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Abstract: Automated fruit inspection using cameras involves the analysis of a collection of views
of the same fruit obtained by rotating a fruit while it is transported. Conventionally, each view is
analyzed independently. However, in order to get a global score of the fruit quality, it is necessary
to match the defects between adjacent views to prevent counting them more than once and assert
that the whole surface has been examined. To accomplish this goal, this paper estimates the 3D
rotation undergone by the fruit using a single camera. A 3D model of the fruit geometry is needed to
estimate the rotation. This paper proposes to model the fruit shape as a 3D spheroid. The spheroid
size and pose in each view is estimated from the silhouettes of all views. Once the geometric model
has been fitted, a single 3D rotation for each view transition is estimated. Once all rotations have
been estimated, it is possible to use them to propagate defects to neighbor views or to even build a
topographic map of the whole fruit surface, thus opening the possibility to analyze a single image (the
map) instead of a collection of individual views. A large effort was made to make this method as
fast as possible. Execution times are under 0.5 ms to estimate each 3D rotation on a standard I7 CPU
using a single core.

Keywords: food inspection; rotation estimation; geometric modeling; real time; 3D; computer vision;
image processing; image analysis

1. Introduction

Food inspection is essential to ensure quality and safety in the food industry [1].
Many different techniques have been proposed in the literature to this end. Some of the
most common methods use one of the following characteristics: optical properties, sonic
vibration, computer vision, nuclear magnetic resonance (NMR), electronic noses, electrical
properties, and computed tomography [2].

Among these techniques, computer vision has become a standard solution for food
inspection [3,4] because it is one of the most economic and fastest options available [5].
Computer vision can be used to assess external appearance factors such as the the size,
shape, color, and texture [6].

One of the applications of machine vision, and the main reason that motivated this
work, is the capacity of computer vision to detect skin defects in fruits, such as insect attacks
or rotten portions [7]. However, to achieve this goal, it is necessary to obtain images of the
whole surface of the fruit. This is usually accomplished by capturing multiple overlapping
views of each fruit in industrial inspection machines. Still, two problems remain open:

• Many views of the fruit do not guarantee that the whole surface has been observed.
Therefore, a method is needed to assess which fraction has been viewed.

• To prevent multiple counting of defects, it is necessary to match points in different
views.

In this work, a roller conveyor unit is used to obtain different rotated views of each
fruit as they travel under the camera as it is shown in Figure 1. The rotation speed can be
adjusted independently of the linear traveling speed.
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The objective of this work is to estimate the 3D rotations between pairs of consecutive
views of rotating fruits so that surface defects can be tracked. The estimated rotations can
also be used to evaluate which portion of the whole surface has been observed.

Normally, controlled visible or infrared illuminations are used in this kind of machines
so that segmentation and tracking of each fruit become a trivial problem using standard
image processing techniques [8].

Figure 1. Roller conveyor unit used to obtain different views of the rotated fruits.

Figure 2 shows a few consecutive frames captured by the camera. The same fruit
is highlighted in all the images to illustrate how it rotates while moving downwards.
After segmentation, it is possible to obtain a set of views for each fruit, as it is shown in
Figure 3 for the tomato highlighted in Figure 2.

Frame t

Frame t + 1

Frame t + 2

Frame t + 3

Figure 2. Four consecutive camera frames.
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Figure 3. Set of views of the fruit highlighted in Figure 2.

3D rotations can only be applied to 3D objects, and, for this reason, a geometric model
for the fruits is needed. In this work, it is assumed that the shape of the fruits can be
modeled by a 3D spheroid as a first approximation. For this reason, fruits like pears,
eggplant, cucumbers, bananas, etc. are not adequate for the proposed method and are out
of the scope of this research.

The general idea of how the 3D rotations are obtained is conceptually simple once the
3D models are fitted to the fruits. In short, a number of candidate 3D rotations are tried
for the source fruit, and the one that minimizes a cost function is selected. This happens
when the transformed source fruit is most similar to the target fruit. This procedure is quite
similar to how motion is estimated for each block in block-matching [9] where several 2D
displacements are also tried for each block.

An important limitation of motion estimation is that the moving object must have
some texture. For instance, if a fruit has a perfectly smooth and uniform skin (Figure 4), it
will be impossible to obtain the rotation even by a human observer. In our tests, we only
had this problem with some varieties of tomatoes, where the proposed methodology can
not work.

Figure 4. Example of green tomato with no texture. No 3D motion can be estimated in this case.

One key aspect when designing algorithms for industrial applications is efficiency.
Industrial inspection machines require high throughput and very often conventional PC
hardware for image analysis is used. In block matching, all the pixels within a block
undergo the same 2D displacement; however, the same does not happen for 3D rotations.
In this case, the projected displacement of a pixel on the image, for a given 3D rotation,
is different for each pixel and must be calculated. Unfortunately, rotating all the source
fruit pixels is computationally too expensive. Therefore, it is necessary to use a few tricks
to keep the computational burden low. Using these tricks, computational times on the
order of 0.5–1 ms/view for the whole process on a 2018 I7-based PC using one single core
are achieved. Considering around 10–12 views per fruit, this will allow for estimating the
rotations of about 80 fruits per second. In the case of oranges or large tomatoes (about
200 g. per fruit), these numbers translate into a theoretical throughput of over 50 tons/h
of product.

The main contribution of this work is a novel method to estimate 3D fruit rotations
using the same camera present in vision based industrial inspection machines. This
method can be used to prevent multiple detections of the same skin defect and assess
what percentage of the fruit surface has been viewed. These goals can be accomplished
without introducing any hardware change (additional acquisition equipment) in existing
industrial roller inspection conveyors; only software changes are required. Moreover,
the low computational cost required by the algorithm allows its integration in the same
machine together with the rest of the image analysis functions.

Alternative approaches to this problem (see Section 2) rely on the use of multiple
cameras, depth-cameras, or robotic arms that imply major modifications of current existing
industrial machines.

2. Related Work

Detection of skin defects in fruits requires that the whole surface of each fruit is
imaged. Current solutions to this problem can be broadly classified into three groups:
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• Capturing multiple images from different views by using multiple cameras.
• Using a single camera with several helping mirrors.
• Rotating the fruits using rollers or robot hands.

Each of these solutions offers advantages as well as drawbacks.
The use of multiple cameras is the most common used method in in-line

inspection [10–13]. In [14], three cameras are used to scan whole surface of apples. Defects
are counted in each of the views, and the fruit is accepted or rejected based on this count.
Although this strategy is effective, cost of cameras, synchronization, and complexity are
important practical issues to be considered. In addition, false rejections may occur if defects
are counted multiple times on the overlapping views.

An interesting alternative for capturing the whole fruit surface is to use mirrors so that
the fruits are viewed from multiple view angles. In [15], two mirrors on opposite sides of an
apple are used to capture much of the surface, although the supporting mechanism blocked
some parts, and the processing speed of 3–4 apples per second is lower than required
commercial speeds. The use of mirrors was extended in [16] to also measure the 3D shape
of strawberries. A comprehensive study on the use of mirrors to reconstruct the whole
surface of fruits can be found in [17], where different configurations of concave and flat
mirrors are compared and different configurations with two, four, and six mirrors are also
explored. The study concludes that shape distortions in reflected images and duplicated
parts in multiple views are adverse issues of these approaches. Another important practical
disadvantage of these methods is the dirt accumulation on the mirrors [18] and the difficulty
to scan several fruits in parallel as in Figure 2.

The whole surface of the fruits can also be imaged by rotating the fruits. In [19],
a robotic grading system was developed for several fruit types. The system was able to
capture multiple images of the inspected fruits while they were sucked up by rotating
suction pads. Other authors propose to control the rotation of each fruit [20]. For instance,
in [21], the whole surface of mango fruits was captured using four images after rotating
the fruit 90◦ between each acquisition. However, precise rotation of fruits is very slow and
is not adequate for the high throughput required by industrial inspection.

In practice, the use of a roller conveyor is the the most common approach to rotate
fruits [22,23]. However, the rotation is not well controlled due to differences in fruit sizes
and shapes; therefore, some surface portions might be overlapped or missed due to the
non-uniform rotation.

A common problem to all the above methods is how to match the different views so
that defects are not counted more than once [7]. Surface reconstruction is one possible
solution to this problem. In [24], the surface of fruits is reconstructed in 3D by using RGB-D
cameras. However, the need of very specialized cameras that must operate at very high
frame rates limits the applicability of this approach for existing machines.

The matching problem can also be solved if the 3D motion of the fruit between views is
recovered. 3D motion estimation is a well studied problem, with many applications in very
different fields. Early works on 3D motion estimation using a single camera used object
projections [25,26]. However, the rotational symmetry of many of the fruits of interest
makes this approach impractical. The 3D motion can also be recovered using a single
camera if some constraints about the object shape are applied. For instance, in [27], objects
are modeled using simple geometric primitives and the projections are linked with dual
space geometry. Other examples of simple geometric primitives used in the literature
include polyhedral models [28] and spheroid models [12].

3. Materials and Methods
3.1. Modeling the 3D Shape of the Fruits

In this paper, the 3D shape of a fruit is approximated using a spheroid, also known as
ellipsoid of revolution.

A spheroid is a particular kind of ellipsoid that has at least two equal principal axes.
Depending on whether the different axis is shorter or longer than the equal ones, the
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ellipsoid is called oblate or prolate, respectively [29]. In the case that all the principal axes
have the same length, the spheroid becomes a sphere. Figure 5 shows an example with the
different spheroid types. Examples of fruits that approximate these shapes are also shown
in Figure 6.

Figure 5. Left: oblate spheroid model; Center: sphere model; Right: prolate spheroid model.

Figure 6. Samples of different fruit shapes. Left: oblate; Center: spherical; Right: prolate.

An interesting property of ellipsoids, and spheroids in particular, is that the shapes of
their orthogonal projections are ellipses [30]. Given the size of the fruits and the typical
height of the camera (about 1 m), perspective effects are negligible and a parallel camera
can be assumed locally for each fruit [31]. Moreover, in the case of spheroids, the length of
one of the principal axes of the projected ellipse is equal to one of the two equal principal
axes of the spheroid. This property is used in Section 3.1.2 to determine the length of all
the principal axes of the spheroid using all the available 2D views (Figure 3).

In this section, it is assumed that a binary mask indicates which pixels correspond to
the fruit exists for each view. In practice, since the illumination conditions are controlled,
this mask can be easily obtained by appropriately thresholding in the HSI colorspace.
However, the details of this step are out of the scope of this paper and may be different
depending on the fruit type.

Given a binary mask, it is possible to obtain the length of the principal axes of the
projected ellipse, as it is detailed in Section 3.1.1. Using these values from all the available
views, it is possible to infer the length of the principal axes of the spheroid, as described in
Section 3.1.2. Finally, the fitting process ends by calculating the elevation angle and the 3D
coordinates of all the fruit pixels as presented in Sections 3.1.3 and 3.1.4, respectively.

3.1.1. Principal Axes of the Projected Ellipses

Given a 2D axis-oriented ellipse (circle) shape, it is possible to relate the variances
of its pixel coordinates to the lengths of the semi-principal axes (radius). These relations
are depicted in Figure 7 and can be easily obtained assuming a 2D elliptical uniform
distribution for the pixel coordinates and then calculating the second order moments: σ2

x ,
σ2

y and σxy [32].
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Figure 7. Relation of variances and semi-principal axes for an axis-aligned ellipse (circle).

In the case that the ellipse is not axis-aligned, the relation is similar but using the
eigenvalues of the covariance matrix.

Let Σ be the covariance matrix and λ1 and λ2 its corresponding eigenvalues (λ1 ≥ λ2):

Σ =

(
σ2

x σxy
σxy σ2

y

)
Then, the lengths of the semi-major and semi-minor principal axes are respectively:

a = 2
√

λ1 b = 2
√

λ2 (1)

Figure 8 shows the relation between the length of the principal axes and the eigenval-
ues of Σ.

Figure 8. Relation between the variances and principal axes in the case of a rotated ellipse. λ1 and λ2

are the eigenvalues of the covariance matrix.

The covariance matrix Σ is estimated using the following expressions:

Sx =
N

∑
p=1

xp Sy =
N

∑
p=1

yp (2)

Sxx =
N

∑
p=1

x2
p Syy =

N

∑
p=1

y2
p Sxy =

N

∑
p=1

xp yp
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where (xp, yp) are the coordinates of a pixel under the mask, and N is the total number of
such pixels. Then, the variances and object center are estimated from the previous sums as:

cx = Sx/N cy = Sy/N (3)

σ2
x = Sxx/N − c2

x σ2
y = Syy/N − c2

y σxy = Sxy/N − cx cy

One trick to accelerate the computation of moments is to use a stride greater than one
when computing the sums of Equation (2). For instance, using a stride of 4 reduces the time
of this part by a factor 42 = 16. Our preliminary results showed that the error produced by
using a stride larger than one is negligible and much less than the error caused because the
shape of the binary masks is not perfectly elliptical.

3.1.2. Determination of the Spheroid Principal Axes

This section explains how to estimate the three principal axes of the spheroid model
using the major and minor principal axes of the projected ellipses from all the views.
Depending on the spheroid type, the procedure slightly changes as described next. Since
spheroids have at least two equal principal axes, there are two unknowns A and B which
correspond to the lengths of the longest and shortest semi-principal axes, respectively
(Figure 5). The number of available views for each fruit will be denoted as Nv.

Spherical Model

In this case, the three spheroid principal axes are identical (A = B) and the projected
shape of the fruit will be a circle with the same radius as the sphere. However, since in
practice the spherical shape is only an idealization, the radius of the sphere is obtained by
using the mean of the semi-major and semi-minor principal axes from all the views:

A = B =
1

Nv

Nv

∑
i=1

ai + bi
2

(4)

where ai and bi are the semi-major and semi-minor axes of the i-th view.

Oblate Model

The orthogonal projection of a spheroid always allows for measuring the length of its
equal principal axes on the projected ellipse. Therefore, for oblate spheroids, the length
2A of the equal principal axis is visible in all views. This is illustrated in Figure 9, where
the major axes (in red) in all ellipses have a similar length. The shortest principal axis of
the spheroid, B, will be observable only if it is orthogonal to the camera axis in at least
one view.

Thus, the length of the semi-principal axes of the ellipsoid is estimated as:

A =
1

Nv

Nv

∑
i=1

ai B = min
i

bi (5)

Figure 9 gives an example for an oblate fruit, where the relation between the major
axes of the projected ellipses and the major axes of the spheroid can be easily seen.

Figure 9. Views of an oblate fruit. The major principal axes are very similar in all views (2a ≈ 2A).
The range of the minor principal axis in each view is 2B < 2bi < 2A. The minor principal axis of the
spheroid is visible in the fourth view starting from the left (b4 ≈ B).
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Prolate Model

Now, the length of the equal semi-principal axes of the spheroid is B and the longest
principal axis of the spheroid A will be observable only if it is orthogonal to the camera
axis in at least one view.

Therefore, the principal axes of the ellipsoid are estimated as:

A = max
i

ai B =
1

Nv

Nv

∑
i=1

bi (6)

3.1.3. Elevation Angle Estimation

The goal of this section is to obtain the orientation of the 3D spheroid relative to the
camera axis. This section applies only to non-spheric objects. The discussion below will be
for oblate objects. A similar reasoning can be derived for prolate ones.

Consider one view of an oblate object such as the one depicted in Figure 10. The x-
and y-axis will correspond to the image axes. The z-axis is normal to the image. The v1-axis
is oriented as the eigenvector of Σ associated with its major eigenvalue, λ1. The v2-axis is
orthogonal to v1 and corresponds to the direction of the eigenvector associated with the
minor eigenvalue, λ2.

Let’s consider a cross-section of the fruit in Figure 10 through the 3D plane v1 = 0.
This cross-section is shown in Figure 11. Notice that, in this figure, the axes are v2 and z
and allow for visualizing the principal spheroid axes (va and vb).

Figure 10. Sample camera view of an oblate object. The red axis is oriented as the eigenvector
corresponding to the largest eigenvalue of Σ. Its length is the same as the major spheroid semi-axis,
2A. The yellow circle is located at the center of mass of the fruit/view.

Figure 11. Cross section of fruit across 3D plane v1 = 0 in Figure 8. Camera position above the fruit
is shown.
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Then, the elevation angle θ is defined as the angle between the va axis and the camera
plane, as illustrated in the same figure. Notice from Figure 11 that the length of the
observed minor axis on the image, 2b, depends on the spheroid dimensions (A and B),
and the elevation angle θ.

In Section 3.1.1, it was shown that there exists a direct relation between the lengths of
the principal axes of an ellipse and the covariance matrix Σ of the pixel coordinates. In [30],
it is shown how to obtain the variances of the ellipsoid projections using its own variances.

The following relation between axes exists (Figure 11):

v2 = va cos θ − vb sin θ

Computing the variance on both sides, we obtain the relation:

λ2 = σ2
A cos2 θ + σ2

B sin2 θ

where σ2
A = A2/4, σ2

B = B2/4 and λ2 = b2/4 (recall that λ2 is the variance along direc-
tion v2).

Therefore, the following relation holds:

b2 = A2 cos2 θ + B2 sin2 θ = A2 cos2 θ + B2(1− cos2 θ)

from which the angle θ can be isolated as:

cos θ =

√
b2 − B2

A2 − B2 (7)

This equation allows for obtaining the elevation angle up to the ambiguity of the sign
of θ. Figure 12 shows both possibilities. Fortunately, this ambiguity can easily be solved
if the rotation direction of the fruit is known (as it always happens when using the roller
conveyor machines that rotate the fruits in a known direction).

Figure 12. Ambiguity in the estimation of the elevation angle. The perceived shape from the camera
is the same in both possibilities.

Consider the sequence B = {bi}, 1 < i < Nv, created with the semi-minor axes of the
projected ellipses of the different views.

If the sequence B is increasing at bi, i.e., bi−1 < bi < bi+1, and the fruit is rotating
downwards as seen from the camera (see Figure 13), the elevation angle will be θ > 0,
meaning that the part below the center of the fruit has a greater height than that above the
center. On the contrary, if the sequence is decreasing at bi, the upper part will be above the
fruit center. The same discussion applies if the fruit is known to be rotating upwards as
seen from the camera, but with opposite results.
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The local extrema of B correspond to elevation angles θi ≈ 0 or θi ≈ ±π/2. Due to
the symmetry, both possibilities of θ generate very similar z-coordinates and therefore are
almost interchangeable. To solve the ambiguity in this case, the adopted solution is the one
that generates a smoother sequence of θ values (i.e., the option with an angle θi closer to
θi−1 or θi+1).

Figure 13. Sequence of views. Blue and red arrows indicate local minima and maxima respectively,
of the sequence B = {bi} of the semi-minor axis. If the sequence B is increasing at instant i, then
θ > 0. This means (for this direction of rotation) that the part below the fruit center in the view is
higher than the part above the center.

3.1.4. Pixels 3D Coordinates

In order to estimate 3D rotations, the height z of every pixel is needed as explained in
Section 3.2.

The case of spherical model is particularly simple. If A is the radius of the sphere,
then the z-coordinate of pixel at image position (x, y) is:

z =
√

A2 − (x− cx)2 − (y− cy)2 (8)

where (cx, cy) is the center of the projected ellipse in the view (Equation (3)).
For non-spheric spheroids, the computation of z is a little bit more elaborate. For

simplicity of the presentation, it will only be derived for an oblate spheroid. The equation
of an axis-aligned oblate spheroid can be written as:( x

B

)2
+
( y

A

)2
+
( z

A

)2
= 1 (9)

where A and B are the lengths of the semi-principal axes (A > B), or, equivalently, in matrix
form as:

xT

 1/B2 0 0
0 1/A2 0
0 0 1/A2

x = 1 (10)

with xT = (x, y, z).
In general, spheroid axes are not aligned with respect to camera axes. It is necessary

to introduce a pose matrix P. The rows of this matrix are the coordinates of the spheroid
principal axes in the camera reference frame.

The elements of P are:

P =

 p11 p12 p13
p21 p22 p23
p31 p32 p33

 (11)

and can be derived from the eigenvectors of the 2D covariance matrix Σ of the projected
ellipse in each view and the elevation angle θ. Let v1 = (v1x, v1y) and v2 = (v2x, v2y) be
the unit-length eigenvectors of Σ (see Figure 10).

In order to obtain the vector of the first (minor) axis of the spheroid, we need to
compute the elevation angle, as described in Section 3.1.3. Assuming that we have already
computed it, the first row of P is (unit vector in direction vb in Figure 11):

p11 = v2x sin θ p12 = v2y sin θ p13 = cos θ
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The second axis of the spheroid (semi-axis length A) can be chosen aligned to v1 and
parallel to plane z = 0:

p21 = v1x p22 = v1y p23 = 0

The third row of the matrix can simply be obtained using the cross product of the first
two rows:

(p31, p32, p33) = (p11, p12, p13)× (p21, p22, p23)

Therefore, the equation of a generic spheroid in a generic orientation position can be
written as:

xTPT

 1/B2 0 0
0 1/A2 0
0 0 1/A2

Px = 1 (12)

xTAx = 1 (13)

where

A = PT

 1/B2 0 0
0 1/A2 0
0 0 1/A2

P

Thus, given the centered coordinates, (x′, y′), of the pixel at image coordinates (x, y):

(x′, y′) = (x− cx, y− cy) (14)

the z-value can be obtained by solving the following second degree equation and keeping
the largest solution (the one closer to +∞):

(x′, y′, z)A

 x′

y′

z

 = 1 (15)

Details about how to solve this equation are given in Appendix A.

3.2. 3D Rotation Estimation

This section explains how to estimate the 3D rotation between two consecutive views
of the fruit. The rotation matrix R transforms the 3D coordinates of one point ps in the
source view to the target view:

pt = R ps. (16)

The strategy to estimate the rotation between two consecutive views is to perform an
exhaustive search in the space of feasible rotations and compute a cost measurement for
each one. Then, the rotation with lowest cost is selected as the initial estimate.

The error function compares the transformed source and target images using a set
of relevant points L. The main reason to use a set of relevant points instead of all the
points from the source fruit is efficiency. Section 3.3.2 describes how the relevant points
are selected in detail. Once the set of relevant points L is available, the 3D coordinates
ps = (x′s, y′s, zs) of every point (xs, ys), p ∈ L, are calculated by solving Equation (15).

Let pt = (x′t, y′t, zt) be the coordinates in the target view of the transformed point ps ,
which is obtained using a candidate rotation R:

• If zt < 0, the transformed point pt is not visible in the target image and it is ignored in
the similarity computation.

• If zt > 0, then the pair (ps, pt) is added to a list S of valid relevant points.

Then, the error function for a candidate rotation R is then obtained as follows:

ε(R) =
1
|S|∑S

|Ims(xs, ys)− Imt(xt, yt)| (17)
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where Ims and Imt are the source and target images after some pre-processing described in
Section 3.3.1. Finally, the estimated rotation between the two views is:

R̂ = arg min
R∈R

{ε(R)} (18)

whereR is the set of plausible rotations.
Rotations in 3D can be described by the so-called rotation vectors, ~v =~kθ, where~k is a

unit vector that defines the rotation axis, and θ is the rotation angle around that axis. Using
the Rodrigues’ Formula [33], it is possible to obtain the rotation matrix R from ~v.

Although the rotation vector ~v = (rx, ry, rz) has three components, our empirical
experiments showed that the rz component is negligible (rz ≈ 0), i.e., the rotation vector
lies on the XY plane.

Since the rollers of the conveyor belt force the fruits to rotate around the x-axis
(Figure 2), the largest component of a possible ~v is rx. The component ry should also be
close to zero for ideal shaped fruits. However, the unavoidable imperfections of real fruits
result in ry possibly being non-zero.

These constraints define the setR of plausible rotations for the search, so that rotation
vectors ~v (and consequently candidate matrices R) are sampled from a 2D grid on the
(rx, ry) space. Figure 14 shows the search space, where rx is in the range 0–βmax, where
βmax is the maximum expected rotation that is determined by the mechanic setup, and ry
is between −α and α (typically, we use α = 10 degrees). The grid is sampled with a step
γ = 1 degrees (configurable).

Figure 14. Search grid of rotation vectors.

The values of ε(R) can also be represented as an error map that represents the obtained
error for each point (rx, ry) of the search grid of Figure 14. Figure 15 shows an example of
one error map, where the initial estimate of the rotation, R̂, is located at the position of the
darkest pixel in that error map.

Figure 15. Error map for all rotations in the grid search.

However, this initial estimate is relatively coarse due to the γ quantization step of the
search grid. In order to refine this initial estimate, two operations are performed:

• New intermediate rotations, with step γ/2, are computed around the local mini-
mum R̂. The new sampled rotations are shown as empty circles in Figure 16. Then,
the minimum on this denser 5× 5 subgrid is found.

• A parabola is fitted locally around the new minimum. The final rotation is obtained as
the position of the parabola minimum. This idea is similar to that proposed by Lowe
for local extrema detection in SIFT [34]. More details about this parabolic refinement
are given in Appendix B.
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Figure 16. This figure illustrates the local increase in resolution of the error map around the local
minimum. The initial local minimum obtained with γ step is shown as a yellow filled circle.

3.3. Implementation Details

This section presents some implementation details which are needed to estimate the
fruit rotations in real time in a production scenario.

3.3.1. Image Pre-Processing

The standard fruit images (as those found in Figure 6) are RGB images with a spatial
resolution of about 75 pix/inch (that translates to image sizes in the range of 200–350 pixels
width/height).

The goal of image pre-processing is to obtain good smaller images to compare source
and target views and to build a small list of relevant points, L, to estimate the rotation
(Section 3.2). The following operations are performed:

1. Reduce the number of color channels. Unlike many approaches, this step is accom-
plished by simply taking the green component. Compared with standard RGB to
luminance conversion, taking the green component is computationally free.

2. Reduce the image resolution. In our experiments, we use a downsampling factor of 4
in both axes. To mitigate aliasing, each pixel of the downsized image is computed
using the average of the corresponding 4× 4 block in the original image.

3. High pass filtering. This step is performed by computing the signed difference
between the downsampled image and a Gaussian blurred version of it with σ = 1.25.
This image will be zero at smooth portions of the fruit and will exhibit large positive
or negative values at details or texture. A fast recursive and separable implementation
of the Gaussian filter was used [35].

Figure 17 shows an example of the result of the image pre-processing of the views in
Figure 3. Notice that this high-pass image is computed at a resolution 4× 4 smaller than
the original input image, allowing the computation to be 42 = 16 times faster.

Figure 17. Result of image pre-processing.

3.3.2. Selecting Relevant Points

The proposed algorithm to estimate the 3D rotation between two views of a fruit
can be computationally expensive due to the exhaustive search in the space of possible
rotationsR.

Remember that, for each possible rotation R ∈ R, a certain set of source points Lmust
be mapped to the target using one 3× 3 matrix multiplication by a 3× 1 vector.

This is a very high time-consuming operation. In order to accelerate the computation
time, a list of relevant source points L is created, as introduced in Section 3.2. This section
presents the details about how L is created.

Let Ims be a pre-processed source image as shown in Figure 18. The first constraint
is that points near the fruit border will be discarded (outside the red ellipse in Figure 18).
These points are not interesting because, when rotated in 3D, they may not be visible in the
target view. The size of this red ellipse depends on the maximum expected rotation.



Sensors 2021, 21, 2232 14 of 24

Then, the points selected are those above the 97th percentile of the absolute value
inside the red ellipse.

Figure 18. Area from which relevant points are obtained.

Using the previous settings, the typical number of points in L lies in the range from
50 to 100 points per source image. The precise number depends on the image size and the
fraction of retained points.

3.4. Datasets

This section presents the two datasets that have been used to evaluate the performance
of the proposed method to estimate the 3D rotation of fruits.

3.4.1. FruitRot3D Dataset

The images in this dataset were captured using an industrial fruit inspection machine
with a roller conveyor unit that simulates real operation conditions using diffuse illumina-
tion to prevent potential highlights. The dataset has been made publicly available to the
community so that the results of this work can be replicated [36]. Figure 19-bottom shows
a few samples of images of this dataset.

Figure 19. Top: Sample Images from Fruits-360 data set; from left to right kiwi, peach, apple golden,
coconut, and watermelon; Bottom: Sample Images from FruitRot3D dataset; from left to right, orange,
tomato, and mandarin.

A few key aspects of this dataset are:

• The dataset contains three types of fruits, namely oranges, mandarins, and tomatoes.
• There are 15 fruit sequences for each fruit type.
• The length of each fruit sequence oscillates between 13 and 16 images.
• The 3D rotation between consecutive views of the same fruit is not constant due to

the slipping on the rolling conveyor and irregularities on the fruit shape. Notice that
not only the magnitude of the rotation can change but also its axis. The typical range
of the magnitude of the rotation is between 10 and 30 degrees.

• The Foreground/Background segmentation was automatically performed by the
inspection machine. Background pixels were set to black (RGB = {0,0,0}).

• The imaged fruit diameters are in the range between 250 and 350 pixels depending on
the fruit type.

• The images are stored in PNG format with lossless compression.
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3.4.2. Fruits-360 Dataset

This dataset was originally intended to train machine learning models to recognize
fruits from different view angles [37]. In order to easily create many training samples, fruits
and vegetables were planted in the shaft of a low speed motor (3 rpm) and a short movie
of 20 s was recorded using a Logitech C920 camera (Lausanne, Switzerland). A white sheet
of paper was placed as a background so that fruits could be easily segmented.

Some aspects of this dataset are:

• The dataset contains more than 100 types of fruits. However, only one sequence per
fruit type is available.

• If it is assumed that both the webcam frame rate (no image drops) and the motor
speed are constant, then the 3D rotation between consecutive views must be constant.
Using these assumptions, the approximate rotation magnitude between consecutive
images is about one degree.

• The images in the dataset were resized to a fixed common size 100× 100 pixels.
• The images were stored using JPEG lossy compression.

The Fruits-360 dataset is relevant in this work because it provides fruit sequences with
controlled rotation. Although the exact magnitude of the rotation is not known, it can be
assumed that both rotation axis and magnitude are constant and therefore objective mea-
surements about the accuracy of the proposed method can be made. Another interesting
feature of this dataset is that it contains many different fruit types. In this work, coconuts,
kiwis, apples, peaches, and watermelons were selected to evaluate the proposed method.
These fruits were selected because they have a textured surface and represent the three
spheroid models: spherical, oblate, and prolate. Figure 19-top shows a few samples of
images of this dataset.

4. Results

In this section, the performance of the proposed method for 3D rotation estimation is
presented with three different experiments.

In Section 4.1, the rotation error is estimated in a controlled environment where the
rotation speed of the fruits is kept constant.

In a real working scenario, it is not possible to accurately measure the rotation of the
fruits (magnitude and axis). For this reason, the reprojection error is used in Section 4.2 to
indirectly evaluate the performance of the algorithm in a more realistic scenario.

Finally, qualitative results that show how points can be tracked in fruit sequences are
presented in Section 4.3

4.1. Rotation Error Analysis

In order to measure the rotation error of the proposed algorithm, the true rotation
angle between consecutive views of each fruit should be known. Unfortunately, no practical
method was found to obtain these ground-truth rotations in a real inspection machine.
Although some preliminary experiments were performed with tennis balls and marked
fruits, these experiments did not fully resemble the real working conditions. In the case of
tennis balls, the geometry fits better the spherical model than any real fruit. In the case of
marked fruits, the presence of the markings makes the estimation of the rotation simpler
than when real fruits are used.

To overcome this problem, the Fruits-360 dataset that contains sequences of rotating
fruits in a controlled environment was selected to measure the rotation error. The rotation
speed in the Fruits-360 dataset can be assumed to be constant but unknown. In this dataset,
the rotation between consecutive views n and n + 1 is very small (around one degree),
and much smaller than the rotation angle in real inspection machines (15–30 degrees). For
this reason, rotations between views n and n + ∆n were estimated.

Figure 20 shows an example of estimated rotations for the coconut sequence with
∆n = 20.
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Figure 20. Sequence of estimated rotations for the coconut sequence with ∆n = 20.

In this figure, it is possible to observe that the estimated rotations can be modeled as a
mean value plus some random variations. The random variations should ideally be zero
and can be described with the variance (or standard deviation) of the estimated rotations.
On the other hand, if it is assumed that the true rotation speed is constant, then the mean
value of the rotations in Figure 20 should be proportional to ∆n as shown in Figure 21
and Table 1, where the mean of estimated rotations as a function of ∆n are shown for the
coconut, peach, watermelon, kiwi, and apple sequences of the Fruits-360 dataset. Figure 22
and Table 2 show the rotation speeds calculated as mean_rotation/∆n. This figure shows
that the estimated rotations are consistent with the data obtained by rotating fruits at
constant speed.

Figure 21. Mean Rotations as a function of ∆n for different fruit types.

Table 1. Mean rotations for different values of ∆n and fruit type. Data corresponding to curves of
Figure 21.

Coconut Peach Watermelon Kiwi Apple
Prolate Oblate Spherical Prolate Oblate

∆n = 8 11.23 7.92 11.0400 9.63 8.60

∆n = 15 20.70 14.79 19.95 17.97 16.49

∆n = 20 29.22 19.67 27.01 23.88 21.36

∆n = 25 34.25 25.31 32.79 29.57 26.37

∆n = 30 42.60 29.04 38.72 35.55 31.17
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Figure 22. Mean rotation speed as a function of ∆n for different fruit types.

Table 2. Mean rotation speed for different values of ∆n and fruit type. Data corresponding to curves
of Figure 22.

Coconut Peach Watermelon Kiwi Apple

∆n = 8 1.40 0.99 1.38 1.20 1.08

∆n = 15 1.38 0.98 1.33 1.19 1.10

∆n = 20 1.46 0.98 1.35 1.19 1.06

∆n = 25 1.37 1.01 1.31 1.18 1.05

∆n = 30 1.42 0.96 1.29 1.18 1.03

In Figure 20, it was shown that the rotations had some variations around their mean
value. The standard deviation is a measure of such variations. Figure 23 and Table 3 show
the standard deviation as a function of ∆n and fruit type.

Figure 23. Standard deviation of rotations as a function of ∆n for different fruit types.

Several conclusions can be obtained from this experiment using fruits that rotate in a
controlled manner:

• The proposed method seems to work well for a relatively broad range of fruit types.
The only restriction is the presence of texture and a reasonable similarity to the
geometric model.

• Typically, industrial inspection machines are adjusted for rotations between consec-
utive views in the range 18–30 degrees. The method provides consistent rotation
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estimates for rotations in that range. This fact can be derived from Figure 22 and
Table 2 where the average rotation speed is almost constant regardless of the ∆n value.

• Figure 23 shows that standard deviation increases as ∆n increases. The reason for
this is that the overlapped area of views decreases as the inter-view rotation increases
yielding a noisier error map (Figure 15).

Table 3. Standard deviation of estimated rotations as a function of ∆n and fruit type, data corre-
sponding to curves of Figure 23.

Coconut Peach Watermelon Kiwi Apple

∆n = 8 1.29 2.54 1.78 1.54 1.42

∆n = 15 2.48 2.13 3.24 2.31 1.84

∆n = 20 3.21 2.27 2.37 2.21 2.13

∆n = 25 2.93 2.61 3.22 3.53 3.68

∆n = 30 4.30 4.46 3.94 4.06 4.12

4.2. Reprojection Error Analysis

An indirect way to measure the goodness of the estimated rotations is to compare
where a point in view i would be mapped in view i± 1 using the estimated rotation and
compare it with its ground-truth position annotated by a human.

To ease the ground-truthing task, an interface that allows a user to select point corre-
spondences between consecutive views was developed. Figure 24 shows the interface; the
user must click point correspondences in both views. These points allow for obtaining the
rms error between the automatically predicted position and the ground-truth point.

Figure 24. This figure illustrates the idea of the interface to annotate ground-truth for estimating
reprojection error. The user is requested to select corresponding points in both views.

The reprojection errors were estimated using the FruitRot3D dataset. The reason is
that the image resolution in the Fruits-360 dataset is very small, and it is really difficult to
establish point correspondences even for a human annotator.

Overall, about 200 point correspondences per fruit class were used to evaluate the
reprojection error. The results are summarized in Table 4. Since the reprojection error is
measured in pixels and its magnitude depends on the image resolution, Table 4 shows the
rms error in pixels and also relative to the fruit diameter.

One first observation is that oblate fruits tend to have larger errors than spherical
ones. This may be due to the fact that the spherical model fits better actual fruits than
oblate ones. In addition, non-spheric fruits need to estimate the elevation angle θ to obtain
the z-coordinate (Section 3.1.4) of the point. Errors in the estimation of elevation angle θ
increase the error in the estimated z, which in turn increases the total reprojection error.
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Another important consideration is that a non-negligible part of the observed error is
due to human annotation error itself since real fruits have no clear landmarks that can be
identified within less than a few pixels accuracy.

The ground-truth point correspondences used in this experiment have been made
public in [36].

Table 4. RMS reprojection-error for different kinds of fruits.

Fruit Type RMS-Error (Pixels) RMS-Error/Diameter(%)

Oranges 2.53 0.94%

Mandarins 6.5 2.99%

Tomatoes 5.2 3.14%

4.3. Point Tracking along a Sequence of Views

This section provides qualitative results by showing how a point selected in one
view can be tracked along the sequence of views using the estimated rotations between
consecutive views. This experiment is useful to figure out how the method would perform
to prevent multiple counts of the same defect.

In the examples in this section, a point is manually selected in one view and its position
predicted in the other views. To do so, the 3D coordinates of the initial point are obtained
from the fitted geometric model (see Section 3.1.4), and then the estimated 3D rotations are
applied to it. In order to propagate beyond adjacent views, 3D rotations are concatenated
by multiplying the corresponding rotation matrices. For backward propagation, the inverse
of the rotation matrix is used.

This point tracking has been applied to fruits from both datasets. Figures 25–27 show
some tracking results of the FruitRot3D dataset. The precision of the whole process can be
observed in these figures. Two interesting examples can be seen in the two first rows of
Figure 27, where the tracked point reappears after completing a full 360-degree rotation.
In this figure, the tracked points are highlighted in green color if the tracked point is visible;
otherwise, it is highlighted using a dark color to emphasize that it is not visible in that view
(it lies on the hidden side). These qualitative examples are quite remarkable because they
show that, despite many consecutive rotations being used, it is still possible to predict with
relative precision where the point reappears after occlusion. Qualitative results using the
Fruits-360 dataset are also provided in Figure 28. From the observation of Figures 25–28,
some conclusions can be drawn:

• No bias is observed. If the estimated rotations were biased, then a drift in the predicted
position of tracked points would be observed.

• From Figure 28, it can be seen that the geometric model is relatively robust to im-
perfections in the foreground/background segmentation. The presence of stems
(watermelon) or noisy contours (coconuts) did not affect the ability of the method to
track points.

• The tracking precision is enough for pairing defects across views and prevent multiple
counting of the same defect.

• The method has proved its applicability to very different kinds of fruits. The only
limitations are that the geometry of the fruit can be reasonably modeled by a spheroid
and the fruit skin contains enough texture variations.
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Figure 25. Example of point tracking in the case of two different tomatoes. The initial tracked point
is white. Green circles mean predicted visible positions. The geometry model is set to oblate in this
case. The sequence has been truncated to the views where the tracked point remains visible.

Figure 26. Example of point tracking in the case of two different oranges. The geometry model in this
case is sphere. The sequence has been truncated to the views where the tracked point remains visible.

Figure 27. Example of point tracking in the case of three different mandarins. Dark circles mean
predicted occluded positions of the initial point. The third row is the same fruit as the second, but a
different point is tracked. Oblate geometry has been used.

Figure 28. Examples of point tracking of fruits in the Fruit-360 dataset.
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5. Conclusions

In this paper, a method to estimate the 3D rotation between pairs of consecutive views
of fruits has been presented.

The key idea is to fit a 3D spheroid model for the fruit, and then estimate the 3D rota-
tion using an exhaustive search in a small space of feasible rotations. Parabolic refinement
is also used to increase the accuracy of the estimations.

In order to estimate the matching error, each candidate rotation R ∈ R, is applied to a
very small number of points L of the source image. The use of a small set of points instead
of all the points (as it is normally done in block-matching motion estimation) is the most
important idea to boost the processing speed.

The algorithm has been tested with several types of fruits from two data-sets, one
obtained with a real inspection machine and another one where controlled rotation had
been applied to fruits.

The FruitRot3D data-set has been made public and can be freely used for prospective
researchers in the field.

Although the spheroid model may seem too simplistic, the estimated rotations are
very precise and allow for tracking points in the surface of the fruits along all the views.

In the context of fruit inspection, the proposed method can be used to assess if the
whole fruit surface has been observed and also to track surface defects and prevent counting
them more than once.

Special attention has been given to speed up all the computations. The whole process,
including geometry, pose modeling, and the rotation estimation itself, can be done in less
than 0.5 ms per view on a standard PC using one single core (year 2018, Intel I7@4 GHz).

Future research will use the estimated 3D rotations to unroll the fruit surfaces on a 2D
topographic map so that fruit skin can be easily analyzed as a single whole.
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Appendix A. Solution of Quadratic Equation to Compute the Z-Coordinate of a Pixel

This section presents how to obtain a explicit solution for Z in the equation:

(x′, y′, Z)A

 x′

y′

Z

 = 1 (A1)

https://github.com/alalbiol/3d-rotation-estimation-fruits
https://github.com/alalbiol/3d-rotation-estimation-fruits
https://github.com/Horea94/Fruit-Images-Dataset
https://github.com/Horea94/Fruit-Images-Dataset
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Consider the A matrix elements:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 (A2)

Equation (A1) can be expanded as:

(x′, y′)
(

a11 a12
a21 a22

)(
x′

y′

)
+ (x′, y′)

(
a13
a23

)
Z + (a31, a32)

(
x′

y′

)
Z + a33Z2 = 1 (A3)

Calling

C = (x′, y′)
(

a11 a12
a21 a22

)(
x′

y′

)
− 1

and

B = (x′, y′)
(

a13
a23

)
+ (a31, a32)

(
x′

y′

)
allows for rewriting Equation (A3) as:

a33Z2 + B Z + C = 0 (A4)

where B and C are scalar constants. The solution to this equation comes from the well
known formula for quadratic equations:

Z =
−B±

√
B2 − 4a33C

2a33

The Z-coordinate of the pixel will be the solution closer to +∞, namely:

Z =
−B +

√
B2 − 4a33C

2a33
(A5)

Appendix B. Quadratic Refine

The Taylor expansion of a two-dimensional function up to a quadratic term around
the origin has the form:

D(x) = D +
∂DT

∂x
x +

1
2

xT ∂2D
∂x2 x (A6)

where ∂D
∂x is the gradient vector:

∂D
∂x

=

(
∂D
∂x

,
∂D
∂y

)T

and ∂2D
∂x2 is the Hessian matrix:  ∂2D

∂x2
∂2D
∂x∂y

∂2D
∂x∂y

∂2D
∂y2


Computing the gradient of this expression and setting it to zero allow for finding the

local minimum of the quadratic approximation:

x̂ = −
(

∂2D
∂x2

)−1
∂D
∂x

(A7)
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The values of the Hessian matrix and gradient vector in Equation (A6) can be ap-
proximated as follows. For the horizontal gradient, the horizontal centered difference
is computed

sx(x, y) =
D(x + 1, y)− D(x− 1, y)

2
and then a vertical weighted average is computed:

∂D
∂x
≈ Dx(x, y) =

sx(x, y + 1) + 2sx(x, y) + sx(x, y− 1)
4

Similarly, the vertical component of the gradient is approximated as:

sy(x, y) =
D(x, y + 1)− D(x, y− 1)

2

∂D
∂y
≈ Dy(x, y) =

sy(x + 1, y) + 2sy(x, y) + sy(x− 1, y)
4

The second derivatives are estimated as:

sxx(x, y) = D(x + 1, y)− 2 D(x, y) + D(x− 1, y)

∂2D
∂x2 ≈ Dxx(x, y) =

sxx(x, y + 1) + 2sxx(x, y) + sxx(x, y− 1)
4

syy(x, y) = D(x, y + 1)− 2 D(x, y) + D(x, y− 1)

∂2D
∂y2 ≈ Dyy(x, y) =

syy(x + 1, y) + 2syy(x, y) + syy(x− 1, y)
4

The second order mixed partial derivatives will be approximated as:

∂2D
∂x∂y

≈ Dxy(x, y) =
D(x + 1, y + 1) + D(x− 1, y− 1)− D(x− 1, y + 1)− D(x + 1, y− 1)

4

Once the gradient vector and the Hessian matrix have been approximated using
the previous equations, the minimum of the quadratic approximation is obtained using
Equation (A7).

References
1. Food and Agriculture Organization of the United Nations. Assuring Food Safety and Quality: Guidelines for Strengthening

National Food Control Systems; Food and Agriculture Organization of the United Nations, World Health Organization: Geneva,
Switzerland, 2003.

2. Gao, H.; Zhu, F.; Cai, J. A Review of Non-destructive Detection for Fruit Quality. In Computer and Computing Technologies in
Agriculture III; Li, D., Zhao, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 133–140.

3. Patel, K.K.; Kar, A.; Jha, S.N.; Khan, M.A. Machine vision system: A tool for quality inspection of food and agricultural products.
J. Food Sci. Technol. 2012, 49, 123–141. [CrossRef] [PubMed]

4. Guo, Z.; Zhang, M.; Dah-Jye, L.; Simons, T. Smart Camera for Quality Inspection and Grading of Food Products. Electronics 2020,
9, 505. [CrossRef]

5. Saldana, E.; Siche, R.; Lujan, M.; Quevedo, R. Review: Computer vision applied to the inspection and quality control of fruits and
vegetables. Braz. J. Food Technol. 2013, 16, 254–272. [CrossRef]

6. Anish, P. Quality Inspection of Fruits and Vegetables using Colour Sorting in Machine Vision System: A review. Int. J. Emerg.
Trends Eng. Dev. 2017, 6. [CrossRef]

7. Li, J.; Huang, W.; Zhao, C. Machine vision technology for detecting the external defects of fruits—A review. Imaging Sci. J. 2015,
63, 241–251. [CrossRef]

8. Demant, C.; Streicher-Abel, B.; Waszkewitz, P.; Strick, M.; Schmidt, G. Industrial Image Processing: Visual Quality Control in
Manufacturing; Springer-Electronic-Media: Berlin/Heidelberg, Germany, 1999. [CrossRef]

9. Barjatya, A. Block matching algorithms for motion estimation. IEEE Trans. Evol. Comput. 2004, 8, 225–239.

http://doi.org/10.1007/s13197-011-0321-4
http://www.ncbi.nlm.nih.gov/pubmed/23572836
http://dx.doi.org/10.3390/electronics9030505
http://dx.doi.org/10.1590/S1981-67232013005000031
http://dx.doi.org/10.26808/rs.ed.i7v6.06
http://dx.doi.org/10.1179/1743131X14Y.0000000088
http://dx.doi.org/10.1007/978-3-642-58550-0


Sensors 2021, 21, 2232 24 of 24

10. Cubero, S.; Aleixos, N.; Moltó, E.; Gómez-Sanchis, J.; Blasco, J. Advances in Machine Vision Applications for Automatic Inspection
and Quality Evaluation of Fruits and Vegetables. Food Bioprocess Technol. 2011, 4, 487–504. [CrossRef]

11. Blasco, J.; Aleixos, N.; Cubero, S.; Gómez-Sanchís, J.; Moltó, E. Automatic sorting of satsuma (Citrus unshiu) segments using
computer vision and morphological features. Comput. Electron. Agric. 2009, 66, 1–8. [CrossRef]

12. Shiraishi, Y.; Takeda, F. Proposal of whole surface inspection system by simultaneous six-image capture of prolate spheroid-
shaped fruit and vegetables. In Proceedings of the 2011 Fourth International Conference on Modeling, Simulation and Applied
Optimization, Kuala Lumpur, Malaysia, 19–21 April 2011; pp. 1–5. [CrossRef]

13. Zhang, C.; Zhao, C.; Huang, W.; Wang, Q.; Liu, S.; Li, J.; Guo, Z. Automatic detection of defective apples using NIR coded
structured light and fast lightness correction. J. Food Eng. 2017, 203, 69–82. [CrossRef]

14. Zou, X.-B.; Zhao, J.-W.; Li, Y.X.; Holmes, M. In-line detection of apple defects using three color cameras system. Comput. Electron.
Agric. 2010, 70, 129–134. [CrossRef]

15. Li, Q.; Wang, M.; Gu, W. Computer vision based system for apple surface defect detection. Comput. Electron. Agric. 2002,
36, 215–223. [CrossRef]

16. Imou, K.; Kaizu, Y.; Morita, M.; Yokoyama, S. Three-dimensional shape measurement of strawberries by volume intersection
method. Trans. ASABE 2006, 49, 449–456. [CrossRef]

17. Reese, D.Y.; Lefcourt, A.M.; Kim, M.S.; Lo, Y.M. Whole surface image reconstruction for machine vision inspection of fruit. In
Optics for Natural Resources, Agriculture, and Foods II; Chen, Y.R., Meyer, G.E., Tu, S.I., Eds.; International Society for Optics and
Photonics, SPIE: Boston, MA, USA, 2007; Volume 6761, pp. 140–148. [CrossRef]

18. Reese, D.; Lefcourt, A.M.; Kim, M.S.; Martin Lo, Y. Using parabolic mirrors for complete imaging of apple surfaces. Bioresour.
Technol. 2009, 100, 4499–4506. [CrossRef]

19. Kondo, N. Robotization in fruit grading system. Sens. Instrum. Food Qual. Saf. 2009, 3, 81–87. [CrossRef]
20. Pham, Q.T.; Liou, N.S. Hyperspectral Imaging System with Rotation Platform for Investigation of Jujube Skin Defects. Appl. Sci.

2020, 10, 2851. [CrossRef]
21. Rivera, N.; Gómez-Sanchis, J.; Chanona-Pérez, J. Early detection of mechanical damage in mango using NIR hyperspectral

images and machine learning. Biosyst. Eng. 2014, 122, 91. [CrossRef]
22. Mohammadi Baneh, N.; Navid, H.; Kafashan, J. Mechatronic components in apple sorting machines with computer vision. J.

Food Meas. Charact. 2018, 12, 1135–1155. [CrossRef]
23. Huang, W.; Li, J.; Wang, Q.; Chen, L. Development of a multispectral imaging system for online detection of bruises on apples. J.

Food Eng. 2015, 146, 62–71. [CrossRef]
24. Wang, Y.; Chen, Y. Fruit Morphological Measurement Based on Three-Dimensional Reconstruction. Agronomy 2020, 10, 455.

[CrossRef]
25. Kriegman, D.J.; Ponce, J. On recognizing and positioning curved 3-D objects from image contours. IEEE Trans. Pattern Anal.

Mach. Intell. 1990, 12, 1127–1137. [CrossRef]
26. Kalldahl, A.; Forchheimer, R.; Roivainen, P. 3D-Motion Estimation From Projections. In Applications of Digital Image Processing IX;

Tescher, A.G., Ed.; International Society for Optics and Photonics, SPIE: San Diego, CA, USA, 1986; Volume 0697, pp. 301–307.
[CrossRef]

27. Wijewickrema, S.N.R.; Paplinski, A.P.; Esson, C.E. Reconstruction of Spheres using Occluding Contours from Stereo Images. In
Proceedings of the 18th International Conference on Pattern Recognition, Hong Kong, China, 20–24 August 2006; IEEE Computer
Society: Washington, DC, USA; 2006; Volume 1, pp. 151–154. [CrossRef]

28. Fang, F.; Lee, Y.T. 3D reconstruction of polyhedral objects from single perspective projections using cubic corner. 3D Res. 2012,
3, 1. [CrossRef]

29. Hilbert, D.; Cohn-Vossen, S. Geometry and the Imagination; AMS Chelsea Publishing Series; AMS Chelsea Pub.: New York, NY,
USA, 1999.

30. Karl, W.; Verghese, G.; Willsky, A. Reconstructing Ellipsoids from Projections. CVGIP Graph. Model. Image Process. 1994,
56, 124–139. [CrossRef]

31. Hartley, R.I.; Zisserman, A. Multiple View Geometry in Computer Vision; Cambridge University Press: Cambridge, UK, 2000;
doi:10.1017/CBO9780511811685. [CrossRef]

32. Stirzaker, D. Jointly distributed random variables. In Probability and Random Variables: A Beginner’s Guide; Cambridge University
Press: Cambridge, UK, 1999; pp. 238–308. [CrossRef]

33. Dai, J.S. Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections. Mech. Mach. Theory 2015,
92, 144–152. [CrossRef]

34. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
35. Young, I.T.; van Vliet, L.J. Recursive implementation of the Gaussian filter. Signal Process. 1995, 44, 139–151. [CrossRef]
36. Image Data Set. 2021. Available online: https://github.com/alalbiol/3d-rotation-estimation-fruits (accessed on 1 January 2021).
37. Mures, an, H.; Oltean, M. Fruit recognition from images using deep learning. Acta Univ. Sapientiae Inform. 2018, 10, 26–42.

[CrossRef]

http://dx.doi.org/10.1007/s11947-010-0411-8
http://dx.doi.org/10.1016/j.compag.2008.11.006
http://dx.doi.org/10.1109/ICMSAO.2011.5775528
http://dx.doi.org/10.1016/j.jfoodeng.2017.02.008
http://dx.doi.org/10.1016/j.compag.2009.09.014
http://dx.doi.org/10.1016/S0168-1699(02)00093-5
http://dx.doi.org/10.13031/2013.20394
http://dx.doi.org/10.1117/12.738406
http://dx.doi.org/10.1016/j.biortech.2008.11.059
http://dx.doi.org/10.1007/s11694-008-9065-x
http://dx.doi.org/10.3390/app10082851
http://dx.doi.org/10.1016/j.biosystemseng.2014.03.009
http://dx.doi.org/10.1007/s11694-018-9728-1
http://dx.doi.org/10.1016/j.jfoodeng.2014.09.002
http://dx.doi.org/10.3390/agronomy10040455
http://dx.doi.org/10.1109/34.62602
http://dx.doi.org/10.1117/12.976232
http://dx.doi.org/10.1109/ICPR.2006.983
http://dx.doi.org/10.1007/3DRes.02(2012)1
http://dx.doi.org/10.1006/cgip.1994.1012
http://dx.doi.org/10.1017/CBO9780511811685
http://dx.doi.org/10.1017/CBO9780511813627.010
http://dx.doi.org/10.1016/j.mechmachtheory.2015.03.004
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/0165-1684(95)00020-E
https://github.com/alalbiol/3d-rotation-estimation-fruits
http://dx.doi.org/10.2478/ausi-2018-0002

	Introduction
	Related Work
	Materials and Methods
	Modeling the 3D Shape of the Fruits
	Principal Axes of the Projected Ellipses
	Determination of the Spheroid Principal Axes 
	Elevation Angle Estimation
	Pixels 3D Coordinates

	3D Rotation Estimation 
	Implementation Details 
	Image Pre-Processing 
	Selecting Relevant Points

	Datasets
	FruitRot3D Dataset
	Fruits-360 Dataset


	Results
	Rotation Error Analysis
	Reprojection Error Analysis
	Point Tracking along a Sequence of Views

	Conclusions 
	Solution of Quadratic Equation to Compute the Z-Coordinate of a Pixel 
	Quadratic Refine
	References

