If this metric does not
improve in 20 epochs, the learning rate will be reduced in order to search for
a local minima.

4. Evaluate the system. Similarly, test links will be used to evaluate the model using
the RMSE.

4.3 Model architecture

Figure 4.2 shows the architecture of the bipartite graph approach to train the model.
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Figure 4.2: Bipartite graph architecture

As we can see, the input of the model is the graph, with its feature vectors and training
links. The first convolution transforms the initial feature vectors into an embedding of a
32-dimension latent space. The same type of convolution is applied twice. After this, we
end up with 32-dimension embeddings of users and movies.

Following, the edges are encoded as a concatenation of the embeddings of the user
and movie they connect, becoming 64-dimension edges. Finally, two linear layers are
concatenated to pass from 64 dimensions to 1, which will be the predicted rating for the
edge.

Different types of convolutions can be defined. The most important ones in this
project are SAGEConv and GAT.

• SAGEConv performs the GraphSAGE operator introduced in [14], where embed-
dings are computed following equation 4.1:

hk
i = W1hk−1

i + W2meanj∈N (i)h
k−1
j (4.1)

As we can see, node i is updated with the mean of the embeddings of its neighbors
and itself. This equation is equal to Equation 2.10, as it uses the same aggregation
and update functions.

• GATConv stands for the graph attentional operator [15]. Embeddings in this case
are computed adding attention coefficients α, as shown in Equation 4.2:

hk
i = αi,iΘhk−1

i + ∑
j∈N (i)

αi,jΘhk−1
j (4.2)

where attention coefficients α come defined in 4.3, and || represents a concatenation:

αi,j =
exp(LeakyReLU(aT[Θhk−1

i ||Θhk−1
j ]))

∑z∈N (i)U{i} exp(LeakyReLU(aT[Θhk−1
i ||Θhk−1

z ]))
(4.3)
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The idea is to compute the hidden representations of a node in the graph by pro-
cessing its neighbors through a self-attention strategy.

An overview of some widely adopted convolutions in the field of recommendation
such as SageConv, GATConv, GatedGraphConv, HypergraphConv, etc. is presented in [16].
In our work, we will only only use SageConv and GATConv as the others are not yet
adapted in PyG to be handled in bipartite graphs.

Remember that whatever convolution we use in the system is taking into account
both types of nodes (users and movies), so in order to accomplish the same behaviour,
messages are duplicated and aggregated for the different types of nodes, once they have
been projected into the latent space.

4.4 Implementation details

In this section, our aim is to specify some details of the implementation of the recommen-
dation approach with bipartite graph using PyTorch Geometric.

First, a graph like the one specified in Figure 4.1 is created. For the nodes of type
movie, the sentence of the title is transformed in order to obtain a meaningful represen-
tation. Particularly, we used all-distil-roberta-v1 [17], a transformer which maps sentences
and paragraphs to a 768 dimensional dense vector space and can be used for tasks like
clustering or semantic search. Then, we concatenate the title encoding and a one-hot en-
coded vector that represents the genres of the movie. The concatenation of both informa-
tion (representation of the title through a sentence embedding and the one-hot encoded
genres) makes up the initial feature vectors of the nodes of type movie. As for nodes of
type user, by default we assume that there is no available information other than a num-
ber that identifies the user. Therefore, the initial feature vector of user nodes is a one-hot
encoding of the user identifiers.

The handling of the bipartite graph (as it has two different types of entities) has been
facilitated with HeteroData, an object provided by PyTorch Geometric that facilitates the
definition of nodes and edges of different types, for a further automatic process. In this
object, we save all the embeddings, edges and weighs, resulting in a .pt file that will
contain all the necessary information of our data and graph.

Once the graph his created, the data is split in training, validation and testing sets.
We used the function RandomLinkSplit to randomly separate the links into training (80%),
testing (10%), and validation (10%). Therefore, 80, 000 links are used to train, 1000 to
validate and 1000 to test (as we are provided with 100, 000 ratings).

Following, we define the two parts of the model, an encoder and a decoder. The
encoder is in charge of applying two convolutions (SAGEConv) whereas the decoder is
in charge of the final readout layer or MLP. Each convolution infer the input size and
map it into a vector space of 32 dimensions. We must notice that the handling of the
bipartite graph is done in an automatic way through PyTorch Geometric, as we only need
to pass the encoder to a function called to_hetero in order for the model to understand
that we are working with a heterogeneous graph and apply the necessary operations.
The model trains with the MSELoss computed with predicted and expected link weights
in the training set.

The code is available at GitHub.

https://github.com/vicbeldo98/TFM
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4.5 Experiments definition

We carried out some experiments in order to evaluate the performance of the bipartite
graph approach. As standard in recommendation systems, RMSE will be used to eval-
uate the model. Partitions defined for training, validation and testing will be common
throughout all the experiments, having 80, 000, 10, 000 and 10, 000 links each respectively.
A maximum of 200 epochs will be used.

The first experiment is about changing the initial embeddings for both type of nodes
in order to check the information that is more useful or what information turns out to be
rather noisy than being helpful in predicting the link weights. We will also experiment
with the information related with the user, considering age, gender and occupation.

Once this is done, we carried out further experiments to check which type of convo-
lutions accomplish better performance, as well as some sort of analysis of the observed
behaviour. Finally, the projection space will also be tested.

In summary, the list of experiments is:

1. Best nodes embeddings

2. Convolutions

3. Dimensions projection

4.6 Results

In this section we show the results obtained for the bipartite experiments described in
section 4.5 will be shown. The results correspond to the median of three runs.

The baseline model applies two SAGEConv convolutions that project node embed-
dings into a 32-dimensional latent space followed by two linear layers. We used the
Adam optimizer with learning rate of 0.01 for training, and the technique ReduceLROn-
Plateau with patience 10 in validation.

4.6.1. Best nodes embeddings

This experiment is about checking the relevant information in the nodes representation.
To this end, we present the list of the experiments we have done for this purpose in the
following Table:
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ID Movie’s embedding User’s embeddings Train
RMSE

Val
RMSE

Test
RMSE

1 one hot categories + ti-
tle sentence embedding

no info 0.96 0.99 0.98

2 one hot categories + ti-
tle sentence embedding

user age, gender and
occupation (one hot en-
coded)

1.08 1.08 1.08

3 title and categories sen-
tence embedding

user age, gender and
occupation in sentence
embedding

1.07 1.09 1.08

4 no info user age, gender and
occupation (one hot en-
coded)

0.99 1.03 1.01

Table 4.1: RMSE results depending on the representation used for the nodes

The evolution of the RMSE in the training phase is shown in Figure 4.3. As we can
see, the model converges fast but keeps improving until epoch 175. Another aspect to
be mentioned is that the predicted ratings do not converge to 3.5 this time. There exist
diversity in the predictions.

Figure 4.3: RMSE evolution in training phase for experiment ID 1

The results show that the model performs best when we use the default embeddings
(ID 1 of Table 4.1): using one-hot categories for the movies concatenated with the sentence
embedding of the title and no information of the user. This is an unexpected result, as
we somehow believed that the variable age would be an influential factor to make a
recommendation. However, experiments with IDs 2 and 3 of Table 4.1 show that having
information of both movies and users can be a bit redundant for the training process.
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Maybe the system is not able to learn useful embeddings for the users and movies having
that much information.

Regardless diversity, unlike early GSP results, predicted numbers have been shown to
be quite varied. We believe that this may be due to the usage of meta information about
users and movies along with their interactions. As more information is considered, the
system focuses on learning how to create node embeddings and how to decode them into
ratings. However, is important to find a balance in the amount of information used, as it
looks like too much information could end up hindering the learning process.

4.6.2. Convolutions

Using the baseline model, we tried out some different convolutions. Unfortunately, some
convolutions that seem popular in recommendation systems mentioned in [16] are not
adapted to work with bipartite graphs. This way, only those that are available for bipar-
tite graphs were tested.

From the available convolutions adapted for bipartite graphs, most of them did not
throw promising results. Only the three convolutions presented in Table 4.2 output good
results.

Convolution Train RMSE Val RMSE Test RMSE
SAGEConv 0.96 0.99 0.98

GATConv (heads=1) 1.02 1.04 1.02
GATConv (heads=8) 1.00 1.02 1.01

Table 4.2: RMSE results depending on the convolution used

As we can see, the convolution that accomplishes better performance is SAGEConv,
followed closely by the GATConv with 8 heads. SAGEConv has proven not only to be the
most effective, but the most straightforward, as time consumed per convolution is less
than 1 second. This fact proves that simpler computations can lead to better overall per-
formance, rather than sophisticated and complex convolutions (at least for this specific
dataset and task).

4.6.3. Dimensions projection

Finally, we also tested different latent space projections so as to check if an improvement
of the RMSE could be achieved by using a different dimension for the latent space.

Dimensions projection Train RMSE Val RMSE Test RMSE
16 0.95 0.98 0.98
32 0.96 0.99 0.98
64 0.97 1.00 0.98
128 0.97 1.00 0.98
256 1.22 1.22 1.20

Table 4.3: RMSE results depending on the hidden channels dimension

It appears that the projected dimension accomplishes a lower RMSE in training than
validation or testing. Lower dimensions help ease the training, building easier embed-
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dings to decode whereas higher dimensions like 256 make it difficult for the model to
learn since too many dimensions can lead to complex node representations.





CHAPTER 5

Conclusions and future work

In this section, our objective is to highlight some of the lessons learned during this project,
comparing and evaluating the usage of the different approaches.

5.1 Comparison and discussion of results

In this project, two different approaches have been used and both share some common
aspects. For example, both have common characteristics related to GNNs like the usage
of a graph or the idea of propagating information through neighbors. However, there are
some notable differences between them:

• GSP tries to leverage similarities on the ratings of the movies to predict the be-
haviour of a generic user. However, the bipartite approach propagates both the
user and movie features, so it can find patterns in the ratings that the users have
given to the movies.

• GSP learns the underlying structure of the graph by doing an Eigen decomposition
of the GSO. However, the bipartite graph approach understands the features of a
node based on its local neighbours by propagating information a particular number
of times.

• Target users are quite different. GSP recommendation focuses on a generic user
whereas the bipartite approach learns the interactions between specific users and
movies.

• The specific task to solve is also completely distinct. In GSP, the task could be seen
as node classification, as nodes of the graph represent movies and our aim is to
predict a number from 1 to 5 for the node related to the target movie. However, in
bipartite approach, the task could be simplified as predicting weights of hypotheti-
cal links.

Following we comment on the obtained results. Regarding the spectral-based GCN
based on GSP, three movies have been exhaustively tested in order to generalize the re-
sults of the experiments. Experiments accomplished good RMSE in all of them but the
model tended to converge to one same rating. In order to fix this issue, early stopping
was found to be one solution to avoid the convergence in exchange for a higher RMSE.
Another solution to solve this issue was to use a weighted MSELoss that gives more im-
portance to errors from unusual ratings. This is the approach that worked best on our
movies, accomplishing a 1.26, 1.24 and 0.95 in test RMSE for Men in Black, Toy Story and
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Scream, respectively. It must be noticed that this RMSE is only accomplished for the pre-
diction of one movie.

On the other hand, for the spatial-based GCN based on a bipartite graph, the ap-
proach was able to obtain a RMSE lower than 1 (0.98) for the whole system. This ap-
proach converges and provides recommendations of all kinds.

All that said, we consider that both approaches could be useful depending on the
information and the available data. No conclusions can be extracted about which one
accomplishes a better recommendation, as GSP focuses on a target movie each time and
the other approach has a more general view of the system. However, we hypothesize that
both approaches could improve the RMSE by training with more data, as at the end of the
day, they are neural networks. Finally, and speaking about their usage, we believe that
while bipartite could be really useful in systems with lots of information about entities
(users and items), GSP approach could be an alternative to those systems which we only
dispose of user interactions with products, and where we do not want to recommend to
a specific user, but to a generic one.

5.2 Conclusions

At the beginning of this report, a series of objectives have been defined. In this section,
our aim is to evaluate their state.

The first objective was to understand the underlying theoretical concepts of Graph
Neural Networks. We consider that this objective has been covered, as theory has been
explained in a simple and structured way, reviewing all the learnt aspects.

The second and third objectives were the building of two recommendation systems
using two specific types of GNNs, and evaluating the models. For that, we have built two
recommendation systems following two different approaches (GSP and bipartite). Exper-
iments have been carried out in order to evaluate both approaches using the Movielens
dataset. Therefore, we consider those objectives as fulfilled.

Finally, the last objective was to compare both approaches, which has been done in
the previous section, marking the last objective as completed.

In this way, it has been possible to meet all the objectives initially planned.

5.3 Future work

Finally, this section intends to briefly outline certain lines of future work:

• To study the explainability of the recommendations obtained in this kind of models,
as it usually increases user satisfaction.

• In practical scenarios, users and movies involved in the system are constantly chang-
ing. Creating new models every time is not a viable option (specially in large
graphs), so it would be interesting to study how this problem could be approached.

• To train a model based on GSP for all movies, in order to check its effectiveness.

• For the bipartite approach, implement different architectures to accomplish even
better results.

• To apply different metrics to evaluate another aspects like diversity or coverage.
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• Pre-train node embeddings by using a self-supervised task and use the obtained
embeddings for the target task in order to increase the final GNN model’s perfor-
mance. (source).

• Pre-train node embeddings by using a self-supervised task and use the obtained
embeddings with a classical machine learning algorithm or a fully connected neural
network for the final downstream task. (source).

https://towardsdatascience.com/how-to-boost-your-gnn-356f70086991
https://towardsdatascience.com/how-to-boost-your-gnn-356f70086991
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