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Abstract

In this paper, we introduce the notion of C∗-algebra valued quasi metric
space to generalize the notion of C∗-algebra valued metric space and
investigate the topological properties besides proving some core fixed
point results. Finally, we employ our one of the main results to examine
the existence and uniqueness of the solution for a system of Fredholm
integral equations.
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1. Introduction

The classical Banach contraction principle [8] continues to be one of the most
motivating fixed point results, which has inspired several generations of mathe-
maticians working in this domain. This principle is not merely an existence and
uniqueness result but also offers a very effective computational procedure to
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compute the fixed point of the underlying contraction map. Several researchers
attempted to improve this principle by enlarging the class of spaces. To ac-
complish this, the authors introduced various classes of metric spaces namely:
(see [1–7,9–11,14,15].

In 1931, W. A. Wilson [16] introduced the notion of quasi metric space. A
quasi metric d on a non-empty set A is a function d : A × A → R+ which
satisfies d(a, b) ≤ d(a, c) + d(c, b) and d(a, b) = d(b, a) = 0 if and only if a = b,
for all a, b ∈ A. A quasi metric satisfies all the conditions of metric with the
possible exception of symmetry (i.e., the distance of a point ‘a′ to a point ‘b′

may not equal to the distance of a point ‘b′ to a point ‘a′).
On the other hand, Ma et al. [12] set up the class of C∗-algebra valued

metric spaces (in short C∗-avMS) by interchanging R (the range set) with a
unital C∗-algebra in 2014, which is a more broad class than the class of metric
spaces, and used the equivalent to make some fixed point results in such spaces.
After one year, Ma et al. [13] again presented the idea of C∗-algebra valued b-
metric spaces as a generalization of C∗-algebra valued metric space and proved
some fixed point results likewise utilized the of their work for an integral type
operator as an application.

Enlivened by prior perceptions, we expand the class of C∗-algebra valued
metric space by presenting the class of C∗-algebra valued quasi metric space and
using the equivalent to make a fixed point result. Additionally, we concentrate
on some topological properties of the C∗-algebra valued quasi metric space.
Besides, we furnish some examples which show the utility of our main result.

2. Preliminaries

Recall some definitions, examples and useful results which are needed in our
subsequent discussions. Now, we give the following definition of C∗-algebra
valued metric space which is introduced by Ma et al. [12] in 2014.

Definition 2.1. Let A be a non-empty set. A mapping d : A×A→ A is called
a C∗-algebra valued metric on A, if it satisfies the following (for all a, b, c ∈ A):

(i) d(a, b) < 0A and d(a, b) = 0A iff a = b;
(ii) d(a, b) = d(b, a);

(iii) d(a, b) 4 d(a, c) + d(c, b).

The triplet (A,A, d) is called a C∗-algebra valued metric space.

Now, we introduce yet different type of generalized C∗-algebra valued metric
space and quasi metric space, which we refer as C∗-algebra valued quasi metric
space.

Definition 2.2. Let A be a non-empty set. A mapping d : A × A → A is
called a C∗-algebra valued quasi metric on A, if it satisfies the following (for
all a, b, c ∈ A):

(i) d(a, b) < 0A and d(a, b) = d(b, a) = 0A iff a = b;
(ii) d(a, b) 4 d(a, c) + d(c, b).

The triplet (A,A, d) is called a C∗-algebra valued quasi metric space.
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Example 2.3. Let A = R and A = M2(C), the class of bounded and linear
operators on a Hilbert space C2. Define d : A×A→ A by (for all a, b ∈ A):

d(a, b) =


[
a− b 0

0 a− b

]
if a ≥ b

I2×2 if a < b

where I2×2 =

[
1 0
0 1

]
. Then (A,A, d) be a C∗-algebra valued quasi metric

space.

It is clear that d(a, b) = 0A ⇔ a = b. Now, we consider the following two
cases: Case I: For a ≥ b, we have d(a, b) = (a− b)I2×2.

• If c < b, then d(a, c) = (a− c)I2×2 and d(c, b) = I2×2.
• If b ≤ c < a, then d(a, c) = (a− c)I2×2 and d(c, b) = (c− b)I2×2.
• If a ≤ c, then d(a, c) = I2×2 and d(c, b) = (c− b)I2×2. Therefore, we have

d(a, b) 4 d(a, c) + d(c, b).

Case 2: For a < b, we have d(a, b) = I2×2.

• If c < a, then d(a, c) = (a− c)I2×2 and d(c, b) = I2×2.
• If a ≤ c < b, then d(a, c) = I2×2 and d(c, b) = I2×2.
• If b ≤ c, then d(a, c) = I2×2 and d(c, b) = (c− b)I2×2. Therefore, we have

d(a, b) 4 d(a, c) + d(c, b).

By the above calculations, we can say that (A,A, d) is a C∗-algebra valued
quasi metric space.

Example 2.4. Let A = R and A = M2(C). Define d : A× A→ A by (for all
a, b ∈ A):

d(a, b) =



[
b− a 0

0 k(b− a)

]
if a ≤ b

α

[
a− b 0

0 k(a− b)

]
if a > b

where k, α > 0. Then (A,A, d) is a C∗-algebra valued quasi metric space.

Example 2.5. Let A = [1,∞) and A = M2(C). Define d : A×A→ A by (for
all a, b ∈ A):

d(a, b) =



[
ln b− ln a 0

0 ln b− ln a

]
if a ≤ b

1
3

[
ln a− ln b 0

0 ln a− ln b

]
if a > b

where ‘ ln′ is natural logarithmic function. Then (A,A, d) is a C∗-algebra valued
quasi metric space.
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Now, we give some definitions of convergent, left-Cauchy, right-Cauchy and
completeness of the quasi metric space as follows.

Definition 2.6. Let (A,A, d) be a C∗-algebra valued quasi metric space and
{an} a sequence in A. We say that

(i) The sequence {an} is called convergent to a ∈ A, written lim
n→∞

an = a, if

lim
n→∞

d(an, a) = lim
n→∞

d(a, an) = 0A.

(ii) The sequence {an} is called left-Cauchy if for each ε � 0A there exists a
positive integer N such that

d(an, am) ≺ ε for all n ≥ m ≥ N.
(iii) The sequence {an} is called right-Cauchy if for each ε � 0A there exists

a positive integer N such that

d(an, am) ≺ ε for all m ≥ n ≥ N.
(iv) The sequence {an} is called Cauchy if for each ε � 0A there exists a

positive integer N such that

d(an, am) ≺ ε for all m,n ≥ N, i.e., lim
n,m→∞

d(an, am) = 0A.

(v) The triplet (A,A, d) is left-complete if every left-Cauchy sequence in
(A,A, d) is convergent.

(vi) The triplet (A,A, d) is right-complete if every right-Cauchy sequence in
(A,A, d) is convergent.

(vii) The triplet (A,A, d) is complete if every Cauchy sequence in (A,A, d) is
convergent.

Remark 2.7.

(1) Every C∗-algebra valued metric space is C∗-algebra valued quasi metric
space but the converse is not true in general.

(2) In a C∗-algebra valued quasi metric space a sequence {an} is Cauchy
iff it is left-Cauchy and right-Cauchy.

Definition 2.8. Let (A,A, d) C∗-algebra valued quasi metric space. The con-
jugate (or dual) C∗-algebra valued quasi metric space is denoted by dc and
define by as follows:

dc(a, b) = d(b, a), for all a, b ∈ A.
A C∗-algebra valued quasi metric space is a C∗-algebra valued metric space iff
it coincides with its conjugate dc, for all a, b ∈ A.

Let wc be a C∗-algebra positive valued function on A. The quadruplet
(A,A, d, wc) is called a C∗-algebra valued weighted quasi metric space, if for
all a, b ∈ A

d(a, b) + wc(a) = d(b, a) + wc(b).

Then (A,A, d, wc) is said to be C∗-algebra valued generalized weighted quasi
metric space.
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Proposition 2.9. Let (A,A, d) C∗-algebra valued quasi metric space. The
associated C∗-algebra valued metric ds is define by:

ds(a, b) =
1

2
[d(a, b) + d(b, a)].

The associated C∗-algebra valued metric space ds is the smallest C∗-algebra
valued metric space majorising d.

Proof. To verify condition (i), for each a, b ∈ A, we have d(a, b) < 0A. Also

ds(a, b) = 0A

⇔ 1

2
[d(a, b) + d(b, a)] = 0A

⇔ d(a, b) + d(b, a) = 0A

⇔ d(a, b) = d(b, a) = 0A

⇔ a = b.

Now, for condition (ii), for each a, b ∈ A, we have

ds(a, b) =
1

2
[d(a, b) + d(b, a)]

=
1

2
[d(b, a) + d(a, b)]

= ds(b, a).

Finally, we show that condition (iii), for each a, b, c ∈ A, we have

ds(a, b) =
1

2
[d(a, b) + d(b, a)]

=
1

2
[d(a, c) + d(c, b) + d(b, c) + d(c, a)]

=
1

2
[d(a, c) + d(c, a)] +

1

2
[d(b, c) + d(c, b)]

= ds(a, b) + ds(b, a).

Thus, (A,A, ds) is C∗-algebra valued metric space. �

Definition 2.10. Let (A,A, d) be a C∗-algebra valued quasi metric space,
a ∈ A, N,M ⊆ A and 0A ≺ ε ∈ A. Denoted by:

• The diameter of set N

diam(N) = sup{d(a, b) : a, b ∈ N}.
• The left-open ball of radius ε centered at a

BLε (a) = {b ∈ A : d(a, b) ≺ ε}.
• The right-open ball of radius ε centered at a

BRε (a) = {b ∈ A : d(b, a) ≺ ε}.
• The associated C∗-algebra valued quasi metric space open ball of radius ε

centered at a
Bε = {b ∈ A : ds(a, b) ≺ ε}.
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• The left-distance from a to N

distd(a,N) = inf{d(a, b) : b ∈ N}.
• The right-distance from a to N

distd(N, a) = inf{d(b, a) : b ∈ N}.
• The left-ε-neighbourhood of N

NL
ε = inf{a ∈ A : distd(N, a) ≺ ε}.

• The right-ε-neighbourhood of N

NR
ε = inf{a ∈ A : distd(a,N) ≺ ε}.

• The associated metric ε-neighbourhood of N

NL
ε = inf{a ∈ A : distsd(N, a) ≺ ε}.

• The distance between N and M

d(N,M) = inf{d(a, b) : a ∈ N, b ∈M}.

Proposition 2.11. Let (A,A, d) be a C∗-algebra valued quasi metric space.
Then the collection of all open left-balls BLε (a) (right-balls BRε (a)) on A,

ULA = {BLε (a) : a ∈ A, ε � 0A}
forms a left-basis (right-basis) on A.

Proof. Take a, b ∈ A and ε1, ε2 � 0A such that BLε1(a) ∩ BLε2(b) 6= ∅. Now,

choose c ∈ BLε1(a)∩BLε2(b) and set ε3 = min{ε1 − d(a, c), ε2 − d(b, c)}. Observe

that BLε3(c) ⊆ BLε1(a) ∩BLε2(b). Therefore, ULA forms a left-basis on A.

Similarly, the collection of all open right-balls BLε (a),

URA = {BRε (a) : a ∈ A, ε � 0A}
forms a right-basis on A. �

Every C∗-algebra valued quasi metric space d naturally induces a T0 topol-
ogy T LA , where a set N is open if for each a ∈ N there exists ε � 0A such
that BLε (a) ⊆ N. Similarly, the topology T RA can be define by using the
right-balls (that is, BRε (a)) as its base and hence a C∗-algebra valued quasi
metric space (A,A, d) can be naturally associated with a bi-topological space
(A,A, T LA , T RA ). Moreover, if the map d satisfies d(a, b) = 0 ⇔ a = b instead
of condition (i) in Definition (2.2) then d induces a T1 topology.

Proposition 2.12. Let (A,A, d) be a C∗-algebra valued quasi metric space and
associated (A,A, ds) a C∗-algebra valued metric space. Then

(1) A sequence {an} is convergent to a in (A,A, d) if and only if {an} is
convergent to a in (A,A, ds).

(2) A sequence {an} is Cauchy in (A,A, d) if and only if {an} is Cauchy
in (A,A, ds).

(3) The C∗-algebra valued quasi metric space (A,A, d) is complete if and
only if C∗-algebra valued metric space (A,A, ds) is complete.
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Proof. (1) Suppose that {an} is convergent to a in (A,A, d), that is,

lim
n→∞

d(an, a) = lim
n→∞

d(a, an) = 0A.

Which is equivalent to

lim
n→∞

ds(an, a) =
1

2
[ lim
n→∞

d(an, a) + lim
n→∞

d(a, an)] = 0A.

Hence, the sequence {an} is convergent to a in (A,A, ds).
(2) Suppose that {an} is Cauchy in (A,A, d), that is,

lim
n→∞

d(an, am) = lim
n→∞

d(am, an) = 0A.

Which is equivalent to

lim
n→∞

ds(an, am) =
1

2
[ lim
n→∞

d(an, am) + lim
n→∞

d(am, an)] = 0A.

Therefore, the sequence {an} is Cauchy in (A,A, ds).
(3) It is a direct consequence of (1) and (2). �

Proposition 2.13. Let (A,A, dA) and (B,A, dB) be two C∗-algebra valued
quasi metric spaces. Then

(1) d(a, b) = dA(a1, a2) + dB(b1, b2), for all a = (a1, b1), b = (a2, b2) ∈
A×B is a C∗-algebra valued quasi metric on A×B.

(2) lim
n→∞

(an, bn) = (a, b) in (A × B,A, d) if and only if lim
n→∞

an = a in

(A,A, dA) and lim
n→∞

bn = b in (B,A, dB). Particularly, the topology

induced by d coincides the product topology on A×B.
(3) {(an, bn)} is a Cauchy sequence in (A × B,A, d) if and only if {an}

is a Cauchy sequence in (A,A, dA) and {bn} is a Cauchy sequence in
(B,A, dB).

(4) (A × B,A, d) is complete if and only if (A,A, dA) and (B,A, dB) are
complete.

Proof. (1) Assume that a = (a1, b1), b = (a2, b2), c = (c1, c2) ∈ A × B.
Then, we have d(a, b) = 0A if and only if dA(a1, b1) + dB(a2, b2) = 0A, that is,
dA(a1, b1) = dB(a2, b2) = 0A, which implies that a1 = b1 and a2 = b2, that is,
a = b. Now, to show the triangular inequality, we have

d(a, b) = dA(a1, a2) + dB(b1, b2)

4 dA(a1, c1) + dA(c1, a2) + dB(b1, c2) + dB(c2, b2)

= dA(a1, c1) + dB(b1, c2) + dA(c1, a2) + dB(c2, b2)

= d(a, c) + d(c, b).

Therefore, (A×B,A, d) is a C∗-algebra valued quasi metric space.
(2) Let lim

n→∞
(an, bn) = (a, b) in (A×B,A, d) if and only if

lim
n→∞

d
(
(an, bn), (a, b)

)
= lim
n→∞

[
dA(an, a) + dB(bn, b)

]
= 0A

and
lim
n→∞

d
(
(a, b), (an, bn)

)
= lim
n→∞

[
dA(a, an) + dB(b, bn)

]
= 0A
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which is equivalent to

lim
n→∞

dA(an, a) = lim
n→∞

dB(bn, b) = lim
n→∞

dA(a, an) = lim
n→∞

dB(b, bn) = 0A.

Therefore, lim
n→∞

an = a in (A,A, dA) and lim
n→∞

bn = b in (B,A, dB). Therefore,

(3) Suppose the sequence {(an, bn)} is a Cauchy in (A×B,A, d) if and only
if

lim
n,m→∞

d
(
(an, bn), (am, bm)

)
= lim
n,m→∞

[
dA(an, am) + dB(bn, bm)

]
= 0A

which is equivalent to

lim
n,m→∞

dA(an, am) = lim
n,m→∞

dB(bn, bm) = 0A.

Therefore, {an} is a Cauchy sequence in (A,A, dA) and {bn} is a Cauchy se-
quence in (B,A, dB).

(4) It is a direct consequence of (2) and (3). �

3. Fixed Point Results

Now, we present our main result as follows:

Theorem 3.1. Let (A,A, d) be complete C∗-algebra valued quasi metric space
and f : X → X a mapping satisfies the following (for λ ∈ A with ‖λ‖ < 1):

(3.1) d(fa, fb) 4 λ∗d(a, b)λ, ∀ a, b ∈ A.

Then f has a unique fixed point.

Proof. Firstly, select a0 ∈ A and extract an iterative sequence {an} as:

an = fan−1 = fna0, ∀ n ∈ N.

Now, we want to show that lim
n,m→∞

d(an+1, an) = 0A. By choosing a = an+1

and b = an in 3.1, we wet

d(an+1, an) = d(fan, fan−1) = λ∗d(an, an−1)λ

4 (λ∗)2d(an−1, an−2)λ2

4 . . .

4 (λ∗)nd(a1, a0)λn.

Similarly, we can have

d(an, an+1) 4 (λ∗)nd(a0, a1)λn.
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Now, we assert that {an} is Cauchy sequence. For any n,m ∈ N such that
n+ 1 > m, we have

d(an+1, am) 4 d(an+1, an) + d(an, an−1) + · · ·+ d(am+1, am)

4 (λ∗)nd(a1, a0)λn + · · ·+ (λ∗)md(a1, a0)λm

=

n∑
i=m

(λ∗)id(a1, a0)λi

=

n∑
i=m

(λ∗)i(d(a1, a0))
1
2 (d(a1, a0))

1
2λi

=

n∑
i=m

(
(d(a1, a0))

1
2λi
)∗ (

d(a1, a0)
1
2λi
)

=

n∑
i=m

∣∣∣(d(a1, a0))
1
2λi
∣∣∣2

4

∥∥∥∥∥
n∑

i=m

∣∣∣(d(a1, a0))
1
2λi
∣∣∣2∥∥∥∥∥ I

4
n∑

i=m

∥∥∥(d(a1, a0))
1
2

∥∥∥2 ∥∥λi∥∥2
I

4 ‖d(a1, a0)‖
n∑

i=m

‖λ‖2i I

4 ‖d(a1, a0)‖ ‖λ‖
2m

1− ‖λ‖
I → 0A (as m→∞).

Thus, {an} is left-Cauchy sequence, that is

lim
m→∞

d(an, am) = 0A ∀ n ≥ m ≥ N.

Similarly, we can show that {an} is right-Cauchy sequence, that is (for m > n)

lim
n→∞

d(am, an) = 0A ∀ m ≥ n ≥ N.

Therefore, {an} is Cauchy sequence. Since, (A,A, d) is complete C∗-algebra
valued quasi metric space, then there exists a point a in A such that lim

n→∞
an =

a, that is, lim
n→∞

d(an, a) = lim
n→∞

d(a, an) = 0A. Then, we get

d(fa, a) 4 d(fa, an+1) + d(an+1, a)

4 d(fa, fan) + d(an+1, a)

4 λ∗d(a, an)λ+ d(an+1, a)

4 ‖λ2‖‖d(a, an)‖I + d(an+1, a).

On taking limit as n→∞, we get fa = a. Hence, a is fixed point of f .
Now, to show that the fixed point is unique, we assume that there are two

fixed points, say a1, a2 ∈ A such that fa1 = a1 and fa2 = a2. Then by using
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3.1, we have

‖d(a1, a2)‖ = ‖d(fa1, fa2)‖
≤ ‖λ∗d(a1, a2)λ‖
≤ ‖λ∗‖‖d(a1, a2)‖‖λ‖
= ‖λ‖2‖(a1, a2)‖

deals a contradiction. Hence, a1 = a2, that is, a1 is a unique fixed point of f .
This completes the proof. �

Example 3.2. In the Example 2.4, we define a self-mapping f : A→ A by:

fa =
a

5
, ∀ a ∈ A.

Notice that, d(fa, fb) 4 λ∗d(a, b)λ, (for each a, b ∈ A) satisfies and

λ =

[√
5

5 0

0
√

5
5

]
∈ A and ‖λ‖ =

√
5

5
=

1√
5
< 1.

Hence, all the assumptions of Theorem 3.1 are fulfilled and f unique fixed
point, namely a = 0A.

Before presenting the next theorem we recall the following lemma which is
needed is the sequel.

Lemma 3.3. Let A be a unital C∗-algebra with a unit I. We have

(1) If a ∈ A+ with ‖a‖ < 1
2 , then I − a is invertible and ‖a(I − a)−1‖ < 1;

(2) if a, b ∈ A+ with ab = ba, then ab ∈ A+;

(3) we denote A′ = {a ∈ A : ab = ba, ∀b ∈ A}. Let a ∈ A′ , if b, c ∈
A with b < c < 0A and I − a ∈ A′+ is an invertible operator, then
(I − a)−1b < (I − a)−1c.

Theorem 3.4. Let (A,A, d) be complete C∗-algebra valued quasi metric space
and f : X → X a continuous mapping satisfies that the following (for λ ∈ A
with ‖λ‖ < 1

2):

(3.2) d(fa, fb) 4 λ[d(fa, b) + d(a, fb)], ∀ a, b ∈ A.
Then f has a unique fixed point.

Proof. Firstly, select a0 ∈ A and extract an iterative sequence {an} as:

an = fan−1 = fna0, ∀ n ∈ N.
Now, we want to show that lim

n,m→∞
d(an+1, an) = 0A. By choosing a = an+1

and b = an in 3.2, we wet

d(an+1, an) = d(fan, fan−1)

= λ[d(fan, an−1) + d(an, fan−1)]

= λ[d(an+1, an−1) + d(an, an)]

4 λ[d(an+1, an) + d(an, an−1)]

= λd(an+1, an) + λd(an, an−1).
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Thus,
(I − λ)d(an+1, an) 4 λd(an, an−1).

Since, λ ∈ A with ‖λ‖ < 1
2 , then we have (I−λ)−1 ∈ A and also λ(I−λ)−1 ∈ A

with ‖λ(I − λ)−1‖ < 1 (by Lemma 3.3). Then, by assuming u = λ(I − λ)−1,
we obtain

d(an+1, an) 4 λ(I − λ)−1d(an, an−1) = ud(an, an−1).

Similarly, we can have

d(an, an+1) 4 ud(an−1, an).

Now, we show that the sequence {an} is Cauchy. Suppose n+1 > m, ∀ n,m ∈
N, so we have

d(an+1, am) 4 d(an+1, an) + d(an, an−1) + · · ·+ d(am+1, am)

4 (un + un−1 + · · ·+ um)d(a1, a0)

=

n∑
i=m

u
i
2u

i
2 (d(a1, a0))

1
2 (d(a1, a0))

1
2

=

n∑
i=m

(d(a1, a0))
1
2u

i
2u

i
2 (d(a1, a0))

1
2λi

=

n∑
i=m

(
u

i
2 (d(a1, a0))

1
2

)∗ (
u

i
2 d(a1, a0)

1
2

)
=

n∑
i=m

∣∣∣u i
2 (d(a1, a0))

1
2

∣∣∣2
4

∥∥∥∥∥
n∑

i=m

∣∣∣u i
2 (d(a1, a0))

1
2

∣∣∣2∥∥∥∥∥ I
4

n∑
i=m

∥∥∥(d(a1, a0))
1
2

∥∥∥2 ∥∥∥u i
2

∥∥∥2

I

4 ‖d(a1, a0)‖
n∑

i=m

∥∥∥u i
2

∥∥∥i I
4 ‖d(a1, a0)‖ ‖u‖

m

1− ‖u‖
I → 0A (as m→∞).

Thus, {an} is left-Cauchy sequence, that is

lim
n,m→∞

d(an, am) = 0A.

Similarly, we can have {an} is right-Cauchy sequence, that is (for m > n)

lim
n,m→∞

d(am, an) = 0A.

Therefore, the sequence {an} is Cauchy. Since, (A,A, d) is complete C∗-algebra
valued quasi metric space, then there exists a point a in A such that lim

n→∞
an =
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a, that is, lim
n→∞

d(an, a) = lim
n→∞

d(a, an) = 0A. Now, by using the continuity of

f , we have

d(fa, a) 4 d(fa, an+1) + d(an+1, a)

4 d(fa, fan) + d(an+1, a)

On taking limit as n→∞, we get fa = a. Hence, a is fixed point of f .
Now, to show that the fixed point is unique, we assume that there are two

fixed points, say a1, a2 ∈ A such that fa1 = a1 and fa2 = a2. Then by
employing 3.4, we have

‖d(a1, a2)‖ = ‖d(fa1, fa2)‖
≤ ‖λ[d(fa1, a2) + d(a1, fa2)]‖
≤ ‖λ‖‖d(a1, a2) + d(a1, a2)‖
≤ ‖λ‖[‖d(a1, a2)‖+ ‖d(a1, a2)‖]
= 2‖λ‖‖(a1, a2)‖

a contradiction (since 2‖λ‖ < 1). Hence, a1 = a2, that is, a1 is a unique fixed
point of f . This completes the proof. �

Now, we obtain following corollaries:

Remark 3.5. By taking d(a, b) = d(b, a), for all a, b ∈ A in Theorem 3.1, we
obtain Theorem 2.1 of Z. Ma et al. [12].

Remark 3.6. By taking d(a, b) = d(b, a), for all a, b ∈ A in Theorem 3.4, we
obtain Theorem 2.3 of Z. Ma et al. [12].

4. Application

To find the existence and uniqueness results of a contractive mapping on
complete C∗-algebra valued metric space for the integral type equation is car-
ried out by Z. Ma et al. [12] in 2014 whose lines are as under:

Example 4.1 ( [12]). Consider the integral equation

(4.1) a(ξ) =

∫
∆

G(ξ, ω, a(ω))dω + h(ξ), ∀ ξ, ω ∈ ∆,

where ∆ is a Lebesgue measurable set.
Suppose that

(1) h is an essentially bounded measurable function defined on ∆ and G :
∆2 × R→ R,

(2) there exists a continuous function η : ∆ ×∆ → R and λ ∈ (0, 1) such
that

| G(ξ, ω, a(ω))−G(ξ, ω, b(ω)) |≤ λ | η(ξ, ω) | (| a(ω)− b(ω) |) ,

for all ξ, ω ∈ ∆ and a, b ∈ R.
(3) supξ∈∆

∫
∆
| η(ξ, ω) | dω ≤ 1.
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Then the integral equation has a unique solution in A, where A stands for the
space of essentially bounded measurable functions defined on ∆.

Now, we will utilize Theorem 3.1 to find the solution of following integral
equation:

(4.2) a(ξ) =

∫
∆

G(ξ, ω, a(ω))dω + h(ξ), ∀ ξ, ω ∈ ∆,

where, ∆ is a Lebesgue measurable set with m(∆) <∞, G : ∆×∆× R→ R
and h ∈ A. Define d : A×A→ A by (for all a, b ∈ A),:

d(a, b) =

{
π|a−b|+|a| if a 6= b

0A if a = b.

where L(H) = A, H stand for the set of square integrable functions defined on
∆, and πa : H → H is the multiplicative operator defined by:

πa(θ) = a.θ, for all θ ∈ H.

Now, we present our following theorem:

Theorem 4.2. Assume that (for all a, b ∈ A)

(1) ∃ a continuous function η : ∆×∆→ R and λ ∈ (0, 1) such that

| G(ξ, ω, a(ω))−G(ξ, ω, b(ω)) |≤ λ | η(ξ, ω) | (| a(ω)− b(ω) | + | a(ω) |) ,

for all ξ, ω ∈ ∆.
(2) supξ∈∆

∫
∆
| η(ξ, ω) | dω ≤ 1.

Then the integral equation (4.2) has a unique solution in A.

Proof. Define f : A→ A by:

fa(ξ) =

∫
∆

G(ξ, ω, a(ω))dω + h(ξ), ∀ ξ, ω ∈ ∆.
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Set k = λI, then k ∈ A and ‖k‖ = λ < 1. For any point u in H, we have

‖d(fa, fb)‖ = sup
‖u‖=1

(π|fa−fb|+|fa|(u), u)

= sup
‖u‖=1

∫
∆

[∣∣∣∣ ∫
∆

G(ξ, ω, a(ω))−G(ξ, ω, b(ω))dω

∣∣∣∣]u(ξ) ¯u(ξ)dξ

+ sup
‖u‖=1

∫
∆

(∫
∆

G(ξ, ω, a(ω))

)
u(ξ) ¯u(ξ)dξ

≤ sup
‖u‖=1

∫
∆

[ ∫
∆

∣∣G(ξ, ω, a(ω))−G(ξ, ω, b(ω))
∣∣dω]|u(ξ)|2dξ

+ sup
‖u‖=1

∫
∆

∣∣∣∣∫
∆

G(ξ, ω, a(ω))

∣∣∣∣ |u(ξ)|2dξ

≤ sup
‖u‖=1

∫
∆

[ ∫
∆

∣∣λη(ξ, ω)(a(ω)− b(ω)+ | a(ω) |)
∣∣dω]|u(ξ)|2dξ

≤ sup
‖u‖=1

∫
∆

[ ∫
∆

∣∣λ | η(ξ, ω) | (| a(ω)− b(ω) | + | a(ω) |)
∣∣dω]|u(ξ)|2dξ

≤ λ sup
‖u‖=1

∫
∆

[ ∫
∆

|η(ξ, ω)|dω
]
|u(ξ)|2dξ‖a− b‖∞

≤ λ sup
ξ∈E

∫
∆

|η(ξ, ω)|dω sup
‖u‖=1

∫
∆

|u(ξ)|2dξ‖a− b‖∞

≤ λ‖a− b‖∞
= ‖k‖ ‖d(a, b)‖.

Since, ‖k‖ < 1, so one can easily seen that the mapping f satisfies all the
assumptions of Theorem 3.1. Hence, (4.2) has a unique solution, means that f
has a unique fixed point. �
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alized metric spaces, Publ. Math. 57 (2000), 31–37.
[10] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Os-

traviensis 1, no. 1 (1993), 5–11.

[11] H. Long-Guang and Z. Xian, Cone metric spaces and fixed point theorems of contractive
mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476.

[12] Z. H. Ma, L. N. Jiang and H. K. Sun, C∗-algebra valued metric spaces and related fixed

point theorems, Fixed Point Theory Appl. 2014, Article ID 206.
[13] Z. H. Ma and L. N. Jiang, C∗-algebra valued b-metric spaces and related fixed point

theorems, Fixed Point Theory Appl. 2015, Article ID 222.

[14] S. G. Matthews, Partial metric topology, Annals of the New York Academy of Sciences
728 (1994), 183–197.

[15] S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterranean Journal of
Mathematics 11, no. 2 (2014), 703–711.

[16] W. A. Wilson, On quasi-metric spaces, American Journal of Mathematics 53, no. 3

(1931), 675–684.

© AGT, UPV, 2022 Appl. Gen. Topol. 23, no. 2 301


