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ABSTRACT Quantum processors need to improve their reliability to scale up the number of qubits and
increase the number of algorithms that can execute. To reduce the logical error rate of the quantum systems,
the use of error correction codes and decoders has been established as a low-cost and feasible approach, with
good results from a theoretical perspective, for mid and long-term architectures. While most of the authors
are focused on the algorithms to improve the correction capability of quantum computers, without taking into
account a fundamental implementation aspect for their deployment in a real system, i.e., their latency must
be bounded to avoid the qubit decoherence, only a few propose hardware architectures and they just include
time estimations of their decoding latency. However, a real implementation has not been shown yet. In this
work, we analyze from the point of view of hardware implementation two algorithmic options based on
quantum low-density parity-check (QLDPC) codes: a) belief propagation min-sum decoders combined with
codes with good error-floor behavior and b) belief propagation min-sum decoders concatenated with ordered
statistics decoders (OSDs) for codes with early error-floor. The bounds for the maximum clock frequency
required by the decoders to decode within the qubit coherence time are established as a parameter to show if
a practical implementation is possible with the present or near future FPGA technology. Furthermore, real
implementation results for a Xilinx FPGA device are provided, showing that some solutions can meet the
timing constraints set up by the state-of-the-art quantum processors.

INDEX TERMS Quantum error correction, syndrome based decoding, ordered statistics, FPGA devices.

I. INTRODUCTION
Quantum error correction codes have been deeply studied
for more than three decades [1]–[3]. Several solutions
based on different codes such as: Calderbank-Shor-Steane
(CSS) codes [4], Shor codes [5], 2D color codes, 3D
color codes [6], surface codes [7] and quantum low-density
parity-check (QLDPC) codes [8] have been proposed to
correct errors in quantum processors. In addition, differ-
ent decoding algorithms based on techniques like Blossom
decoder [9], message-passing [10] and artificial intelligence
(neural-networks) [11] have been described showing the ben-
efits and the error-correction capacity of each method.
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Even though these codes and decoders show several orders
of magnitude of improvement of the output error rate of
the quantum processors, from theoretical analysis, most of
the solutions do not provide physical implementations and
hence, it remains unclear that if in a real system these
solutions are fast enough to handle with the qubit deco-
herence (which is the perturbation of the superposition
states of the qubits by their interaction with the environ-
ment) [12]. This implies that the time to perform the error
correction is bounded. Due to this, the implementation of
any quantum error correction system has to consider the
time budget of a single error correction round which is set
between hundreds of nanoseconds [13] and several microsec-
onds [14], to ensure that quantum information remains
stable.
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Another fundamental parameter is scalability of the num-
ber of qubits [15]. The error correction hardware needs to be
feasible for not only tens or hundreds, but for thousands of
qubits. Only with a large number of qubits, improvements of
the quantum over classical systems will be highlighted [16].

Among error correction codes that can overcome these
challenges, sparse quantum stabilizer codes - QLDPC codes
are gaining prominence [8], [17]. Since the theoretical result
that QLDPC codes promise scalable quantum computation
with a finite overhead, asymptotically good codes and their
efficient decoders have been proposed [18]. Compared to sur-
face codes and color codes of similar lengths, QLDPC codes
boast better code rates with fault-tolerant thresholds sup-
ported by low-complexity iterative decoding algorithms [19].
Recent breakthroughs achieved in improved scaling of min-
imum distance of QLDPC codes [20] pushes for further
improvement of iterative decoders and more importantly,
efficient decoder implementations that are scalable.

A. CHALLENGES FOR THE IMPLEMENTATION OF QLDPC
DECODERS
In terms of decoder implementation, numerous works
have been done for the classical counterparts of QLDPC
codes [21]– [22], obtaining good hardware results in different
areas with high specifications in throughput and area-power
consumption, such as optical communications, storage sys-
tems or post-quantum cryptography applications [23].

However, from the hardware point of view, there is one
important difference that does not make most of the clas-
sical architectures directly applicable to quantum systems:
most of the existing solutions are based on improving
speed/throughput in the decoder and do not consider latency,
or at least the latency restrictions are not critical. This prob-
lem can be understood by comparing the equation of through-
put, T = (N ·fmax)/(It·τ ), and latency, L = (It·τ )/fmax, for the
parallel decoders, where N is the length of the codeword in
terms of bits, It is the number of iterations, τ the number of
clock cycles per iteration and fmax the maximum frequency
of the device. Classical LDPC decoders for high-speed try
to maximize fmax by introducing a large number of pipeline
registers to reduce the critical path and hence increase τ , but
they compensate this increase of τ using long LDPC codes,
with a large N parameter (which also have very good error
correction properties for classical decoders). For quantum
systems, the only inputs that the decoder receives are the
quantum syndromes, which are sent in parallel, so N does not
have any effect on the input latency, in terms of clock cycles.
On the other hand, the decoder needs to be very fast to avoid
decoherence effects, so only parallel architectures meet the
latency requirements in terms of clock cycles. Unfortunately,
for parallel decoders, N does not have any effect on the num-
ber of clock cycles. The number of pipeline registers is the
one that determines the number of clock cycles per iteration,
τ , and contributes to improve the fmax. The parameter N
only may have a negligible effect in routing and hence in
the maximum frequency, but for the quantum decoders the

critical parameter is τ . So, if the number of pipeline registers
was increased, τ is also increased, and τ increases faster than
fmax. In other words, triplicating the pipeline registers it is not
possible to triplicate fmax for problems with routing. Hence,
latency is not optimum for classical decoders, which is the
main constraint of the quantum ones.

Finally, it is crucial to perform implementations of these
decoders in the selected hardware platforms, as the timing
limitations cannot be derived only from the synthesis results
or the estimation of the delay by counting the number of gates
involved in the critical path. As we show in the following
sections of this paper, the most limiting component of fmax
is routing, which can only be calculated by the development
tools with the after place and route results.

B. RELATED WORKS
QLDPC codes, similar to classical LDPC codes apply
message-passing decoding based on belief-propagation (BP)
algorithms obtaining good performance [24], [25]. However,
some QLDPC codes fail introducing an early degradation,
the error-floor. The error-floor is the effect of not improving
the logical error rate of the quantum system with an error
correction decoder even when the physical error rate of the
quantum processor improves. To solve this problem, the most
studied solution, proposed in [19] and [26], is the concatena-
tion of a classical algorithm called ordered statistics decoding
(OSD) [27] to a BP-based decoder, i.e. to applyOSDwhenBP
fails, which is a different approach from other classical works
where the OSD is used offline to optimize some parameters
of the BP decoder [28]. This improves the error correction
in most QLDPC codes, but there are great differences in its
final effect depending on the code. For some codes there is
a slight improvement of the total error correction capacity of
less than one order of magnitude on the output error-rate, for
others, OSD completely removes the error floor.

The main problem of a derived implementation of OSD is
that the number of rounds is exponentially linked to the data
bits from the code. This problem was reported in [19], where
OSD, although interesting to set a boundary in terms of error
correction capacity, is labeled as impractical for real-time
implementations. As an alternative, OSD order 0 (OSD-0),
which is a one round OSD algorithm, is proposed. Although
it is evident that exponential complexity is avoided, under
our best knowledge no implementation of OSD-0 algorithm
for quantum processors has been reported yet. Therefore,
the question that remains open is if OSD-0 can meet the
timing constraints of the quantum processors or not, as it
involves costly steps such as matrix inversion.

Under the best knowledge of the authors, a practical hard-
ware architecture of a quantum error correction decoder has
not been published yet. Most of the papers published are
focused on the algorithms to achieve the target correction
capability and only a few, [29], [30], consider the implemen-
tations aspects to achieve the time budget to avoid the qubit
decoherence, and they include an estimation of the latency of
their potential implementation.
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C. PAPER ORGANIZATION
In this paper, two decoding algorithms will be evaluated
from a VLSI perspective, comparing its performance and
calculatingwhat should be the expected latency and clock fre-
quency in real hardware implementations. The first one is the
syndrome-based min-sum (SB-MS) decoder [31], which is
an iterative BP-based solution with a good trade-off between
correction and physical constraints. However, SB-MS is not
applicable to different classes of stabilizer codes in general
due to error floor-problems. The second one is SB-MS con-
catenated with OSD-0, to improve the waterfall performance
and alleviate the error floor problems. However, this perfor-
mance improvement comes with increasing the total latency
time due to computationally intense operations involved. The
objective of the paper is to obtain timing, area and power
results to evaluate if it is possible to apply these algorithms
with the present technology to a quantum processor meeting
the constraints of the qubit decoherence.

The rest of the document has the following structure: in
Section II, the background concepts about complexity and
correction capacity are summarized; in Section III, different
architectures for SB-MS and OSD-0 will be analyzed. The
results of these architectures are shown in Section IV, and in
Section V the main conclusions of the paper are highlighted.

II. BACKGROUND
A. QUANTUM ERROR CORRECTION AND CHANNEL
MODEL
Despite classical error correction decoders, quantum error
correction (QEC) decoders do not take as initial information
the corrupted message from the channel [16], c+e, where c is
the codeword vector and e the error introduced by the channel.
Due to the nature of qubits, data cannot be read without
altering it, for this reason, the main solution to introduce
error correction is to use the information that comes from
the syndromes, S, calculated at the quantum processor [32].
In that sense, instead of looking for a correct codeword (c̃)
through the search of a candidate that satisfies the parity
check equations, the objective of the error-correction system
is to search for an error pattern (ẽ) that generates the same
syndromes as the quantum system. By using the syndromes,
the qubits that contain data are not altered and the correct
error pattern can be just added to the distorted codeword
recovering the information. The main differences of both
classical and quantum decoders can be seen in the block
diagrams from Fig.1.

Another important change is the error model of the quan-
tum system. The errors that modify the codeword in a quan-
tum processor can be defined by a depolarizing channel
model that inserts bit-flips, phase-flips or a combination of
bit and phase flips [16]. The bit-flips are defined by Pauli
errors of type X , with a probability of pX . The phase-flips
are modeled as Pauli errors of type Z with a probability of
error of pZ . A combination of bit-flips and phase-flips in the
errors is described by a Pauli error of type Y with probability

FIGURE 1. Block diagram of the classical LDPC decoder vs the QLDPC
decoder.

pY . If the error model assumes a symmetric depolarizing
error channel, the probability of error of the model is p =
pX/3+ pZ/3+ pY /3.

B. QUANTUM LOW-DENSITY PARITY-CHECK DECODERS
Unlike classical LDPC codes, which are defined by just one
M × N parity-check matrix H , QLDPC codes are defined
by two different matrices: HX to correct the X -errors (or bit-
flips) and HZ to correct the Z -errors (or phase-flips) from
the depolarizing channel. The constructions of these matrices
need to satisfy the symplectic inner product constraint arising
from the stabilizer formalism based on the Pauli-to-binary
isomorphism (for more details about code construction we
refer to [16] and [24]). In this document, for simplicity,
we will refer to HX and HZ as H indistinctly, without loss
of generality. However, in Section IV, there will be an impact
of the architecture depending on the code is dual containing
(HX = HZ ) or non-dual containing (HX 6= HZ ). QLDPC
codes are usually named as (N , N− rank(H )) QLDPC. The
code can be graphically represented as a bipartite Tanner
graph, with two types of nodes: check-nodes that correspond
to the rows of parity-check equation; and variable-nodes that
correspond to the columns or the information of each of the
bits in the codeword. Each check-node (variable-node) of
the code has a degree of check-node dc (degree of variable-
node dv), which is equal to the non-zero elements of a row
(column).

SB-MS is a message-passing algorithm derived from BP
that exchanges two types of messages, the ones generated in
the check-node, σi,j, and the ones computed in the variable-
node, Ri,j. The algorithm tries to estimate the error pattern in
the variable-nodes to match the input syndromes. In terms of
hardware, there are two types of nodes that exchange informa-
tion and the complexity of the derived decoder will be limited
by the code parameters, i.e. degree of the check-node dc,
degree of variable node dv, number of parity-check equations
M and number of total bits in the code N [33]. The operations
computed by the check nodes and the variable nodes are
described in equations (1) and (2), where Si is the syndrome
for the parity-check equation i and Ni and Mj are defined
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as the sets consisting of all the non-zero elements of a row
i (check-node) and a column j (variable-node), respectively,
⊕ is the mod2 addition (one-bit XOR operation) and α is a
scaling factor to improve the convergence of the algorithm.
The hard decision operation (HD) included in equations (1)
and (3) is defined as the conversion from a soft-decision
message to a logical one. Usually, it is equivalent to the bit
that represents the sign, considering the positive sign as a
logic 0 and the negative sign as a logic 1. The scaling factor
is obtained by performing Monte Carlo simulations, as hap-
pened with classical LDPC decoders, to optimize the logical
error rate of the processor under a depolarizing channel. The
value of the factor is constrained between 0 and 1 and is
usually selected as α = 2−a + 2−b with a, b ∈ {1, 2, 3}.
In this way, we can perform the products by just shifting
the bits and adding two shifted words. The shifting process
is implemented with wires, so no additional hardware is
required. In the worst case, only one adder is implemented,
avoiding the use of multipliers that increase the hardware
resources and the critical path. Lj is the reliability of ej, which
is the value of the error in the bit j. As ej is unknown, Lj is
initialized to a constant, usually to 1 − 2p/3, but as all the
values are the same for all the j indexes, it can be initialized
to +1 to keep messages small without any performance loss.

σi,j = min
j′∈Ni\j

(|Ri,j′ |)×
∏

j′∈Ni\j

HD(Ri,j′ )⊕ Si (1)

Ri,j = Lj + α · 6
i′∈Mj\i

σi′,j (2)

The algorithm will iterate applying recursively these equa-
tions until one solution is found or a maximum number of
computations is reached. The solution has to satisfy equations
(3) and (4).

ẽj = HD(Lj + α · 6
i′∈Mj

σi′,j) (3)

S = ẽHT (4)

As it will be shown in the next section, the solution with
lower latency consists of a parallel implementation of one
iteration, mapping (1), (2) and (3) for M × N nodes, but at
the same time has the problem of routing between processing
units, which makes difficult to ensure hundreds of nanosec-
onds of latency.

C. OSD IMPACT ON QLDPC ERROR CORRECTION
PERFORMANCE
Recent work [19] and [26] conclude that decoding algorithms
derived from BP (such as SB-MS) do not provide a correction
capacity good enough for all QLDPC codes. Some codes such
as the (882, 24) QLDPC or the (1024, 30) QLDPC exhibit
an early error-floor when BP-based algorithms are applied.
The difference between the physical error rate of the quantum
processor without QEC is almost the same as the one obtained
after introducing the decoder. To solve this limitation OSD is
concatenated, improving the problem of the early error-floor.

However, not all the codes need the support of OSD to
obtain a good error correction performance. Other codes such
as (254,28), (7938, 578), (882,48) or (126,28) QLDPC1 show
a good error correction capacity with BP-based algorithms
like SB-MS and the inclusion or not of the OSD algorithm
does not entail a significant improvement. In Fig.2, some
codes are included to show the gap between SB-MS and
SB-MS with OSD concatenated. As it can be seen, the dif-
ference between SB-MS and SB-MS with OSD is progres-
sively increased with higher reliability physical error rates
(PER). For example, for the (126,28) QLDPC the output
error rate is about 1.3·10−5@PER=10−2 including OSD
and 2.6·10−5@PER=10−2 without OSD, less than one order
of magnitude. For the (255,32) QLDPC the difference is
more significant 1.6·10−4@PER=2·10−2 without OSD vs
3.6·10−5@PER=2·10−2, almost one order of magnitude.
The largest difference can be found for codes like (625,25)
and (900,36) QLDPC where the gap is almost two orders of
magnitude [19]. For these codes, the impact of OSD is more
significant due to the bad decoding of SB-MS algorithm.
However, there are alternatives for similar number of qubits
i.e., (126,28) and (255,32) QLDPC codes, as alternative to
(625,25) and (900,36) QLDPC codes respectively, that only
with SB-MS behave better than SB-MS+OSD. But the key is:
i) what is the cost of OSD? and ii) is it feasible to implement
this algorithm to fit in the time window set by the qubits
decoherence? Finally, it is also important to take into account
that the output of the OSD algorithm only has two possible
options, a logical error or the correct error pattern, as the
output obtained is just binary, as it will be shown in the
next section, OSD does not provide any soft information.
For this reason, the output of the OSD algorithm cannot be
improved in terms of correction by using any other method
concatenated, so all the decoding failures turn into logical
errors. While the output of SB-MS decoder, if it does not find
the error pattern, is just a decoder failure that includes soft
information from the messages that can be processed by other
concatenated decoders.

D. OSD AND OSD-0 COMPLEXITY
OSD was originally introduced in [27] for classical codes to
perform post-processing based on an exhaustive search which
requires from matrices inversion in an iterative process that
scales with 2N−rank(H ). This same algorithm, as it was said
before, was evaluated to set a boundary for QLDPC codes
to check if concatenation can improve BP-based decoders.
Nevertheless, a recent study also focused on the combination
of BP and OSD [19] reported that, searching over all config-
urations that are required in the original OSD soon becomes
intractable for large codes, concluding that a more realistic
approach is just to apply the simplest version of the OSD
decoder, named as OSD-0. Note that for the (255,32) and

1All these codes were simulated using a CPU Intel Core-i7-6700-HQ
CPU@2.6 GHz using a software model developed in Matlab R2015b. The
results of some of these simulations are included in Fig.2 and 5.
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FIGURE 2. Performance of SB-MS and SB-MS+OSD for different QLDPC
codes under a depolarizing channel. The physical error rate (PER) is
determined by the reliability of the quantum processor’s physical
components modeled by the depolarizing channel. The logical error rate
is the reliability obtained by the quantum processor after the decoder.
The codes (256,32) and (128,28) are simulated with α = 0.75 for the
SB-MS decoder and codes (625,25) and (900,36) are simulated with α = 1.

(126,28) QLDPC codes, whose performance is in Fig.2, 232

and 228 rounds are required with the original OSD in the
worst case, respectively. In principle, this complexity does
not justify the improvement in the error rate, because, among
other things, it is impossible to implement an OSD decoder
that reaches an acceptable decoding latency. Although in [19]
there is not a hardware analysis or implementation, there is
a clear demonstration of why OSD-0 is the only presumable
version of OSD that can be integrated into a real-time system,
for this reason, is the only that we will consider in this
document.

The objective of OSD and OSD-0 is to take the reliability
value of ẽj from equation (3), Lj+α· 6

i′∈Mj
σi′,j, when BP-based

decoders have failed to converge and look for the error pattern
with the highest probability to satisfy equation (4). To do so,
the steps of OSD-0 are:

1) Sort Lj + α · 6
i′∈Mj

σi′,j from the most probable indexes

of j to have an error (ẽj = 1) to the less (ẽj = 0). Keep
the sorted set in JOSD.

2) Reorder the columns ofH according toJOSD obtaining
HOSD.

3) Build a square matrix with the first rank(H ) linearly
independent columns of HOSD and the rank(H ) inde-
pendent rows, to look for an invertible matrix H ′OSD.

4) Compute the inversion matrix of H ′OSD: H
′

OSD
−1.

5) Calculate an error pattern that satisfies the syndromes:
ẽ′OSD = H ′OSD

−1
· S.

6) Build the final error pattern ẽOSD in which the j loca-
tions that correspond to columns not included onH ′OSD
are equal to 0 and the j locations included in H ′OSD are
equal to ẽ′OSD.

7) Undo the reordering of step 2), to correct the right
indexes of the codeword.

It is easy to see that OSD-0 is not an iterative algorithm,
but it entails complex operations like the sort of N elements
in step 1) or a dynamic inversion of the matrix in step 4).

III. ARCHITECTURES FOR SB-MS AND
OSD-0 ALGORITHMS AND LATENCY ANALYSIS
In this section, the hardware architectures for both SB-MS
and OSD algorithms will be introduced to evaluate if the
timing constraints of the qubits decoherence can be accom-
plished in different scenarios.

A. ARCHITECTURE FOR A SB-MS DECODER
In order to accomplish the latency requirements we propose
a parallel architecture, which consists on the implementation
of one iteration of the SB-MS algorithm. Besides, the parallel
broadcasting techniques such as the ones in [34], are applied
as described next.

The complete decoder will implement M check-node
units (CNUs) such the ones from Fig. 3, and N variable-
node units (VNUs) like the one in Fig. 4. All the cells will
be interconnected according to the parity-check matrix of the
code. If the code is dual containing two decoders with exactly
the same architecture are required; if the code is non dual
containing the two decoders have different interconnection
between CNUs and VNUs for HX and HZ , but the number
of wires will be the same. However, in both cases their
complexity and number of wires will be the same.

Each CNU (the i-th one) receives as input dc values of Ri,j
with j ∈ Ni and the corresponding syndrome Si. This unit has
two different parts:
• The computation of the parity check equation to obtain
the syndrome Si, which is implemented by a tree of XOR
gates that compute all the HD(Ri,j) (sg(Ri,j) in Fig.3
and 4) and the syndrome. After the tree of XOR gates,
the Ri,j′ with j′ ∈ Ni \ j is calculated by subtracting to
the total its own contribution. This sub-unit implements∏
j′∈Ni\j

HD(Ri,j′ ) ⊕ Si from equation (1), generating dc

hard-decisions (1-bit per hard-decision) that are sent to
the corresponding VNUs (sg(σi,j) in Fig.3 and 4). More-
over, dc signals of one bit are also exchanged to indicate
if the connected VNU contains the first minimum or not
(sl(σi,j) in Fig.3 and 4).

• The computation of the magnitude of the exchanged
messages is obtained looking for the first and the sec-
ond minimum of the received Ri,j values. Once these
minimums are obtained, they are scaled by the factor α.
This factor improves the convergence speed of the algo-
rithm. In order to simplify the implementation, the set
of possible values are reduced to α = 2−a + 2−b with
a, b ∈ {1, 2, 3}, so hardwired multiplication based on
one shifter and one adder is implemented instead of
a complete multiplier. In order to reduce the routing
congestion of the architecture, instead of sending dc− 1
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FIGURE 3. Architecture for check-node unit, Equation (1).

messages with the first minimum and one message with
the second one, a broadcasting technique is adopted.
Therefore, only two values are sent to all the connected
VNUs to reduce the wiring, so instead of dc × γ wires
between units there are 2 × γ wires (and hence 2 × γ
outputs), where γ is the number of bits of the quantized
messages. The selection of what message has the second
minimum to implement min

j′∈Ni\j
(|Ri,j′ |) from equation (1)

is performed inside the VNU unit as detailed next.

Each VNU (the j-th one) has 2×dv inputs of γ bits as each
of the dv connected CNUs sends two minimums plus dv hard-
decisions (dv bits) and dv bits to select between the first and
the second minimum. In the first step, the architecture selects
if it needs the first or the secondminimum. After this, the next
stage, which initializes to zero the first iteration, combines
the hard-decision and the magnitude to compute with a tree
of adders Lj+α · 6

i∈Mj
σi,j from equation (2). As it is explained

in the previous section Lj is set to a constant for all the values
of j, i.e., Lj = 1, because the reliability of the error message
is unknown in the first iteration and all the bits have the same
reliability. After the tree, each message eliminates its own
contribution from the total, via a subtracter, to implement Ri,j
values in equation (2). During the last stage, the values are
saturated to control the growth of the data path. The messages
Ri,j are split into hard-decision and magnitude and send to the
connected CNUs. The outputs of both sub-units, CNUs and
VNUs, are registered to limit the critical path of the circuit.

According to the previous descriptions, it is easy to derive
that the total latency per iteration is equal to two clock cycles,
one to reach the outputs of the CNU and another to complete
the operations in the VNU. So, assuming that the syndromes
are available in parallel at the input, the global delay is equal
to Dmax = 2 × Itmax/fmax, where Itmax is the maximum
number of iteration and fmax is the maximum frequency of
the architecture. It should be noted that the fmax is limited by

FIGURE 4. Architecture for variable-node unit, Equation (2), and error
pattern, Equation (3).

the delay of the CNU and that of the routing cables, which
are quite congested due to the large number of cells to be
connected.

With this information, a range of required frequencies
for the hardware implementation can be computed taking
as reference the time budget from real quantum processors.
Although this range can be modified by the technology of the
processor itself, the number of qubits and the encoding of the
information, it allows hardware designers to have an order of
magnitude to evaluate if the architectures are feasible to be
applied in real systems or not. For example, taking as starting
point the most restrictive time budget found in literature [13],
[14] that is 400 ns,2 the maximum frequency of the circuit
needs to be fmax = 2×20/400 ns = 100 MHz, assuming
20 iterations. If both HX and HZ are decoded with the same
device, i.e. for dual containing codes, twice this speed need
to be reached, so it would be higher than 200 MHz.

This maximum frequency could seem reduced and easy to
obtain with the actual FPGA technology, however, although
it is plausible is not easy to get it under any type of cir-
cumstances or code parameters, as there is a long critical
path, with just two pipeline registers in the whole decoder,
which depends on dc and dv. Besides, the routing congestion
increases with N , M , dc and dv, and limits the maximum
frequency by more than 50% compared to the limitation of
logic depth, as it will be shown in Section IV.

B. ARCHITECTURES FOR OSD-0 ALGORITHM
Several architectures for OSD-0 have been proposed for
classical error correction [35]– [36], and as the algorithm

2This time is reported as the period required to compute a syndrome
generation cycle, and according to [13], a real hardware implementation of a
decoder must be able to execute faster than syndrome data are generated as
a prerequisite for tractable fault tolerant computation.
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is exactly the same for QEC, the classical hardware design
should be evaluated for the quantum scenario.

From the steps described in Section II, the most critical one
is the inversion of H ′OSD (step 4). The operations involved in
this step are going to establish the bottleneck of the OSD-
0 architecture.

The inversion of the matrix does not have any
low-complexity or suboptimal approach as happens with, for
example, the sorting process of the incoming messages (step
1). To perform it, the Gaussian elimination with Galois Field
GF(2) needs to be implemented. The two main architectures
to perform Gaussian elimination in an efficient way are intro-
duced in [37] and [38]. The first one [37] is made of a network
that connects all the elements from the matrix in parallel, so it
is a network withM×N nodes, and pivots columns and rows
to choose the columns and rows to eliminate. Although it is
a parallel implementation, the algorithm needs at least 2M
rounds and at most (M2

+ M/2) to compute H ′OSD
−1. So,

in the best scenario, the latency of the Gaussian elimination
implementation is determined by Dmax = 2M/fmax.
In Table 1, we summarize the maximum frequency for dif-

ferent codes and for the latency constraint used as a reference.
As it can be seen the value of fmax required by the (882,24)
QLDPC code is not reachable by actual FPGA technology.
Furthermore, it is important to notice that we only consider
the delay introduced by the Gaussian elimination required
by OSD-0, but the time budget is even less as the delay
of the QLDPC decoder has to be also considered and the
same for the rest of the steps of OSD-0, here we assume
them as negligible just to establish an optimistic boundary.3

As it is mentioned in Section II, this code needs OSD-0 to
avoid error-floor, however, as it is analyzed here a real-time
implementation, in this case, is not possible, so it is discarded
as a real solution.

Even in the best case the speed needed for the (126,28)
QLDPC code is too high for an FPGAdevice. Besides, for this
case, the OSD-0 introduces less than one order of magnitude
of improvement that hardly justifies the major drawback of
this implementation, the high requirement of resources and
routing congestion, since every matrix element is instantiated
and connected via global signals as analyzed in [36]. For this
reason, hardware designers usually apply other approaches.

In [38] an efficient architecture for Gaussian elimination
with fewer resources and without routing congestion is pro-
posed. This architecture implements a systolic array that is
connected to a small number of processors that are neighbour
nodes in the matrix. This reduces the total number of wires
and global connections increasing the maximum frequency,
but at a cost of increasing the number of clock cycles required
to 3M + N − 2. Repeating the analysis performed with the

3Note that this is a very optimistic estimation as for example, for the
sorting there are multiple direct implementations of latency N or implemen-
tations with a large critical path due to the logical depth of the derived parallel
trees of comparators. Other alternatives with lower latency, such as using a
threshold to select the most probable indexes of j to have an error, can be set,
assuming some performance loss of the correction capacity.

TABLE 1. Maximum frequency approximation for the Gaussian
elimination parallel architecture [37] to meet the timing constraints of the
quantum system.

TABLE 2. Maximum frequency approximation for the Gaussian
elimination systolic architecture [38] to meet the timing constraints of the
quantum system.

parallel implementation the equation that links the maximum
frequency with the delay isDmax = (3M+N −2)/fmax. As it
can be seen in Table 2 results are even more restrictive with
this approach making unrealistic to expect a real implemen-
tation being tightened up to the time budget imposed by the
decoherence.

According to all the previous analysis, it can claim that
OSD-0 derived architectures are too complex or too slow due
to the high number of operations and iterative calculations
involved, and they are not a realistic approach to decode
QEC. The frequencies that FPGA devices should reach are
not feasible with the existing technology and hence it is
not possible to meet latency constraints because within this
same time budget of 400 ns other operations such as the
sorting of the indexes according to the probability values
(step 1 of OSD-0) or the reordering of the indexes (step
7) should also be performed. Besides, before applying OSD-
0, a SB-MS decoder is applied, and due to its iterative nature
already consumes 80% of the time budget, as it will be
shown in next section. For this reason, it is more reasonable
to focus the efforts on optimizing BP-based decoders for
QLDPC codes that show good behavior in error correction.
Moreover, it is important to remark that OSD-0 provides a
binary error pattern without any soft-information, turning a
decoding failure into a logical error, while BP-based decoders
keep the soft information from the messages after a decoding
failure, so further processing can be added to improve the
final error correction capacity. In the next section real results
for implementation of SB-MS decoder for a code that does
not show any error degradation without OSD-0 are included.

IV. IMPLEMENTATION RESULTS
In this section, hardware results for the SB-MS decoder are
included. To perform the implementation and set up a lower
boundary, the (255,32) QLDPC code was selected, as: i) it is
the one with more restrictive parameters, from the hardware
point of view (it has high dc and dv) and; ii) it is one of the
codes with better error correction capacity. These codes are
designed following the methods described in [39].
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FIGURE 5. Performance of a full-precision SB-MS and a six-bit quantized
version of SB-MS for the (255,32) QLDPC code under a depolarizing
channel with α = 0.75.

The code parameters, M = 112, dc = 10 and dv = 5 are
representative to evaluate the routing congestion of the design
and compute a realistic fmax, not only limited by the logic
involved in the critical path but also by the wiring, which can
be used as a reference for the implementation of other simpler
QLDPC codes.

About the performance, we show in Fig. 2 that the error
correction capacity is good enough without OSD-0, and for
this reason, it can work as a standalone solution.

The decoder was implemented on an FPGA device
xcvu095ffva2104-2 using a hardware description lan-
guage (VHDL) and Xilinx’s Vivado Design Suite. A finite
precision model was performed with Matlab. As it is
shown in Fig. 5, the differences in error correction capacity
between the quantized version with 6-bit messages and the
full-precision one are almost negligible. The decoder was
verified with ModelSim comparing the outputs of Matlab’s
golden model of 6-bit precision to the outputs of the hardware
architecture.

The area results for the implementation are included
in Table 3 and the layout can be found in Fig.6, where it
can be seen that the decoder does not occupy the whole
chip, allowing the wires between the different computational
units and the logic to distribute optimally to reduce conges-
tion and critical path, increasing speed. Proof of this fact is
that the decoder can achieve an fmax = 125 MHz (clock
period of 8 ns, with 78.7% of delay due to the routing
and 21.3% due to the logic), which is equivalent to a total
latency of 320 ns @ Itmax = 20. This latency is slightly
smaller (80 ns less) than the time budget reported in [13],
making this parallel architecture a promising candidate for
real implementations of QLDPC codes for the QEC step,
as with two cores of this architecture it can correct X and Z
errors for dual and non-dual containing codes, just changing
the wiring between processing units in the last case. It is

TABLE 3. Area resources for the FPGA implementation of the SB-MS
decoder for the (255,32) QLDPC code.

FIGURE 6. Layout of the SB-MS FPGA’s implementation.

important to highlight that other serial implementations that
process each CNU at the time, will allow higher conver-
gence in the decoding but would increase the total latency
M times, not fulfilling the time constraints of the quantum
system. Derived from the latency results, throughput can be
obtained as T = (N ·fmax)/(It·τ ) = (256·125MHz)/(20·2) =
800 Mbps. Note that other implementations with a larger
number of pipeline stages would obtain a higher throughput,
however, for these systems, the critical parameter is latency,
not speed/throughput.

Concerning the dynamic power consumption, 0.63 W are
spent on the signals between cells and 0.48 W is spent on
logic, validating the claim that about half of the complexity
is located on the wiring and the rest on the logic processors
(CNUs and VNUs). The design has a static power con-
sumption of 0.918 W. These results show that the proposed
solution, with a total power consumption of 2.1 W, can be
considered as a low-power co-processor to increase reliability
of the quantum system.

V. CONCLUSION
In this work, the feasibility of the hardware implementation of
the SB-MS algorithm and its concatenation with the OSD-0
to achieve the timing constraints required to avoid the qubit
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decoherence has been evaluated. The main conclusions are
that a) it is not possible to implement the OSD-0 algorithm
with the current or near-future VLSI technology mainly due
to its sequential nature, and b) the SB-MS algorithm can be
implemented accomplishing the timing requirement of QEC
and is a solution with the potential to be scaled to a higher
number of qubits. To reinforce our conclusions, an SB-MS
decoder has been implemented in a Virtex FPGA device for
the (255,32) QLDPC code achieving a latency of 320 ns
with 20 iterations, which is within the required time budget.
Under the best knowledge of the authors, this is the first
real implementation reported for an iterative QEC syndrome
decoder. Finally, given that OSD-0 is not a practical solution
for QLDPC decoders, future research is focused on improv-
ing the performance of message-passing decoding algorithms
to solve problems like error-floor, rather than trying to con-
catenate other post-processing steps with higher complexity
like OSD.

Future work will try to reduce more the maximum latency
to obtain some extra margin in terms of timing, and thus pre-
vent further limitations that may appear during the integration
in a quantum system. Although the final objective of this
research line is to integrate the error-correction step on a real
system, nowadays devices do not work with the number of
qubits that handle the decoders of this paper, so it will be nec-
essary to wait for the next generation of quantum computers.
In the meantime, more steps in this direction will be required
to design the hardware implementations of error-correction
solutions that meet both the latency and logical-error rates of
future quantum computers.
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