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A new direct numerical simulation of a Poiseuille channel flow has been conducted for
a friction Reynolds number of 10 000, using the pseudospectral code LISO. The mean
streamwise velocity presents a long logarithmic layer, extending from 400 to 2500 wall
units, longer than it was thought. The maximum of the intensity of the streamwise velocity
increases with the Reynolds number, as expected. Also, the elusive second maximum of
this intensity has not appeared yet. In case it exists, its location will be around y+ ≈ 120, for
a friction Reynolds number extrapolated to approximately 13 500. The small differences
in the near-wall gradient of this intensity for several Reynolds numbers are related to the
scaling failure of the dissipation, confirming this hypothesis. The scaling of the turbulent
budgets in the center of the channel is almost perfect above 1000 wall units. Finally, the
peak of the pressure intensity grows with the Reynolds number and does not scale in wall
units. If the pressure at the wall is modeled as an inverse quadratic power of Reτ , then
p′+

∞ ≈ 4.7 at the limit of infinite Reynolds number.
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I. INTRODUCTION

After almost 140 years of the publication of Reynolds’s first work [1], turbulence is still an
open problem. As wall-bounded turbulence is responsible for up to 5% of the CO2 dumped by
humanity every year [2], this challenge is of special importance. Research of turbulent flows has
been dominated by experimental techniques until the 1980s, where supercomputers started to be
powerful enough to solve the equations of turbulent flows. Direct numerical simulation (DNS),
where almost all scales are simulated, is the only reliable technique to study turbulence. However,
due to the highly nonlinear behavior of wall-turbulent flows, DNS are restricted to simplified
geometries, with one or two periodic directions. The most studied of these idealized flows are
Poiseuille turbulent channels, see Fig. 1, where the fluid is confined between two parallel plates
and the flow is driven by pressure.

The friction Reynolds number, defined as Reτ = uτ h/ν, is the main control parameter in wall-
bounded turbulence. Here uτ = √

τw/ρ is the friction velocity, ν is the kinematic viscosity, ρ is the
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FIG. 1. Lines as in Table I. (a) Instantaneous streamwise velocity perturbation, arbitrary units. The flow
goes from the left to the right. Only the bottom part of the channel is shown. Red lines: log layer. Green lines,
outer region.

density, and τw is the friction at the wall. h is the semiheight of the channel and is equivalent to
the radius in pipes and δ99 in boundary layers. Since the seminal work of Kim, Moin, and Moser
[3], the Reτ has steadily increased from 180 in 1987 to 8000 in 2018 [3–9]. A simulation reaching
the Reτ = 10 000 frontier is presented here. This friction Reynolds number is less than the largest
realization of the flow obtained by experimental means; see Ref. [10] and discussion inside. In
particular, Ref. [10] reaches a value of 20 000 with a very good spatial resolution. However, the
main advantage is that DNS allows one to compute any imaginable quantity in the whole domain,
including derivatives close to the wall. Apart from contributing to the discussion of several questions
that have arisen in the last years, with this simulation we provide the community data with the hope
of contributing to better modeling of turbulence.

A companion paper of this work is Ref. [11]. That paper deals with the confirmation of the Lie-
symmetry-based theory of turbulence or more precisely the derivation of arbitrary moment scaling
laws for the log and the deficit region of the flow. In the present article we will restrict ourselves
to present the data and the kinematics of the flow, referring the interested reader to that article for
scaling laws about the streamwise mean velocity. This work is organized as follows. Section II
describes the numerical method and the validation of the data. Section III discusses the one-point
statistics of the flow, including mean flow and intensities. The energy turbulent budgets are discussed
in Sec. IV. Finally, Sec. V contains the conclusions of this work.

II. NUMERICAL METHOD

In this work we present the results of a DNS of a pressure-driven (Poiseuille) channel flow
(see Fig. 1) at a nominal Reτ = 10 000. Superscript (+) indicates that the quantities have been
normalized by uτ and ν. This simulation has been performed in a computational box of sizes Lx =
2πh, Ly = 2h and Lz = πh. This box is large enough to accurately describe the statistics of the
flow [12,13]. The streamwise, wall-normal, and spanwise coordinates are x, y, and z, respectively.
The corresponding velocity components are U, V, andW or, using index notation, Ui. Statistically
averaged quantities in time, x and z are denoted by an overbar, U , whereas fluctuating quantities are
denoted by lowercase letters, i.e., U = U + u. Primes are reserved for intensities, u′ = uu1/2.
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TABLE I. Parameters of the simulations. Reb is the bulk Reynolds number, Reb = Ubh/ν, where Ub is the
bulk velocity. �+

x and �+
z are in terms of dealiased Fourier modes. The last column is the total simulation time

without transition in terms of eddy turnovers.

Case Line Reτ Reb Lx Lz �x+ �z+ Tuτ /h

HJ02 2000 43 650 8πh 3πh 12.3 6.1 11
LJ04 4000 98 302 2πh πh 12.8 6.4 15
LM05 5200 125 000 8πh 3πh 8.2 4.1 7.80
HO10 10 000 261 000 2πh πh 15.3 7.6 19.8

The flow can be described by means of the mass balance and momentum equations,

∂ jUj = 0, (1)

∂tUi + Uj∂ jUi = −∂iP + 1

Reτ

∂ j jUi, (2)

where repeated subscripts indicate summation over 1,2,3 and the pressure term includes the density.
These equations have been solved using the LISO code, which has successfully been employed
to run some of the largest simulations of turbulence [6,14–17]. Briefly, the code uses the same
strategy as Ref. [3], but using a seven-point compact finite difference in the y direction with fourth-
order consistency and extended spectral-like resolution [18]. The temporal discretization is a third-
order semi-implicit Runge-Kutta scheme [19]. The wall-normal grid spacing is adjusted to keep the
resolution at �y = 1.5η, i.e., approximately constant in terms of the local isotropic Kolmogorov
scale η = (ν3/ε)1/4. In wall units, �y+ varies from 0.3 at the wall, up to �y+ � 12 at the centerline.
The resolution in x and z is similar to the largest simulations of turbulence; see Table I. A code
similar to the one used presently, including the energy equation, is explained in Ref. [20].

The initial file of this simulation was taken from a smaller Reynolds number simulation. To
accelerate the compilation of statistics, three initial files were prepared and thus three simulations
were run at the same time. In every case, the code was run until some transition phase had passed
and the flow had adjusted to the new set of parameters. Once the flow was in a statistically steady
state, statistics were compiled. The running times to compile statistics are shown in terms of
eddy-turnovers in the rightmost column of Table I. The transitions until the simulations reached
a statistically steady state, which were very time consuming, are not contemplated in this table.

Table I also shows the parameters of the simulations HJ02 [6], LJ04 [12], and LM05 [8]. These
simulations will be used in the paper in the color code described in the second column of Table I. As
it is said above, this code has already proved its worth, but to further validate the statistics, Fig. 2(a)
shows the error in the momentum equation,

dU
+

dy+ − uv+ = 1 − y+.

The difference between both sides of this equation is below 2 × 10−3, similar to the other three
simulations utilized here. Thus, it has been considered that enough statistical information was
obtained. The details about the size of the box has been given earlier, but to stress the validity
of the box, the spectral energy densities for u and v, φ = kxkzE (kx, kz ), at y+ ≈ 15, the peak of u′,
are given in Fig. 2(b). Here, λ = 2π/k. All the significant scales are captured in the computational
box. This further confirms that the large and wide structures at the right corner are inactive in the
sense of Townsend [6,21,22]. They are present in u spectra but neither in v or uv cospectra. More
details about the spectra will be given in a forthcoming manuscript. Finally, to further post-process
the simulation a total of 300 temporal images of the velocity field have been stored, with a size of
roughly 90TB. This database is open to the community under a reasonable request.
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FIG. 2. Lines as in Table I. (a) Error in the computation of momentum equation. (b) 2D power spectra at
y ≈ 15. U (black) and V (red). The inner isolines represents 90% of the maximum energy. From there, each
isoline is half of the energy of the previous one.

III. ONE-POINT STATISTICS

The mean velocity profile is shown in Fig. 3(a) in terms of the indicator function,  = y+∂y+U
+

.

This function should show a plateau if the classical scaling for the logarithmic layer U
+ =

κ−1 log(y+) + B holds, where κ is the von Kármán constant. Moreover, in Ref. [11] it is shown
that the profile of U

+
is indeed logarithmic. For every case, the first local minimum of  is reached

around y+ ≈ 70, which more or less coincide with the classic starting point of the logarithmic layer
[23]. However, the indicator function is not flat until y+ ≈ 400, so this could be a new starting
point. The logarithmic layer extends to around y+ ≈ 2500 or y/h = 0.25, above the usual value of
y/h = 0.2. To obtain the values of κ and B, we have restricted ourselves to the region where the
indicator function is flattest, i.e., from y+ = 400 to y/h = 0.25 [Fig. 3(b)], obtaining κ = 0.394
and B = 4.61. More details about the selection of this interval are given in Ref. [11]. This value
of κ is similar to the experimental one of [24], and only 0.010 and 0.007 units larger than the
one given by Refs. [8,9]. Abe and Antonia [25] also obtained this value in their study of global
energy. Studying the finite Reynolds number effects on the flow, Luchini [26], and Spalart and Abe

FIG. 3. Lines as in Table I. (a) Indicator function, showing a log layer in the range y+ = 400–2500.
(b) Zoom of the previous figures. Straight dashed lines: κ = 0.388, 0.394, and 0.42. Continuous lines: Spalart
and Abe [27] LE functions for HO02 and LM05 (green, diamonds), and LM05 and HO10 (light blue, circles).
Monkewitz [29] indicator function model (dark green, open squares)
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FIG. 4. Lines as in Table I. (a) u′+. Box: dy+ u′+ evaluated at the wall. (b) dy+ u′+, close to the possible
second maximum. Box: maximum value of dy+ u′+ (c) v′+, w′+ and uv. Continuous lines with circles: Spalart
and Abe [27] LE functions for HO02 and LM05 (green), and LM05 and HO10 (light blue) for v′+. (d) Intensity
of total pressure. Box: shifting of all pressures to the peak of HO10 case.

[27], give a similar value. In this last work, an algorithm to compute the Luchini extrapolation for
infinite Reynolds number is given. This approximation has been reproduced using the same data as
Ref. [27], and the new data available, lines with circles of Fig. 3(b). This procedure, taking κ as the
maximum of the curve, would lead to κ = 0.388, a bit smaller than the one given in Ref. [27].

It is worth mentioning that some other authors, with different tools, have obtained values above
0.40. McKeon [28] in high Reynolds numbers involving pipes got 0.42. More recently, Monkewitz
[29] has developed an algorithm to model U

+
for very large Reynolds numbers. The profile of the

indicator function using this model is shown in Fig. 3(b). The value of κ is similar to the one obtained
by us. However, in Ref. [29] the actual logarithmic profile for Reτ = 105 would start around 103

wall units for a final value κ = 0.42. As a DNS reaching this Reτ is approximately 3500 times more
costly than the one presented here, this is probably an open problem for the next decade or more.

The intensity of the streamwise velocity, u′+, is shown in Fig. 4(a). The well-known scaling
failure in the buffer layer is still present [6], and the maximum of the intensity is u′+ = 3.07. Lee
and Moser [8] found that this limit is growing in several DNS studies of canonical flows, in the range
Reτ = 1000–5200. However, several experimental studies [30,31] suggested that this limit could be
bounded. Following Ref. [32], the value of the first maximum seem to follow a logarithmic law,
max uu+ ≈ 0.55 log Reτ + 4.4 (Fig. 4(a), right corner). The value given in Ref. [33] is max uu+ ≈
0.63 log Reτ + 3.8, suggesting that the growing of the maximum in channels with respect to the
Reynolds number is slower than in other wall-bounded flows. In a different approach, Chen and
Sreenivasan [33] collected all the data available, showing that this maximum is indeed limited.
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They fitted the data to different law, max uu+ ≈ A − BRe(−1/4)
τ , obtaining a finite value for this peak

at infinite Reynolds number. Similar to this work, this growing is related to the scaling failure of the
dissipation [34], as it is shown later.

About the open question of a possible second maximum of u′+ the situation is shown in Fig. 4(b).
Notice that the existence of this second maximum could lead to the presence of new phenomena at
the beginning of the logarithmic layer [35]. If it exists, then this maximum would be located around
y+ ≈ 120. However, the derivative of u′+ is still not zero. Fitting the data to a logarithmic grow law,
we obtain dyu′+

0 = 0.29 log Reτ − 2.7, and a approximate critical value of Reτ = 13500, which is a
bit smaller than the one estimated in Ref. [10].

The other three remaining components of the Reynolds stress tensor can be seen in Fig. 4(c).
As expected, the scaling of v′+ and uv+is almost perfect near the wall. v′+ presents a large plateau
in the log layer, but following Ref. [27], it is expected to grow for infinite Reynolds number [lines
with circles, Fig. 4(c)]. In the case of w′+ the maximum keeps growing, causing a minor scaling
failure in the viscous sublayer. Pressure, Fig. 4(d), is computed as in Ref. [36], growing at the wall
logarithmically [37,38]. The peak is at y+ ≈ 30 for all simulations. Even if the curves seems to be
parallel, they are not. In the box of Fig. 4(d), where we have drifted HJ02, LJ04, and LM05 so
they coincide in their maximum with HO10, it is appreciated than the scaling is not perfect either.
The pressure at the boundary grows as P0 = 0.33 log Reτ + 0.30 and Pmax = 0.31 log Reτ + 0.96.
Notice that P0 grows faster thanPmax. However, if this law applies, then they will not be equal until
extremely high values of the Reynolds number. The data also fits extremely well to the law suggested
in Ref. [33], max p+ ≈ 4.78 − 10.002Re(−1/4)

τ . In this case, the limit value for the pressure would
be p+

∞ ≈ 4.7, but more points are needed at larger Reynolds number to test both laws.

IV. TURBULENT BUDGETS

The budget equation for the component uiu j of the Reynolds-stress tensor is written as [34,39]

Bi j ≡ Duiu j/Dt = Pi j + εi j + Ti j + �s
i j + �d

i j + Vi j . (3)

The terms in the right-hand side of Eq. (3) are referred as production, dissipation, turbulent
diffusion, viscous diffusion, pressure-strain, and pressure-diffusion. They are defined by

Pi j = −uiuk∂kUj − u juk∂kUi, εi j = −2ν∂kui∂ku j,

Ti j = ∂kuiu juk, Vi j = ν∂kkuiu j,

�s
i j = p(∂ jui + ∂ jui ), �d

i j = ∂k (puiδ jk + pu jδik ), (4)

where δi j is Kronecker’s δ. The splitting of the pressure in two different terms is not unique, but this
one offers more information in the B12 and B22 terms [34]. Finally, in channels Bi j ≡ 0.

In the viscous and buffer layers, budgets should scale in wall units, B+
i j = Bi jν/u3

τ . The budgets
are shown in Fig. 5, using this scale. Except for those terms that are identically zero, all are active.
The well-known scaling failure [34] of the dissipation at the wall for B11 is still present, Fig. 5(a).
As expected, all terms collapse for y+ > 10. However, below this more or less arbitrary limit, the
absolute values of ε+

11 and V +
11 increase with the Reynolds number. This scaling failure can be linked

to the growing of the first maximum of u′+. At the wall [34],

V11|y=0 = ν∂yy u2|y=0 = 2ν (∂yu)2|y=0 = −ε11, (5)

as all other terms vanish. Similarly to Refs. [17,40], u′+ can be approximated by

u′+ = (
buy+ + cuy+2 + ...

)
. (6)

Therefore, near the wall, u′+ ≈ buy+ and V +
11 ≈ b2

u. Thus, the reason why this term of the
turbulent budget does not scale with the Reynolds number in the wall comes from the differences
in the bu terms. This term represents the slope of u′+ near the wall. Looking at the box in Fig. 4(a),

014602-6



WALL TURBULENCE AT HIGH FRICTION REYNOLDS …

FIG. 5. Lines as in Table I. Budgets for Reynolds stresses in wall units. (a) B+
11, (b) B+

12, (c) B+
22, (d) B+

33.
Production , dissipation , viscous diffusion , pressure-strain , pressure diffusion , turbulent diffusion .

one can see that, effectively, the value of du′+/dy+ at the wall does not collapse, but it slightly
increases. Apart from our data, there are evidences that the peak at y+ ≈ 15 keeps growing with
respect to Reτ [10]. Because the position of the peak is constant in y+, the slope of u′+ has to be
higher for larger Reτ . In other words, as long as the peak of u′+ increases with Reτ , bu will also
increase and V +

11 cannot scale at the wall. In the case of passive thermal flows, the behavior of the
thermal field is similar to the streamwise velocity. It was observed in Ref. [41], that in thermal
flows for high Prandtl numbers the peak value of the temperature intensity, θ ′+, was approximately
constant with respect to the Reynolds number. This yielded a constant value of the derivative of θ ′+
at the wall and, therefore, a much better scaling of the viscous diffusion term for the energy equation
near the wall. A similar argument, but using production instead of dissipation, is shown in Ref. [33]
highlighting this relationship.

The scaling failures of the pressure terms, Figs. 5(b) and 5(c), are harder to explain because there
are no good models for them [34]. However, it seems that this scaling failure is decreasing with the
Reynolds number, even if the pressure keeps growing at the wall, as it is shown in Fig. 4(d).

The situation in the center of the channel is better explained using a different adimensional-
ization, B∗

i j = yBi j/u3
τ ; see Fig. 6. This scaling counteracts the expected decay of these terms far

from the wall, which is roughly as y−1. To avoid numerical noise, the turbulent diffusion has been
computed here using the fact that Bi j ≡ 0. Above y/h ≈ 0.2 the scaling is almost perfect, but in the
case of the production term of B∗

11. This scaling failure is linked to the unsuccessful scaling of u′
with y/h in the outer region due to the effect of large scales [38]. Abe and Antonia [25] demonstrated
that small scales are likely to lose the Reynolds-number dependence more rapidly than large scales
given a more distinct overlap scaling for the dissipation than for the mean velocity, which explain
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FIG. 6. Lines as in Table I. Premultiplied budgets for the different terms of the Reynolds stresses, B∗
i j =

yBi j/u3
τ . (a) B∗

11, (b) B∗
12, (c) B∗

22, (d) B∗
33. Production , dissipation , viscous diffusion , pressure-strain ,

pressure diffusion , turbulent diffusion .

this small scaling failure. In agreement with previous results [34,39] all the budgets above the buffer
layer, y/h ≈ 10−3 in this case, are dominated by a few terms. The streamwise velocity fluctuations
introduce the turbulent energy in the flow. This energy is dissipated by the dissipation and the
pressure-strain terms Fig. 6(a). Notice that P11 ≈ 2ε11 and that in the channel center the turbulent
diffusion becomes dominant in the production of energy, as U + flattens.

This energy is redistributed by pressure to vv and ww, where it is basically dissipated by the
dissipation, Figs. 6(c) and 6(d). Notice, however, that pressure diffusion plays an important role in
the channel center. Finally, for the Reynolds stress uv Fig. 6(b) production and pressure strain are
the dominant terms, but above y/h ≈ 0.5 pressure diffusion and turbulent diffusion are also present.

V. CONCLUSIONS

To conclude, we have simulated a Poiseuille turbulent channel flow at a friction Reynolds number
of Reτ = 10 000. This simulation was made in a small box of size (2πh, 2h, πh), large enough to
accurately compute the statistics of the flow. The profile of U shows a long log layer, extending from
y+ ≈ 400 to y+ ≈ 2500. The value of the von Kármán constant is κ = 0.394. The first maximum
of the streamwise profile u′+ continues growing, which is the cause of the scaling failure of the
dissipation at the wall. The second maximum of u′+ has not appeared yet, and it is foreseen to appear
at approximately Reτ = 13 500. However, the turbulent budgets show a almost perfect scaling in the
outer region with B∗

i j = yBi j/u3
τ . Two growing laws are presented for the pressure, predicting a value

of p+
∞ ≈ 4.7
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A paper about new scaling laws using Lie-symmetry theories has been published together with
this work [11], and some more results about the spectra and the dynamics of the flow will be
published shortly.

The database containing the mean flow, intensities, and turbulent budgets can be downloaded
from the TUdatalib Repository of TU Darmstadt at Ref. [42].
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