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Abstract: A set of tuning rules for Linear Active Disturbance Rejection Controller (LADRC) with
three different levels of compromise between disturbance rejection and robustness is presented. The
tuning rules are the result of a Multiobjective Optimization Design (MOOD) procedure followed by
curve fitting and are intended as a tool for designers who seek to implement LADRC by considering
the load disturbance response of processes whose behavior is approximated by a general first-order
system with delay. The validation of the proposed tuning rules is done through illustrative examples
and the control of a nonlinear thermal process. Compared to classical PID (Proportional-Integral-
Derivative) and other LADRC tuning methods, the derived functions offer an improvement in either
disturbance rejection, robustness or both design objectives.

Keywords: active disturbance rejection control (ADRC); multiobjective optimization; time delay
systems; tuning rules

1. Introduction

Active Disturbance Rejection Control (ADRC) [1] was proposed as an alternative for
PID (Proportional-Integral-Derivative) control and has become a new control paradigm.
It inherits from the PID controller its independence from the plant model and seeks to
compensate its weaknesses through the concept of disturbance estimation and rejection.

The ADRC lumps together the non-modeled dynamics and non-manipulable external
signals affecting the system in a single total perturbation. This signal is treated as an
extended state to be estimated by an Extended State Observer (ESO) and its impact on the
output is rejected by the control action. As a result, the ADRC loop induces the real plant
to behave like a set of cascade integrators facilitating the control design.

The fact that the extended observer jointly treats external perturbations and modeling
uncertainties highlights its attractiveness in the engineering field, since the knowledge of
the process model is kept to minimum in order to design the control loop. What is more, in
contrast with model-based approaches, the ADRC assumes a canonical form regardless
of the process dynamics and unifies the unknown discrepancies between the canonical
form and the real plant in the total perturbation [2]. The effectiveness of the ADRC has
been tested in a variety of fields including power electronics, motion and process control.
A summary of recent experimental studies in the aforementioned areas can be found
in [3]. The emergence of innovative ADRC solutions, particularly in industrial control, is a
motivation to consider this control approach for processes where a precise dynamic model
is difficult to obtain and a simplified approximation could be used instead.

The implementation of the ADRC requires the order of the system and the nominal
value of its critical gain; being the latter the parameter that usually relates the control input
with the highest order derivative of the output. When the ESO and the control law are
designed by evaluation of nonlinear functions, the algorithm is called NADRC (Nonlinear
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ADRC). On the other hand, if a linear observer together with a linear control law are used,
the control strategy is called LADRC (Linear ADRC).

The LADRC has gained popularity due to its simple structure and the reduced amount
of parameters to be tuned in comparison with the NADRC. The bandwidth parameteriza-
tion [4] formulates the observer and control law gains as functions of two main parameters—
the observer bandwidth and the controller bandwidth. Usually, their selection is based
on the closed loop desired behavior and is adjusted by trial and error turning the tuning
problem into an empirical process.

The tuning of the LADRC is considered a research area of interest. It has been
addressed taking as a starting point PID controllers operating in the control system [5,6] or
strictly proper controllers with integrator [7], which state the desired disturbance rejection
performance.

The inclusion of the nominal value of the process critical gain as the third tuning
parameter (in addition to the two bandwidths) has been discussed in [8,9]. In [10], the
nominal value of the critical gain is tuned through an online optimization process for a
tank level control problem. The main disadvantage of this approach is the time required to
perform the optimization search on the loop.

To avoid the computational cost related to the online tuning, some researches have
determined a set of functions to obtain the three main parameters (nominal value of
critical gain, observer bandwidth and controller bandwidth). In [11] a tuning method for
LADRC suitable for the control of a type of high-order systems is presented. It is based
on the interpretation of the maximum sensitivity (MS) in the Nyquist diagram of the loop
transfer function.

High-order plants can be used as approximations for some industrial processes. Never-
theless, the First Order Plus Dead Time (FOPDT) model is also a very common approxima-
tion which takes into account delays due to mass or energy transport, or limitations related
to measuring and energy conversion devices [12]. The interest in the control of the FOPDT
processes has inspired control strategies as the fractional order internal model controller
(FO-IMC) from [13], where phase margin and gain crossover frequency specifications are
employed to formulate a system of nonlinear equations which needs to be solved for the
controller design.

On the other hand, tuning rules for the second order LADRC applied to FOPDT plants
have been proposed in [14] through formulation of an optimization problem following the
Aggregate Objective Function (AOF) approach. This is, two performance indices of interest
as the settling time and the Integral of Squared Error (ISE) were merged in the Integral of
Time Weighted Squared Error (ITSE) for minimization. In addition, a robustness measure
was used as a fixed constraint.

The aforementioned work pointed out the importance of balancing the disturbance
rejection performance with the closed loop robustness. However, including the robustness
just as a constraint for the optimization problem could result in solutions offering an
optimized performance (in terms of the index selected) but with a robustness measure that
tends to be in the upper limit allowed. This may be enough for some designers, but for
others, given the complexity of the process, robustness also becomes a design objective and
a balance among all performance indices is required. As alternative, in the Generate-First
Choose-Later (GFCL) multiobjective approach the objectives are optimized simultaneously
providing a set of solutions, with different compromise, to be examined by the designer
who makes the final decision.

Some contributions to the LADRC tuning have been made in the GFCL context.
Nevertheless, they use the multiobjective approach to select some of the LADRC parameters
to control a particular system or the optimization process needs to be performed for
each design. For example, in [15] the Integral of Absolute Error (IAE) and the MS are
simultaneously minimized to select the LADRC bandwidths for the control of a power
plant. In [16] a tuning scheme for the modified ADRC (MADRC) [17] for unstable time
delay systems has been formulated as a multiobjective optimization problem regarding
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the setpoint following and disturbance rejection. This methodology is intended to be
performed adapting the problem according to the system to be controlled. It means that
the proper MADRC order should be selected and the optimization and decision making
stages need to be carried out for each study case in order to obtain the control law and
observer gains.

Motivated by the above, this paper explores the GFCL approach to provide a set of
tuning rules for the second-order LADRC parameters computation applicable to the control
of FOPDT systems. A Multiobjective Optimization Design (MOOD) procedure is used over
a group of nominal plants to obtain a set of Pareto optimal solutions with a compromise
between the step load disturbance response and robustness. Then, the LADRC parameters
are fitted to functions of the normalized delay and finally, these functions are scaled to
make them suitable for the control of a general first order system with delay. Even though
the LADRC has a certain level of robustness because it addresses the differences between
the actual system and the assumed plant in the total perturbation, its tuning considering
the robustness as an objective design balances this feature with the closed loop performance
and this is reflected in the derived tuning rules.

The tuning rules presented here have prominent advantages for the control engineer:

• They can be used to control systems approximated by a FOPDT model because only
the static gain, apparent time constant and apparent delay are required as prior
information. The FOPDT is also known as the three-parameter model and is widely
accepted in the control of industrial processes.

• The LADRC main parameters, this is, the nominal value of control gain, the controller
bandwidth, and the observer bandwidth are automatically computed through the
substitution of the model parameters in the given formulae.

• The designer can select a robustness quality (low, medium or high) for the parameters
computation which allows his/her involvement as a decision maker, but eliminates
the time and complexity of performing an entire optimization process for the controller
design. This is possible because the robustness was included as a design objective
in the optimization process formulation, in contrast with other approaches from
literature where robustness is imposed just as a constraint, and also, different Pareto
optimal solutions were used for the rules derivation.

• The parameters computed through the proposed rules ensure closed loop stability as
well as a reasonable compromise between disturbance rejection and loop robustness.

• The designer could use the rules to obtain intervals for each LADRC parameter and
adjust the selection according to the preferred performance. An LADRC tuning Matlab
app (available at Matlab central [18]) was created for this purpose. Within this tool,
the user can also vary the robustness level to visualize the performance with the
corresponding calculated parameters.

The paper is organized as follows—in Section 2 the time domain and frequency
domain formulation of the second-order LADRC as well as the loop parameterization are
presented. In Section 3, a concise description of the Multiobjective Optimization Design
procedure is given and the pertinence of this approach in the tuning of LADRC is addressed.
Section 4 describes in detail the tuning of LADRC by means of the MOOD procedure whose
results were fitted to the rules presented in Section 5. A summary guide for the LADRC
parameters computation based on the proposed rules and the interactive tuning tool are
also provided in this Section. Section 6 presents the validation of the proposal by the
simulation of two examples. Performance comparison with classical PID tuning methods
and the LADRC tuning rules from [11,14] are also presented. In Section 7 a nonlinear
thermal process is controlled by the LADRC designed according to the proposed tuning
method and, finally, Section 8 draws the conclusions.

2. Linear Active Disturbance Rejection Control

This section introduces the Linear Active Disturbance rejection control (LADRC)
algorithm for single-input single-output systems.
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The LADRC loop is mainly comprised of three blocks as shown in Figure 1.

• Tracking differentiator: It is used to generate a transient profile r1 for the reference r̃

and the corresponding derivatives ṙ1, r̈1, . . . , r(n)1 .
• Extended State Observer (ESO): It estimates the system states z1, z2, . . . , zn and the

additional state zn+1 representing the nonmodeled dynamics and perturbations.
• Controller: It provides a state feedback control law u0 for the disturbance-free modi-

fied plant. Therefore, the control law u = (u0 − zn+1)/b0 is generated to act on the
real plant and through which the disturbance information is rejected.

Tracking 

Differentiator
Controller Plant

Extended State 

Observer

Modified plant

Figure 1. Active Disturbance Rejection Control (ADRC) loop.

For the LADRC implementation, the system order n and the nominal value of its
critical gain b0 are required. Many practical applications can be approximated through first
or second order models. Moreover, if the plant is open loop stable, a low order LADRC
can be implemented and closed loop stability can be achieved by proper selection of the
LADRC parameters [5].

In this work, the second-order LADRC was selected as control algorithm for FOPDT
systems. The LADRC theoretical formulation in time domain and frequency domain, as
well as the closed loop parameterization used for the development of the tuning rules are
explained next.

2.1. Time Domain Formulation

Consider the following input-output model of a second order system.

ÿ = −a1ẏ− a0y + bu, (1)

where y is the controlled output, u is the control action, a0 and a1 are constants determining
the location of the system poles and b is known as critical gain.

The state space representation of (1) is given by (2), where w has been included to
indicate the load disturbances acting on the system.

ẋ1 = x2
ẋ2 = −a0x1 − a1x2 + bu + w
y = x1.

(2)

In the case that a0 and a1 are unknown, the first two terms in the right side of the
expression for ẋ2 can be lumped in a function called total perturbation which also includes
load disturbances and the difference between the real value of b and its known nominal
value denoted by b0. Thus,

f = −a0x1 − a1x2 + (b− b0)u + w. (3)

The model (4) is obtained by replacing (3) in (2).
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ẋ1 = x2
ẋ2 = f + b0u
y = x1.

(4)

As the total perturbation is an unknown function, f is treated as an additional state
that must be estimated and compensated by the control loop. The resulting extended state
space model with x3 , f and h = ḟ unknown is

ẋ1 = x2
ẋ2 = x3 + b0u
ẋ3 = h
y = x1.

(5)

The estimation of states in (5) is achieved through the Linear Extended State Observer
(LESO) (6) whose inputs are the measured output y and the control action u. The zi
correspond to the estimated states and Li are the observer gains. Note that, although the
LESO has a similar structure to a traditional observer, it estimates not only the system
states but also the information of the total perturbation contained in z3. In contrast with
the traditional observer, the LESO keeps the required amount of plant information to a
minimum. The analysis of convergence and experimental validation of LESO are addressed
in [19]. 

ż1 = z2 + L1(y− z1)

ż2 = z3 + b0u + L2(y− z1)

ż3 = L3(y− z1).
(6)

According to Figure 1, the control law acting on the real plant is

u =
u0 − z3

b0
. (7)

Therefore, the double integrator (8) is obtained by replacing (7) in (4) and assuming
that z3 ≈ f . 

ẋ1 = x2
ẋ2 = u0
y = x1

(8)

Equation (8) represents a disturbance-free modified plant which is controlled by the
feedback law

u0 = k1(r̃− z1)− k2z2, (9)

where r̃ is the setpoint and k1 and k2 are gains selected taking into account the desired
closed loop performance. Note that r̃ has been set as the reference in (9). This can be
done in practice if the tracking differentiator is omitted or the setpoint derivatives are
unbounded [20].

2.2. Frequency Domain Formulation

The block diagram from Figure 1 can be reformulated as the two degree-of-freedom
configuration of Figure 2. The direct loop transfer function GC(s) and the feedback transfer
function GF(s) are derived as follows.
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Figure 2. 2-degree-of-freedom (DOF) configuration of ADRC.

The linear extended state observer (6) in frequency domain is given by
sZ1 = Z2 + L1(Y− Z1)

sZ2 = Z3 + b0U + L2(Y− Z1)

sZ3 = L3(Y− Z1),

(10)

where s is the complex variable, Y is the Laplace transform of the output, U is the Laplace
transform of the control action and Zi are the Laplace transforms of the states.

The expressions (11)–(13) are obtained by solving the system of Equation (10).

Z1 =
b0s

s3 + L1s2 + L2s + L3
U +

(L1s2 + L2s + L3)

s3 + L1s2 + L2s + L3
Y (11)

Z2 =
b0(s2 + sL1)

s3 + L1s2 + L2s + L3
U +

(L2s2 + L3s)
s3 + L1s2 + L2s + L3

Y (12)

Z3 =
−L3b0

s3 + L1s2 + L2s + L3
U +

L3s2

s3 + L1s2 + L2s + L3
Y. (13)

The control action (14) is deduced by combining the frequency domain expressions
of (7) and (9), with R being the Laplace transform of the reference.

U =
1
b0
(k1R− k1Z1 − k2Z2 − Z3). (14)

Therefore, substituting (11)–(13) in (14) and reorganizing terms, U is rewritten as

U =
k1

b0

[
s3 + L1s2 + L2s + L3

s3 + (L1 + k2)s2 + (k2L1 + L2 + k1)s

]
R

−
[
(k1L1 + k2L2 + L3)s2 + (k1L2 + k2L3)s + k1L3

b0(s3 + (L1 + k2)s2 + (k2L1 + L2 + k1)s)

]
Y.

(15)

From Figure 2 and in the absence of load disturbance (d = 0)

U = GC(s)R− GC(s)GF(s)Y. (16)

Hence, the resulting direct loop transfer function (17) and the feedback transfer
function (18) are obtained comparing the factors of R and Y in (15) with those in (16).

GC(s) =
k1

b0

(
s3 + L1s2 + L2s + L3

s3 + (L1 + k2)s2 + (k2L1 + L2 + k1)s

)
(17)

GF(s) =
(k1L1 + k2L2 + L3)s2 + (k2L3 + k1L2)s + k1L3

k1(s3 + L1s2 + L2s + L3)
. (18)
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Finally, the transfer function from output to load disturbance is

GD(s) =
G(s)

1 + G(s)GC(s)GF(s)
(19)

and the transfer function from control action to output is

GU(s) = −GC(s)GF(s). (20)

Equation (19) describes the system response to a load disturbance and (20) represents
the LADRC transfer function for disturbance rejection.

2.3. Control Loop Parameterization

The control loop parameterization seeks a set of parameters that allows the compu-
tation of the complete set of LADRC gains. In addition, if an LADRC is designed for the
control of a nominal system (e.g., a nominal FOPDT system), the loop parameterization
also allows the parameters scaling in order to make the controller suitable for other systems
of the same nature.

Consider the following theorem related to the scaling and bandwidth parameterization
of the LADRC loop.

Theorem 1. [4] Assuming Ga(s) is a stabilizing controller for plant Gn(s) and the loop gain
crossover frequency is ωc, then the controller

Ḡa(s) =
1
k

Ga

(
s

ωp

)
(21)

will stabilize the plant Ḡn(s) = kGn(s/ωp) and the new loop gain L̄(s) = Ḡn(s)Ḡa(s) will have
a bandwidth of ωcωp, and the same stability margins of L(s) = Gn(s)Ga(s).

In (21), k represents the gain scaling of plant kGn(s) respect to Gn(s) and ωp is the
frequency scaling of plant Gn(s/ωp) respect to Gn(s).

Let GA(s) be the transfer function obtained by multiplying GC(s) and GF(s) in the
right hand side of (20). This is,

GA(s) =
(k1L1 + k2L2 + L3)s2 + (k2L3 + k1L2)s + k1L3

b0(s3 + (L1 + k2)s2 + (L2 + k2L1 + k1)s)
. (22)

Equation (22) is function of b0, the observer gains Li and the controller gains ki. The
bandwidth parameterization is used to reduce the calculation of the Li to the selection of
the parameter ωo named observer bandwidth. Likewise, the ki values are made dependent
on the parameter ωc known as controller bandwidth.

Consider the state space representation of the extended model (5)

 ẋ1
ẋ2
ẋ3

 =

 0 1 0
0 0 1
0 0 0


︸ ︷︷ ︸

A

 x1
x2
x3

+

 0
b0
0


︸ ︷︷ ︸

B

u +

 0
0
1


︸ ︷︷ ︸

E

h (23)

y =
[

1 0 0
]︸ ︷︷ ︸

C

 x1
x2
x3

,


whose matrix form is
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ẋ = Ax + Bu + Eh (24)

y = Cx,

with x = [x1 x2 x3]
>. Similarly, the matrix form of observer (6) is given by (25) with

z = [z1 z2 z3]
> and L = [L1 L2 L3]

>.

ż = Az + Bu + L(Cx− Cz). (25)

Let e = x− z be the estimation error. Its dynamic behavior is given by (26) and it is
obtained after subtracting (25) from (24).

ė = (A− LC)e + Eh. (26)

Assuming that h, even it is unknown, it is also differentiable and bounded, the observer
gains can be calculated through pole placement. In [4], it is proposed that the three poles
be located at position −ωo in the left semi-plane such as

sI − (A− LC) = (s + ωo)
3. (27)

Thus, the parameterization of the observer gains (28) is obtained as a function of ωo
by solving for both sides of (27) and comparing factors.

L1 = 3ωo L2 = 3ω2
o L3 = ω3

o . (28)

On the other hand, the controller gains design takes into account the frequency
representation of the modified plant (8) and the control action (9) to obtain the closed loop
transfer function

GY(s) =
k1

s2 + k2s + k1
. (29)

According to the characteristic equation of (29), the closed loop poles depends on
selection of the gains k1 and k2. Then, following the approach from [4], the poles are located
at −ωc as in (30) and the controller gains parameterization of (31) is derived.

s2 + k2s + k1 = (s + ωc)
2 (30)

k1 = ω2
c k2 = 2ωc. (31)

The bandwidth parameterization from (28) and (31) is used in (22) to obtain

GA(s) =
(
3ω2

c ωo + 6ωcω2
o + ω3

o
)
s2 +

(
2ωcω3

o + 3ω2
c ω2

o
)
s + ω2

c ω3
o

b0[s3 + (3ωo + 2ωc)s2 + (3ω2
o + 6ωcωo + ω2

c )s]
. (32)

Therefore, by proper selection of b0, ωc and ωo, the second-order LADRC estimates
and rejects the load disturbances acting on the loop.

Now, let the following FOPDT system be the plant to be controlled

G(s) =
K

Ts + 1
e−ls, (33)

where K is the static gain, T is the apparent time constant and l is the apparent delay or
dead time [21].

If Gn(s) is considered as a nominal FOPDT plant, then, following the scaling and
bandwidth parameterization theorem [see (21)], the model (33) can be treated as a scaled
version of (34) in which k = K, ωp = 1/T and Θ = l/T as shown in (35).

Gn(s) =
1

s + 1
e−Θs (34)
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G(s) = K

 1
s

1/T
+ 1

e−
l
T

s
1/T . (35)

Hence, through some mathematical manipulation, the scaled controller ḠA(s) =
(1/k)GA(s/ωp) leads to the definition of the new set of LADRC parameters

b̄0 =
Kb0

T2 ω̄c =
ωc

T
ω̄o =

ωo

T
. (36)

In conclusion, if a stable second-order LADRC with parameters b0, ωc and ωo is
designed for the nominal system (34), then, the scaled LADRC with parameters b̄0, ω̄c and
ω̄o is suitable for the control of the general FOPDT plant (33).

3. Multiobjective Optimization Design Procedure

In this section, the generalities of the multiobjective optimization approach used to
address the LADRC tuning problem are presented. Particularly, the steps of a Multiobjec-
tive Optimization Design (MOOD) procedure are briefly explained and the pertinence of
this approach for the tuning problem is explored by means of a numerical example.

When designing a controller, the tuning process or solution obtained is strongly de-
pendent on the desired performance for the closed loop. The behavior of the output, control
action, and any other signals of interest is usually measured through some performance
indices or design objectives. If these indices are wanted to be minimized or maximized,
then, an optimization statement can be formulated.

For each minimized or maximized index, a particular solution is obtained. Therefore,
if different design objectives are optimized simultaneously, then, multiple solutions can
be suitable for the tuning of the same controller, not implying that one is better than the
other, but suggesting that a solution can be selected with a particular trade-off among the
aforementioned conflicting objectives. In this case, if the designer is interested, for example,
in the simultaneous minimization of two performance indices, a MOOD procedure could
aid in the tuning problem.

A MOOD procedure comprises three fundamental steps [22].

1. Multiobjective Problem (MOP) definition: The design objectives of interest are stated
as well as the decision variables and the possible constraints.

2. Optimization Process (OP): An algorithm is selected to search throughout the decision
space for the approximations of the optimal solutions (Pareto Set) and their corre-
sponding objective values (Pareto Front). This algorithm should fulfill some desirable
characteristics in order to provide the designer with useful solutions.

3. Multicriteria Decision Making (MCDM): Specialized visualization techniques are
employed to analyze the Pareto Front and Pareto Set approximations. The best
solution is the one that meets the designer’s preferences.

As an example, Figure 3 illustrates the concepts of Pareto dominance, Pareto Front and
Pareto Set for the biobjective optimization problem minθ J(θ) = [J1(θ), J2(θ)] with decision
variables θ = [θ1, θ2]. The decision vectors θ1, ..., θ5 dominates the vectors θ6 and θ7 because
the objective vectors J(θ1), ..., J(θ5) are not worse than J(θ6), J(θ7) in both objectives and
are better in at least one objective.

In order to explore the suitability of the multiobjective optimization approach for the
LADRC tuning problem, the responses to an unitary step load disturbance (r̃ = 0, d = 1)
and to an unitary step setpoint (r̃ = 1, d = 0) of the closed loop of Figure 2 with G(s) as (37)
were obtained for different combinations of the three LADRC tuning parameters in the
search space: b0 ∈ [5, 35], ωc ∈ [1, 25] rad/s, ωo ∈ [1, 25] rad/s, and following a grid
method with ∆b0 = 1 and ∆ωo = ∆ωc = 0.2 rad/s.

Ge(s) =
1

s + 1
e−s. (37)
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Initially, the LADRC stability region was analyzed. Figure 4 shows the pairs (ωc, ωo)
for the critical gain nominal values b0 = 5, 15, 35 that produce a stable output in system (37).
From this figure, it is noted that as the nominal value of the critical gain increases, more
pairs (ωc, ωo) appears in the stability region which represent more possible combinations
for the LADRC tuning. In other words, there exists a stability bound that moves in the
(ωc, ωo) increasing direction as a higher value of b0 is selected.

Pareto Set 

approximation

Decision

search space

Pareto Front 

approximation

Dominated

solutions

Objective space

Figure 3. Pareto dominance, Pareto Front and Pareto set in a bidimensional case. There are no solution vectors dominating
θ1, ..., θ5 so these solutions are the approximation of the Pareto Set and their corresponding objective vectors J(θ1), ..., J(θ5)

are the approximation of the Pareto Front.

Figure 4. Closed loop stability regions for Ge(s). Each point in the region represents a combination
of parameters producing a stable output. For each value of b0 ∈ [5, 35] there exist pairs (ωc, ωo) that
produce a stable output. The b0 = 5, 15, 35 values are plotted as examples to illustrate the shape and
behavior of the stability region.

Once the LADRC stability region was obtained, interest was put in the performance
computed with those combinations of parameters. Particularly, the ITSE for load distur-
bance rejection, the robustness, and the Total Variation of control action (TV) were defined
as design objectives as stated in Table 1.
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Table 1. Design objectives for the performance evaluation of the Linear ADRC (LADRC).

Index/Design Objective Definition

Integral of the time weighted squared error value
ITSE =

t98%∫
t=0

t · (r(t)− y(t))2 dt

Total variation of the control action TV =
t98%

∑
i=1
|ui+1 − ui|

Mixed robustness ε = sup
ω

(|S(jω)|+ |T(jω)|).

Closed loop robustness is usually measured through the maximum peak of the sensi-
tivity function MS and the maximum peak of the complementary sensitivity function MT
such as 1.3 < MS < 2 and MT < 1.25 [23]. In this work, a robustness measure denoted by
ε is adopted which is defined in [24] as the structured singular value of matrix M from a
M− ∆ configuration with a diagonal block structure.

The ε index has been previously used in [14] to quantify the robust stability of the
closed loop system with the LADRC and is computed as the maximum peak of the sum
of the magnitudes of the frequency responses of the sensitivity function S(jω) and the
complementary sensitivity function T(jω). The lower the value of ε, the more robust the
closed loop system.

A first look at the minimum ITSE value inside the stability region shows that
ITSEmin1 = 0.82 for the solution b01 = 17, ωc1 = 1.8 rad/s, ωo1 = 23.6 rad/s. However,
the associated robustness of ε1 = 5.93 is regarded as poor. If the constraint ε ≤ 3 is imposed
on the robustness index, then a new solution b02 = 24, ωc2 = 2 rad/s, ωo2 = 21 rad/s is
found with an ITSEmin2 = 1.13 and a corresponding robustness of ε2 = 2.99.

On the other hand, a search for the most robust controller results in the parameters
b03 = 15, ωc3 = 19.8 rad/s, ωo3 = 1 rad/s which produce εmin3 = 1.38 but with a
extremely high ITSE value of ITSE3 = 113.51. Also, if the ITSE is constrained such as
ITSE ≤ 2, then the new solution is b04 = 19, ωc4 = 21 rad/s, ωo4 = 2.8 rad/s with a
robustness εmin4 = 2.02 and a time performance index ITSE4 = 1.99.

Table 2 comprises the solutions and performance comparison discussed above. Some
additional indices as MS, MT, total variation of control action for disturbance rejection
(TVd), and total variation of control action for setpoint following (TVs) are included as
complementary information. Note that each of the LADRC set of parameters can be
considered as optimal only respect to the corresponding minimized index. For example,
the solution (b02, ωc2, ωo2) is optimal respect to the ITSE, but the robustness obtained is
the maximum allowed according to the constraint.

Table 2. Comparison of LADRC performance in control of Ge(s).

Desired Performance LADRC Parameters MS MT ε ITSE TVd TVs

min ITSE
b01 = 17
ωc1 = 1.8 rad/s
ωo1 = 23.6 rad/s

3.45 2.48 5.93 0.82 3.14 2.50

min ITSE
ε ≤ 3

b02 = 24
ωc2 = 2 rad/s
ωo2 = 21 rad/s

1.98 1.16 2.99 1.13 1.40 1.32

min ε
b03 = 15
ωc3 = 19.8 rad/s
ωo3 = 1 rad/s

1.19 1.00 1.38 113.51 1.02 33.87

min ε
ITSE ≤ 2

b04 = 19
ωc4 = 21 rad/s
ωo4 = 2.8 rad/s

1.50 1.01 2.02 1.99 1.10 29.25
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In addition to the solutions reported in Table 2, there are other sets of LADRC param-
eters within the stability region that offer a compromise between disturbance rejection,
quantified by ITSE, and robustness. To search for these alternatives, the Pareto dominance
definition was applied over the total of parameters combinations, restricting the robust-
ness measure to the range ε ∈ [2, 3] which represents a maximum sensitivity in the range
MS ∈ [1.3, 2] and a maximum complementary sensitivity in the interval MT ∈ [1, 1.4].

Figure 5a shows the Pareto Front approximation for the simultaneous minimization of
ITSE for disturbance rejection and robustness. As expected, the ITSE can not be improved
(decreased) without weakening the robustness. Likewise, a more robust closed loop system
is possible as long as the ITSE value is allowed to increase. The solutions (b02, ωc2, ωo2)
and (b04, ωc4, ωo4) from Table 2 would be located around the upper and bottom ends of
the Pareto Front approximation, respectively.

(a) (b)

(c) (d)

Figure 5. Pareto Fronts and Pareto Sets approximations for minimization of two design objectives J1 and J2. (a) the Pareto
Front approximation for the simultaneous minimization of ITSE for disturbance rejection and robustness. (b) the Pareto
Front approximation for minimization of ITSE and TV for disturbance rejection (TVd). (c) the approximation of the Pareto
Front when the ITSE for disturbance rejection is minimized simultaneously with the TV of the unitary setpoint (TVs). (d) the
Pareto Sets approximations for the three said cases.

From other point of view, Figure 5b is the Pareto Front approximation for minimization
of ITSE and TV for disturbance rejection (TVd) and Figure 5c is the approximation of the
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Pareto Front when the ITSE for disturbance rejection is minimized simultaneously with
the TV of the unitary setpoint (TVs). This figures show that there is also a compromise
between the ITSE performance and the control efforts.

Finally, the Pareto Sets approximations for the three said cases are presented in Figure 5d.
Note that the optimal values for the nominal critical gain are higher than b0 = 1, which
would be the nominal value (b0 = K/T) computed from the model (37), as is commonly
suggested in literature. Moreover, in the solutions with a compromise between ITSE
and robustness, the controller bandwidth can be selected to be greater than the observer
bandwidth (ωc > ωo) or vice versa (ωc < ωo). Nevertheless, for a compromise between
ITSE and the total variation of the control action, a selection of parameters in which ωc < ωo
seems more appropriated.

The case study addressed in this section gave some insight into the LADRC perfor-
mance in the control of a FOPDT system. In summary, there exist a trade-off between
the disturbance rejection performance of the LADRC and its robustness. The LADRC
parameters that produce this compromise are Pareto optimal and can be searched through
an optimization process were the objectives related to disturbance rejection and robustness
are minimized simultaneously. Besides, the definition of constraints over the objective and
search spaces could drive the optimization process to solutions that meet some desired
additional performance. If the aforementioned optimization procedure is applied over a
group of plants of the same kind, then the Pareto optimal alternatives could be used to
derive tuning rules reflecting the desired trade-off.

4. LADRC Tuning by Multiobjective Optimization

For the tuning problem of the second-order LADRC related to the control of FOPDT
systems, a MOOD procedure was applied to a group of nominal plants in the form of (34)
which was obtained by varying the nominal delay from Θ = 0.5 to Θ = 5 with a change of
∆Θ = 0.1.

The FOPDT systems can be characterized based on the normalized dead time
τ = l/(l + T) with 0 ≤ τ ≤ 1 [25]. Particularly, a system is lag-dominated if τ is small,
balanced if τ is around 0.5 and delay-dominated if τ is large [26]. In terms of the nominal
delay, τ can be written as

τ =
Θ

Θ + 1
. (38)

Thus, the MOOD procedure was applied to plants with τ ranging from 0.09 to 0.83,
which includes lag-dominated, balance, and delay-dominated processes. The MOOD
results were used to fit the optimal solutions for the LADRC parameters and the fitting
curves were scaled to obtain the tuning rules as functions of the known FOPDT parameters.
In this section, each step of the MOOD procedure and the data processing of solutions are
explained in depth.

4.1. MultiObjective Problem Definition

The first stage of the MOOD procedure implies the definition of the decision space,
the objective space, and the possible constraints. The decision variables are selected from
the parametric controller; the objective space is related to the desired performance, and
finally, constrains are the design limitations imposed on the overall concept.

The plant to be controlled corresponds to the FOPDT nominal model (34). Note that
any controller designed for this plant can be scaled afterwards according to (36).

The following scaling for observer bandwidth were also adopted:

ωo = koωc, ko > 1, (39)

which indicates that LADRC parameters meeting the relation ωc < ωo are preferred. This
additional scaling is commonly suggested in literature (e.g., in [4,11,12]).

The transfer function (40) is obtained by substituting (39) in (32).
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GA(s) =
(
3koω3

c + 6k2
oω3

c + k3
oω3

c
)
s2 +

(
2k3

oω4
c + 3k2

oω4
c
)
s + k3

oω5
c

b0[s3 + (3koωc + 2ωc)s2 + (3k2
oω2

c + 6koω2
c + ω2

c )s]
. (40)

Choosing a value of ko = 10, the corresponding controller to tune is

GA(s) =
1630ω3

c s2 + 2300ω4
c s + 1000ω5

c
b0(s3 + 32s2 + 361ω2

c s)
, (41)

with the decision variables:

θ = [b0, ωc]. (42)

Two design objectives were selected: the ITSE for the response to a unitary step load
disturbance and the mixed robustness index ε. Thus, the complete multiobjective problem
is stated as

min
θ

J(θ) = [J1(θ), J2(θ)] (43)

J1(θ) = ITSE(θ) (44)

J2(θ) = ε(θ) (45)

θ = [b0, ωc], (46)

subject to

Stable in closed loop

J1(θ) ≤ ITSESIMC

2 ≤ J2(θ) ≤ 3

1 ≤ b0 ≤ 200

0.1 ≤ ωc ≤ 20

(47)

The constraints on design objectives were selected taking into account the perfor-
mances offered over the group of nominal plants by classical PID tuning rules as IMC [27],
SIMC [28], and AMIGO [29], and the LADRC tuning method from [14]. The upper limit
of J1(θ) was set as the ITSE value obtained with the SIMC approach such that the desired
closed loop time constant was equal to the apparent delay l. The SIMC tuning produced the
highest ITSE for each plant compared to the LADRC from [14] and the other PID controllers.

Similarly, the lower limit of J2(θ) is the approximation of the robustness obtained with
the AMIGO tuning rules, and its upper limit is approximately the robustness computed
with the IMC method. The other controllers offer a robustness measure between these
limits for all plants. What is more, the ε(θ) limits are related to the commonly adopted
limits for maximum sensitivity and maximum complementary sensitivity.

The search space for decision variables was specified following the results from
Section 3 where it was shown that to increase b0 contributes to a bigger stability re-
gion in terms of the bandwidths and, as a consequence, lower performance indices can
be computed.

4.2. Optimization Process

The evolutionary multiobjective algorithm ε↗−MOGA [30] was used to perform the
optimization process. This algorithm uses the epsilon-dominance concept to obtain Pareto
Front and Pareto Set approximations with limited memory resources and preserving the
diversity of the Front by adjusting its limits dynamically [31]. The algorithm parameters
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were set to 200 individuals for main population, 8 individuals for auxiliary population,
1000 generations and 1000 divisions per dimension.

The Pareto Fronts and Pareto Sets approximations obtained for the complete group
of nominal plants are presented in Figure 6. From Figure 6b, an interesting behavior is
observed. The range of the decision variables for plants with τ ≤ 0.5 is wider than for
plants with τ > 0.5. For instance, a robustness measure between 2 and 3 can be obtained for
the plant with τ = 0.09 if the LADRC parameters are selected in the ranges b0 ∈ [86, 115],
ωc ∈ [11.6, 6.6], whereas the same variation in robustness for plant with τ = 0.833 is
achieved with b0 ∈ [6.2, 9.2], ωc = [0.73, 0.71]. Another important feature is the decreasing
trend in the decision variables as the normalized delay increases. However, the rate of
change in both parameters tends to be greater for plants with τ ≤ 0.5 than for plants with
τ > 0.5.

(a) Pareto Fronts approximations

(b) Pareto Sets approximations

Figure 6. Results from the optimization process for the complete group of nominal plants. Pareto
Sets approximations for plants with τ ≤ 0.5 (black) show that the LADRC parameters for this group
have a wider range of variation and the rate of change in both parameters is greater compared to
plants with τ > 0.5 (gray). An inset showing the Pareto Sets approximations for plants with τ > 0.5
is included for better visualization.
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4.3. Multicriteria Decision Making

Once the Pareto Fronts and Pareto Sets approximations have been obtained, the last
step in the MOOD procedure is the selection of the solution or candidate solutions preferred
by the designer. Even if most of the preferences were taken into account in the optimization
process, a final selection is needed. Depending on the number of design objectives, the
visualization and graphical interpretation of the Pareto Front approximation is crucial.
Some novel ideas to rank the potential solutions obtained by evolutionary algorithms in
application to engineering problems are exposed in [32]. Likewise, an approach to the
knee solution of the Pareto Front approximation for optimization problems with many
objectives is addressed in [33].

According to the results from the optimization process, the following aspects were
considered for the decision making stage.

• For data processing, two main groups were defined: Group 1 containing data related
to plants with a normalized delay τ ≤ 0.5 and Group 2 with data belonging to plants
with τ > 0.5.

• From each Pareto Front approximation, three design alternatives distributed along
the front were selected.

• For Group 1, the selection was made using the entire Pareto Front approximation.
• For Group 2, the selection was made limiting the upper end of the front such that the

highest value for ε(θ) is 2.5. This criterion is based on the fact that the difficulty in
controlling a process increases as its normalized delay increases [25]. Thus, for this
group of plants, lower values of ε(θ) are preferred which correspond to more robust
closed loop systems.

• Selected solutions are compared in the objective space with other alternatives related
to PID and LADRC tuning rules.

Consider the first group of nominal plants (Group 1). In order to select the three
desired design alternatives, let the Pareto Fronts to be divided in two regions according to
bounds imposed on the mixed robustness measure. The upper region comprises solutions
for which 2.5 ≤ ε(θ) ≤ 3 and the lower region includes those with 2 ≤ ε(θ) < 2.5.

On each region, a point corresponding to the Nash solution was calculated by solving
the problem [34]:

max
(J1(θ),J2(θ))

(
J1

(
θ2
)
− J2(θ)

)(
J2

(
θ1
)
− J1(θ)

)
, (48)

where J1
(
θ2) is the optimal value (minimum) of the first design objective and J2

(
θ1)

is the point that minimizes the second cost function. The Nash solution (J1(θ), J2(θ))
is considered a fair selection because it dominates the larger number of points in the
rectangular area

(
J1
(
θ2)− J2(θ)

)(
J2
(
θ2)− J1(θ)

)
[34].

The third solution for Group 1 was selected as the midpoint of the Pareto Fronts. This
is, the solution meeting the condition ε(θ) = 2.5.

For the second group of plants (Group 2) the three selected solutions corresponds to
the two ends of the front and the Nash solution.

Figure 7 illustrates the concepts explained and solutions selected taking as an example
the Pareto Fronts approximations of the nominal plants with τ = 0.5 (Group 1) and τ = 0.75
(Group 2).

The complete set of Pareto Fronts approximations and selected solutions are presented
in Figure 8. For comparison purposes, the performance obtained with the PID tuning
methods IMC, SIMC, AMIGO, and the rules from [34] (SNS) are included for group 1. For
group 2, the Pareto alternatives are compared with the SIMC and AMIGO approaches.
Performance corresponding to the LADRC tuning rules from [14] (ADRCZ) are also shown
for both groups. Note that the fronts move to the right in the objective space as the
normalized delay increases. From this figure, the following remarks are derived.
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(a) τ = 0.5

(b) τ = 0.75

Figure 7. Location of the selected solutions into the Pareto Fronts approximations taking as example
two nominal plants. (a) For plants in Group 1, selected solutions are the Nash solution from upper
region NS1, the midpoint MP, and the Nash solution from lower region NS2. (b) For plants in Group 2
the selected solutions are the upper end UP, the Nash solution NS, and the bottom end BP.

• The performance obtained with the PID controllers tuned by the IMC, SIMC and SNS
rules are in the dominance area of the Pareto Fronts belonging to plants from Group 1.
Particularly, the SIMC points are dominated by the optimal solutions in all cases.

• For plants from Group 2, the performance obtained with the AMIGO tuning method
is outside the Pareto Fronts approximations due to the constraint imposed on ε(θ).
However, the alternative solutions corresponding to the bottom end of the Fronts
have better disturbance rejection with a reasonable level of robustness.

• The performance obtained with the ADRCZ tuning rules is in the dominance area
of the approximated Pareto Fronts for the entire set of nominal plants. Even though
the ADRCZ points are the results of fitting curves, they tend to move away from the
Fronts as τ increases which highlights their suboptimal feature.

With the MOOD procedure developed for the tuning problem of the second-order
LADRC applied to FOPDT nominal systems, a set of Pareto optimal solutions with a
trade-off between disturbance rejection and robustness was obtained. The distribution of
these solutions in the decision search space can lead to different fitting curves depending
on the preferred level of compromise between objectives. This idea is the core of the fitting
procedure presented in the next section.
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(a) Group 1 (τ ≤ 0.5)

(b) Group 2 (τ > 0.5)

Figure 8. Pareto Fronts approximations and selected solutions for the complete set of nominal plants. Performance points
obtained with the PID tuning methods IMC, SIMC, AMIGO, and SNS [34] as well as the LADRC tuning rules from [14]
(ADRCZ) are included for comparison. The SIMC points have been excluded from (b) for proper visualization because
these alternatives are always dominated by the Pareto optimal solutions. Information related to the same plant has been
plotted in the same color.

5. Tuning Rules for LADRC

The solutions obtained from the MOOD procedure correspond to the Pareto optimal
LADRC parameters suitable to control FOPDT plants in the form of (34). These data were
initially fitted to functions of the normalized delay τ. Afterwards, the resulting expressions
were scaled to obtain the LADRC tuning rules applicable to the control of the general
FOPDT system (33).

Data were fitted separately for the two previously defined groups of plants. This
was mainly because of the behavior observed in the rate of change of the parameters with
respect to the variation in the normalized delay (see Figure 6b). Additionally, in each group,
the three optimal solutions selected were used to fit three curves related to different levels
of robustness taking τ as independent variable. These levels of robustness were defined
as follows.

• Low level (εlow): The LADRC tuned by these approximation will offer a robustness
around 2.7 for processes with τ ≤ 0.5 and around 2.5 for plants with τ > 0.5. For
Group 1, the tuning rule was approximated using the Nash solutions of the upper
regions of the Pareto Fronts (NS1). For Group 2, the curve was fitted using the upper
ends of the fronts (UP).

• Medium level (εmed): Processes with τ ≤ 0.5 and controlled by LADRC tuned accord-
ing to this formulae will have a robustness of approximately 2.5. In the case of plants
with τ > 0.5, the robustness of the closed loop will be around 2.3. The midpoints
of the Pareto Fronts (MP) were used to approximate the tuning function in the first
group of systems and the Nash solutions (NS) were used for the second group.

• High level (εhigh): The highest robustness of the closed loop will approximately 2.2 for
systems with τ ≤ 0.5 and 2.0 for plants meeting τ > 0.5. In Group 1 the approximation
was done using the Nash solutions of the lower regions of the Pareto Fronts (NS2) and
in Group 2, the bottom ends of the fronts (BP) were used instead.
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The nominal values for the critical gain were fitted to power functions in the case of
systems with τ ≤ 0.5 and to polynomial functions for systems with τ > 0.5 such as

b0 =


kb

(
τ

1− τ

)nb

, τ ≤ 0.5

ab

(
τ

1− τ

)2
+ bb

(
τ

1− τ

)
+ cb, τ > 0.5,

(49)

where kb, nb, ab, bb and cb are constants.
On the other hand, the controller bandwidth values were fitted for both groups to

power functions of the form

ωc = kω

(
τ

1− τ

)nω

, (50)

with kω and nω as constants.
The resultant fitting functions are presented in Figures 9 and 10, and the corresponding

parameters for expressions (49) and (50) are reported in Table 3.

(a) Fitting for Group 1 (τ ≤ 0.5)

(b) Fitting for Group 2 (τ > 0.5)

Figure 9. Tuning for nominal values of the LADRC critical gain. Markers indicate the optimal
solutions NS1 (N), MP (�), NS2 (H). Lines are the fitting functions for robustness levels εlow (−−),
εmed (· · · ), εhigh (-·-).
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(a) Fitting for Group 1 (τ ≤ 0.5)

(b) Fitting for Group 2 (τ > 0.5)

Figure 10. Tuning for LADRC controller bandwidth. Markers indicate the optimal solutions UP (N),
NS (�), and BP (H). Lines are the fitting functions for robustness levels εlow (−−), εmed (· · · ), and
εhigh (-·-).

As last step in the data processing, (49) and (50) were substituted in the corresponding
scaled parameters of (36) to obtain the general LADRC tuning rules

b̄0 =


K
T2

[
kb

(
τ

1− τ

)nb
]

, τ ≤ 0.5

K
T2

[
ab

(
τ

1− τ

)2
+ bb

(
τ

1− τ

)
+ cb

]
, τ > 0.5

(51)

ω̄c =
1
T

[
kω

(
τ

1− τ

)nω
]

(52)

ω̄o =
10
T

[
kω

(
τ

1− τ

)nω
]

. (53)

Equations (51)–(53) are now dependent on the three FOPDT plant parameters which
can be easily obtained for many processes by identification techniques.
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As a summary, in Table 3 a guide for the tuning of the LADRC for the control of FOPDT
plants is presented. Each of the defined levels of robustness represents a compromise
between this objective and the disturbance rejection performance. This way, the designer is
provided with three closed loop stable candidate controllers that could be tested on the
system for the final decision.

Table 3. LADRC tuning guide.

1. Approximate the process dynamics with the First Order Plus Dead Time (FOPDT) model

G(s) =
K

Ts + 1
e−ls.

2. Compute the normalized dead time. Note that the resulting normalized dead time meets the condition 0 ≤ τ ≤ 1

τ =
l

T + l
.

3. Decide whether the process belongs to Group 1: τ ≤ 0.5 or Group 2: τ > 0.5 according to the normalized dead time
computed in step 2. This classification indicates the level of robustness (quantified by ε) of each of the three
candidate controllers .

4. Use the tables given below to select the appropriate coefficients for the tuning rules according to preferences on the
robustness quality.

Group 1: τ ≤ 0.5 Group 2: τ > 0.5

Robustness level εlow εmed εhigh Robustness level εlow εmed εhigh

Robustness, ε 2.7 2.5 2.2 Robustness, ε 2.5 2.3 2.0

kb 24.129 25.632 27.952 ab 1.145 1.238 1.121

nb −0.651 −0.601 −0.518 bb −11.110 −12.192 −11.921

kω 1.946 1.938 1.903 cb 34.443 38.682 40.601

nω −0.724 −0.681 −0.604 kω 1.982 1.972 1.927

nω −0.635 −0.625 −0.612

5. Substitute the coefficients selected in step 4, the static gain, and the apparent time constant in the following rules to
compute the LADRC parameters

b̄0 =



K
T2

[
kb

(
τ

1− τ

)nb
]

, τ ≤ 0.5

K
T2

[
ab

(
τ

1− τ

)2
+ bb

(
τ

1− τ

)
+ cb

]
, τ > 0.5

ω̄c =
1
T

[
kω

(
τ

1− τ

)nω
]

ω̄o =
10
T

[
kω

(
τ

1− τ

)nω
]

.

6. Implement the second-order LADRC using the time domain or the frequency domain formulation.

Furthermore, the designer could vary the values of the LADRC parameters in the
intervals obtained based on the proposed rules to adjust the performance according to the
preferences. To help in this task, the tuning tool of Figure 11 has been developed in Matlab
App Designer and is available at Matlab Central [18]. It requires as inputs the FOPDT
model and through interaction with robustness level and manual tuning sliders, the user
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can visualize the closed loop response and evaluate the second-order LADRC performance
with the aid of some measures.

Figure 11. LADRC tuning tool. This Matlab App allows the automatic computation of the nominal
value of the critical gain b0, the controller bandwidth ωc, and the observer bandwidth ωo of the
second-order LADRC for the control of a system approximated by a FOPDT model. Available at [18].

The tuning rules proposed in this section together with the developed tuning tool allow
some degree of the designer involvement in the final selection of the LADRC parameters,
but eliminates the time and complexity of performing the entire optimization process.
The parameters computed by the proposed rules ensure closed loop stability as well as a
reasonable compromise between disturbance rejection and loop robustness.

6. Validation of the LADRC Tuning Rules

In this section, two examples are presented to validate the proposed tuning rules. The
load disturbance and setpoint responses are compared with the performance obtained from
other controllers such as PID and LADRC tuned by different methods.

The performance indices in frequency domain MS, MT, ε and in time domain ITSE,
TV, and settling time (t98%, in seconds) were calculated.

6.1. Example 1: A Lag-Dominated System

Consider the FOPDT lag-dominated system.

G1(s) =
1

10s + 1
e−2s. (54)

The Tuning Guide is used to illustrate the parameters computation. Following the
steps from Table 3:

1. From (54), K = 1, T = 10, and l = 2.
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2. The normalized dead time is

τ =
2

10 + 2
= 0.17. (55)

3. According to the normalized dead time from step 2, (54) belongs to Group 1 and thus,
the three candidate controllers have robustness of approximately 2.7 (εlow), 2.5 (εmed),
and 2.2 (εhigh).

4. For example, if a controller with a high robustness is preferred, the corresponding
coefficients for the tuning rules are kb = 27.952, nb = −0.518 for computation of b0;
kω = 1.903, nω = −0.604 for computation of ωc and ωo.

5. The nominal value of critical gain, the controller bandwidth, and the observer band-
width are computed by substituting the coefficients from step 4 and the FOPDT
parameters in the tuning rules. This is,

b̄0 =
1

100

[
27.952

(
0.17

1− 0.17

)−0.518
]
= 0.643 (56)

ω̄c =
1

10

[
1.093

(
0.17

1− 0.17

)−0.604
]
= 0.503 (57)

ω̄o = 1.903
(

0.17
1− 0.17

)−0.604
= 5.031 (58)

6. The parameters computed in step 5 can be used in the second-order LADRC for the
control of plant (54).

Note that steps 4 and 5 from the above procedure must be repeated if a different
robustness is desired. The LADRC parameters for the three levels of robustness (εlow, εmed,
εhigh) are listed in Table 4. Parameters obtained with the tuning rules proposed in [14]
(ADRCZ) are also listed together with those corresponding to the PID controllers tuned
by the IMC, SNS (from [34]), SIMC and AMIGO methods. Figures 12 and 13 show the
time responses.

Table 4. Parameters for the control of G1(s).

LADRC b0 ωc ωo PID Kp Ti Td

ADRCZ 0.349 1.950 0.960 IMC 4.320 10.800 0.751
εlow 0.688 0.624 6.243 SNS 3.420 5.475 0.970
εmed 0.674 0.580 5.795 SIMC 2.500 10.000 0
εhigh 0.643 0.503 5.031 AMIGO 2.450 5.867 0.943

The resulting values for the performance indices are reported in Table 5. It can be seen
that each of the proposed controllers offers a robustness level similar to one of the PID
alternatives with a lower ITSE for disturbance rejection. Also, the output backs to steady
state faster than with the IMC and SIMC.

Compared with the ADRCZ tuning rules, the three proposed controllers have a lower
ITSE value and return the output to steady state faster in the case of a load disturbance.
Note that with the εhigh controller, a higher robustness level and better disturbance rejection
performance can be achieved. Also, the total variation of the control action is lower for this
alternative.

On the other hand, for setpoint following operation, a similar ITSE than ADRCZ is
obtained with the εlow controller. However, it is worth noting that control actions produced
by the three alternatives are smoother, which is reflected in the total variations indices
calculated. This is mainly because the initial values of the control signals (sometimes
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referred in literature as proportional kick) are significantly lower than those reached by the
ADRCZ controller.

(a) Load disturbance step response (b) Setpoint step response

Figure 12. Closed loop time response of G1(s) with the second-order LADRC tuned with the proposed rules. Comparison
with the performance of ADRCz controller.

Table 5. Performance comparison of proposed tuning rules with other tuning methods for control of
G1(s). The εhigh controller is more robust and offers a lower ITSE for disturbance rejection than the
ADRCZ controller.

Disturbance Rejection Setpoint Following

MS MT ε ITSE TV t98% ITSE TV t98%

IMC 2.032 1.097 3.103 2.485 1.358 44.1 2.788 60.985 8.7
SNS 1.767 1.181 2.545 1.738 1.331 26.7 4.023 48.914 18.5

SIMC 1.590 1.000 2.353 6.870 1.082 46.2 6.307 2.591 12.1
AMIGO 1.446 1.135 2.029 3.770 1.252 33.6 5.702 31.503 23.3
ADRCZ 1.583 1.345 2.447 3.688 1.537 43.3 12.488 14.699 35.4
εlow 1.842 1.489 2.771 1.227 1.743 29.9 12.672 4.298 26.4
εmed 1.735 1.392 2.544 1.652 1.636 33.1 14.685 3.520 29.1
εhigh 1.598 1.258 2.236 2.982 1.438 31.4 19.404 2.562 25.9
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(a) Load disturbance response (b) Set point response

Figure 13. Closed loop time response of G1(s) with the second-order LADRC tuned with the proposed rules. Comparison
with the performance of PID controllers.

6.2. Example 2: A Delay-Dominated System

As second example, the following FOPDT delay-dominated system is analyzed:

G2(s) =
3

0.25s + 1
e−s. (59)

The normalized delay for this plant is τ = 0.80. The PID tuning rules IMC, SIMC and
AMIGO, and the LADRC tuning rules from [14] (ADRCz) were used for comparison. In
addition, the tuning rules for the second-order LADRC from [11] (ADRCH) were also taken
into account. The latter are proposed for the control of high order plants, but can be used for
self-regulatory FOPDT systems with nominal delay (τ/T) above 0.46 by approximating the
plant into the form K/(Ts + 1)n (Note that K and T have a different meaning than in (33)).

Figures 14 and 15 show the closed loop time response of G2(s) with the LADRC
and the PID controllers, respectively. The computed parameters are listed in Table 6 and
performance indices are reported in Table 7.
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Table 6. Parameters for the control of G2(s).

LADRC b0 ωc ωo PID Kp Ti Td

ADRCZ 359.316 5.029 16.140 IMC 0.173 0.650 0.195
ADRCH 345.819 2.521 33.007 SIMC 0.042 0.250 0

εlow 399.747 3.288 32.876 AMIGO 0.104 0.585 0.227
εmed 466.508 3.317 33.172
εhigh 521.205 3.301 33.007

According to the indices obtained for disturbance rejection, the proposed controllers
can improve the performance in at least one of the design objectives when compared to the
PIDs. For example, The εmed controller is more robust and produces a lower ITSE than the
PID tuned by the SIMC method. The same controller offers an improvement in robustness
and disturbance rejection in comparison with ADRCZ.

On the other hand, the ITSE calculated from the load disturbance response with the
three proposed controllers are lower than the ITSE obtained with the ADRCH controller.
The corresponding total variations of control signals are also lower and the system output
stabilizes faster, even in the case of a setpoint change. It should be noted that LADRC
parameters for ADRCH were obtained setting an required additional tuning parameter k
as 3.25 after some trial and error tests to guarantee the stability.

(a) Load disturbance response (b) Setpoint response

Figure 14. Closed loop time response of G2(s) with the second-order LADRC tuned with the proposed rules. Comparison
with the performance of ADRCz and ADRCH controllers.
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(a) Load disturbance response (b) Set point response

Figure 15. Closed loop time response of G2(s) with the second-order LADRC tuned with the proposed rules. Comparison
with the performance of PID controllers.

Table 7. Performance comparison of proposed tuning rules with other tuning methods for control
of G2(s). For all controllers MT = 1. The εmed controller is more robust and offers a lower ITSE
for disturbance rejection than the ADRCZ controller. The three proposed alternatives offers a better
disturbance rejection performance than the ADRCH controller with similar or better robustness.

Disturbance Rejection Setpoint Following

MS ε ITSE TV t98% ITSE TV t98%

IMC 1.873 2.774 15.447 1.427 3.9 0.666 2.474 3.7
SIMC 1.590 2.353 30.885 1.082 7.3 1.559 0.319 6.1

AMIGO 1.401 1.933 22.487 1.041 6.0 1.087 1.415 4.7
ADRCZ 1.622 2.357 18.875 1.069 4.0 1.329 0.310 4.3
ADRCH 1.792 2.612 20.278 1.361 7.6 2.122 0.310 7.3

εlow 1.798 2.615 15.817 1.321 4.9 1.381 0.312 4.1
εmed 1.638 2.296 17.551 1.102 5.3 1.550 0.308 4.7
εhigh 1.526 2.073 19.930 1.038 6.1 1.775 0.312 5.5

7. Control of a Peltier Thermoelectric Module

The proposed tuning rules were used to design a second-order LADRC for the control
of a thermoelectric module operating on the Peltier principle. It is assumed that the real
behavior of the Peltier cell is modeled by the nonlinear differential equations presented
in [35].

The thermal balance in the cold face is described by
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Qc f = 9.2Ṫc

Qc f = Qac f −Qpc f −Qj + Qcond

Qac f = 11.75− 0.5Tc (60)

Qpc f = 0.041Tc Ip

Qj = 0.41I2
p

Ip =
1

0.82
[Vin − 0.041(Th − Tc)]

Qcond = 0.2(Th − Tc).

The thermal balance in the hot face is

Qh f = 13Ṫh

Qh f = Qrh f + Qph f + Qj −Qcond

Qrh f = 9.59(Tr − Th) (61)

Qph f = 0.041Th Ip.

And finally, the radiator equilibrium corresponds to

Qr f = 722.55Ṫr

Qr f = Qacc −Qrh f (62)

Qacc = 167.09− 7.11Tr

The controlled output is the temperature on cold face Tc ∈ [−12.0, 6.0] ◦C and the
manipulated input is the applied voltage Vin in percentage of its range. A block diagram
representing (60)–(62) is presented in Figure 16 and the corresponding description of
variables is listed in Table 8.
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Figure 16. Block diagram of the thermoelectric module.
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Table 8. Description of variables for the Peltier cell model.

Variable Units Description

Tc
◦C Temperature on the cold face

Th
◦C Temperature on the hot face

Tr
◦C Temperature in the radiator

Vin % Voltage applied to the Peltier cell
Ip A Current flow in the Peltier cell
Qc f W Net heat flow on the cold face

Qac f W Heat flow transmitted by convection between the environment and the
cold face

Qpc f W Heat flow absorbed by the cold face due to the Peltier effect
Qj W Heat flow generated by Peltier cell due to Joule effect
Qcond W Heat flow transferred by conduction from the hot face to the cold face
Qh f W Net heat flow on the hot face
Qrh f W Heat flow transmitted by radiation between the hot face and radiator
Qph f W Heat flow dissipated by the hot face due to Peltier effect
Qr f W Net heat flow into the radiator

Qacc W Heat flow transmitted by convection between the environment and the
radiator

The Peltier cell behavior in the freeze zone (≈−8.0 ◦C) can be approximated by the
FOPDT nominal model [36]

Gp(s) =
−0.315

3.192s + 1
e−0.4s. (63)

The normalized delay for (63) is τ = 0.11. By substituting this value in the correspond-
ing tuning rules, the three second-order LADRC parameters sets (εlow, εmed, εhigh) from
Table 9 are obtained. Two additional controllers are also included for comparison purposes:
the LADRC tuned using the proposal from [14] (ADRCZ) and a PID whose parameters
were calculated by the SIMC method.

Table 9. Parameters for the control of a thermoelectric module.

LADRC b0 ωc ωo PID Kp Ti Td

ADRCZ −1.613 9.696 4.102 SIMC 12.667 3.192 0
εlow −2.885 2.744 27.439
εmed −2.758 2.496 24.957
εhigh −2.532 2.090 20.905

Consider that the cold face of the module is stable at−5.0 ◦C and a fault in power system
reduces the input voltage 10% of its nominal value. The evolution of temperature Tc and
the required voltage to reject the disturbance are shown in Figure 17a. The corresponding
performance indices ITSE (◦C2 · s), TV (%) and t98%(s) are included in Table 10.

Table 10. Performance comparison of proposed tuning rules with reference controllers for the load
disturbance response of the Peltier cell.

MS MT ε ITSE TV t98%

SIMC 1.590 1.000 2.353 2.373 10.810 12.0
ADRCZ 1.545 1.455 2.607 0.773 14.001 7.0

εlow 1.848 1.516 2.721 0.188 13.121 5.0
εmed 1.749 1.425 2.511 0.302 13.152 5.8
εhigh 1.613 1.298 2.232 0.725 13.173 7.2
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As expected, the εlow controller produces the response with lower ITSE due to the
relaxation in the robustness requirement. In addition, the total variation of control action
and settling time are the lowest among the three proposals.

(a) Load disturbance response

(b) Setpoint following

Figure 17. Closed loop time response of the Peltier thermoelectric module with the second-order
LADRC tuned with the proposed rules. Comparison with the performance of ADRCZ and SIMC con-
trollers.

On the other hand, the εmed controller offers an improvement over the performance
obtained with the ADRCZ tuning method. The robustness index is slightly lower which
indicates a more robust closed loop system and the ITSE value reflects that the output
stabilizes faster with less overshoot.

The most robust controller εhigh produces a time response similar to the ADRCZ
but the ITSE and TV values are slightly lower. Note that this controller also has a better
disturbance rejection and robustness level than the PID tuned by the SIMC method.

The thermoelectric module can be operated at different temperatures. Due to the
nonlinearities, the transient temperature response shows different behavior depending
on the magnitude and direction of the setpoint changes. An additional simulation was
performed to test the LADRC alternatives under this scenario.

In Figure 17b the time response of the cold face temperature with different setpoints is
presented. The corresponding indices are reported in Table 11.
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The three controllers designed with the proposed tuning rules guarantee the setpoint
following and the steady state is reached in less time than with the other controllers.
However, the ITSE values are above those calculated for the PID and ADRCZ. To clarify
this behavior, the output overshoot (in % of the setpoint change) has been included in
Table 11. As can be noticed, the SIMC method produces the lowest overshoot followed by
the εlow, εmed and εhigh controllers. As expected, the overshoot in output increases for high
changes in the magnitude of setpoint due to the nonlinear nature of the system.

Finally, in Figure 17b it is also shown that the three design alternatives can lead to a
lower variation of the control action in contrast with the abrupt change produced by the
other controllers when the setpoint changes. Note that this kind of peaks may be damaging
for the system. The corresponding TV indices from Table 11 support this idea.

Table 11. Performance comparison of proposed tuning rules and reference controllers for the setpoint
response of the Peltier cell.

Integral of the Time Weighted Squared Error

Setpoint (◦C) SIMC ADRCZ εlow εmed εhigh

−8 to −6 0.766 2.361 2.253 2.772 4.027
−6 to 0 14.331 25.004 20.384 24.379 34.836
0 to −3 1.429 4.369 4.727 5.722 8.342
−3 to−10 8.026 24.814 24.757 30.629 44.931

Total Variation of Control Action

−8 to −6 39.184 24.751 24.053 21.442 17.562
−6 to 0 32.630 71.937 59.848 53.764 43.455
0 to −3 34.185 99.566 25.580 23.286 20.042
−3 to−10 54.513 65.692 57.137 52.347 45.522

Output Overshoot

−8 to −6 2.849 22.343 9.651 9.052 9.425
−6 to 0 7.759 23.978 10.610 11.025 10.868
0 to −3 2.255 20.693 8.061 8.722 9.152
−3 to −10 2.161 20.077 8.565 8.100 8.579

Settling Time

−8 to −6 7.4 8.2 4.8 5.2 6.4
−6 to 0 9.2 8.2 4.8 5.4 6.6
0 to −3 7.0 8.0 4.6 5.2 6.4
−3 to −10 7.0 8.0 4.8 5.2 6.4

8. Conclusions

In this paper, a set of tuning rules for the second-order LADRC which offer three
different levels of compromise between disturbance rejection and robustness for the control
of FOPDT systems were presented. A MOOD procedure was performed to address the
tuning problem. It was focused on the simultaneous minimization of the integral of time
weighted squared error and a robustness measure. The tuning rules were obtained by fitting
a set of Pareto optimal solutions as functions of the normalized delay and the FOPDT
model parameters. Hence, all the LADRC parameters: nominal value of critical gain,
controller bandwidth, and observer bandwidth can be computed by selecting a desired
quality of robustness (i.e., low, medium or high) and substituting the FOPDT parameters
in the given rules.

An interactive tuning software was presented as complementary material. This tool
is based on the proposed rules and allows the user to adjust the LADRC parameters by
varying the robustness specification between the low and high levels. On the other hand,
the designer can modify the LADRC parameters within predefined intervals to evaluate
the overall performance of the closed loop.
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The use and convenience of the tuning rules were exemplified with the control of lag-
dominated and delay-dominated systems, as well as the control of the temperature in the
cold face of a thermoelectric module. The examples showed that the proposed tuning method
offers satisfactory performance for load disturbance rejection and setpoint following.

As part of the conceptual framework, an overall analysis on the conflicting objectives
regarding the tuning of the LADRC was done. This allows to identify as future research the
possibility of expand the objective space to include other performance criteria; for example,
the total variation of the control signal. The parameterization adopted in this paper for the
observer bandwidth oriented the optimization process to a particular area of the stability
region and as a result, smooth manipulated signals were obtained. It would be of interest
to analyze the trade-offs among other design objectives.
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Abbreviations
In the following, the most important symbols and abbreviations used in this manuscript are listed.

n System order
y System output
u Control law acting on the real plant
a0, a1 coefficients of the second-order model
b Critical gain
r̃ System setpoint
d Load disturbance
f Total perturbation
b0 Nominal value of critical gain
u0 Estate feedback control law acting on the modified plant
xi i-th system real state
zi i-th estimated state
Li i-th observer gain
ki i-th control law gain
s Complex variable
R Laplace transform of the system setpoint
Y Laplace transform of the system output
U Laplace transform of the control law
Zi Laplace transform of the i-th estimated state
G(s) Plant transfer function
GC(s) LADRC direct loop transfer function
GF(s) LADRC feedback transfer function
GA(s) Transfer function of controller
GD(s) Transfer function from output to load disturbance
GU(s) Transfer function to control action to output
GY(s) Closed loop transfer function
k Gain scaling of plant
ωp Frequency scaling of plant
ωo Observer bandwidth
ωc Controller bandwidth
b̄0, ω̄c, ω̄o Scaled LADRC parameters
K Static gain
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T Apparent time constant
l Apparent delay or dead time
Θ Nominal delay or dead time
τ Normalized delay or dead time
J1(θ), J2(θ) Design objectives
θ Vector of decision variables
ITSE Integral of Time Weighted Squared Error
TV Total Variation of control action
t98% Settling time
Ms Maximum sensitivity
MT Complementary sensitivity
ε Mixed robustness measure
Kp, Ti, Td PID controller parameters
εlow, εmed, εhigh Low, medium, and high levels of robustness
kb, nb, ab, bb, cb Coefficients of the tuning rules for the nominal value of critical gain
kω, nω Coefficients of the tuning rule for the controller and observer bandwidth
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