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In this article, a mixed integer linear program (MILP) model is proposed for the production, lot sizing, and scheduling of
automotive plastic components to minimize the setup, inventory, stockout, and backorder costs, by taking into account injection
molds as the main index to schedule on parallel flexible injection machines. (e proposed MILP considers the minimum and
maximum inventory capacities and penalizes stockout. A relevant characteristic of the modeled problem is the dependence
between mold setups to produce plastic components. (e lot sizing and scheduling problem solution results in the assignment of
molds to machines during a specific time period and in the calculation of the number of components to be produced, which is
often called lot size, following a sequence-dependent setup time. Depending on the machine on which the mold is setup, the
number of units to be produced will be distinct because machines differ from one another.(e stock coverage, defined in demand
days, is also included in theMILP to avoid backorders, which is highly penalized in the automotive supply chain. Added to this, the
proposed model is extended by considering setup common operators to respond to and fulfill the constraints that appear in
automotive plastic enterprises. In this regard, the MILP presented solves a lot-sizing and scheduling problem, emerged in a
second-tier supplier of a real automotive supply chain. Finally, this article validates the MILP by performing experiments with
different sized instances, including small, medium, and large. (e large-sized dataset is characterized by replicating the amount of
data used in the real enterprise, which is the object of this study. (e goodness of the model is evaluated with the computational
time and the deviation of the obtained results as regards to the optimal solution.

1. Introduction

Production planning, sequencing, and scheduling are key
operations performed by enterprises, and any circumstances
or events that affect them strongly influence the supply chain
operation in which they are embedded. All these three
planning levels are characterized by the decision-making
time horizon in accordance with three decision-making
levels: strategical, tactical, and operational. (us, production
planning is set at the strategic level by considering families of
products, while sequencing and scheduling are set at a more
operational decision-making level. Accordingly, Gujjula
et al. [1] proposes the following differentiation between these
two concepts: (i) production scheduling, which deals with

the assignment of production orders to production intervals
with a short planning horizon and specific time periods and
(ii) production sequencing, which deals with the sequence of
production orders for each production interval.

Our aim is to solve a lot-sizing and scheduling problem
with a sequence-dependent setup on parallel flexible ma-
chines. To this end, a mixed integer linear program (MILP)
model is proposed to minimize the setup, inventory,
stockout, and backorder costs by taking into account in-
jection molds as the main index to schedule on parallel
flexible injection machines. We also consider setup common
operators to extend the proposed basic MILP model.

(is article focuses on the specific production lot-sizing
and scheduling problem (LSSP) in parallel flexible machines.
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According to Kim et al. [2], the LSSP deals with the min-
imization of production and inventory costs by simulta-
neously optimizing lot sizes and production schedule. (e
author also refers to small and big bucket models depending
on the number of allowed setups. Accordingly, production
scheduling assigns production orders to production inter-
vals with a short-term planning horizon lasting several days
or shifts. Moreover, the assignment in the scheduling
process has an implicit sequence for each production shift.
(erefore, the main goal is to identify the time period when
to produce, the quantity to produce as the lot size in units or
timeslots, and the production sequence required to meet
demand and to avoid backorders and stockouts.

As enterprises are seen as complex systems in operations
management, their operation mechanisms are difficult to
manage. (is difficulty further increases because enterprises
belong to a supply network system, in which the complexity
and relationships with external actors are latent. Current
global market conditions and constant changes in the supply
chain environment render enterprises as complex systems.
Moreover, researchers have to bear in mind that market
consumers are currently used to acquire highly personalized
products, which is known as mass customization with short
development periods (“time to market”).

In the last few years, novel technologies have been in-
creasingly used, such as cloud computing, big data, artificial
intelligence, and machine learning. (is has become a trend
that has boosted companies to transform their way of op-
erating at enterprise and supply chain levels. (e result of
this digital transformation has been coined as Industry 4.0
[3]. Nevertheless, the application of Industry 4.0 to small-
and medium-sized enterprises (SMEs) is not as idealistic as
the Industry 4.0 definition indicates. (e literature includes
different studies on implementing Industry 4.0 technologies
into different sectors. (e present work focuses on the lit-
erature review by Echchakoui and Barka [4], which studies
the impact that Industry 4.0 has on the plastics industry. (e
relevance of the work by Echchakoui and Barka [4] is aligned
with the present study because we develop MILP to support
the LSSP in a company that belongs to the plastic sector by
particularly focusing on the injection of plastic automotive
components. In the aforementioned literature review, the
authors highlight that implementing Industry 4.0 research
into the plastics industry is still in its initial stages, but
research in this field is growing.

(e origin of this article lies in the H2020 Project Cloud
Collaborative Manufacturing Networks (C2NET) [5], whose
research focuses on providing a cloud platform, in which a
set of tools and technologies are embedded to support: (i)
data management and interoperability; (ii) the optimization
of plans at enterprise and supply chain levels; and (iii) the
integration of collaborative processes among supply network
members. (e C2NET cloud platform is built according to
an open-source philosophy, which makes it affordable and
easy to use by SMEs in terms of both monetary and expertise
or knowledge required for its use. (e optimization module
contains advanced optimization models and algorithms to
support and calculate replenishment, production, and de-
livery plans at both the enterprise and network levels. (e

calculation of plans at the enterprise level is characterized by
only considering the resources and data from a single en-
terprise, while the calculation of plans at the network level
uses the constraints, resources, and data from two supply
chain enterprises, or more, as input data. When solving
replenishment, production, and delivery plans from a col-
laborative network perspective, the output data of one en-
terprise plan are used as the input data of another enterprise
plan. If we consider two enterprises from a network, A and
B, where A is the supplier and B is the manufacturer, the
replenishment plan of company B is constrained by the
production plan of company A. Hence, information is ex-
changed and a loop plan is calculated until the materials
required by company B coincide with the materials that can
be produced by company A. On the C2NET cloud platform
(CPL), the negotiation loop is operated by the collaborative
module (COT), the plan calculation is managed by the
optimization module (OPT), and data exchange and in-
formation interoperability are handled by the data collection
framework module (DCF) [6]. (e operation and man-
agement of the complex large-scale systems that characterize
enterprises are covered by the models and tools developed in
the CLP with the help of embedded intelligent methods.

Different enterprises from diverse sectors were involved
in the C2NET project to validate and test the generated
results. (e enterprise study object of this article is the
automotive industry, which is included in one of the in-
dustrial pilots. (e automotive supply chain is characterized
by the need to perform flexible manufacturing to meet the
demand of the original equipment manufacturer (OEM) in
terms of delivery time, scheduling, and lot size in a just in
time (JIT) production system [7]. When addressing the LSSP
in the automotive industry, suppliers are highly penalized
when the components supplied to the OEM are delayed.
(us, the automotive components’ manufacturers have to
manage minimum and coverage stocks to avoid potential
penalizations. (e coverage goal is set in demand days so
that suppliers have to produce at least 3 days of demand in
advance (commonly used in the automotive industry) to
stock production, as advances to avoid delaying demand
because it could imply stopping the automotive assembly
line in OEM facilities.

(e main objective of this article is to model a real
problem from a second-tier supplier in the automotive
supply chain and to solve it in a reasonable computation
time. Accordingly, a lot-sizing and sequencing model is
hereafter provided to respond to the requirements of a
second-tier supplier from an automotive supply chain. (e
proposed optimization model is embedded in the OPT
module of the C2NET CPL. A novel MILP model for au-
tomotive plastic components production lot sizing and
scheduling on parallel flexible injection machines is pro-
posed with setup common operators. (e MILP model was
implemented in Pyomo [8], used as an extensible python-
based open-source optimization modeling language for
linear programming and nonlinear programming, among
others. Finally, a complex large-scale problem is addressed
to deal with the scheduling plan of an automotive com-
ponents’ manufacturer.
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(e reminder of this document is organized as follows.
(e next section presents a literature review to gain insight
into works that have addressed similar type problems and to
justify this study’s contribution. Section 3 describes and
analyzes the problem to be solved. Section 4 presents the
novel MILP model for the automotive plastic components
production lot sizing and scheduling on parallel flexible
injection machines. We take this MILP as the base model.
Section 5 puts forward an extension of the basemodel, which
contemplates common setup operators in the proposed
LSSP to provide a more realistic perspective to the base
model by taking into account the studied plastic components
injection industry. Section 6 offers comprehensive numerical
experimentation by considering different data sizes for both
proposed models, including small, medium, and large
datasets. (is article is concluded by discussing the findings
obtained with the addressed problem.

2. Related Studies

A large amount of research has been conducted into dif-
ferent LSSP characteristics, but very few studies present
optimization approaches that combine or integrate LSSP
characteristics, that is, lot sizing and scheduling. According
to Rı́os-Soĺıs et al. [9], the product-part-mold-machine
(PPMM) problem and the part-mold-machine (PMM)
problem study this combination of approaches and indicate
that this problem type is scarcely addressed in the literature.
Rı́os-Soĺıs et al. [9] define products as final products and
parts as components that derive from the bill-of-materials
parts explosion. Furthermore, Rı́os-Soĺıs et al. [9] classify the
PPMM as bilevel capitated LSSP. Accordingly, the first part
of the PPMM and PMM lot-sizing and scheduling problems
seeks to determine the optimal size of either a lot of products
in the PPMM approach or the parts in the PMM approach.
Both approaches seek to assign parts or pieces to molds and
molds to the machines. (e second part is involved in the
scheduling that aims to determine the order of processing
molds in machines during each planning time period.

Studies such as Ibarra-Rojas et al. [10] address the
problem of manufacturing parts that are produced in molds
and are mounted onmachines.(is study proposes anMILP
that seeks to maximize the production of parts and also
determines the batch size of every part and the assignments
of parts to mold and machines. An update of this study is
that proposed by Rı́os-Soĺıs et al. [9], which aims to de-
termine the lot size of a finished product; that is, it deter-
mines the number of finished products to be manufactured,
the number of parts to be manufactured, and the assignment
of the parts to the mold and the mold to the machine. (e
model of Rı́os-Soĺıs et al. [9] also contemplates the feasibility
of scheduling molds in machines during each period.
However, in their experimental results, they only handle one
period of time periods and propose working with multiple
time periods as a future research line. Different approaches
have been proposed in the literature to optimally solve
scheduling in engineering; in this regards, Li et al. [11]
highlight the importance on the use and application of MILP

to deal with the aforementioned problem in the engineering
research area.

Studies about LSSP are paid more attention by re-
searchers and companies, given their applicability to the real
world [12]. In our literature review, we find studies that
integrate batch sizing decisions into restrictions for
scheduling problems (see Table 1), studies such as that
presented by Stadtler [13], in which a combined approach to
support a single machine LSSP is proposed. For this purpose,
an MILP is formulated to minimize maintenance and in-
ventory setup costs over a planning horizon. Wolosewicz
et al. [15] combine production planning and scheduling by
proposing an MILP that seeks to determine the lot size for a
fixed sequence of operations in the machines, taking into
account the times and operating costs. Kim et al. [2] present
a combined approach in a MILP that seeks to minimize the
sum of the cost of production, installation, and inventories.
James and Almada-Lobo [16] present an MILP for the
scheduling problem and capacitated lot sizing of a single
machine and a parallel machine with sequence-dependent
setup times and costs. Meyr and Mann [14] put forward an
MILP to simultaneously determine production lot sizes and
schedules on nonidentical parallel production lines.

Our model deals with the problem contemplated by
Rı́os-Soĺıs et al. [9] and Ibarra-Rojas et al. [10]. By con-
tinuing with the future research lines indicated by these
authors, our study considers many periods when modeling
and running experiments to solve the LSSP. (e base model
herein proposed also bears in mind stock coverage con-
straints, which are typical in the studied automotive supply
chain industry context. (e proposed novel MILP also
contemplates an objective function based on the assembly
line and allows idle times among molds, which is a fun-
damental characteristic for real cases and has been ignored
by former studies. Finally, the base model is extended by
offering a scenario that comes closer to reality by considering
another index that represents the workers who changemolds
and, thus, bears in mind the casuistry associated with the
LSSP that refers to the setups of the usual operators.

3. Problem Description

(e main aim of this article is to propose a novel MILP
model for the production scheduling carried out by an
automotive plastic components manufacturer that acts as a
second-tier supplier in the automotive supply chain. Plastic
components are produced in molds that are mounted on
parallel flexible injection machines. Injection machines
shape plastic pellets into automotive semifinished products
to then be assembled on an OEM production line. Never-
theless, for industry, studying car components is treated as
the second-tier supplier’s end products.

According to Rı́os-Soĺıs et al. [9], lot-sizing and
scheduling plans of mold-injection enterprises entail deci-
sion making to determine (i) the lot size as the amount of
components to be produced during a period of time or a
number of periods to produce the same component and (ii)
the assignment of molds to machines by considering that
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components can be produced only in specific molds with
their shape cavity.

(e second-tier supplier herein studied is characterized by
having specific molds that produce each automotive compo-
nent. When two molds are available to produce the same
component, these molds involve different processing times,
given their technical particularities. Each mold can also be
setup on different machines to produce the same automotive
component, but the samemoldmounted on differentmachines
has different production rates depending on the machine on
which it is setup. Accordingly, productivity differs depending
on the mold andmachine assignment (see Figure 1). Moreover
in the automotive sector, two different parts are produced in
the same mold, including right- and left-hand parts, which is
known as biproduct injection molding [17].

(e studied enterprise has 21 injection machines and a
set of molds to produce the range of components delivered
to the first-tier supplier and finally to the various OEMs that
belong to different automotive supply chains, depending on
the car brand. (e enterprise works three shifts per day over
a 5-day week and reserves overtime shifts on the sixth
weekday in the event of production not finishing during the
normal operation time. Workers are told that they will work
overtime periods at least 1 week beforehand.

Molds are changed using cranes and, therefore, a setup
time is incurred. A limited number of workers are in charge of
changing and mounting molds to the assigned machines.
Moreover, these workers, known as setup common operators,
work only two of the three shifts that the enterprise arranges.

One of the requirements of the enterprise’s study is that
once the mold is setup on a machine, the mold should
remain for at least 24 h so as not to saturate the work of the
limited setup common operators and to not incur on too
many setups because the setup time is estimated between 1
and 3 h, which obviously has an associated setup cost. If a
longer production time is needed, the mold is set up during
the required time periods without incurring any setup costs.
(us, the modeled problem should contemplate no setup
carry-over cases.

Backorders are highly penalized in the automotive
supply chain. (erefore, enterprises in the automotive in-
dustry use stock coverage, which indicates the number of
demand days that stocks can cover. Normally in the auto-
motive industry, stock coverage is set at 3 demand days; for
example, for the demand of four units for the next three
periods (d1� 4 units, d2� 4 units, d3� 4 units), stock cov-
erage is defined as 12 units at the end of the first period.
Moreover, as warehouses have space limitations, a maxi-
mum inventory is considered.

With regards to the demand, the automotive industry
updates the demand during each period for the next five
frozen periods. (e OEM works with considerable demand
information (1 year of demand horizon), but only com-
municates the demand for the next 6months to the first-tier
supplier. Finally, first- and second-tier suppliers normally
work to a 3-month demand horizon and with daily periods.
(e LSSP considers a 21-day horizon.

A detailed flowchart of the processes is presented (see
Figure 2), from the generation of the customer demand to
the final resolution of the second-tier supplier model. Ac-
cordingly, in the automotive supply chain, the OEM gen-
erates customer orders, according to the final customer
demand. (e OEM transforms the customer orders into the
master production scheduling (MPS), which, jointly with bill
of materials (BOM) and the inventory availability, computes
the material requirement plan (MRP). (e OEM demand
plan is generated from the MRP and transferred to the first-
tier supplier. (en, the first-tier supplier obtains its demand
by using a simple bill-of-materials parts explosion, given the
OEM demand plan. (e second-tier supplier estimates the
component requirements from the final requirements in a
frozen sequence transferred by the first-tier supplier, and the
demand plan is generated [18]. (en, the second-tier sup-
plier proceeds to compute the LSSPmodel with the aim of (i)
assigning molds to machines; (ii) scheduling the processing
molds in machines during each planning time period; and
(iii) calculating the optimal lot size of products. (e LSSP is
modeled by considering molds to be the main index. (e

Table 1: Literature review of recent lot-sizing and scheduling problems.

Authors Objectives Industrial application Resolution methods Solver

Kim et al. [2] Minimize the sum of production, setup, and
inventory costs Zinc refinery

Heuristic algorithm combining a
decomposition scheme with a local

search procedure
CPLEX

Ibarra-Rojas
et al. [10] Maximize the weighted cost of produced pieces

Automotive,
consumer goods, and

toys
Decomposition approach CPLEX

11.2

Stadtler [13] Minimize the sum of inventory holding and
setup costs in the planning interval Pharmaceutical Xpress-

MP

Rı́os-Soĺıs et al.
[9] Maximize the profit of finished products

Automotive,
consumer goods, and

toys

Iterative heuristic based on
mathematical programming

Gurobi
6.05

Meyr and
Mann [14]

Minimize inventory holding, sequence-
dependent setup, and line-specific production
costs of potentially heterogeneous production

lines

— Decomposition-based approach GLPK
4.44

Wolosewicz
et al. [15]

Minimize the sum of production, inventory,
and setup costs — Lagrangian heuristic XPRESS-

MP
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proposed production lot-sizing and scheduling base model
has as main inputs the data parameters described in Table 2.
Nevertheless, if setup common operators are considered
when solving the LSSP, data parameters related with the type
of operators have to be taken into account for building the
extended version of the base model. Finally, the proposed
MILP is solved by the second-tier supplier using the Guroby
solver obtaining optimal or near optimal solutions of the
production LSSP. In a nutshell, the objective of the proposed
MILP is to minimize the total costs, namely, setup and
inventory costs, penalization costs for coverage stockouts,
backorder, and tool setup costs, such as the route cost of
selecting one machine or another to setup a tool.

4. MILPModel for Lot Sizing and Scheduling on
Parallel Flexible Injection Machines:
Notation and Model Formulation

(e lot sizing and scheduling on the parallel flexible in-
jection machines problem under study is notated in Table 2,
where the main indexes related to machines, tools, products,
and periods are notated. (e input data parameters are
presented, and decision variables are established as the
output data of the MILP model for lot sizing and scheduling
on parallel flexible injection machines.

(e formulation of the MILP model for lot sizing and
scheduling on parallel flexible injection machines is de-
scribed next. (e objective function minimizes total costs,
including setup and inventory costs, penalization costs for
coverage stockouts, backorder, and tool setup costs, such as
the route cost of selecting one machine or another to set up a
tool.

Min z � 􏽘
i

􏽘
j

􏽘
t

csj · SAijt + 􏽘
k

􏽘
t

cik · INVkt

+ 􏽘
k

􏽘
t

cstk · STkt + 􏽘
k

􏽘
t

cbk · Bit

+ 􏽘
i

􏽘
j

􏽘
t

rij · crij · SAijt.

(1)

It is subject to

Sequence constraints

Sijt ≤ rij, ∀i, j, t, (2)

SAijt ≤ rij, ∀i, j, t, (3)

􏽘
j

Sijt · rij ≤ 1, ∀i, t, (4)

􏽘
i

Sijt · rij ≤ aj, ∀j, t. (5)

Constraints (2) and (3) constrain only setup tools j on
previously assigned specific machines i. Constraint (4) de-
termines that one or any tool j can be set up for production
during each time period t. Constraint (5) guarantees that the
total amount of tools j available for production can only be
set up as a maximum during each time period t.

4.1. Production and Capacity Constraints.

Xkt <� 􏽘
i

􏽘
j

pkt · rij · TPijt, ∀k, t, (6)

Xnpkt <� 􏽘
j

􏽘
i

npjk · rij · SAijk, ∀k, t, (7)

Xkt
′ � Xkt − Xnpkt, ∀k, t, (8)

TPijt � tpt · Sijt, ∀i, j, t. (9)

Constraint (6) computes the amount of product k
produced during time period t and ensures that a specific
tool j is able to be set up on machine i during time period t
when product k is produced. Constraint (7) determines the
amount of products k no longer produced when tool j is set
up during time period t on machine i by considering that
another tool j is set up on machine i during time period t− 1.
(is also ensures that such a specific tool j is able to be set up
on machine i during time period t when product k is
produced. Constraint (8) computes the amount of product k

Components

Second-tier supplier First-tier supplier OEM

MachinesMoulds

1

2

3

4

Figure 1: Production scheme on parallel flexible injection machines of plastic components in the automotive supply chain.
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Figure 2: Flowchart of the proposed solution methodology.
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to be produced during time period t by subtracting Xnpkt as
the amount of products k no longer produced when tool j is
set up. Constraint (9) determines the production time used
during time period t when tool j is set up on machine i. In
TPijt, we indicate the production lot size during period times,
e.g., 24 h. (is means that if tool j is set up on machine i, the
tool cannot be changed by another one for the next 24 h.
(erefore, the minimum lot size corresponds to the products
produced during the 24 h that tool j is set up on machine i.

4.2. Setup Constraints.

SAijt � Sijt, ∀i, j, t � 1, (10)

SAijt ≥ Sijt − Sijt−1, ∀i, j, t> 1,

SAijt ≤ 1, ∀i, j, t> 1,
(11)

􏽘
i

􏽘
j

SAijt ≤ nc, ∀t. (12)

Constraint (10) allows the first setup of tool j to be
determined on machine i, which enables it to be modeled if
tool j is set up during time period t on machine i for the first
time, and decision variables Sijt and SAijt take the same value

1. Constraint (11) ensures that SAijt does not take values
above 1. Constraint (12) limits the amount of tool changes
allowed during time period t.

4.3. Inventory Balance Equations.

INVkt � INVi0 + Xkt
′ − dkt + Bkt, ∀k, t � 1,

(13a)

INVkt � INVkt−1 + Xkt
′ − dkt + Bkt − Bkt−1, ∀k, t> 1.

(13b)

Inventory balance equations (13a) and (13b) guarantee
appropriate values for the inventories, quantities to produce,
and backorders for each time period t� 1 and t> 1,
respectively.

4.4. Stock Coverage Constraint.

INVkt ≥ INVMINkt, ∀k, t, (14)

INVkt ≤ INVMAXkt, ∀k, t, (15)

Table 2: Nomenclature for the model.

Index
i Index of machines i ∈ {1, . . ., I}
j Index of tools j ∈ {1, . . ., J}
k Index of products (parts) k ∈ {1, . . ., K}
t Index of time periods t ∈ {1, . . ., T}
Data
aj Total amount of tools j available for production
cbk Backorder cost of product k
cik Inventory cost of product k
covkt Stock coverage defined as the number of time periods for the stock minimum coverage of product k during time period t
crij Setup cost of tool j on machine i
csj Setup cost of preparing tool j
cstk Coverage stockout cost of product k
dkt Demand of product k during time period t
INVk0 Initial inventory of product k
INVMAXk Maximum inventory units for product k during time period t
INVMINk Minimum inventory units for product k during time period t
nct Amount of tool changes allowed during time period t
npjk Amount of products k no longer produced when tool j is set up
pjk Amount of products k produced when tool j is set up
rij 1 if tool j can be set up on machine i; 0 otherwise
tpt Production time available during time period t
Decision variables
Bkt Backorder of product k during time period t
INVkt Inventory level of product k at the end of time period t

SAijt
1 if tool j is set up on machine i during time period t and is not set up onmachine i during time period t− 1; 0 if tool j is set

up on machine i during time period t− 1
Sijt 1 if tool j is set up on machine i during time period t; 0 otherwise
STktt Coverage stockout of product k during time period
TPijt Production time of tool j set up on machine i during time period t
Xkt Amount of product k to produce during time period t
Xnpkt Amount of product k no longer produced during time period t, while a tool is set up
Xkt
′ Amount of product k to produce during time period t by subtracting Xnpkt
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INVkt + STkt ≥ 􏽘
c�cov

c�1
dk(t+c), ∀k, t<T − cov. (16)

Constraints (14) and (15) limit the inventory levels for
each product k according to the available space for inventory
holding during time period t. Constraint (16) is a constraint
for the stock coverage of products.

4.5. Bound and Nature Variables.

SAijt, Sijt ∈ 0, 1{ }, ∀i, j, t, (17)

Xkt, INVkt, Bkt, STkt,Xnpkt,BXkt
′ ∈ N, ∀k, t, (18)

TPijt ∈ N, ∀i, j, t. (19)

Constraint (17) indicates the binary nature of setup Sijt
and the setup amount SAijt variables. Constraints (18) and
(19) indicate the continuous nature of the represented
variables.

5. MILPModel for Lot Sizing and Scheduling on
Parallel Flexible Injection Machines with
Setup Common Operators: Notation and
Model Formulation

(e MILP model for lot sizing and scheduling on parallel
flexible injection machines described in the previous section
provides a solution to an LSSP that emerged in a second-tier
supplier of a real automotive supply chain. In this section,
the base model is extended by considering setup common
operators to respond and fulfill the constraints that arise in
automotive plastic enterprises. In this regard, the base model
is extended to offer coming closer to reality by considering
another index which represents the workers who change
molds. It also bears in mind the casuistry associated with the
LSSP problem that refers to setup common operators.

(e nomenclature for the extended model is represented
in Table 3. In order to avoid repetitions, the data and de-
cision variables used for the MILP model for lot sizing and
scheduling on parallel flexible injection machines with setup
common operators are considered to be the same as in the
base model. Table 3 only shows the new data and decision
variables in relation to the previous base model. (ere are
different types of operators and a distinct number of workers
corresponding to each operator type. For example, let us
consider only one setup operator type that corresponds to
the qualified technician category and is specialized in
changing molds. Companies have a setup operator type
corresponding to the auxiliary technician category, whose
task involves helping the qualified technician, as well as a
setup operator type corresponding to themechanic category,
and provides support whenever failure of a mechanic,
electric, or physical, among others, occurs. All these cate-
gories or operator types have varying numbers of workers
who go on different shifts. For example, in a company like
that herein studied that has 21 machines, there could be two

qualified technicians, four auxiliary technicians, and one
mechanical technician per shift.

(e formulation of the MILP model for lot sizing and
scheduling on parallel flexible injection machines with setup
common operators is described next. (e objective function
minimizes total costs, which include setup costs with
common setup operators, inventory costs, penalization costs
for coverage stockouts, and backorder and tool setup costs,
such as the route cost of selecting one machine or another to
set up a tool.

Min z � 􏽘
i

􏽘
l

􏽘
j

􏽘
t

csj · SAiljt + 􏽘
i

􏽘
l

􏽘
j

􏽘
t

slciljt · SAiljt

+ 􏽘
k

􏽘
t

cik · INVkt + 􏽘
k

􏽘
t

cstk · STkt

+ 􏽘
k

􏽘
t

cbk · Bit + 􏽘
i

􏽘
l

􏽘
j

􏽘
t

rij · crij · SAiljt.

(20)

It is subject to the following.

5.1. Sequence Constraints.

Siljt ≤ rij, ∀i, l, j, t, (21)

SAiljt ≤ rij, ∀i, l, j, t, (22)

􏽘
j

Siljt · rij ≤ 1, ∀i, l, t,
(23)

􏽘
i

Siljt · rij ≤ aj, ∀j, t, l. (24)

Equations (21) and (22) constrain only setup tools j by
setup operators l on specific previously assigned machines
m. Constraint (23) determines that one or any tool j can be
set up by setup operator l for production during each time
period t. Constraint (24) guarantees that the total amount of
tools j available can only be set up for production as a
maximum during each time period t by setup operator l.

5.2. Production and Capacity Constraints.

Xnpkt < � 􏽘
i

􏽘
l

􏽘
j

npjk · rij · SAiljk, ∀k, t, (25)

TPijt � tpt · Siljt, ∀i, l, j, t. (26)

Constraint (25) determines the amount of products k
no longer produced when tool j is set up by operator l on
machine I during time period t by considering that an-
other tool j is set up on machine i during time period t − 1.
It also ensures that such a specific tool j can be set up on
machine i during time period t when product k is pro-
duced. Constraint (26) determines the production time
spent during time period t when tool j is set up by op-
erator l on machine i.
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5.3. Setup Constraints.

SAiljt � Siljt, ∀i, l, j, t � 1, (27)

SAiljt ≥ Siljt − Siljt−1, ∀i, l, j, t> 1,

SAiljt ≤ 1, ∀i, l, j, t> 1,
(28)

􏽘
i

􏽘
j

SAiljt ≤ nct, ∀l, t. (29)

Constraint (27) allows the first set up of tool j performed
by operator l onmachine i to be determined and enables it to
be modeled if tool j is set up during time period t onmachine
i for the first time. Decision variables Siljt and SAiljt take the
same value 1. Constraint (28) ensures that SAiljt does not
take values above 1. Constraint (29) limits the amount of tool
j changes allowed during time period t and set up by op-
erator l on machine i.

5.4. Labour Constraint.

􏽘
i

􏽘
j

SAiljt · slailj ≤ slsl, ∀l, t. (30)

Constraint (30) limits the amount of tools changes
allowed during time period t to the available number of
workers of type operator l by considering the number of
setup-type operators l required to set up tool j on machine i.

5.5. Bound and Nature Variables.

SAiljt, Siljt ∈ 0, 1{ }, ∀i, l, j, t. (31)

Constraint (31) indicates the binary nature of the setup
Siljt and setup amount SAiljt variables. Finally, the MILP
model for lot sizing and scheduling on parallel flexible in-
jection machines with setup common operators is also
subject to constraints (6), (8), (13a), (13b), (14)–(16), (18),
and (19).

6. Case Study and Computational Experiments

(e proposed base MILP model for lot sizing and scheduling
on parallel flexible injection machines and the extended MILP
model for lot sizing and scheduling on parallel flexible injection
machines with setup common operators was implemented in
Python 3.8.2, using Pyomo [8] as an extensible python-based

open-source optimization modeling language for linear pro-
gramming. (e performance of the proposed model was
evaluated on a set of instances that reflect different charac-
teristics of the real-world case of the automotive components
industry under study. All the numerical tests were performed
on a personal computer equipped with an Intel (R) Core (TM)
I5-8500 @ 3.00GHz Processor and 8GB RAM. We used
Python 3.8.2 and tested applying Gurobi 9.0, to solve themixed
integer linear programming model.

In the next section of data generation, it is described how
the data are generated to run the computational experi-
ments. (e datasets generated to validate the proposed
models correspond to small, medium, and large datasets.
Sized datasets can be accessed through a link available at the
end of the document. Finally, the last section presents the
results of the computational experiments carried out.

6.1. Data Generation. For the data generation, we define
various instance sets, including small, medium, and large
data sizes. (e small dataset corresponds to the minimum
amount of data required to test the proposed model; the
medium dataset allows to test the model with a reasonable
number of parameters and variables to be solved by the
model, approaching to the realistic view of the LSSP; and
finally, the large dataset replicates the real amount of data
managed by real world enterprises when solving the LSSP.
For the computational experiments, all the datasets are built
through considering the parameter values depicted on Ta-
ble 4. (e data values are created in the way that mostly
represents real data from the automotive components in-
dustry; next, the data values are defined :

(i)(e parameter aj determines the total amount of
tools j available for production; in this regard, only
one unit of each tool is available, and this means
that there are not duplicated tools to produce the
same components.

(ii) (e backorder cost (cbk) and the coverage stockout
cost (cstk) are represented by a very high value
(equal to M (99999)) in order to avoid customer
missing parts in the model resolution.

(iii) Inventory costs (cik) are set with values uniformly
distributed in given interval; U(u1, u2) is a random
variable which is uniformly distributed on [u1, u2].

(iv) (e stock coverage is defined in three days of
demand. Nevertheless, in small datasets where the

Table 3: Nomenclature for the model.
Index
l Index setup-type operators l ∈ {1, . . ., L}
Data
slailj Number of setup-type operators l required to setup the tool j on machine i
sclilj Cost of type operator l to setup the tool j on machine i
slsl Number of available workers of type operator l available
Decision variables
Siljt 1 if the tool j is setup by setup operator l on machine i during time period t; 0 otherwise

SAiljt
1 if tool j is set up by setup operator l onmachine i during time period t and is not set up onmachine i during time period t− 1; 0

if tool j is set up by setup operator l on machine i during time period t− 1

Complexity 9



number of periods is lower than three, we have
considered one coverage day of demand (covkt � 1)
in order not to have unfeasible solutions in the
model resolution, in such a way that the model
considers one period of future demand (dt+1) to be
produced during period t.

(v) Random [r1, r2] values denote a random integer
value over the interval from r1 to r2. (e following
data parameters use Random [r1, r2] values: setup
cost of a tool (crij), setup cost of preparing a tool
(csj), maximum inventory (INVMAXk), and the
amount of products no longer produced when a
tool is set up (npjk),

(vi) (e amount of products produced when a tool is
set up (pjk) is also denoted as Random [r1, r2]. In
this regard, pjk> 0 indicates that product k is
assigned to the tool j; otherwise, pjk � 0. Parts are
randomly assigned to tools, with the condition that
each part must be assigned to one tool. Table 5
proposes an example of assignment on a small
dataset composed of three tools and six products.

(vii) In order to generate the values for the demand,
blocks of seven time periods corresponding to the
7 days of the week are considered. In this regard,
the first fifth periods of the week will have demand
values set as Random (15, 40); otherwise, dkt � 0 on
the sixth and seventh periods of the week, that is,
on Saturday and Sunday.

(viii) (e minimum inventory (INVMINk) is set as one
unit for all the products k; accordingly, the initial

inventory (INVk0) is also set as one unit for all
products k.

(ix) (e amount of tool changes allowed (nct) is de-
fined by Random (I, I+ 5), with I being the min-
imum number of machines changes allowed, that
coincides with the total number of machines.
Considering the same scheme of blocks of weeks
divided in 7 periods, no tool changes are allowed in
the 7th period of the week, nct � 0; this is because on
Sundays, the enterprise does not produce and uses
it as a day of rest or for machine maintenance, etc.

(x) According to this last statement, the time available
for production (tpt) is 24 hours for the first 5th

periods of the week and 16 hours for the 6th period
of the week. No time production is available for the
7th period of the week.

(xi) rij � 1 indicates that all the tools can be setup on all
the machines.

(e aforementioned parameters and values are defined
for the base model. (e three parameters added for the
extended model, which considers set up common operators,
are described below (see Table 4):

(i) slailj � 1 indicates that one setup-type operator is
required to setup the tool j on machine i

(ii) (e cost of type operator l to setup the tool j on
machine i (sclilj) is set with values uniformly dis-
tributed in the given interval; U(u1,u2) is a random
variable which is uniformly distributed on [u1,u2]

(iii) Finally, the number of available workers of type
operator l available (slsl) must be as much as the
number of machines I

In addition, we attach the link to the synthetic data
generator, so that the model can be reproduced in future
research; https://bit.ly/3iwfObA.

6.2. Results and Computational Experiments. Using the
synthetic data generator mentioned above, a set of experi-
ments have been conducted to validate the two proposed
models: (i) a base LSSP model, an MILP model for lot sizing
and scheduling on parallel flexible injection machines and
(ii) an extended LSSP model, an MILP model for lot sizing
and scheduling on parallel flexible injection machines with
setup common operators.

In order to give the reader a clear insight of the input
data parameter values and the output data results once
implemented the proposed MILP, we include an example of
a small dataset size. (e input data for the base LSSP model
are presented at https://bit.ly/3p3IFqo. (e small dataset of
the base model is characterized by having 2 machines, 4
tools, 6 parts, and 3 periods. (e results obtained with the
decision variables in the MILP model for lot sizing and
scheduling on parallel flexible injection machines are pre-
sented in Tables 6 and 7.

According to the results obtained in the MILP model for
lot sizing and scheduling on parallel flexible injection

Table 4: Generation of value for data parameters.

Parameter Value
aj 1
cbk 99999
cik U (0.1, 1)

covkt
1 when T< 3;

Otherwise, 3 when T> 3
crij Random (5, 15)
csj Random (45, 50)
cstk 99999

dkt
Random (15, 40) if T� first 5 periods of the week;
Otherwise, 0 if T� 6th and T� 7th periods of the week

INVk0 1
INVMAXk Random (10000, 20000)
INVMINk 1

nct
Random (I, I+ 5)

0 if T� 7th period of the week
npjk Random (2, 5)
pjk Random (2, 5)

tpt
24 hours if T� first 5 periods of the week
16 hours if T� 6th period of the week
0 hours if T� 7th period of the week

rij 1
slailj 1
sclilj U (2.5, 3.5)
slsl I
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machines, all the available capacity is occupied in the three
defined periods. Notwithstanding, demand was higher than
the available capacity, and therefore, the model had to delay
the demand of products k� 2, 3, 4. Figure 3 shows the Gantt
chart showing the schedule obtained after applying the base
MILP model. Each row represents a machine i, and each
rectangle a tool j; inside the rectangle, we have indicated the
parts k and processing time t of each tool j.

(e input data for the extended LSSP model are pre-
sented at https://bit.ly/3iA5hfq, and it is characterized by
considering 2machines, 4 tools, 6 parts, 3 periods, and 4 type
operators.(e results obtained with the decision variables in
the MILP model for lot sizing and scheduling on parallel
flexible injection machines with setup common operators
are presented in Tables 8 and 9.

According to the obtained results, all the available ca-
pacity is occupied along the three defined periods.

Nevertheless, demand was higher than the available capacity,
and therefore, the model had to delay the demand of both
product k� 2, 3, 4, 6.(e solution provided in the scheduling
shows that the two type operators l are assigned to change
the tools j.

(e experimental results obtained with the tests per-
formed for all the datasets employed in the validation for
both the base model (Table 10) and the extended model in
which the labor index is added (Table 11) are provided
below. Four instances are generated of each dataset size. (e
synthetic instances have been generated through the pre-
viously proposed generator: https://bit.ly/3iwfObA.

(e computational results (Table 10) show that theMILP
model for lot sizing and scheduling on parallel flexible in-
jection machines in small (S1, S2, S3, and S4) and medium
(M1, M2, M3, and M4) instances achieve optimal results
(GAP� 0%) in, at maximum, 12.6 seconds. With regards to
the large instances generated (L1, L2, L3, and L4), the cal-
culation time on average is set as 3.3 hours finding a near
optimal solution, with an average 0.52% GAP. In this regard,
it is worth highlighting that the large dataset L1 achieves the
optimal solution in a very reduced computational time of
44 seconds.

(e computational results (Table 11) show that theMILP
model for lot sizing and scheduling on parallel flexible in-
jection machines with setup common operators in small (S1,
S2, S3, and S4) and medium (M1, M2, M3, and M4)

Table 6: Small dataset results of the base LSSP MILP: lot sizing, inventories, coverage, stockout, and backorders.

k t Xkt Xnpkt Xkt
′ STkt INVkt Bkt

1 1 48 0 48 2 21 0
1 2 27 0 27 0 25 0
1 3 0 0 0 0 1 0
2 1 0 0 0 33 1 35
2 2 48 0 48 30 1 21
2 3 48 0 48 0 1 4
3 1 72 0 72 0 39 0
3 2 0 0 0 11 19 0
3 3 0 0 0 0 1 12
4 1 0 0 0 14 1 30
4 2 0 0 0 32 1 45
4 3 96 0 96 0 19 0
5 1 48 0 48 8 31 0
5 2 41 0 41 0 33 0
5 3 0 0 0 0 1 0
6 1 48 0 48 19 15 0
6 2 48 0 48 5 29 0
6 3 0 0 0 0 1 6

Table 7: Small dataset results of the base LSSP MILP: scheduling.

i j t SAijt Sijt TPijt
1 2 1 1 1 24
1 2 2 0 1 24
1 1 3 1 1 24
2 4 1 1 1 24
2 3 2 1 1 24
2 3 3 0 1 24

Table 5: Amount of products produced when a tool is set up.

j k pjk
1 4 4
2 1 2
2 5 2
2 6 2
3 2 2
4 3 3

Complexity 11
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instances achieve optimal results (GAP� 0%) in, at maxi-
mum, 77.7 seconds. With regards to the large instances
generated (L1, L2, L3, and L4), the calculation time on
average is set as 2.8 hours finding a very near optimal so-
lution, with an average 3% GAP. In this regard, it is worth

highlighting that the large dataset L1 achieves the optimal
solution in a very reduced computational time of
208.83 seconds.

(e experiments carried out for both the base model and
the extended model that consider common setup operators

Machine 1

Machine 2

Period 1 Period 3

Part 4

Mold 
setup 
time

Tool 2
Mold 
setup 
time Tool 1

Part 3

Mold
setup 
time

Mold 
setup 
time

Tool 4

Part 2

Tool 3

Period 2

Part 1 Part 5 Part 6 

Figure 3: Gantt chart base MILP model for lot sizing and scheduling on parallel flexible injection machines.

Table 9: Small dataset results of the base LSSP MILP: scheduling.

i l j t Siljt SAiljt TPijt
1 1 2 1 1 1 24
1 2 2 1 1 1 24
1 1 2 2 1 0 24
1 2 2 2 1 0 24
1 1 1 3 1 1 24
1 2 1 3 1 1 24
2 1 4 1 1 1 24
2 2 4 1 1 1 24
2 1 3 2 1 1 24
2 2 3 2 1 1 24
2 1 3 3 1 0 24
2 2 3 3 1 0 24

Table 8: Small dataset results of the extended LSSP MILP, with setup common operators: lot sizing, inventories, coverage, stockout, and
backorders.

k t Xk Xnpkt Xkt
′ STkt INVkt Bkt

1 1 48 0 48 2 21 0
1 2 27 0 27 0 25 0
1 3 0 0 0 0 1 0
2 1 0 0 0 33 1 35
2 2 48 0 48 30 1 21
2 3 48 0 48 0 1 4
3 1 72 0 72 0 39 0
3 2 0 0 0 11 19 0
3 3 0 0 0 0 1 12
4 1 0 0 0 14 1 30
4 2 0 0 0 32 1 45
4 3 96 0 96 0 19 0
5 1 48 0 48 8 31 0
5 2 41 0 41 0 33 0
5 3 0 0 0 0 1 0
6 1 48 0 48 19 15 0
6 2 48 0 48 5 29 0
6 3 0 0 0 0 1 6
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are valid for their application on solving LSSP models with
real amount of data managed by real-world enterprises.

7. Discussion and Conclusions

(is article addresses the LSSP applied to an automotive
plastic components’ enterprise. An MILP base model is
proposed to deal with the lot-sizing and scheduling problem
on parallel flexible injection machines to mainly minimize
the setup, inventory, stockout, and backorder costs by taking
into account injection molds as the main index to schedule
parallel flexible injection machines. (e MILP base model is
extended to provide the enterprise under study with a more
realistic solution that considers setup common operators.
(erefore, the extended LSSP model, an MILP model for lot
sizing and scheduling on parallel flexible injection machines
with setup common operators, is presented. (is produces a
model that adapts to the restrictions of the company under
study, an automotive plastic components enterprise. (e
peculiarity of this model is that it takes injectionmolds as the
main index to schedule parallel flexible injection machines
by considering setup common operators. (e novelty of
both proposed models lies in our study considering many
periods when modeling and running experiments to solve
the LSSP. Moreover, the proposed MILP bears in mind stock
coverage constraints, which are typical in the studied au-
tomotive supply chain industry context, and contemplates
an objective function that allows idle times among molds,
which is a fundamental characteristic for real cases and has
been ignored by former studies.

Finally, this article validates the proposed MILP by
performing experiments with different sized instances, in-
cluding small, medium, and large datasets. (e large dataset
is characterized by replicating the amount of data used in the
real enterprise that is the object of this study. (e goodness
of the model is evaluated with the computational time and
the deviation of the obtained results as regards to the optimal
solution.

(is study is not without its limitations. (e small and
medium datasets are solved in both cases in very efficient
computing times. (e application of the proposed model
using the large dataset is more limited in computational
efficiency terms. To solve this problem, the literature indi-
cates the generation of heuristics, metaheuristics, and
matheuristics. (is last type falls within the authors’ future
research options as far as the contemplated model herein is
concerned. (us, the first research line intends to improve
the computational efficiency to solve the model by applying
matheuristics, which would consist in solving the binary
variables in both the base model base (Sijt and SAijt) and its
extended version (Siljt and SAiljt) by a metaheuristic tech-
nique, e.g., genetic algorithms, taboo search, and simulated
annealing. (e metaheuristics result will be provided as
input data for the MILP. (e following research lines focus
on improving the model by considering new constraints that
will be very useful for the real firm. In this way, the second
future research line is a second extension of the base model
that bears in mind the availability of materials. For this
purpose, inventory equations are to be added that consider

the list of materials needed to manufacture end products.
Finally, for the third future research line, a third extension of
the model is proposed by considering space limitations in a
warehouse’s volume. In this way, part volumes are calculated
to meet both stock coverage and limited warehouse space,
contemplated from the premise that all parts have different
volume requirements. (is means that the model and its
third extension (or third-generation) will be capable of
meeting the stock coverage of large-sized parts and stocking
small-sized ones so that when they have to be produced, the
production resources related to bigger pieces will be used.
(e third-generation model will allow bigger-sized parts to
be stored, which will be left at the stock coverage level by
calculating the quantity of smaller parts whose coverage can
be extended.

Data Availability

(e instances generated and analyzed during the study are
available at (1) the base LSSP model, an MILP model for lot
sizing and scheduling on parallel flexible injection machines:
https://bit.ly/3p3IFqo. (2) (e extended LSSP model, an
MILP model for lot sizing and scheduling on parallel flexible
injection machines with setup common operators: https://
bit.ly/3iA5hfq. (e algorithm developed for generating the
synthetic datasets is available at https://bit.ly/3iwfObA.
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