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Abstract 
 

Mild Cognitive Impairment (MCI) is an intermediate stage between the 

physiological cognitive deterioration due to ageing and a nonphysiological 

stage of dementia. MCI has morbidity between 12% and 18% of the 

population aged over 65 [1]. Even though MCI is not considered dementia 

and the symptomology of the patients is not severe, the patients with this 

disease are at higher risk of subsequently developing dementia and other 

neurodegenerative illnesses like Alzheimer’s (AD).  

Functional connectivity analysis has proven helpful in enhancing our 

knowledge of cognitive disorders such as MCI. The functional connectivity 

analysis is often combined with Graph Theory to extract metrics about the 

brain state and improve the classification of MCI patients using Machine 

Learning. In this report, I studied the classification accuracy improvement 

of using the Graph Theory metrics alongside the single functional 

connections for a specific dataset. Additionally, I explored the features that 

reported higher differences between MCI and healthy patients.  

I found that using only Graph Theory metrics for this dataset does not 

provide enough accuracy but that using them alongside the individual 

functional connections enhances the accuracy value. In addition, regarding 

the Graph Theory metrics, the node features proved to be more relevant 

for the classification than the whole matrix features. Additionally, I 

observed a significantly altered behaviour in some brain regions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

Sammanfattning 
 

Lindrig kognitiv störning (eng mild cognitive impairment, MCI) är ett 

mellanstadium mellan den fysiologiska kognitiva försämringen på grund 

av åldrande och ett icke-fysiologiskt stadium av demens. MCI drabbar 

mellan 12 och 18 % av befolkningen över 65 år [1]. Även om MCI inte 

betraktas som demenssjukdom, och patienternas symtom inte är 

allvarliga, löper patienter med denna sjukdom större risk att senare 

utveckla demens och andra neurodegenerativa sjukdomar som Alzheimers 

sjukdom (AD).  

Analys av funktionell konnektivitet har visat sig vara till hjälp för att öka 

vår kunskap om kognitiva störningar som MCI. Den funktionella 

konnektivitetsanalysen kombineras ofta med grafteori för att få fram mått 

på hjärnans tillstånd och förbättra klassificeringen av MCI-patienter med 

hjälp av maskininlärning. I den här rapporten har jag studerat den 

förbättrade klassificeringsnoggrannheten genom att använda grafteori 

tillsammans med de enskilda funktionella förbindelserna för ett specifikt 

dataset. Dessutom undersökte jag vilka egenskaper som gav upphov till 

större skillnader mellan MCI- och normala patienter.  

Jag fann att det inte ger tillräcklig noggrannhet att använda enbart Graph 

Theory-metriker för detta dataset, men att användningen av dem 

tillsammans med de enskilda funktionella förbindelserna förbättrar 

noggrannhetsvärdet. När det gäller grafteorimetrikerna visade sig 

dessutom nodfunktionerna vara mer relevanta för klassificeringen än 

funktionerna för hela matrisen. Dessutom observerade jag ett betydligt 

förändrat beteende i vissa hjärnregioner. 
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Chapter 1 
 
 

Introduction 

Mild Cognitive Impairment (MCI) is an intermediate stage between the 
physiological cognitive deterioration due to ageing and a nonphysiological 
stage of dementia. MCI produces an early loss of memory and other cognitive 
capacities; its symptomology can be perceived by their families and friends, 
but the MCI usually doesn’t evoke a state of dependence in the patient to do 
quotidian activities. The MCI has morbidity between 12% and 18% of the 
population aged over 65 [1]. Even though MCI is not considered dementia, and 
the symptomology of the patients is not severe, the patients with this disease 
are at higher risk of subsequently developing dementia and other 
neurodegenerative illnesses like Alzheimer’s (AD). MCI early diagnosis and 
treatment could lead to lower chances of developing these other 
neurodegenerative illnesses; however, only Biogen’s aducanumab drug has 
been approved by the Food and Drug Administration to treat MCI, and its 
effectiveness has been a controversial topic ever since [21]. To accomplish this 
early diagnosis and treatment, recently, some studies have correlated the MCI 
with the signal obtained from the functional connectivity analysis. 

The functional connectivity analysis data is obtained from the resting-state 
functional magnetic resonance imaging (rs-fMRI). As its name implies, the rs-
fMRI consists of acquiring functional magnetic resonance imaging (fMRI) 
while the patient is resting. rs-fMRI can provide some valuable data about the 
functional connections of the brain regions. To extract the functional 
connectivity data from the rs-fMRI, first, the 3D image of the rs-fMRI is 
segmented into ROIs (regions of interest) with an already segmented atlas. 
After the ROIs segmentation, we obtain these regions’ signals across the time 
domain and compare them with each other to create a correlation array. In the 
resulting array, the off-diagonal elements represent the correlation between 
two regions and the diagonal elements are usually set to zero.  
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The correlation strengths of the functional connectivity arrays reflect 
excitatory and inhibitory relations. A functional connectivity network of the 
brain can be represented using a Graph Theory approach from these arrays. 
Graph Theory can provide multiple metrics that characterise the state of the 
functional brain network. The implementation of these metrics with the 
addition of Machine Learning models for classification has been recently used 
to diagnose patients with diseases that alter their cognitive performance. 
However, the accuracy enhancement for the classification obtained by these 
metrics is not well established and variates with different atlas. For this 
dataset, the relevancy of the Graph Theory metrics is still unknown. 
[2][3][4][5] 

 

1.1 Research Question 
 
 

This study aims to see if Graph Theory metrics can improve MCI patients’ 
classification accuracy using different non-ensemble Machine Learning 
methods and Ensemble Learning. In addition, among these metrics, see which 
ones are more representative to make this classification and infer biological 
knowledge based on the obtained results. Additionally, find out which 
elements of the array are more representative as well; in other words, observe 
which connections determine the classification of control samples and MCI 
patients. Studying this will induce physiological information that can be used 
for medical purposes. I aim to answer the following research questions: 

- Can Graph Theory metrics improve the accuracy of classifying MCI 
patients for this concrete dataset?  

- Which features differ the most between MCI and healthy patients? 

For studying the accuracy, not all the Machine Learning classifiers were used; 
to narrow this project's scope, only the most used Machine Learning methods 
for functional connectivity analysis were used. These are Random Forest, 
AdaBoost, Gradient Descending, Logistic Regression, Naïve Bayes, Decision 
Trees, and Support Vector Machines. All these are partially optimized for the 
sake of reaching their best performance.  

The graph metrics studied are metrics that have achieved good results in other 
studies with this kind of data.  
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1.2 Approach  
 

Multiple libraries and machine learning methods from Python and MATLAB 
were used. The data utilized for this project has been provided by Swedish 
BioFINDER-1; it consists of a 4D volume with a size of 6x94x200x200 and the 
ground truth of the classification. The volume dimensions are: 

1. 6 times delays for each subject. 

2. 94 patients, of which 44 of them have MCI and the 50 remainders are 
control.  

3. 200 ROIs 

4. 200 ROIs 

 

The correlation of the array is directional, meaning that A can inhibit/excite B 
but not necessarily the other way around, which produces an asymmetrical 
array where Cij may not be equal to Cji. The biological inference should be 
afterwards contrasted by a professional in the field. The resulting model with 
higher accuracy could improve the early diagnosis of MCI subjects.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

200x200 numbers that 
represent the correlation 
between ROIs 
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Chapter 2 
 
 

Background 

 

2.1 MCI 
 

 

The MCI or Mild Cognitive Impairment consists of a neurological disease 
where the memory and other cognitive capacities are more deteriorated than 
expected from the physiological deterioration due to the ageing of the subject. 
Even if it doesn’t interfere with the daily activities, it can be noticed by the 
people surrounding the affected and might lead an above-average death rate 
in a period of six years compared to the rest of the healthy population of the 
same age range. This death rate is also affected in patients of this kind by other 
features such as sex, years of education, history of heart disease, and the 
realisation of moderate physical exercise. Furthermore, the main concern is 
that patients suffering from this condition have an increased risk of developing 
more severe types of dementia like Alzheimer’s disease. The main symptoms 
of MCI are memory loss and deterioration of other cognitive capacities such as 
language, attention, and decision-making [2]. Suffering MCI can also lead to 
depression, irritability and aggression, anxiety, and apathy.  

Mild Cognitive Impairment in older adults has been detected as one of the most 
critical causes of a higher risk of mortality and morbidity in the modern world. 
As such, this condition and its consequences increase the health expenses of 
the society. Cost differences between cognitively normal (CN) and mild 
cognitive impairment patients don’t differ significantly. Still, it does with a 
prevalent dementia state, which raises to 4,000 $ the annual cost compared 
with the CN. [1] Therefore, computer-aided diagnosis of the disease can 
significantly reduce the cost of the disorder and other neurodegenerative 
illnesses since MCI early detection and correct treatment can considerably 
decrease and prevent the onset of these other neurodegenerative illnesses.  

From the SEN (Spanish Society of Neurology) data, different essential 
measures of the impact of this disease can be extracted. In Spain, the mean cost 
of an AD patient goes from 17.100 € to 28.200€.  In 2015 there were around 
47 million people with dementia worldwide, and it’s expected that if the 
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prevalence remains constant, in 2050, there will be 131 millions suffering from 
this condition. [3] 

Since the impact of the MCI and its consequences are undeniable, more reliable 
diagnosis methods and treatments must be produced to improve the life 
quality of the patients and reduce the government’s expenses.   

 

2.2 rs-fMRI and functional connectivity 

 

Magnetic resonance imaging (MRI) is a non-ionising medical imaging 
technique that provides high contrast of soft tissue with a high spatial 
resolution; this makes it a suitable option for studying the brain. With the same 
hardware, modifying the acquisition parameters, we can obtain different 
contrast mechanisms: FLAIR, DIFFUSION, ADC… 

While the normal MRI gives morphological information, the functional 
magnetic resonance (fMRI) provides information about brain activity. fMRI 
can be achieved thanks to the close relationship between neural activity and 
blood flow. As the region’s blood flow increases due to the need for more 
oxygen, the MRI signal received in that area of the brain slightly increases due 
to the effect of the haemoglobin on the magnetic field. [4] 

MRI is commonly used to observe the brain activity response to specific tasks, 
this kind of fMRI is called task-based functional MRI. Nevertheless, in 1995, 
Biswal described the Resting-state fMRI, which, as its name implies, consists 
of doing fMRI while the patient is not doing any task.  In this state, low-
frequency oscillation can be obtained and related to spontaneous neural 
activity. This neural activity is not driven by an external stimulus, which can 
help classify patients with different neurological disorders. [5] 

From the rs-fMRI, the functional connectivity of the brain can be acquired. 
First, an atlas segments the brain into regions of interest (ROIs). Later, each 
region’s signal across the time domain is correlated with each other, 
constructing an array where each off-diagonal element corresponds to the 
correlation between two ROIs. These arrays can be weighted/unweighted and 
directional/unidirectional. The categorisation can be seen by observing the 
arrays.  

Weighted functional connectivity is when the array's values are not binary. In 
this case, the array’s values determine the strengths of the connections 
between regions. High positive values relate to excitation, high negative values 
to inhibition and values close to zero mean no functional connectivity between 
the two areas of the brain.  

Unweighted functional connectivity is binary; there is no distinction between 
the strength values of the connections; it only states if there is a connection or 
not.  
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If the array is directional, there is a discrepancy between source and target. 
The connections A→B and B→A corresponding to the array elements Cij and 
Cji have different values, resulting in an asymmetric matrix. This does not 
happen on unidirectional arrays in which the discrepant behaviour of source 
and target is not represented, causing symmetrical matrices.  

We can obtain unweighted arrays from weighted arrays using a threshold 
value. However, since weighted matrixes contain more information than 
unweighted ones it is not possible to convert the other way around. Similarly, 
directional matrixes can be converted to unidirectional, but the opposite is not 
possible. [6] 

 

2.3 Graph Theory 

 

A simple definition of a graph would be: a network that helps define and 
visualise relationships between various components. From a computer science 
perspective, a graph is: G(V, E), where V is a set of nodes and E is a set of edges. 
The functional connectivity can be understood from a Graph Theory 
perspective where each ROI behave as a node, and the correlation strength 
between two nodes corresponds to an edge. So, brain networks can be studied 
using the knowledge and tools from this field. Multiple metrics can 
characterise a Graph, so these can also represent a brain network connectivity. 

 

 

Figure 2.1: Comparison of different types of networks and their corresponding 

matrices. a) Weighted directed graph and array. b) Unweighted/binary directed 

graph and array. c) Weighted undirected graph and array. d) Unweighted/binary 

undirected graph and array. Image courtesy of Alex Fornito, Andrew Zalesky and 

Edward T. Bullmore [6] 



7 
 

 

2.4 Machine Learning 
 
 

Healthcare is one of the most expensive sectors globally. Its global budget is 
estimated to be greater than 6 trillion dollars, and it is predicted to reach 12 
trillion dollars within seven years [9]. Machine learning is in the spotlight to 
reduce health expenses and strengthen the relationship between patients and 
health service workers. Nowadays, Machine Learning in all its shapes can be 
found in quite a wide range of health fields, such as eHealth, mHealth and 
image diagnosis.  

Machine Learning is a branch of computational algorithms that tries to mimic 
human behaviour when treating different kinds of inputs to produce a specific 
outcome. These methods train on past events to predict what will happen 
given unseen data not used for its training.  

The problem solving of Machine Learning algorithms can be differentiated into 
regression and classification and in supervised and unsupervised. Regression 
is when the output is continuous, and classification is when the output is 
discrete. Supervised is when the training phase of the model is done with 
labelled data and the output for the samples is known, whereas unsupervised 
is when the outcome is uncertain; clusters of the data are constructed given 
the likelihood of the sample belonging to that class/cluster.   

For this research, classification supervised machine learning was used in 
pursuance of differentiating MCI patients and control patients, given the 
features of the functional connectivity arrays.  

Machine Learning can provide two sources of information. First, learning; see 
how the features are related and see which ones are more crucial for correctly 
modelling the problem. Second, inference; make a prediction of the output 
given some inputs. I will use both approaches throughout this study.  

The Machine Learning methods used in this investigation are superficially 
explained below. 

 

2.4.1 Ensemble Learning 
 

Ensemble learning is based on the combination of multiple simple methods of 
Machine Learning. Its goal is to train weak classifiers and combine them with 
the goal of constructing a more robust model than any of the individual ones. 
This vision is inspired by the Wisdom of Crowds (J. Surowiecki) principle, 
which says that a collective is wiser than a single individual. For pursuing this, 
four requirements must be fulfilled: 

1. Diversity of opinion: The individuals must have different training and 
outputs. 
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2. Independence: The output of the individual must not be influenced by 
other individuals.  

3. Decentralisation: Each induvial specialises in different features.  

4. Aggregation: All predictions can be summed into a single prediction. 

Depending on how these single classifiers are aggregated, a binary 
classification can be done: Bagging and Boosting.  

Bagging uses bootstrap replicates, sets of the training data obtained using 
sampling with replacement. To use this kind of ensemble learning, high 
variance and low bias classifiers must be used; otherwise, the diversity of 
opinion would not be satisfied. After training all the individuals, a majority 
vote is used to determine the classification.  It works in parallel. (A. Maki, 
personal communication, Lecture 10, Machine Learning DD2421). 

Boosting, unlike Bagging, uses high bias classifiers. At each training instance, 
the algorithm is given a weight of how good the previous classifier did the 
classification. A higher weight means more misclassification, so the next 
learner must pay more attention to these samples to classify them correctly. 
[10] 

 

2.4.1.1 Random Forest  

 

Random Forest is a collection of bagged decision trees (2.5.2.3). The feature 
selection is randomised by inhibiting some dimensions and using replicates 
for each tree training. This randomness produces the decorrelation of the trees 
since they will learn from different experiences, in other words, using different 
training subspaces. If we do not inhibit some of the features, all the trees 
choose to ask the same questions. They, therefore, would present a similar 
behaviour, which would not satisfy the diversity of opinion. (A. Maki, personal 
communication, Lecture 10, Machine Learning DD2421). 

 

2.4.1.2 AdaBoost 

 

This boosting-based algorithm sequentially aggregates the weak learners, 
unlike Random Forest that works parallelly. After each iteration, the weights 
and importance of the samples are adjusted to make sure that misclassified 
samples are taken more into account to be correctly classified in the next 
iteration. In the end, every weak learner has a reliability coefficient related to 
the amount of error they produced; this determines the importance of that 
classifier in the majority vote. When an unseen instance is introduced to the 
method, the sample will be classified as the majority voted class [16]. 
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2.4.1.3 Gradient Boosting and Extreme Gradient Boosting 

 

Gradient Boosting is similar to the AdaBoost algorithm. However, instead of 
readjusting the weights, this method tries to fit the next weak learner based on 
the residual error provided by the previous classifier. It works as an 
optimization to minimize the loss of these weak learners by employing 
gradient descent. Extreme gradient boosting is a more regularized form of 
Gradient Boosting, which provides a better generalization [16]. 
 

2.4.2 non-Ensemble learning 
 

Non-ensemble learning refers to traditional machine learning classifiers that 
do not rely on aggregating learners to perform better.  

 

2.4.2.1 Logistic Regression 

 

Even though it is called regression is used for classification. It relates a vector 
of features to a distribution that gives us the probability of the sample 
belonging to one class. We fit a sigmoid function to this distribution and draw 
a discriminant boundary where the probability of belonging to a class is 0.5. If 
the sample is placed on one of the sides of this frontier, the sample will be 
classified with one label, and if it is located on the other side, it will be classified 
with the other label. (Bob L. T. Sturm, personal communication, Lecture 6, 
Machine Learning DD2421). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
  

Figure 2.1: Sigmoid function where the 0.5 value is placed on the axis 

origin of x. In this case, if the input value is negative, it would be classified 

as 0 and if it is positive to 1. Image courtesy of Saishruthi Swaminathan 

[11]. 
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2.4.2.2 Naïve Bayes 

 

This method works under the assumption that the dimensions are 
conditionally independent; the assumption is sometimes violated but still 
works well under this condition if the dependence is not too strong. We lose 
some information but save high volume probability space. The Naïve Bayes 
technique is optimal when the dimensions are at least reasonably 
independent. To ensure the classifier’s good behaviour, it must be examined 
with the test data. The algorithm uses the Bayes’ Rule to determine to which 
class the sample belongs: 
 

𝑃(𝑦|𝑋 = 𝑥) =
𝑃(𝑥|𝑌 = 𝑦) · Pr⁡(𝑌 = 𝑦)

Pr⁡(𝑋 = 𝑥)
 

 

Where 𝑃(𝑥|𝑌 = 𝑦) is the likelihood of observing x given that Y=y. 𝑃𝑟⁡(𝑌 = 𝑦) 
is the prior and represents the previous knowledge of Y before taking any 
observations.  𝑃𝑟⁡(𝑋 = 𝑥) is the evidence and describes how well the model 
fits the evidence. Finally, we have 𝑃(𝑦|𝑋 = 𝑥)⁡, which is the posterior and 
describes the probability density of the hypotheses given x.  

The classification is done by taking the y that maximizes the posterior 
probability. (Bob L. T. Sturm, personal communication, Lecture 6, Machine 
Learning DD2421). 
 
 

2.5.2.3 Decision tree 
 

 

The training space is sequentially stratified into more simple regions by asking 
questions about the features until reaching a particular condition. For 
example, this condition can be related to the state of the leaf nodes or the 
number of questions, branches generated. Due to the similarity to the trees, 
this method is called decision tree. The best questions are selected using 
different split criterions. Among the split criterions, the most used is called 
information gain. Information gain is the loss of entropy/ unpredictability 
related to the split of the sample space produced by the asked question.  The 
more certainty we gain about the output, the more information we gain. The 
questions that provide the highest information gain are located at the top of 
the tree, therefore being easy to deduce which are the relevant attributes of 
the dataset that determine the classification. This interpretability is of high 
esteem to resolve medical-related problems such as the one implicated in this 
study. (A. Maki, personal communication, Lecture 2, Machine Learning 
DD2421). 
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2.5.2.4 SVM 
 

 

Support Vector Machine’s goal is to find a hyperplane that can successfully 
separate two classes. There is a Structural Risk expected from the variability 
of finding different hyperplanes that can correctly solve the problem. To solve 
the Structural Risk, margins, distance to the existing data points of the training 
are introduced so future samples can be correctly classified and to increase the 
generalization. Wide margins restrict the possible hyperplanes, so the best 
hyperplane is the one that maximizes the margin distance to the existing data 
points.  (J. Conradt, personal communication, Lecture 8, Machine Learning 
DD2421). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.2 shows how the squares are correctly separated from the circles. If 
new unseen data falls into the left side of the hyperplane, it is classified as a 
circle and if it is located on the other side as a square.  

Even if one problem cannot be linearly solved in a low dimensional space, it 
can become separable in a high-dimensional space. However, projecting the 
samples into higher dimensions can be computationally expensive, so Kernels 
are used for the purpose of avoiding these expensive calculations. The kernels 
can exploit the advantages of high-dimensional space without actually 
projecting it into higher dimensions. The most common kernels are the Linear 
Kernel, the Polynomial Kernels and the Radial Bases Function (RBF) Kernels:  
  

𝐿𝑖𝑛𝑒𝑎𝑟⁡𝐾𝑒𝑟𝑛𝑒𝑙 → 𝐾(𝑥⃗, 𝑦⃗) = ⁡ 𝑥⃗𝑇 · 𝑦⃗ 
 

𝑃𝑜𝑙𝑦𝑛𝑜𝑚𝑖𝑎𝑙⁡𝐾𝑒𝑟𝑛𝑒𝑙 → 𝐾(𝑥⃗, 𝑦⃗) = ⁡ (𝑥⃗𝑇 · 𝑦⃗ + 1)𝑝 
 

𝑅𝑎𝑑𝑖𝑎𝑙⁡𝐵𝑎𝑠𝑒𝑠⁡𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛⁡𝐾𝑒𝑟𝑛𝑒𝑙 → 𝐾(𝑥⃗, 𝑦⃗) = 𝑒
−
‖𝑥⃗−𝑦⃗⃗‖2

2𝜎2  
 

For the polynomial kernel, the exponent p determines the degree, and for the 
Radial Bases Function (RBF), σ is used to control the smoothness of the 
boundary. (Ö. Ekeberg, personal communication, Lab 2, Machine Learning 
DD2421). 

Figure 2.2: Graphic representation of a separating 

hyperplane with margins. Image courtesy of 

Mammone, A., Turchi, M., and Cristianini, N. [12] 
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2.5 Related work 
 

Even though functional connectivity analysis for disease diagnoses is is a 
relatively novel field, it has already been used in multiple studies. 

For example, researchers from the Middle Tennessee State University and 
Southern Arkansas University [13] realised a study to classify autism spectrum 
disorder (ASD) using the multisite ABIDE dataset. This dataset consists of pre-
processed resting-state functional MRI data for 1112 patients, 539 with (ASD) 
and 573 typically developing (TD) participants. The participants' data was 
obtained at different international sites. To segment the MRI data, they used 
different atlas to see which one was more fitted for the classification of this 
type of patient. Studies with only one site and a small number of subjects 
achieved high accuracy values of around 97% but from multisite datasets, this 
accuracy was reduced to 70% with a deep neural network classifier. In this 
study, they managed to improve the state-of-art for multisite type dataset 
accuracy to 71.98% using Ridge classifier and CC400 atlas. They optimized the 
amount of computing time as well. The aim of the study was to increase the 
highest accuracy for supervised machine learning classifiers using optimal 
parameters for this dataset.  

Another related research was carried out by the Department of Neurology of 
the Xuanwu Hospital [14] with a dataset of 32 subjective cognitive decline 
patients (SCD), 37 amnestic mild cognitive impairment (aMCI), 30 fully 
manifested AD and 40 normal controls. The goal of this study was to collect the 
functional connectivity changes across this spectrum of cognitive states using 
graph theories methodologies. The conclusive main differential metrics 
extracted from this study were that subgraph centrality in SCD patients was 
observed to decrease in the somatomotor and visual networks. aMCI had a 
decrease and an increase of the global centrality in the primary motor network 
as well as decreases in the associative networks, and fully manifested AD had 
increased global centrality in the seven networks.   

An inspiring study of the application of advanced machine learning algorithms 
on rs-fMRI networks for the classification of MCI [15] was done by Ali Khazaee 
from the University of Bojnord. In this case, the dataset consisted of 89 patients 
with MCI, 34 with AD and 45 normal controls. Using the graph-theoretical 
approach, they try to get the highest accuracy possible to the problem of 
classifying the three groups. The highest accuracy was achieved with the help 
of Support Vector Machines and resulted in a value of 87.29%. 

Functional connectivity analysis can be supported with other kinds of 
information; the use of functional connectivity analysis alongside structural 
connectivity analysis has proved to improve the accuracy value for the MCI 
classification. Chong-Yaw Wee [23] using both types of connectivity analysis 
achieved an accuracy of 96,3% by employing multiple-kernel Support Vector 
Machines. The structural information was registered using diffusion tensor 
imaging (DTI), which provides microstructural characteristics of water 
diffusion, while the functional was obtained with rs-fMRI. For this study, the 
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atlas used segmented the brain into 90 ROIs. They concluded that structural 
connection analysis complements functional analysis and that the use of both 
can enhance the MCI accuracy classification.   

Thomas Welton and Daniel A. Kent [26] made a systematic review of the 
reproducibility of Graph Theory metrics for the Brain network. He collected 
different aspects of the Graph Theory metrics sensibility regarding how the 
functional connectivity arrays were obtained. In addition, the authors 
collected the most promising Graph Theory metrics for future research use. 
However, these metrics’ behaviour depends on the classification problem and 
other methodological factors, so they cannot be considered as a Ground Truth 
for all functional analysis problems.  
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Chapter 3 
 

Methods 

3.1 Dataset  

 

The dataset consists of a 4-dimensional matrix with a 6x94x200x200 size. It is 
composed of weighted directional functional connectivity arrays where the 
corresponding dimensions are: 

- 94 patients of which 50 of them are control, supposedly healthy in a 
neurological sense. And the remainder 43 have MCI. 

- For each of the 94 patients, there are 6 different delays for the obtention 
of the correlation arrays. 

- Finally, we have a 200x200 array of a weighted directional functional 
connectivity array, where each off-diagonal element represents the 
correlation strength between two ROIs of the Brain. Diagonal elements 
are set to zero since the study of the correlation of an ROI with itself is 
not relevant as it always will result in a value of 1. 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 

Figure 3.1: Representation of the dataset. A 4-

dimensional array where each dimension is: 6 

delays, 94 patients, 200 ROIs and 200 ROIs. 
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The dataset was obtained from the Swedish BioFINDER-1 (no. NCT01208675), 
study lead by Oskar Hansson, MD, PhD of Lund University [27]. In the study 
the subjects recruited were between 60 and 80 years old. This range of age was 
chosen to make the cognitive loss due to the ageing between MCI and healthy 
subjects the same so that the cognitive difference between the two classes 
would be due solely to the MCI. 

The ROIs were obtained using the Craddock200 atlas to an rs-fMRI; the 
corresponding labels of the Craddock200 atlas segmentation can be found in 
Appendix A. After segmentizing the brain, the signals of the ROIs across the 
time domain were correlated using 6 different delays with the Pearson 
correlation coefficient, thus obtaining the functional connections. With the 
Pearson correlation coefficient, the correlation is obtained using the following 
equation:   

 

 

𝑟 =
∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)
2∑(𝑦𝑖 − 𝑦̅)

2

 

 

Where: 

r = Pearson Correlation Coefficient 

xi = Samples of x     yi = Samples of y 

𝑥̅⁡= Mean of x      𝑦̅⁡= Mean of y 

 

 

3.2 Feature extraction 
 

Before the feature extraction, the dataset was pre-processed by deleting the 
patients with NaN values, missing values on the array; this only resulted in the 
removal of one patient, so the loss of information was not critical. 

Metrics from the Graph Theory discipline were extracted using the MATLAB 
Brain Connectivity Toolbox [Rubinov and Sporns (2010)] [8] and were 
selected guided by the work of Frank de Vos “A comprehensive analysis of 
resting-state fMRI measures to classify individual patients with Alzheimer's 
disease” [7]. In Frank de Vos’s research, they used the same toolbox to classify 
patients with AD. Using the same metrics is a reasonable procedure since the 
MCI is an intermediate stage between physiological cognitive loss and an 
abnormal state like AD.  

To extract the features I used both the weighted directional array and the 
unweighted directional array; to go from the weighted to the unweighted, a 
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threshold of 0.04 was used in order to detect the connections that were greater 
than zero rejecting the ones that were almost zero as well.  

The extracted features can be classified as node features and whole matrix 
features. For each node feature, I obtained 200 predictors per delay, so 1200 
predictors per patient. Each whole matrix feature contributed with one 
predictor per delay.  

 

The metrics used for the original matrix (non-binarized) were: 

 

- Node features: 

o Weighted Node Betweenness Centrality (BCW): The fraction of 
all shortest paths in the network that contain a given node, 
where shortest paths are the routes between two nodes such as 
the sum of the weights of the edges is minimized. A high value 
indicates that the node participates in many shortest paths. 

o Weighted Clustering Coefficient (CCW): Geometric mean of all 
triangles associated with each node.  

o In-strength, Out-strength and Node Strength (IS, OS and S): The 
in-strength is the sum of weights for the inward connections, the 
out-strength is the sum of weights for the outward connections 
and the node strength is the sum of both strengths.  

- Whole matrix features: 

o Weighted Transitivity (WT): Fraction of the number of existing 
triplets. A triplet structure results when two neighbours of a 
node are neighbours between themselves as well. Is a classical 
version of the clustering coefficient.  

o Characteristic Path Length (L): Average of shortest paths 
between all pairs of nodes in the network.  

o Global efficiency (E): Average inverse shortest path length.  

o Network radius (R):  Minimal eccentricity.  

o Network diameter (D): Maximal eccentricity. It is a measure of 
the length of the longest minimal path. 

 

For the binarized matrix:  

- Node features: 

o Edge betweenness centrality (BCB): Fraction of all shortest 
paths in the network that contain a given edge.  

o Binary clustering coefficient (CCB): Fraction of triangles around 
a node. 
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o Degree of each node (DH and DV): Is the number of connections 
that establishes each ROI. This was done for the inward 
connections as well as for the outward connections.  

- Whole matrix features: 

o Binary Transitivity (BT): Fraction of the number of existing 
triplets. 

o Degree of the matrix (TD): The sum of all the connections 
established by the network.  

 

For the feature extraction, three different datasets (Dataset 1, Dataset 2 and 
Dataset 3) with different features were made to find out the relevance of the 
Graph Theory metrics for the MCI classification, all of them using MATLAB.  

The first set of features (Dataset 1) comprises only the Graph Theory metrics. 
As previously mentioned (section 2.4), Graph Theory metrics can be used for 
the study of brain networks such as functional connectivity arrays. However, 
current network methods cannot reckon the role of negative connections [7]. 
Therefore, with this methodology, inhibition functional connection 
information is lost. For this dataset, 10.842 graph features were extracted for 
each patient resulting in a dataset of 93x10.843 size counting the ground truth 
of the patients. 

The second set of features (Dataset 2) comprises the non-Graph Theory 
metrics. Dataset 2 is composed of each element of the array, each individual 
connection, for every delay as a patient feature. This feature was named Pixel 
Feature since the array can be seen as an image; therefore, each element can 
be seen as a pixel.  

The extraction of the Pixel Feature resulted in a space of 200x200x6=240.000 
features for each patient. A prior feature selection process was done to work 
with this large dataset and be comparable with the other datasets. This feature 
selection was made with Relieff, a MATLAB filtering feature selection tool that 
gives weights values in concordance to the relevance of the feature. Relevant 
features are the ones that form well-defined clusters for each class. The 
filtering was set to return the same number of features as Dataset 1, resulting 
in another dataset with a size of 93x10.843 counting the ground truth. 

The third set of features (Dataset 3) is composed of a mix of the two datasets. 
This set was obtained by using Relieff on both sets of features, obtaining the 
5.421 best Graph Theory features and the 5.421 best Pixel Features. This 
procedure resulted in another dataset with a size of 93x10.843 counting the 
ground truth. 



18 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 

Figure 3.2 summarizes the creation and evaluation of the three datasets.  

After creating the datasets, these were exported to Python as a comma-
separated values (CSV) format with a header indicating the names of the 
features. The format of the names was the following:  

- Pixel feature name structure: “(Pixel Feature) Delay: a | ROIs: b-c”.  

- Node feature name structure: “(Node feature) Delay: a| Node: b”.  

- Whole matrix feature name structure: “(Whole matrix feature) Delay: 
a” 

Where “a” can take any value from 1 to 6 and indicates the delay array from 
which was obtained the feature, while “b” and “c” indicate the functional 
connection. For the pixel feature structure, “b” is the origin ROI and “c” is the 
target ROI for the connection. 
 
 

3.3 Feature selection 
 

Feature selection is an important phase of the Machine Learning classification 
to determine the dimensions that are more crucial in the distinction of the 
classes. For such a large quantity of features extracted and a low sampling 
dataset, this phase is required if we want to avoid the Curse of Dimensionality.  

Figure 3.2: Flowchart of the Datasets creation and 

posterior feature selection and evaluation. The sizes of the 

Datasets in the image are without considering the ground 

truth. 
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The Curse of Dimensionality refers to the problem that easy to solve problems 
in low dimensions become harder to solve in higher ones. To avoid the Curse 
of Dimensionality, Ensemble learning, as well as decision trees, have their 
intrinsic way of determining the more important features; however, feature 
reduction methods can boost their performance. More importantly, for the 
other classifiers, a previous feature selection is essential. Various techniques 
for dimensionality reduction were used to make the resulting accuracy 
optimal. 

Once in Python, the correlated variables were removed using a threshold of 
0.85 so that dimensions correlated more than 0.85 were deleted. The filtering 
of the correlated variables returned a space of 3.144 uncorrelated dimensions 
for Dataset 1, 4.174 for Dataset 2 and 4.492 for Dataset 3.  

After deleting the correlated features, two different feature selection methods 
were used with these filtered datasets: PCA and Univariate Selection.  

PCA (Principal Component Analysis) consists of projecting the features into 
new dimensions called principal components that maximize the variance 
while minimizing the information loss. But before using PCA the features were 
normalised since the method works using the standard deviation, so it must be 
correctly scaled. In this experiment, the PCA was done holding 90 % of its 
original variance. 

Univariate Selection was made with “SelectKBest”, which is a filtering method 
for feature selection that transforms the data into a subset of k best attributes. 
The function used for the selection was f_classif, which applies ANOVA F-value 
between label/feature to see how well the feature discriminates between the 
labels, in this case, between the MCI and the healthy patients. A feature 
discriminates better if the distance between classes in the space is maximized 
and the same class samples' variance is minimized [17]. In this experiment, the 
Univariate Selection was done by selecting a subset of the 30 best attributes.  

 

3.4 Classification and evaluation 

 

After reducing the high dimensionality of the three datasets, the classification 
and evaluation phase took place. All the Machine Learning algorithms were 
extracted like the feature selection methods from the Python Scikit library, 
except the Extreme Gradient Boosting, which was extracted from the XGBoost 
library. To compare the accuracy performance between the datasets, the 
following machine learning classifiers were employed:  

Non-ensemble methods (NEM): 

• Logistic Regression 

• Naïve Bayes 

• Decision tree 

• Support Vector Machine 
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Ensemble methods (EM): 

• Random Forest 

• AdaBoosting 

• Extreme Gradient Boosting 

The three different datasets were introduced to these algorithms with the two 
different feature selection methods and without using a feature selection 
method. In order to evaluate the performance of the features, a stratified k-
Fold cross-validation was done with “k” equal to 5. 5-Fold cross-validation 
practice consists of splitting the dataset into 5 folds, where 4 of these folds are 
used for training, and the one left is used for the evaluation. In the stratified 
type, the folds are made by preserving the percentage of samples for each class. 
This process is repeated 5 times, each time leaving a different fold for the 
evaluation. Then, the overall accuracy of the model is computed as the mean 
of the different test folds accuracy. The accuracy is a metric used to evaluate 
the performance of the method and is computed as the number of correct 
predictions divided by the total number of predictions.  
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Chapter 4 
 

Results and Analysis 

To evaluate the accuracy of the Graph Theory metrics and the Pixel Features, I 
performed the classification of the patients with the three datasets using three 
different EM and 4 different NEM classifiers. But to properly compare the 
potential of the three datasets, first, the hyperparameters were tuned for each 
one of the classifiers, extracting the hyperparameters that resulted in the best 
accuracy for each dataset. To evaluate the accuracies, I used a stratified 5-Fold 
cross-validation. After computing all the folds, the mean accuracy was 
extracted for the three datasets.   

For the extraction of relevant information regarding the MCI disease, I 
performed a feature analysis to see which features are the ones that exhibit 
more distinct values between MCI and control patients. This feature analysis 
was led using the Relieff function from MATLAB. 
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4.1 Optimized Hyperparameters  

 

4.1.1 Logistic Regression optimized hyperparameters 
 

The parameters that I optimized for the logistic regression are the penalty, L1 
or L2, and the C value. The L1 penalty is a regularization technique called Lasso 
Regression that shrinks the feature space making the weights of the less 
important features zero or close to zero. In contrast, the L2 penalty, also called 
Ridge Regression, makes the weight values close to zero but not exactly zero. 
The C value refers to the strength of the penalty; a higher C value will make the 
model more underfitted, making it generalize better.  

For Dataset 1, Figure 4.1 a) shows that the best combination of the 
hyperparameters for the Logistic Regression is L2 regularization with a C 
value equal to 10-1 and no feature selection method.  

For Dataset 2, Figure 4.1 b) shows that the best combination of the 
hyperparameters for the Logistic Regression is L1 regularization with a C 
value equal to 10-1 and PCA as the feature selection method. 

For Dataset 3, Figure 4.1 c) shows that the best combination of the 
hyperparameters for the Logistic Regression is L1 regularization with a C 
value equal to 0.05 and PCA as the feature selection method. 

 

 

 

 

Dataset Feature Selection Regularization C value Accuracy 
1 None L2 10-1 0.634 
2 PCA L1 10-1 0.947 
3 PCA L1 0.05 0.947 

a) b) c) 

Figure 4.1: a) Mean Accuracy of the Logistic Regression for Dataset 1 for different C 

values, penalties, and feature selection methods. b) Mean Accuracy of the Logistic 

Regression for Dataset 2 for different C values, penalties, and feature selection 

methods. c) Mean Accuracy of the Logistic Regression for Dataset 3 for different C 

values, penalties, and feature selection methods. 

Table 4.1: Optimized Hyperparameters of the Logistic regression for the 

three datasets and respective accuracy 
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4.1.2 Naïve Bayes optimized hyperparameters 
 

The hyperparameter that I optimized for the Naïve Bayes classifiers is the 
var_smoothing. This parameter determines the distribution’s variance, 
widening or narrowing the boundary by collecting more or fewer samples 
further from the distribution mean. 

For Dataset 1, Figure 4.2 a) shows that the best combination of the 
hyperparameters for the Naïve Bayes classifier is a Var_smoothing value equal 
to 0.005 and PCA as the feature selection method.  

For Dataset 2, Figure 4.2 b) shows that the best combination of the 
hyperparameters for the Naïve Bayes classifier is a Var_smoothing value equal 
to 10-1 and PCA as the feature selection method.  

For Dataset 3, Figure 4.2 c) shows that the best combination of the 
hyperparameters for the Naïve Bayes classifier is a Var_smoothing value equal 
to 0.25 and PCA as the feature selection method. 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

Dataset Feature Selection Var_smoothing Accuracy 
1 PCA 0.005 0.646 
2 PCA 0.1 0.957 
3 PCA 0.25 0.968 

a) b) c) 

Figure 4.2: a) Mean Accuracy of the Naïve Bayes for Dataset 1 for different 

Var_smothing values and feature selection methods. b) Mean Accuracy of the Naïve 

Bayes for Dataset 2 for different Var_smoothing values and feature selection methods. 

c) Mean Accuracy of the Naïve Bayes for the Dataset 3 for different Var_smoothing 

values and feature selection methods 

Table 4.2: Optimized Hyperparameters of the Naïve Bayes for the 

three datasets and respective accuracy 
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4.1.3 Decision Tree optimized hyperparameters 
 

The parameters that I optimized for the logistic regression are split criterion, 
Entropy or Gini, and the Max Depth.  For the split criterion, Entropy alludes to 
the information gain and Gini for the Gini Impurity as a measure of the quality 
of the split. The Max Depth is the condition for the Tree to stop growing. This 
parameter refers to the maximum depth that the Tree can take. Otherwise, if 
no parameter is set, it will grow until all the nodes are pure. 
 

For Dataset 1, Figure 4.3 a) shows that the best combination of the 
hyperparameters for the decision tree is Entropy as the split criterion and PCA 
as the feature selection method with a max depth value greater than 4.  

For Dataset 2, Figure 4.3 b) shows that the best combination of the 
hyperparameters for the decision tree is Gini or Entropy as the split criterion 
since there is no difference in the performance of these two, and PCA as the 
feature selection method with a max depth value greater than 2.  

For Dataset 3, Figure 4.3 c) shows that the best combination of the 
hyperparameters for the decision tree is Gini or Entropy as the split criterion 
since there is no difference in the performance of these two, and PCA as the 
feature selection method with a max depth value greater than 2. 

 From the optimal max depth values onwards, the accuracy is optimal and 
remains constant for the three datasets. This occurs since the nodes of the tree 
become pure with those depth levels so that the optimal value of the accuracy 
can be reached as well without imposing a Max Depth condition 
(max_depth=None).   

 

 

 

 

a) b) c) 

Figure 4.3: a) Mean Accuracy of the Decision Tree for Dataset 1 for different split 

criteria, max depth values and feature selection methods. b) Mean Accuracy of the 

Decision Tree for Dataset 2 for different split criteria, max depth values and feature 

selection methods. c) Mean Accuracy of the Decision Tree for Dataset 3 for different 

split criteria, max depth values and feature selection methods. 
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Dataset Feature Selection Split Criteria Max Depth Accuracy 
1 PCA Entropy None 0.580 
2 PCA Gini/Entropy None 0.850 
3 PCA Gini/Entropy None 0.851 

Table 4.3: Optimized Hyperparameters of the Decision Tree for the three 

datasets and respective accuracy 
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4.1.4 SVM optimized hyperparameters  
 

 

For optimizing the behaviour of the SVM, I used 3 different kernels: the linear 
kernel, the polynomial kernel and the RBF kernel. For the polynomial, I used 
p=2 and p=3, while for the RBF kernel, I used sigma=0.001, sigma=0.0001 and 
sigma 0.00001. I optimized the C hyperparameter for each of these models, 
which regulates how many misclassifications the model is willing to take in the 
hyperplane selection. Higher C is more rigorous to avoid misclassification, 
while lower C makes the hyperplane face more misclassification.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.4: a) Mean Accuracy of the SVM for Dataset 1 for 

different kernels, C values and feature selection methods. b) 

Mean Accuracy of the SVM for Dataset 2 for different kernels, C 

values and feature selection methods. c) Mean Accuracy of the 

SVM for Dataset 3 for different kernels, C values and feature 

selection methods. 

a) 

b) 

c) 
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For Dataset 1, Figure 4.4 a) shows that the best combination of the 
hyperparameters for the SVM is using an RBF kernel with a sigma value equal 
to 0.0001, a C value equal to 10 and PCA as the feature selection method.  

For Dataset 2, Figure 4.4 b) shows that the best combination of the 
hyperparameters for the SVM is using a polynomial kernel with p equal to 2, a 
C value equal to 10 and no feature selection method. 

For Dataset 3, Figure 4.4 c) shows that the best combination of the 
hyperparameters for the SVM is using an RBF kernel with a sigma value equal 
to 0.0001, a C value equal to 5 and PCA as the feature selection method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dataset Feature Selection Kernel C value Accuracy 
1 PCA RBF 0.0001 10 0.645 
2 None Polynomial 2 10 0.936 
3 PCA RBF 0.0001 5 0.947 

Table 4.4: Optimized Hyperparameters of the SVM for the three datasets and 

respective accuracy 
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4.1.5 Random Forest optimized hyperparameters 

 

To choose an appropriate Random Forest (RF) model, I looked for the number 
of estimators that resulted in the best accuracy. The number of estimators 
refers to the number of trees that has a random forest. 

 

For Dataset 1, Figure 4.5 a) shows that the best combination of the 
hyperparameters for the RF is using a number of estimators equal to 1 and PCA 
as the feature selection method. 

For Dataset 2, Figure 4.5 b) shows that the best combination of the 
hyperparameters for the RF is using a number of estimators equal to 60 and 
PCA as the feature selection method. 

For Dataset 1, Figure 4.5 a) shows that the best combination of the 
hyperparameters for the RF is using a number of estimators equal to 200 and 
PCA as the feature selection method. 

 

 

 
 
 
 
 

Dataset Feature Selection Number of estimators Accuracy 
1 PCA 1 0.645 
2 PCA 60 0.946 
3 PCA 200 0.915 

a) b) c) 

Figure 4.5: a) Mean Accuracy of the Random Forest for Dataset 1 for a different 

number of estimators and feature selection methods. b) Mean Accuracy of the 

Random Forest for Dataset 2 for a different number of estimators and feature 

selection methods. c) Mean Accuracy of the Random Forest for Dataset 3 for a 

different number of estimators and feature selection methods. 

Table 4.5: Optimized Hyperparameters of the RF for the three datasets and 

respective accuracy 
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4.1.6 AdaBoost optimized hyperparameters 
 

For the AdaBoost optimization, the base estimator wasn’t changed. I used the 
default base estimator, a Decision Tree with a max depth of 1. The 
hyperparameter optimized was the number of estimators like in the Random 
Forest optimization and the Extreme Gradient Boosting. 

 

 

For Dataset 1, Figure 4.6 a) shows that the best combination of the 
hyperparameters for the AdaBoost uses a number of estimators equal to 80 
and PCA as the feature selection method. 

For Dataset 2, Figure 4.6 b) shows that the best combination of the 
hyperparameters for the AdaBoost uses a number of estimators equal to 50 
and PCA as the feature selection method. 

For Dataset 3, Figure 4.6 c) shows that the best combination of the 
hyperparameters for the AdaBoost uses a number of estimators equal to 70 
and PCA as the feature selection method. 

 
 
 
 

 
 
 
 
 
 

Dataset Feature Selection Number of estimators Accuracy 
1 PCA 80 0.656 
2 PCA 50 0.873 
3 PCA 70 0.914 

a) b) c) 

Figure 4.6: a) Mean Accuracy of the AdaBoost classifier for Dataset 1 for a different 

number of estimators and feature selection methods. b) Mean Accuracy of the 

AdaBoost classifier for Dataset 2 for a different number of estimators and feature 

selection methods. c) Mean Accuracy of the AdaBoost classifier for Dataset 1 for a 

different number of estimators and feature selection methods. 

 

Table 4.6: Optimized Hyperparameters of the AdaBoost for the three 

datasets and respective accuracy 
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4.3.7 XGBoosting optimized hyperparameters 
 
 

For the Extreme Gradient Boosting (XGBoosting) optimization, two base 
estimators were tested, a linear and a tree. However, the parameters of the 
base estimators were maintained by default. The hyperparameter optimized 
for the ensemble classifier behaviour was the number of estimators. 

 

 

For Dataset 1, Figure 4.7 a) shows that the best combination of the 
hyperparameters for the XGBoosting uses a linear base estimator, with a 
number of estimators equal to 10 and PCA as the feature selection method. 

For Dataset 2, Figure 4.7 b) shows that the best combination of the 
hyperparameters for the XGBoosting uses a linear base estimator, with a 
number of estimators equal to 10 and PCA as the feature selection method. 

For Dataset 3, Figure 4.7 c) shows that the best combination of the 
hyperparameters for the XGBoosting uses a linear base estimator, with a 
number of estimators equal to 10 and PCA as the feature selection method. 

 
 
 
 

 
 
 
 

Dataset Feature Selection Estimator Number of estimators Accuracy 
1 PCA Linear 10 0.622 
2 PCA Linear 10 0.915 
3 PCA Linear 10 0.925 

a) b) c) 

Figure 4.7: a) Mean Accuracy of the XGB classifier for Dataset 1 for a linear base 
estimator and a decision tree base estimator with a different number of estimators 
and feature selection methods. b) Mean Accuracy of the XGB classifier for Dataset 2 
for a linear base estimator and a decision tree base estimator with a different number 
of estimators and feature selection methods. c) Mean Accuracy of the XGB classifier 
for Dataset31 for a linear base estimator and a decision tree base estimator with a 
different number of estimators and feature selection methods. 

 

Table 4.7: Optimized Hyperparameters of the XGBoosting for the 
three datasets and respective accuracy 
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4.2 Comparation of the accuracy 

 

Once selected all the best accuracies for each one of the datasets, the following 
table collects the accuracy achievable using these datasets (features) with the 
different Machine Learning classifiers. 

 
 
 

 
 
 

Table 4.8 shows that Dataset 1 always shows lower accuracy for each of the 
Machine Learning classifiers. The results for Datasets 2 and 3 are very similar, 
except for some cases where the accuracy is slightly improved. The maximum 
accuracy obtained for the Dataset 1 is 0.656 using AdaBoost, while for Dataset 
2 is 0.957 using Naïve Bayes and for Dataset 3 is 0.968 using Naïve Bayes as 
well. From these results, we can extract that using only graph theory metrics 
for this particular functional analysis classification problem, does not provide 
satisfactory outcomes. Nevertheless, using these metrics in addition to the 
Pixel Feature can provide some improvements to the accuracy.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model 
Accuracy 
Dataset 1 

Accuracy 
Dataset 2 

Accuracy 
Dataset 3 

Logistic Regression 0.634 0.947 0.947 
Naïve Bayes 0.646 0.957 0.968 

Decision Tree 0.580 0.850 0.851 
SVM 0.645 0.936 0.947 
RF 0.645 0.946 0.915 

AdaBoost 0.656 0.873 0.914 
XGBoosting 0.622 0.915 0.925 

Table 4.8: Maximal accuracy achieved for each one of the 
datasets for all the respective classifiers 
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4.3 Feature Analysis of the Pixel Feature 
 

To obtain important information about the disease, I studied which features 
were more different between the control patients and the MCI patients. For 
doing the feature analysis of the Pixel Feature, I analysed Dataset 2, which 
consists only of the 10.842 (≈ 4,5%) best pixel features filtered with the 
MATLAB Relieff tool. So, in other words, Dataset 2 is composed of functional 
connections that present higher differences between control and MCI patients, 
discrepant pixels. Studying these connections can give us crucial information 
about the connections that are being altered with the MCI disease. 

Figure 4.8 provides an overview of these discrepant pixels between control 
and MCI for the different delays. Some of these delays have a higher density of 
white pixels, which indicates that they exhibit more distinct values between 
the MCI and control. This observation is shown in Figure 4.9 as well. 

 

 
 
 
 
 
 
 
 
 
  
 

Figure 4.8: Boolean representation of the selected pixels in each one of the delays for 
Dataset 2. White elements represent selected pixel features and black non-selected 
pixel features.  

Figure 4.9: Bar graph of the number of select pixels 
for each one of the delays 
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Figure 4.9 shows that the second delay is the one from which more pixels are 
extracted, the one that presents more discrepant pixels, while the fifth delay is 
the one from which fewer pixels are extracted. This observation matches the 
results from Figure 4.9 since the second delay shows a higher density of white 
pixels, and the fifth delay has a lower density of white pixels. As shown in these 
two figures, the use of different delays can provide helpful information for the 
classification of MCI patients 

 

 

 

 

 

 

 

 

 

 

Figure 4.10 shows from which ROIs are extracted more pixels. From this can 
be inferred which ROIs have more different values of functional connectivity 
between MCI and control, in other words, which regions of the brain have a 
more altered behaviour with the MCI. As shown in Figure 4.10, the number of 
extracted pixels of the ROI as a target, a), or as a source, b), is significantly 

a) b) 

c) d) 

Figure 4.10: a) Bar graph of the number of pixels extracted from the X-axis (the ROIs 
behaving as a target). b) Boxplot of the number of pixels extracted from the X-axis. c) 
Bar graph of the number of pixels extracted from the Y-axis (the ROIs behaving as a 
source) d) Boxplot of the number of pixels extracted from the Y-axis. e) Bar graph of 
the number of pixels extracted from both axes. d) Boxplot of the number of pixels 
extracted from both axes. 

e) f) 
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different. In both, some ROIs have prominent values of pixels extracted 
compared to the rest. These prominent values are studied in c) and d) boxplots. 
The red crosses of the boxplots represent the prominent values, the outliers. 

The ROIs that behaving as a target present a large number of discrepant values 
are in descending order of the number of discrepant pixels: 130, 162, 86, 101, 
126 and 104. The ROIs that behaving as a source present a large number of 
discrepant values are in descending order of the number of discrepant pixels: 
124, 86, 52, 78, 32. Among the ROIs as a source, the ROI 124 has an outstanding 
value of 240, with a distance to the median of 192. That means that the 
functional connectivity of the ROI 124 is significantly altered in multiple 
connections with other ROIs.  

Since the ROI 86 is present in both boxplots, we can assume that this region 
has affected both performances, as a source and as a target. Its outlier 
behaviour is enhanced when both boxplots are summed since its distance to 
the median is increased, Figure 4.10 f). 

To prove that these results weren’t just random outliers, I did two randomized 
analyses. First, the values of the functional connections of each patient were 
mixed in a random fashion and later filtered with Relieff obtaining the 4.5% 
best pixels. If the outliers are not influenced by Relieff, the new bar graph 
should be mostly uniform, without any outstanding region. The other 
randomized analysis was to randomly select 4.5% pixels without any filtering. 
The bar graph should be uniform as well. Both random processes were done 
100 times to make them statistically significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: a) Bar graph of the non-randomized and the two randomized analyses 
for both axes. In red, the number of obtained best pixels per ROI. In blue, the number 
of obtained best pixels per ROI but with the pixels randomized. In green, the number 
of randomly obtained pixels per ROI. b) Probability distribution for the three analyses.  

a) 

b) 
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Figure 4.11 a) and b) confirms the previous hypotheses. The regions with an 
outstanding number of altered connections cannot be produced randomly. b) 
shows that the probability of having more than 150 best pixels for an ROI is 
zero, so using a threshold of 180 is a safe bet to distinct ROI values not 
produced by a random process.  

The three ROIs with a more outstanding number of selected pixels for both 
axes (Figure 4.10 e) and f)), a higher number of altered connections, are in 
descending order the 124, the 86, the 52 and the 130. These correspond 
respectively to the right frontal pole, the right brainstem, the left brainstem 
and the midbrain. The relation between the numbers and the brain regions can 
be found in Appendix A.1. 

 

4.4 Feature Analysis of the Graph Theory metrics 
 
 

For analysing the relevance of the Graph Theory metrics, none of the three 
datasets was used. Since Dataset 1 is composed of all the Graph Theory 
metrics, it is not filtered, the importance of these cannot be studied; the 
Dataset 2 does not have any Graph Theory metric and the Dataset 3 is only 
filtered by half of its total entries, so the selection is too broad.  

So, in order to make the study similar to the one made for the Pixel Feature, 
the same fraction of the total length is filtered, leaving the 4.5% most 
important features of the Graph Theory metrics, which results in the selection 
of the 490 best features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.11: Bar graph containing the number 
of selected best features by delay. This is 
normalized by dividing the number of 
selected features by the total number of best 
features (490). 
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Figure 4.11 displays that the delays that provide more features are the first 
one and the third one. This shows no relation with the results obtained for 
Figure 4.9, where the delay that provided more features was the second one. 
However, like Figure 4.9, the fourth, fifth and sixth remain the ones that 
provide fewer features. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12 reveals that a high amount of the best features of the Graph Theory 
metrics are composed of the Weighted Betweenness Centrality, the Horizontal 
Degree and the Vertical Degree. Part of the in-strength and out-strength 
features are selected as well. Also, Figure 4.12 shows an imbalance between 
the importance of the whole matrix features and the node features since any 
of the 490 best features relate to whole matrix features. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.12: Bar graph containing the 
number of selected best features by Graph 
Theory metric. The node features are 
normalized by the total number of nodes 
per patient (2.400) and the whole matrix 
features by the total number of delays (6). 
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Chapter 5 
 

Discussion 

In the experiments, the following classifiers were used in order to see if there 
was an improvement in the accuracy when using Graph Theory metrics for the 
classification of MCI patients: Logistic Regression, Naïve Bayes, Decision Tree, 
SVM, RF, AdaBoost and XGBoosting. Besides studying the accuracy, the 
different features were analysed to provide information about the features 
exhibiting higher differences between the healthy patients and the MCI 
patients.  
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5.1 Accuracy comparison of using Graph Theory 
metrics 
 
 

The results of the accuracy comparison (Table 4.8) showed that only using 
Graph Theory metrics is not enough for this particular dataset to provide high 
accuracy outcomes. Instead, using each element of the functional connectivity 
array as a feature, the Pixel Feature, evidenced high accuracy. The addition of 
Graph Theory metrics to the Pixel Feature resulted in a slightly enhanced 
performance of the accuracy for all the classifiers except the RF.  

The fact that for this specific dataset, the Graph Theory metrics are not enough 
for the correct classification is mainly produced by the small size of the ROIs. 
This concords with the research conducted by Andreotti that using an array 
consisting of 154 ROIs, proved that a small ROIs size, in other words, a higher 
number of ROIs, produce less reliable and repeatable Graph Theory metrics 
[18]. Thus, Graph Theory metrics by themselves cannot provide sufficient 
information to produce high accuracy for this dataset, where the number of 
ROIs is elevated, 200. 

 

5.2 Feature analysis 

 

The analysis of the features that were more discrepant between MCI patients 
and healthy patients produced interesting new information about the disease 
and other outcomes that align with previous research results.   

An outstanding behaviour of the ROI 124, the ROI 86, the ROI 52 and the ROI 
130 was registered for the Pixel Feature. These correspond to the right frontal 
pole, both sides of the brainstem and the midbrain. For these ROIs, multiple 
functional connections with other ROIs have abnormal values compared with 
a healthy patient. Therapies targeting the improvement of the functional 
connectivity of that region could lead to successful treatments. Treatments like 
non-invasive brain stimulation have shown promising results in alleviating the 
AD and MCI symptoms. However, there is no consensus about the best 
stimulation sites [20]. The altered locations detected in my study, such as the 
right frontal pole, the brainstem and midbrain might be potential stimulation 
locations for the non-invasive brain stimulation treatment. These three 
regions of the brain have memory-related tasks. The results are reasonable 
since the MCI is a disease that affects cognitive capacities, such as the loss of 
memory, the most highlighted symptom.  

Other treatments aim to improve the whole brain connections. For example, in 
a study carried out by Noelia Sánchez Pérez and Alberto Inuggi [19], they 
successfully improved brain functional connectivity by training schoolchildren 
with computer-based programs that trained them in cognitive tasks. Similar 
cognitive training could be used in MCI patients as well to improve the strength 
of the functional connections.  
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Figures 4.9 and 4.11 showed that using various delays to acquire different 
functional connectivity arrays for each patient produced new information. In 
Figure 4.9, delays 2 and 3 provided more discrepant functional connections 
than delay 1, which would have been the only one obtained without the use of 
the delays. Future research studies could investigate the accuracy 
enhancement of using these different delays; analysing this would have gone 
beyond this research scope.  

For the Graph Theory metrics, whole matrix features proved to be of no help 
for the classification of the MCI patients. Among the 490 best Graph Theory 
features, no one belonged to the whole matrix category. The Weighted 
Betweenness Centrality was the Graph Theory metric that had more features 
among the 100 best features. Eun Hyun Seo and Dong Young Lee concluded 
that MCI patients had a significantly lower Betweenness Centrality compared 
with healthy patients [22]. This significantly lower Betweenness Centrality is 
why so many features were selected from this Graph Theory metric.  

Other dominant Graph Theory metrics in this feature analysis were the 
Vertical and Horizontal degrees. This means that the number of functional 
connections produced in an MCI brain is different from the number of 
functional connections produced in a healthy brain.  

Having more relevant pixels on a delay does not entail that there will be 
relevant Graph Theory features for that same delay. This is proved by the fact 
that the delay from which more relevant Pixel Features are extracted (Figure 
4.9), delay number 2, does not match the one from which more relevant Graph 
Theory features are extracted (Figure 4.11), delay number 1. There is no direct 
relation between the importance of the single functional connections and the 
local and global networks formed by those connections.  

 

5.3 Classification of MCI patients 

 

The highest classification accuracy reached for this particular dataset is 96.8% 
with Naïve Bayes, which is an elevated accuracy value. Other research studies 
provided similar accuracy values. For example, Chong-Yaw Wee [23] achieved 
a 96,3% accuracy with an SVM when using structural connectivity added to the 
functional connectivity analysis. Xiaohong Cui [24] attained a 98.3% accuracy 
in the classification of MCI vs normal controls using Subnetwork Selection, 
Graph Kernel Principal Component Analysis and a Minimum Spanning Tree. 
So, even though the accuracy reached in this research was elevated. It is not 
outstanding compared to other studies’ accuracies for the classification of MCI 
patients.  
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5.4 Limitations 

 

Some limitations were observed during the implementation of this research. 
First of all, the size of the data. The data consist of relatively few samples, so 
the results obtained might not have sufficient statistical sigificance. Moreover, 
because of the small data size, the implementation of one of the most used 
methods in the state-of-art for the classification of MCI patients, the artificial 
neural networks (ANN), was not viable. This is due to the deep learning rule of 
thumb, which says that a minimum sample size of 5.000 labelled samples per 
class is needed to correctly train the classifier [25]. For this research, only 43 
MCI patients and 50 healhty control samples were available.  

Another limitation observed is that not all Graph Theory metrics were tested, 
only the ones that proved relevant in previous research. So, there might be 
other relevant not tested Graph Theory metrics for the classification of the MCI 
patients with this particular dataset. Since the procurement of the functional 
connectivity arrays defines the grade of the importance of the Graph Theory 
metrics.  

 

5.5 Future Research 

 

Even though this research has answered some questions regarding the 
classification of MCI patients, there are still some questions left unanswered. 
Future Research might test other Graph Theories metrics not tested for this 
specific dataset as well as other Machine Learning classifiers.  

Furthermore, in this research, I observed which are the features that are more 
relevant for the classification between MCI and healthy patients, but the values 
of these features have not been analysed since doing so could lead to a whole 
new other research. 

Another possible research could be analysing the effect of using different 
delays. The delay effect has been superficially studied throughout this paper, 
but more underlying information could be extracted from this, which might 
provide future standards for the MCI classification using functional 
connectivity analysis.  
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Chapter 6 
 

Conclusion 

The use of Graph Theory metrics for classifying MCI patients and healthy 
control patients provides a slightly enhanced performance in the accuracy 
value. However, for this particular dataset, the use of only Graph Theory 
metrics does not deliver enough accuracy for the state-of-art standards for this 
kind of classification. 

Among the classifier methods used for the evaluation of using Graph Theory 
metrics, Naïve Bayes proved to be the best method in terms of accuracy when 
using Graph Theory metrics in addition to the functional connections as a 
feature (the ones called Pixel Features through this research). Naïve Bayes 
resulted in an accuracy of 96.8%, which is not enough to replace previous 
research Machine Learning classifiers.  

In the feature analysis of the Pixel Feature, the right frontal pole and the 
brainstem showed a high presence of discrepant functional connections 
between MCI and healthy patients. These ROIs could be potential targets for 
deep brain stimulation. In addition, the second delay revealed more discrepant 
functional connections, thereby demonstrating the importance of using 
different delays in the acquisition of the functional connection arrays.  

For the Graph Theory metrics analysis, whole matrix features proved to be of 
less help than node features for this dataset for the classification of the 
patients. Weighted Betweenness Centrality, as well as Vertical and Horizontal 
degree, evidenced to be the Graph Theory metrics with more information for 
the classification. 
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Appendix A  

Appended Material 
A.1 ROIs 

 

Number ROI 
1lIOG Inferior Occipital G 

2lANG Angular G 

3lPRECU Precuneus 

4lINS Insula 

5lANT Anterior cingulate 

6rPRECU Precuneus 

7rANG Angular G 

8lPOST Postcentral G 

9lCEREB Cerebellum 

10rCEREB Cerebellum 

11lMTG Middle temporal G 

12rFP Frontal pole 

13rMEDFG Medial Frontal G 

14rANG Angular G 

15rPUT Putamen 

16lIOG Inferior Occipital G 

17rPRECE Precentral 

18rTHA Thalamus 

19lPRECU Precuneus 

20lINS Insula 

21lPOST Postcentral G 

Table A.1: Corresponding regions of the brain to the numbers 
of the arrays. 
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22rANT Anterior cingulate 

23lMFG Middle frontal G 

24lSTG Superior temporal G 

25rMFG Middle frontal G 

26rIOG Inferior Occipital G 

27lPARAH Parahippocampal G 

28rPOST Postcentral G 

29rCING CINGULATE G 

30rBRAINSTEM Brainstem 

31rSPG Superior Parietal Lobule 

32rTP Temporal pole 

33lSUPRAM Supramarginal G 

34lPRECE Precentral 

35rINS Insula 

36lCEREB Cerebellum 

37lTHA Thalamus 

38rMFG Middle frontal G 

39rMTG Middle temporal G 

40rANT Anterior cingulate 

41rCEREB Cerebellum 

42lFP Frontal pole 

43lTP Temporal pole 

44rOP Occipital pole 

45lTHA Thalamus 

46rPCG Posterior Cingulate 

47lCAU Caudate 

48rPARAH Parahippocampal G 

49rMTG Middle temporal G 

50lSFG Superior frontal G 

51lANT Anterior cingulate 

52lBRAINSTEM Brainstem 

53rFOG Frontal Orbital G 

54lCUN Cuneus 

55lANT Anterior cingulate 

56lANG Angular G 

57lFOG Frontal Orbital G 

58rPRECU Precuneus 

59rINS Insula 

60rPOST Postcentral G 

61lMFG Middle frontal G 

62rFUS Fusiform 

63lFUS Fusiform 

64rMFG Middle frontal G 

65rSPG Superior Parietal Lobule 
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66rSTG Superior temporal G 

67lPUT Putamen 

68rMIDB Midbrain 

69rMTG Middle temporal G 

70lLING Lingual G 

71rFOG Frontal Orbital G 

72lMTG Middle temporal G 

73lPRECE Precentral 

74lFOG Frontal Orbital G 

75rFP Frontal pole 

76lPCG Posterior Cingulate 

77rCEREB Cerebellum 

78lTP Temporal pole 

79lANT Anterior cingulate 

80lCEREB Cerebellum 

81rCUN Cuneus 

82lANG Angular G 

83rSTG Superior temporal G 

84lCAU Caudate 

85rIOG Inferior Occipital G 

86rBRAINSTEM Brainstem 

87rFUS Fusiform 

88lPOST Postcentral G 

89rLING Lingual G 

90lPRECE Precentral 

91lMEDFG Medial Frontal G 

92lAMY Amygdala 

93rSUPRAM Supramarginal G 

94rCAU Caudate 

95lSFG Superior frontal G 

96lPOST Postcentral G 

97lSOG Superior Occipital G 

98rPRECE Precentral 

99lITG Inferior Temporal G 

100rITG Inferior Temporal G 

101lITG Inferior Temporal G 

102rIOG Inferior Occipital G 

103lCEREB Cerebellum 

104lFP Frontal pole 

105rLING Lingual G 

106rMFG Middle frontal G 

107rMTG Middle temporal G 

108lLING Lingual G 

109rFP Frontal pole 
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110rTP Temporal pole 

111rPRECE Precentral 

112lFOG Frontal Orbital G 

113rMFG Middle frontal G 

114lSOG Superior Occipital G 

115rPRECE Precentral 

116lPOST Postcentral G 

117lMTG Middle temporal G 

118rCEREB Cerebellum 

119rIFG Inferior Frontal G 

120lCEREB Cerebellum 

121lINS Insula 

122lPARAH Parahippocampal G 

123lPARAC Paracentral lobule 

124rFP Frontal pole 

125lMFG Middle frontal G 

126rCEREB Cerebellum 

127rMFG Middle frontal G 

128rIPG Inferior Parietal G 

129lSTG Superior temporal G 

130lMIDB Midbrain 

131lIOG Inferior Occipital G 

132rSPG Superior Parietal G 

133lSFG Superior frontal G 

134rPRECE Precentral 

135rCAU Caudate 

136lSOG Superior Occipital G 

137rINS Insula 

138rFUS Fusiform 

139rFP Frontal pole 

140rMTG Middle temporal G 

141lIFG Inferior Frontal G 

142rMOG Middle Occipital G 

143rIOG Inferior Occipital G 

144rIFG Inferior Frontal G 

145lPARAH Parahippocampal G 

146lSTG Superior temporal G 

147lPRECU Precuneus 

148rTHAL Thalamus 

149lMEDFG Medial Frontal G 

150lIOG Inferior Occipital G 

151lMFG Middle frontal G 

152rCEREB Cerebellum 

153rSTG Superior temporal G 
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154lPOST Postcentral G 

155rPARAH Parahippocampal G 

156lSPG Superior Parietal Lobule 

157rPOST Postcentral G 

158lOP Occipital pole 

159lFUS Fusiform 

160lANT Anterior cingulate 

161rSFG Superior frontal G 

162lCEREB Cerebellum 

163rPRECU Precuneus 

164rIFG Inferior Frontal G 

165lPRECE Precentral 

166rANG Angular G 

167lIFG Inferior Frontal G 

168rMFG Middle frontal G 

169lIFG Inferior Frontal G 

170rSOG Superior Occipital G 

171lSPG Superior Parietal Lobule 

172rFUS Fusiform 

173lSFG Superior frontal G 

174lPRECU Precuneus 

175rIOG Inferior Occipital cortex 

176rCEREB Cerebellum 

177lLING Lingual G 

178rPUT Putamen 

179lLING Lingual G 

180rPOST Postcentral G 

181rTP Temporal pole 

182lSUPP Supplementary motor cortex 

183lFP Frontal pole 

184lINS Insula 

185rTTG Transverse Temporal G 

186rSFG Superior frontal G 

187rSFG Superior frontal G 

188lSPG Superior Parietal Lobule 

189lFUS Fusiform 

190rBRAINS Brainstem 

191lSFG Superior frontal G 

192lCEREB Cerebellum 

193rSFG Superior frontal G 

194rMIDB Midbrain 

195rLING Lingual G 

196lINS Insula 

197lPRECU Precuneus 
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198rFUS Fusiform 

199lBRAINS Brainstem 

200lTTG Transverse Temporal G 
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