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An analysis of the paradox in R&D. Insight from a new spatial 

heterogeneity model 

Abstract 

The relationship between research and development (R&D) and economic growth is a 

hot topic. Most research indicates that R&D leads to innovation, which is conducive 

to economic growth. However, some scholars hold a different opinion, alleging that 

high R&D investment will not bring high economic growth. This scenario is also 

known as the Swedish paradox. We develop a new spatial heterogeneity model in the 

form of a mixed geographically weighted panel regression with spatial Durbin model 

(MGWPR-SDM). Using this model, we add to the debate over the possible existence 

of a Swedish paradox in China. The results show that the impact of aggregate R&D 

expenditure on economic growth follows an inverted U-shaped curve. The Swedish 

paradox appears after a threshold is reached, mainly due to business enterprise R&D 

expenditure rather than government R&D investment. However, from the perspective 

of R&D input per unit GDP, the impact of R&D intensity on economic growth is 

U-shaped, and the Swedish paradox occurs before the threshold is reached. Finally, 

the effect of government R&D expenditure and business enterprise R&D expenditure 

on economic growth has significant spatial heterogeneity. 

Keywords: R&D; Swedish paradox; economic growth; spatial heterogeneity; 

MGWPR-SDM 

 

1. Introduction 

Research and development (R&D) is a determinant of long-run productivity and 

welfare (Jones and Williams, 2000). The experience of developed countries has 

shown that leading countries in innovation and R&D have higher economic growth 

than other nations (Samimi and Alerasoul, 2009). However, Bilbao-Osorio and 

Rodriguez-Pose (2004) and Fragkandreas (2013) has provided evidence of the 

Swedish paradox. This paradox refers to the fact that Sweden is inefficient in 

transforming its high R&D expenditure into productivity and growth (Andersson et al., 

2002; Edquist, 2002; OECD, 2005). Many scholars have researched this topic. Most 

research indicates that R&D investment can effectively promote economic growth. 

However, some scholars argue that R&D investment has not played such a role, 

claiming that the Swedish paradox is in fact a real phenomenon (Ejermo et al., 2011; 

Shang’ao et al., 2011; Ye et al., 2018).  

There are three possible reasons for this dispute. First, regional spatial 

heterogeneity is likely to lead to such disputes. Despite the different resource 



endowments, socioeconomic conditions (e.g., absorptive capacity, tax, and innovation 

policy) and cultural background of different countries, few scholars have studied this 

issue from the perspective of geographical spatial heterogeneity (Haq, 2018). Second, 

the impact of R&D on economic growth is not simply positive or negative. Instead, 

there may be an inverted U-shaped relationship between the two (Kim, 2020). Third, 

different types of R&D investment, such as government R&D and private enterprise 

R&D, have different levels of efficiency, which leads to different conclusions 

(Jacobson et al., 2013; Kacprzyk & Świeczewska, 2019; Xiong et al., 2020). Most of 

the related research uses aggregate data for the regression analysis, offering 

conclusions based on the mean value. However, few studies have taken these three 

aspects into account at the same time.  

In this paper, we fill the gap in the literature by developing a new spatial 

heterogeneity model in the form of a mixed geographically weighted panel regression 

with spatial Durbin model (MGWPR-SDM). We thus add to the debate over whether 

a Swedish paradox exists in China. We divide aggregate R&D investment into 

government R&D investment and enterprise R&D expenditure. In addition, we 

include the square term of R&D investment in the model. Thus, we comprehensively 

examine the impact of R&D input on regional economic growth by considering these 

three sides of R&D expenditure.  

 

2. Theoretical framework 

Much empirical research has been conducted to verify whether R&D expenditure can 

promote economic growth. However, scholars have never reached a consensus, and 

even the conclusions of studies of the same region are quite different. 

Romer (1990), and Lichtenberg (1993) have reported that the relationship between 

investment in technology and R&D expenditure increases productivity and therefore 

growth (Bilbao-Osorio and Rodriguez-Pose, 2004). This finding is supported by many 

empirical findings. Hall (1996) showed that investment in R&D is positively 

correlated with productivity and profitability at the firm level. Zachariadis (2003) 

provided strong evidence that R&D investment and growth are positively related in 

the U.S. economy (Sveikauskas, 1986; Rabiei, 2011; Blanco et al., 2016). However, 

Comin (2004) did not find R&D to be responsible for nearly as much of actual growth 

in the U.S. after 1950 as Jones and Williams (2002) did. The contribution of R&D 

was found to be quite small—only 0.1 times the observed growth rate. Sadraoui and 

Zina (2009) examined the dynamic relationship between cooperation in R&D and 

economic growth using panel data from a sample of 23 countries between 1992 and 

2004. The results suggest a positive and significant relationship between R&D 

cooperation and economic growth. Dam and Yildiz (2016) studied panel data on the 

BRICS-TM countries (Brazil, Russia, India, China, South Africa, Turkey, and Mexico) 

for 2000 to 2012, showing that the impact of R&D and innovation are positively 

related to economic growth. Türedi (2016) proposed two-way positive causality 

between R&D expenditure and economic growth for the 23 OECD member countries 

between 1996 and 2011, consistent with the conclusions of Badri et al. (2019). 



Moutinho (2017) reported that government R&D investment could be effective in 

enhancing GDP growth, even in technologically underdeveloped regions, and could 

also enhance mass-market employment growth, but only if coupled with effective 

corporate R&D. Edquist and Henrekson (2017) reported that both ICT and R&D 

capital are positively associated with value added in the Swedish non-farm business 

sector. Szarowská (2018) found that dynamic panel analysis conclusively confirms a 

positive and significant impact of R&D expenditure on economic growth in Central 

and Eastern European (CEE) countries. Sokolov-Mladenović et al. (2016) reached the 

same conclusion. Kaneva and Untura (2019) found that both R&D and TI had a 

significant and positive effect on GDP per capita growth from 2005 to 2013 in Russia. 

Some conflicting findings suggest that R&D may not promote economic growth. 

Ulku (2004) analyzed patent and R&D data for 20 OECD and 10 non-OECD 

countries, both developed and developing, for the period 1981 to 1997. The effect of 

R&D stock on innovation was observed to be significant only in OECD countries 

with large markets. Ejermo et al. (2011) showed that “the Sweden Paradox occurs 

only in fast-growing manufacturing and service sectors” and not in slow-growing 

sectors (cf. Edquist and Mckelvey, 1998), which is exactly the opposite of the 

findings of Wang et al. (2013). The analysis by Bayarcelik et al. (2012) showed that 

R&D expenditure in Turkey has a positive impact on economic growth. In contrast, 

Tuna et al. (2015) found that there is no co-integration relationship or causal 

relationship between R&D expenditure and economic growth, based on data for 

Turkey from 1990 to 2013. Kacprzyk and Świeczewska (2019) found a significant 

positive link between business R&D stock and economic growth in EU countries that 

are relatively close to the frontier. Still, no significant relationship was found to exist 

between government R&D stock and economic growth. Similarly, the explanation 

that government-funded R&D activities are not efficient enough is also popular on the 

paradox (Granberg and Jacobsson, 2006; Hellström and Jacob, 2005; Henrekson and 

Rosenberg, 2001; Jacobsson et al., 2013; Jacobssson and Rickne, 2004). Samimi and 

Alerasoul (2009) even concluded that the low R&D expenditure by 30 developing 

countries had no significant effect on economic growth between 2000 and 2006. Kim 

(2020) reported an inverted U-shaped relationship between the concentration of R&D 

investment and economic growth in 14 countries over the period 1996 to 2013. Some 

level of concentration may be good for growth. However, beyond a certain point, 

concentration hurts growth (Wu et al., 2020). 

The debate over whether there is a Swedish paradox in China continues. Liu and  

Cheng (2011) reported that domestic R&D, domestic R&D in other industries, and 

foreign R&D capital have significant positive effects on productivity. Research by Ma 

(2014) showed that the role of R&D human resources investment in economic growth 

is relatively prominent in the long run, while financial resources investment has a 

more significant short-term impact on economic growth. Similarly, Lu and Jin (2011) 

reported that the output elasticity of R&D personnel input is greater than that of R&D 

funding input. Wang and Wu (2015) observed that unlike the strong correlation with 

enterprise R&D, the correlation between government R&D expenditure and economic 

growth is nearly zero. Liu and Wang (2017) found that nationwide R&D has become 



the most important factor behind the capital in the input factors that drive economic 

growth, and direct R&D and indirect R&D contribute equally to economic growth. 

From the perspective of different regions, the eastern region of direct R&D and 

indirect R&D has the largest driving effect, and it has a gradually declining trend in 

the east, middle, and west. The simulation results of Zheng et al. (2018) indicate that 

R&D investment has a significant impact on the macro economy. Positive effects 

promote the growth of total output value, reduce prices, boost domestic demand and 

exports, and improve residents’ welfare. Public R&D investment has a more 

significant impact on economic growth than private R&D investment. 

However, Gao (2017) found that, since 2001, with the increase in intensity of 

technological innovation input, China’s total factor productivity (TFP) growth rate 

and its contribution to economic growth have gradually declined. Taking 2008 as the 

watershed, a scissors difference between the two has begun to appear, expanding year 

on year. This phenomenon is known as the mystery of innovation in China’s 

economic development process or the solo paradox of China’s R&D investment (Li et 

al., 2017). It is an important characteristic of China’s economic system in the context 

of the new normal (Shujun, 2019). Wu (2008) argued that in industries with a high 

proportion of state-owned property rights, R&D does not promote productivity. Gu 

and Ren (2015) showed that the level of R&D does not play a significant role in 

driving China’s economic growth. Ye and Liu (2018) also noted the dilemma of 

China’s scientific and technological innovation, reporting that scientific research has 

not improved TFP in the short-term direct impact. Technology development has a 

significant inhibitory effect on improving total factor productivity. Fan et al. (2008) 

analyzed China’s R&D input and GDP data from 1987 to 2005 and reached a similar 

conclusion: In the long run, there is a stable and balanced relationship between R&D 

input and China’s economic growth, but the change in R&D input is not a Granger 

cause of economic growth. Research by Li et al. (2011) showed that the rapid 

development of R&D leads to rapid technological progress and the slow accumulation 

of human capital. Human capital is currently insufficient to fully understand and 

flexibly use new technologies. This situation has produced an erosion effect, which 

has further reduced the efficiency of human capital accumulation, exacerbated the gap 

between technological progress and human capital accumulation, worsened the 

allocation of social resources, and reduced the economic equilibrium growth rate. 

Zhang et al. (2016) argued that under the influence of technological gaps, China’s 

R&D has not fully exerted its driving effect on technological progress. Ren (2017) 

also confirmed this point, noting numerous cases of the Swedish paradox in regional 

development in China. That is, innovation investment may not necessarily translate 

into economic growth. Therefore, this paper addresses one question: Does a Swedish 

paradox exist in China, or does China’s R&D expenditure promote economic growth? 

The paper thus advances the debate surrounding this issue. 

Most studies suggest that R&D positively affects economic growth. China, a 

developing country, has a vast land area similar to that of Europe. However, Europe 

comprises 47 countries with major differences in their socioeconomic environments. 

Analogously, China has 34 provincial administrative regions, and the socioeconomic 



environment in each province, city, and autonomous region also has significant spatial 

heterogeneity. The impact of R&D investment on economic growth varies in different 

regions. Therefore, when considering the impact of R&D investment on economic 

growth, the spatial variable coefficient model must be used to consider regional 

heterogeneity. However, most of the aforementioned empirical studies fail to consider 

spatial heterogeneity. Instead, they produce estimates of the average across all sample 

areas. Studies that consider spatial heterogeneity and spatial correlation in sample 

areas are rare. We develop a new model to cover this gap. This new model also 

corresponds to the innovation of this paper. Most of the abovementioned studies 

consider the direct impact of aggregate R&D investment cost on economic growth. 

The weakness of this approach is that the conclusions are too general.  

This paper focuses on the following issues: Is the impact of R&D investment on 

China’s economic growth positive or negative? What is the stage of negative impact 

or positive impact? Is there spatial heterogeneity in this impact? What determines this 

impact?  

The remainder of the paper is organized as follows. Section 3 presents the model 

and estimation method, including a description of the data and variable selection. 

Section 4 presents the empirical analysis, including testing and analysis of the 

empirical results. The conclusions and a discussion of the findings are provided in 

Section 5. 

 

 

  



3. Model and estimation method 

This study uses provincial panel data covering 31 provinces, municipalities, and 

autonomous regions in China from 2013 to 2017. The core variables are R&D 

expenditure (RD) and its square term (RD2). The explanatory variable is GDP, 

representing the level of economic development. The control variables are the spatial 

lag of the explanatory variable (WY), the level of capital accumulation (K), the 

amount of labor (L), the full-time equivalent of R&D personnel (RL), and the spatial 

lag of the explanatory variable. All data were sourced from the China Statistical 

Yearbook on Science and Technology and the National Bureau of Statistics website. 

 

Fixed effects MGWPR-SDM model construction  
The classic Cobb-Douglass production function is:  



itititit LKTFPY =
      

(1)
 

where Y represents the output level, A represents technological progress,   and 
 are the output elasticity values corresponding to the capital K and labor L, 

respectively, and i and t represent the region and time, respectively. Taking the 

logarithm of both sides and adding the residual term gives the following model: 

itititit LKTFPY lnlnlnln  ++=
      

(2) 

Technological progress is the result of technological innovation due to R&D. Thus, A 

represents technological progress, which can be expressed as: 



itititit RLRDATFP =
      

(3)
 

where A is the unexplained technical change, RD is R&D investment, and RL is the 

full-time equivalent of R&D personnel. Thus, 

ititititititit LKRLRDAY  +++++= lnlnlnlnlnln
     

(4) 

 

Some scholars have observed that the influence of the coefficient of R&D on 

economic growth is positive, and some have found this influence to be negative, 

probably because of the U-shaped relationship between the two (Mao et al., 2013; 

Kim, 2020). Therefore, we add the square term of RE to the model given in Eq. (4) to 

give the following equation:  

itititititititit RERLRDLKAY  ++++++= 2lnlnlnlnlnln
     

(5) 

If all parameters,     , change with the geographical location, then the 

model in Eq. (5) changes as follows: 

ititiitiitiitiitiitit RDRLRDLKAY  ++++++= 2

)()()()()( lnlnlnlnlnln
  

(6) 

 

where i is location. If there is spatial autocorrelation of the dependent variable Y, we 

should add the spatial lag term of the dependent variable (WY) to the model. Thus, 

the model can be rewritten as:  



ititiitiitiitiitiititit RDRLRDLKAWYY  +++++++= 2

)()()()()( lnlnlnlnlnlnln
 

(7) 

where, NT WIW =
, W is the spatial distance matrix, TI is the T-dimension 

identity matrix, and NW
is the row normalized spatial weight matrix with all diagonals 

in the N×N dimension. The selection methods include Rook adjacent, Queen adjacent, 

and KNN. In this paper, the classic (0,1)-matrix of Queen adjacent space is used. If 

two regions are neighbors, the value is 1; otherwise, it is 0. 

Some of the explanatory variables may also have spatial correlation, which 

should be considered in the model. Hence, Eq. (7) can be rewritten as: 

it
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We can rewrite Eq. (8) in a more compact matrix form as: 

 ++++++++= WXRDRLRDLKWYY T

2ι     (9) 

where Y is a vector with dimension NT×1 and  is the individual effect term 

with dimension N*1 (i.e., technical progress lnA in Eq. (8)). The two can be regarded 

as the same thing, namely the intercept term. Because the data in this paper are short 

panel data, technological progress can reasonably be expected to vary from region to 

region but remain constant in the short term. The term 
Tι is a T×1 dimension vector. 

K, L, RE, RL, and the error term are all NT×1 vectors. The term WX is an NT × l  

matrix, which contains the spatial lag term of the l  explanatory variables. Actually, 

all coefficients corresponding to these explanatory variables may be varying 

coefficients (that change with spatial location) or fixed coefficients (that do not 

change with spatial location). Therefore, Eq. (8) can be rewritten as:  

 ++++=
),( ii vuvvccT XXWYY ι      (10) 

Eq. (10) above is a benchmark model, used to derive all the following formulas. 

The term Xc represents the fixed coefficient variable, and λc is the corresponding 

coefficient matrix. The term vX is the variable coefficient variable, the corresponding 

coefficient matrix is
),( ii vuv , and

 
),( ii vu  is the latitude and longitude of spatial 

location i. The term  is the spatial lag coefficient of the dependent variable. It is 

used to describe spatial autocorrelation. It can be a varying coefficient or a fixed 

coefficient. Due to its special characteristics, it will be discussed separately later. 

If all the coefficients of the explanatory variables in Eq. (10) are varying in space, 

then we can use a geographically weighted panel regression (GWPR) model (Yu, 

2010), which is based on a geographically weighted regression (GWR) model 

(Brunsdon et al., 1996; Fotheringham et al., 2003). However, this model does not 

consider the endogenous spatial lag term of the dependent variable (WY). If only some 



of the coefficients change with spatial location, we should use the mixed 

geographically weighted panel regression (MGWPR) model, which is a kind of 

semi-parametric model. However, according to the literature, there are no similar 

models for panel data, except the MGWR-SAR and SAR-GWR models proposed by 

Geniaux and Martinetti (2018) and Jaya et al. (2018) for cross-sectional data. None of 

these models can be used to solve Eq. (10). Therefore, based on the above models, we 

propose a more generalized fixed effects MGWPR-SDM model applicable to spatial 

panel data. The proposal of this model is one of the innovations of this paper. 

The proposed model (MGWPR-SDM) is a more generalized model because Eq. 

(10) can be reduced to three spatial panel model clusters. Let 0=  and 0 , then 

Eq. (10) is the MGWPR-SAR model cluster. Let 0=  and 0 , then Eq. (10) is 

the MGWPR-SLX model cluster. Let 0 , 0 , and 0=+  , then Eq. (10) 

is the MGWPR-SEM model cluster. Each model cluster can be subdivided into 

several sub-models. For example, the MGWPR-SDM model cluster can be changed 

into the eleven models shown in Eq. (11), eight of which are new. 
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(a) ρ is a fixed coefficient                   (b) ρ is a variable coefficient 



Figure 1: The nested diagrams of the MGWPR-SDM model 

①When ρ is a fixed coefficient and ρ, λc, and λv ≠ 0, then Eq. (10) becomes the 

model ),,0( vc kkSDMMGWPR − , where cX or vX contains the spatial lag term of some 

explanatory variables. 

②When ρ is a fixed coefficient and λc = 0, then Eq. (10) becomes the model 

),0,0( vkSDMMGWPR − , where vX contains the spatial lag term of some explanatory 

variables. 

③When ρ is the fixed coefficient and λv = 0, then Eq. (10) becomes the model 

)0,,0( ckSDMGWPR − , which is the ordinary spatial Durbin panel model (SPDM), 

where cX contains the spatial lag term of some explanatory variables. 

④When ρ is a variable coefficient and ρ, λc, and λv ≠ 0, then Eq. (10) becomes 

the model ),,1( vc kkSDMMGWPR − , where cX or vX contains the spatial lag term of 

some explanatory variables. 

⑤When ρ is a variable coefficient, ρ ≠ 0, and λc = 0, then Eq. (10) becomes the 

model ),0,1( vkSDMMGWPR − , where vX contains the spatial lag term of some 

explanatory variables. 

⑥When ρ is a variable coefficient and only λv = 0, then Eq. (10) becomes the 

model )0,,1( ckSDMMGWPR − , where cX contains the spatial lag term of some 

explanatory variables. 

⑦If ρ = 0 and λc and λv ≠ 0, then Eq. (10) changes into the MGWPR-SLX 

model, where cX or vX contains the spatial lag term of some explanatory variables. 

⑧If ρ = λc = 0, then Eq. (10) changes into the GWPR-SLX model, where vX

contains the spatial lag term of some explanatory variables. 

⑨If ρ = λv = 0, then Eq. (10) changes into a spatial panel with spatial lags of 

explanatory variables (SPLX) model, where cX contains the spatial lag term of some 

explanatory variables. 

⑩When ρ is a fixed coefficient, ρ ≠ 0, and λc = λv = 0, then Eq. (10) changes into 

the pure spatial autoregression panel data model PDM-SAR(q). 

11 When ρ is a variable coefficient, ρ ≠ 0, and λc = λv = 0, then Eq. (10) changes 

into the pure spatial autoregression panel data model PDMv-SAR(q), and the 

coefficient varies with geographical location. 

In practice, the selection of the most suitable model requires a series of tests, 

which are mentioned in Part 3. Because the individual effect   is related to a certain 

explanatory variable in the panel model, ordinary least squares (OLS) cannot be used 

to obtain a consistent estimate. Therefore, based on the model estimation by Qurani 

(2014) and Meutuah et al. (2017), we use the first-order difference method to 



eliminate the individual effect term and give the estimation process using the fixed 

effects MGWPR-SDM model. 

First, after it has been averaged by time, Eq. (10) can be rewritten as: 

 ++++=
),( ii vuvvccT XXYWY ι     (12) 

By subtracting Eq. (12) from Eq. (10), we get:  

 −+−+−+−+−=−
),(

)()()()(
ii vuvvvccTiT XXXXYWWYYY ιι  

This equation can be further abbreviated to:  
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),( ii vuvvcc XXYWY        (13) 

where YYY −=


, ccc XXX −=


, vvv XXX −=


, and  -=


. The following model 

estimates are based on this equation. 

 

Fixed effects MGWPR-SDM model estimation  

A key assumption of the traditional GWR model is that there is spatial heterogeneity 

but not spatial autocorrelation. This assumption is also the model’s weakness 

(Geniaux & Martinetti, 2018). The MGWPR-SDM model proposed in this paper for 

panel data not only simultaneously takes into account spatial heterogeneity and spatial 

autocorrelation but also offers richer information, stronger economic interpretations, 

and broader applicability than the GWR cluster cross-sectional model. For spatial 

heterogeneity, it can be characterized by the varying coefficient of the explanatory 

variable in the model. In contrast, spatial autocorrelation can be characterized by the 

coefficient of the spatial lag term of the dependent variable. In practical applications, 

it can be divided into two cases:  is the varying coefficient and  is the constant 

coefficient, corresponding to MGWPR-SDM(1,kc,kv) and MGWPR-SDM(0,kc,kv), 

respectively. Therefore, these two cases must be discussed separately. We give the 

estimation processes for these two types of models only because other types of 

models are simply special cases of these two. The estimation method of the model 

mainly follows the two-step method proposed by Fotheringham et al. (2003). The 

advantage of this method is that it is less computationally intensive than the method 

recommended by Brunsdon et al. (1999) and has high accuracy (Fotheringham et al., 

2003). The derivation of the fixed effects MGWPR-SDM model is shown in 

Appendix A. Here, we give the estimation results first. 

(1) when ρ ≠ 0 and ρ is the varying coefficient, the estimation result of the 

MGWPR-SDM(1,kc,kv) model is as follows: 
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(14) 



(2) when ρ ≠ 0 and ρ is a constant coefficient, the estimation result of the 

MGWPR-SDM(0,kc,kv) model is as follows: 
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(15) 

The first column of the coefficient matrix is the spatial autocorrelation coefficient  , 

and the rest is c . The above estimation results indicate that the results of the two 

cases differ depending on whether the lag coefficient of the dependent variable space 

is varying. 

 

 

  



4.Empirical analysis  

Model identification and testing 

In this section, three kinds of tests are needed to determine to which model in Eq. (11) 

the data apply. We must first check whether a spatial model is needed, usually by 

employing Moran’s I test. Second, we must test whether the panel model is a fixed 

effects or random effects model. The third test is to decide whether the coefficients of 

each explanatory variable are varying with spatial location.  

（1）Model diagnostic 1: Moran’s I test  
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Here, y  is the mean of y , 2s is its variance, and ijw is the weight of the spatial 

distance from location i to location j. The null hypothesis (H0) is that there is no 

spatial correlation of data and that the data follow a spatially random distribution. The 

alternative hypothesis (H1) is that the data have spatial autocorrelation, in which case 

the spatial model method would be needed to process the data. 

 

Table 1: Moran’s I value for all variables 

 GDP K L rl TotalRD GovRD EnterRD Insten 

2013 
0.154  0.132 0.123  0.153  0.187  -0.011  0.206  0.27 

(0.051) (0.08) (0.084) (0.048) (0.028) (0.388) (0.017) (0.002) 

2014 
0.154  0.119 0.129  0.172  0.196  -0.012  0.191  0.287 

(0.051) (0.097) (0.077) (0.034) (0.024) (0.394) (0.022) (0.001) 

2015 
0.160  0.126 0.133  0.195  0.200  0.009  0.195  0.299 

(0.045) (0.086) (0.073) (0.021) (0.021) (0.302) (0.02) (0.001) 

2016 
0.174  0.138 0.123  0.200  0.183  -0.011  0.210  0.292 

(0.035) (0.072) (0.084) (0.019) (0.03) (0.396) (0.015) (0.001) 

2017 
0.174  0.105 0.130  0.174  0.187  -0.007  0.223  0.263 

(0.034) (0.118) (0.073) (0.032) (0.027) (0.386) (0.011) (0.003) 

Note: “TotalRD” is the aggregate R&D expenditure; “GovRD” is the government 

R&D expenditure; “EnterRD” is the business enterprise R&D expenditure; “Insten” is 

R&D intensity. The numbers in parentheses are the p values. 

 

According to Moran’s I test (Table 1), all variables except K, L, and GovRD 

have spatial correlation. Therefore, spatial correlation must also be included in the 

model, and a spatial econometric model must be used. 

（2）Model diagnostic 2: Spatial Hausman test 

According to the relationship between explanatory variables, an individual effects 

panel model can be divided into a fixed effects model and a random effects model. In 

this paper, the spatial Hausman test proposed by Mutl and Pfaffermayr (2011) was 

used to determine which model was most appropriate.  
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Here, FGLS̂
and W̂ are the spatial GLS estimator and the estimator in the spatial group, 

respectively, and FGLS̂  and W̂  are the variance-covariance matrices corresponding 

to their respective coefficients. The term H is subject to the 
2  distribution with K 

degrees of freedom, and K is the number of explanatory variables in the model. The 

null hypothesis (H0) is that the estimation coefficient of fixed effects and the estimator 

of random effects are consistent and most effective. The alternative hypothesis (H1) is 

that the fixed effects estimator is consistent and inconsistent. This process can be 

implemented through the command “sphtest” in the R language package splm. 

Table 2 : Test for model specification (fixed or random) 

Diagnostic Statistic Value 

Hausman test Chi2(7) 59.24 (p = 0.00) 

The Hausman test shows that 24.592 = . The corresponding p value is 0.00, 

which is less than the significance level of 0.05. Therefore, the null hypothesis H0 is 

rejected, and we must select a fixed effects panel model. Also, the data in this paper 

are for provinces and municipalities in China, and the samples are almost all maternal 

samples rather than random samples. Hence, the random effects model can be 

dismissed. 

 

（3）Variable selection: Bootstrap test  

Drawing on the method proposed by Mei (2016), we used a bootstrap method to 

test whether some explanatory variables in the GWR model have fixed coefficients. 

This test method is more robust than the F test proposed by Brunsdon et al. (1999) 

and Leung et al. (2000). Both of these F tests neglect the dependence between the 

molecular and denominator of the statistic. The basic idea is that first, a GWR model 

is constructed. The optimal bandwidth h is calculated according to minAICc, and the 

sum of squares of errors, RSSg, is calculated. Second, the same bandwidth h is used to 

construct the MGWR model in GWR and calculate the sum of squares of residuals 

(RSSm). Finally, a T statistic is constructed as follows: 
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The null hypothesis (H0) is that the model is the MGWR model. That is, the 

explanatory variable has a fixed coefficient. The alternative hypothesis (H1) is that the 

model is the GWR model. That is, all explanatory variables follow spatial varying 

coefficient models. If the null hypothesis is not rejected, then the value of RSSg and 

RSSm should be close. Otherwise, the difference between the two is large. Bootstrap 

sampling was conducted n times based on residuals, and one t* is calculated for each 

sample. The evaluation criterion is as follows: 
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0
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If P is less than the given significance level, the null hypothesis (H0) is rejected, 

and the GWR model is selected. Otherwise, the MGWR model is selected. All 

explanatory variables are tested one by one to select which variables are fixed 

coefficients or varying coefficients. If all coefficient tests of explanatory variables are 

non-significant, the OLS regression model is selected. 

 

Table 3: The p value of the bootstrap test 

Items    Variables Intercept WY K L rl wrl Expend Splag Square 

Total RD 0.052 0.072 0.00 0.021 0.062 0.096 0.122 0.12 0.326 

Gov RD 0.012 0.006 0.00 0.016 0.00 0.012 0.006 — 0.001 

Enter RD 0.492 0.219 0.00 0.04 0.231 0.071 0.00 0.264 0.145 

Intensity 0.033 0.027 0.00 0.047 0.00 0.031 0.008 0.061 0.009 

Note：“Expend” is the corresponding R&D expenditure; “SPlag” is the spatial lag term of “Expend”; “Square” is the 

square term of “Expend”; “—” means that the variable does not exist because it failed to pass Moran’s I test. 

 

For aggregate R&D expenditure (RD), only the bootstrap test p value of K and L is 

less than 0.05. This result implies that K and L are variable coefficient variables and 

that the others are fixed coefficient variables, including the spatial lag term WY of the 

explained variables (Table 3). Therefore, the MGWPR-SDM (0, kc, kv) model should 

be used. For government R&D investment (GovRD), the p value of the bootstrap test 

of all variables is less than 0.05. Thus, all variables are variable coefficient variables, 

including the spatial lag term WY of the interpreted variables. Hence, the 

MGWPR-SDM (1,0, kv) model should be used. For business enterprise R&D 

expenditure (Enter RD), only the bootstrap test p values of K, L, and Expend are less 

than 0.05. Hence, K, L, and Expend are variable coefficient variables, and the others 

are fixed coefficient variables, including the spatial lag term WY of the interpreted 

variables. Therefore, the MGWPR-SDM (0, kc, kv) model should be used. Like Gov 

RD, R&D intensity should use the MGWPR-SDM(1,0,kv) model too. 

  



Analysis of empirical results 

(1) Aggregate R&D expenditure 

Table 4 shows that the aggregate R&D expenditure (TotalRD) has a positive effect on 

economic growth and that the aggregate R&D expenditure in the immediate area also 

has a positive impact on the region. Also, the results of the variable coefficients 

(Table 5) show that the elasticity of K to economic growth is greater than L in each 

quantile. The negative square coefficient (Table 4) suggests that there may be an 

inverted U-shaped relationship between aggregate R&D expenditure and economic 

growth. To analyze what causes the inverted U-shaped relationship, we further 

analyzed the impact of government R&D expenditure and business enterprise R&D 

expenditure on China’s economic growth. 

Table 4: Fixed coefficient estimate of aggregate R&D expenditure 

Variable Coefficient t value p value 

WY 0.1444  14278.47 0.00 

RL -0.0021  -1769.26 0.00 

WRL 0.0388  19612.599 0.00 

TotalRD 0.0302  712981.63 0.00 

WTotalRD 0.1778  2495638.07 0.00 

TotalRDsq -5.16E-09 -0.0159 0.987 

Note: TotalRD means aggregate R&D expenditure; WTotalRD is its spatial lag term. 

 

Table 5: Variable coefficient estimate of aggregate R&D expenditure 

 K L 

Min. 0.2464 0.1882 

1st quartile 0.2509 0.1912 

Median 0.2536 0.1923 

Mean 0.253 0.1924 

3rd quartile 0.2549 0.1938 

Max. 0.2584 0.1958 

 

(2) Government R&D expenditure 

Using the MGWPR-SDM(1,0,kv) model, we can estimate the effect of government 

R&D investment on economic growth (Table 6). The coefficient of elasticity of 

GovRD is negative in all quantiles, and the coefficients of the square term of 

government R&D investment are all positive. These values indicate that government 

R&D investment has a U-shaped impact on economic growth. This U-shaped impact 

may be because government R&D investment mainly targets basic research, and 

economic benefits cannot be obtained immediately. However, with an increase of 

government R&D investment, this investment has a positive impact on economic 

growth. Judging from the regional distribution of the GovRD coefficient (Figure 2), 

the government’s initial investment in R&D has the greatest negative impact on the 

northeast region, gradually weakening from northeast to southwest. Thus, the Swedish 

paradox shows spatial heterogeneity. 

 



 

 

Table 6: Variable coefficient of government R&D expenditure 

 Intercept wgdp K L rl wrl GovRD GovRDsq 

Min. -4.08E-17 0.5995 0.2033 0.1533 0.02121 -0.06421 -0.014965 2.82E-07 

1st 

quartile 
-3.39E-17 0.621 0.2095 0.1539 0.02392 -0.04097 -0.011611 3.18E-07 

Median -3.19E-17 0.6293 0.2135 0.1543 0.02491 -0.0317 -0.010476 3.36E-07 

Mean -3.22E-17 0.6277 0.2131 0.1546 0.02509 -0.02629 -0.010475 3.37E-07 

3rd 

quartile 
-2.94E-17 0.635 0.2159 0.1551 0.02652 -0.01087 -0.009146 3.55E-07 

Max. -2.53E-17 0.6452 0.2227 0.1574 0.02993 0.02518 -0.00717 3.92E-07 

Note: “GovRD” means government R&D expenditure; “GovRDsq” is its square term. 

 

 

Figure 2: Spatial heterogeneity of government R&D expenditure coefficients 

 

(3) Business enterprise R&D expenditure 

As Table 7 shows, the business enterprise R&D expenditure in all quantiles has a 

positive effect on economic growth, and the higher the quantile is, the greater the 

impact will be. From the perspective of regional distribution (Figure 3), the elasticity 

coefficient of corporate R&D expenditure to economic growth gradually increases 

from south to north. Each 1% increase in corporate R&D expenditure in the southern 

region has a smaller percentage increase in GDP than in the north. 

Table 7: Variable coefficient of business enterprise R&D expenditure 

 K L EnterRD 

Min. 0.2088 0.09494 0.07793 

1st Qu. 0.2126 0.09971 0.07921 

Median 0.2152 0.10181 0.07971 

Mean 0.2149 0.10174 0.07966 

3rd Qu. 0.2166 0.10379 0.08036 



Max. 0.221 0.10833 0.08074 

The negative coefficient of EnterRDsq suggests that there may be an inverted 

U-shaped relationship between enterprise R&D expenditure and economic growth. 

Accordingly, the impact of enterprise R&D expenditure on economic growth is 

positive at the beginning, and the Swedish paradox exists after a certain threshold is 

reached. Business enterprise R&D expenditure is a subdivision of aggregate R&D 

expenditure. Therefore, we can conclude that this form of expenditure is the decisive 

factor that leads to the U-shaped influence of aggregate R&D expenditure on 

economic growth. In addition, the coefficient of the spatial lag item WEnterRD of 

business enterprise R&D expenditure is negative. This result indicates that an increase 

in business enterprise R&D expenditure in the immediate area hinders the economic 

growth of the region, perhaps because of mutual competition. 

Table 8: Fixed coefficient estimate of business enterprise R&D expenditure 

Variable Coefficient t value p value 

WY 0.2295 361441.559 0.00 

RL -0.1220 -6081884.207 0.00 

WRL 0.1176 760804.589 0.00 

WEnterRD 0.0653 11091631.2 0.00 

EnterRDsq -7.56E-09 -0.25787477 0.79 

Note: “EnterRD” means business enterprise R&D expenditure; “WEnterRD” is its spatial 

lag term; “EnterRDsq” is its square term.  

 

 

Figure 3: Spatial heterogeneity of business enterprise R&D expenditure coefficients 

 

(4) R&D intensity 

In addition to the two subdivisions of R&D expenditure (government R&D 

expenditure and business enterprise R&D expenditure), we also analyzed the impact 

of R&D intensity (R&D expenditure/GDP) on China’s economic growth. The results 

of the MGWPR-SDM (1,0, kv) model (Table 9) show that the coefficients of R&D 

intensity (Inten) are all negative. By contrast, the coefficients of the square term 

(Intensq) are mostly positive, indicating R&D intensity. The impact on economic 



growth is U-shaped. As R&D intensity increases, its impact on economic growth 

changes from negative to positive. From the perspective of regional distribution 

(Figure 4), the coefficient of Inten gradually increases from northeast to southwest. 

The three provinces in northeast China experience the largest negative impact, and the 

negative impact in Tibet is the weakest. The coefficients of Intensq (Figure 5) for all 

provinces and cities except Tibet and Xinjiang are positive numbers that decrease 

from northeast to southwest. Generally, increasing the intensity of one unit has the 

greatest impact on economic growth in the northeast and has the least impact on 

economic growth in the southwest, especially Tibet. 

 

 

Figure 4: Spatial heterogeneity of government R&D expenditure coefficients 

 

Table 9: Variable coefficient of R&D intensity 

 Intercept wgdp K L rl wrl Inten wInten Intensq 

Min. -9.00E-18 0.47 0.1895 0.1885 0.2156 -0.1581 -0.2559 0.2434 -0.001066 

1st Qu. -4.55E-18 0.4955 0.1939 0.1901 0.2224 -0.12736 -0.2379 0.2474 0.001421 

Median -2.60E-18 0.5071 0.1967 0.1904 0.2254 -0.1151 -0.2314 0.2506 0.003059 

Mean -2.37E-18 0.5048 0.1961 0.1904 0.2257 -0.11123 -0.2306 0.2509 0.002725 

3rd Qu. -1.19E-18 0.5142 0.198 0.1909 0.2291 -0.09253 -0.2215 0.2528 0.003838 

Max. 3.47E-18 0.5279 0.2019 0.1912 0.2367 -0.05528 -0.2035 0.2678 0.005836 

Note: “Inten” means R&D intensity; “WInten” is its spatial lag term: “Intensq” is its square term. 



 

Figure 5: Spatial heterogeneity of R&D intensity square term 

 

5.Conclusions 

This paper provides a new, generalized model of spatial heterogeneity 

(MGWPR-SDM). We use this model to analyze Chinese provincial data from 2013 to 

2017. This model responds to scholars’ questions over whether R&D investment 

promotes China’s economic growth. That is, the study explores whether there is a 

Swedish paradox in China.  

The conclusions are as follows. First, the impact of aggregate R&D expenditure on 

China’s economic growth follows an inverted U-shaped curve. This impact is positive 

at the beginning and negative beyond a certain threshold. The aggregate R&D 

expenditure in neighboring regions also has a positive impact on the region. Second, 

the impact of R&D intensity on economic growth is also U-shaped (except for 

Xinjiang and Tibet). Its negative effect gradually decreases from northeast to 

southwest before reaching the threshold. Third, government R&D investment, which 

is one of the components of aggregate R&D expenditure, has a U-shaped impact on 

regional economic growth. By contrast, the impact of enterprise R&D expenditure on 

economic growth also follows an inverted U-shaped curve. This impact is the main 

reason for the inverted U-shaped impact of aggregate R&D expenditure on economic 

growth. Both of these two effects have spatial heterogeneity. The Swedish paradox 

exists before the threshold of government R&D investment and after the threshold of 

enterprise R&D expenditure. In short, the conclusion of this study is that there is 

indeed a Swedish paradox in China but that it depends on the kind of R&D 

expenditure and the stage of this expenditure. 

Therefore, the policy implication is that when formulating policies, the government 

should analyze specific problems. The government should also fully consider spatial 

heterogeneity, and the special conditions of various regions, such as geographical 

location and human capital level. Government-led basic R&D investment should be 

increased. Such an increase would benefit not only future R&D development but also 

society as a whole, including private enterprises, because of spatial externality. 



Meanwhile, business enterprise R&D investment should be controlled on a moderate 

scale. Excessive R&D expenditure is unfavorable to economic output, as well as 

leading to efficiency losses and resource waste, thereby reducing the competitiveness 

of enterprises. Both the government and enterprises should make R&D investment 

that matches local conditions. 

The shortcomings of this paper offer opportunities for future research. First, to 

further explore the threshold effect of R&D expenditure on economic growth in space, 

time, and related variables, a geographically weighted regression (GWR) cluster 

model and a threshold model must be combined. Second, a GWR cluster model 

should be combined with a spatial structural equation model (SESEM). We could thus 

not only consider multiple substitution variables of R&D input but also study the 

mediating effect of R&D expenditure on economic growth and deeply analyze the 

spatial heterogeneity of the influence of R&D expenditure on economic growth 

through innovation and spatial clustering. Third, the combination of MGWPR, a 

spatial error model (SEM), and a spatial lag of X model (SLX), namely the 

MGWPR-SEM and MGWPR-SLX models, is still unexplored, providing important 

future research directions. Fourth, the impact of R&D expenditure on economic 

growth changes not only with geographical location but also with time. Therefore, 

building a spatiotemporal variable coefficient model is more in line with the actual 

situation. 

 

  



Appendix A: Estimation of the MGWPR-SDM model 

(1) When , and  is a variable coefficient, the estimation of the MGWPR-SDM 

model is as follows: 

Step 1: Assume that the fixed coefficients λc are known. Then, 
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where ccXYY −=*
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iiiiii vuvvuvu  = . At this point, 

Eq. (11) changes into the ordinary GWPR model. The spatial lag term of the 

dependent variable is contained in Z, so cov(WY, ε ≠ 0). Therefore, OLS cannot 

provide a consistent and effective estimator. Referring to the estimation methods of 

Baltagi (2011) and Jaya et al. (2018), this paper uses the spatial two-stage least 

squares (2SLS) method with the generalized moment estimation of Kelejian (1998) to 

estimate the variable coefficient ),( ii vu :  
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variable (IV) matrix H is a matrix composed of linearly independent columns of 

(Xv,WXv,W
2Xv,...,W

qXv), and q is usually taken as 2. Further available estimates are: 
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ii
= ),( , TI is the T-dimensional identity matrix, and

),...,,( ),(),(),(),( 2211 nnii vuvuvuvu GGGdiagG =  represents the spatial weight composed of the 

distance between the ith place and other places, whose value gradually decreases with 

distance. Usually, there are three kinds of spatial weight in the GWR model: 
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where 
22 )()( jijiji vvuud −+−= represents the spatial distance between locations i 

and j, and h is the bandwidth. In this paper, gaussian space distance weights are used. 

These are the most commonly used weights in the literature. The selection of optimal 

bandwidth h can be determined by minimizing the AICc quasi-side, BIC, or 

cross-validation (CV) method and Mallows’ law (Brunsdon et al. 1996 1999; 

Fotheringham et al., 2003). The minimization AICc method is adopted here.  
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Step 2: estimate the fixed coefficient λc. Substituting Eq. (13) into Eq. (11) 

gives: 
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, then Eq. (14) can be further simplified to:  
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Then Eq. (15) becomes a panel regression model. If the explanatory variables are 

exogenous, the OLS method can be used to solve the fixed coefficient in the model 

that does not change with geographical location:  
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If the explanatory variables cX contain endogenous explanatory variables, the spatial 

2SLS method can be used to solve:  
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where PF = F(F′F)F′F , and F is the instrumental variable matrix. Since 

entrepreneurship is an endogenous explanatory variable, Eq. (17) is applicable. 

Substituting Eq. (16) or Eq. (17) into Eq. (12), gives the coefficients of the model that 

change with geographical location. Combined with Eq. (12) and Eq. (16), the final 

solution of the model MGWPR-SDM(1,kc,kv) is:  
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Here, the first column in the coefficient matrix ),( ii vu


 is the estimated value of the 

spatial autocorrelation coefficient  , and the remaining part is c .  

(2) When ρ ≠ 0, and ρ is a constant coefficient, estimation of the MGWPR-SDM 

model is as follows: 
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Step 1: Merge the invariant coefficient terms in the model (i.e., combine 

variables WY and X as variables Z). Then Eq. (19) can be simplified as: 

 ++=
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Assuming ρ and λc are known (i.e., δ is known), then Eq. (20) is converted 

into a standard GWPR model: 
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If all variables included in Xv  are exogenous explanatory variables, then the 

estimated variable λv(ui,vi) coefficient can be obtained by solving (21) :  
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where G = G(ui,vi) ⊗ IT, IT is the T-dimensional identity matrix, and G(ui,vi) =

diag(G(u1,v1), G(u2,v2), . . . , G(un,vn)) represents the spatial weight composed of the 

distance between the ith place and other places, whose value gradually decreases with 

distance. There are usually three options: Gaussian, Bisquare, and Tricube. All 

depend on the bandwidth h. The selection of the optimal bandwidth h can be 

determined by minimizing the AICc quasi-side, BIC, or cross-validation (CV) method 

and Mallows’ law (Brunsdon et.al., 1996 1999; Fotheringham et al., 2003). In this 

paper, the minimization AICc method is adopted.  

If some endogenous explanatory variables are included in Xv, then according to 

the estimation method of Jaya et al. (2018), the estimator of the variable coefficient 

λv(ui,vi) can be obtained by solving (21): 
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ii

−= −


 (23) 

where XPX Fv =
~

, ')'( 1 FFFFPF

−= , and F is the instrumental variable matrix. 

According to the above analysis, since entrepreneurship is an endogenous variable 

coefficient variable, Eq. (23) is applicable. 

 

Step 2: Further simplify Eq. (21) to: 

 +=
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*

ii vuvvXY       (24) 

where ZYY −=*  and the estimation of the right is:  
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Each block matrix S = (S1, S2, . . . St)′ in Eq. (25) is:  
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By substituting Eq. (25) into Eq. (24), it can be converted into an ordinary panel 

regression model:  

 +−=− ZSIYSI )()(                 (26) 

Since WY in Z is an endogenous variable such that 0),( WYE , then the 

generalized space 2SLS method should be used to estimate the fixed coefficient 

matrix as:  

YSIPSIZZSIPSIZ HH )()'('])()'('[ 1 −−−−= −


    (27) 

where  PH = H(H′H)−1H′, the tool variable (IV) matrix is a matrix composed of 

linearly independent columns of (Xc, WXc, W2Xc, . . . , WqXc), and q = 2 is usually 

taken. 

Let ZSIZ )(* −= , YSIY )(* −= , 
** ZPZ H=


. Then Eq. (27) can be further 

simplified to: 
**1** ][ YZZZ

TT 
−=               (28) 

Combined with Eq. (23) and Eq. (27), the solution of model (19), 

),,0( vc kkSARMGWPR − , is: 
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(29) 

The first column in the coefficient matrix is the estimated value of the spatial 

autocorrelation coefficient, and the remaining part is λ̂c.  
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