
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

Dept. of Computer Systems and Computation

Symbolic Analysis of Control Models for Autonomous
Driving

Master's Thesis

Master's Degree in Software Systems Engineering and Technology

AUTHOR: Padró Ferragut, Cristina

Tutor: Alpuente Frasnedo, María

Experimental director: SAPIÑA SANCHIS, JULIA

ACADEMIC YEAR: 2021/2022

Acknowledgments

My supervisors, María Alpuente and Julia Sapiña, have been invaluable for
the development of this project. Their advice and guidance have been instru-
mental, as well as their constant support, patience and encouragement. I am
highly proud and grateful for my time working with them.

This work has been partially financed by the Generalitat Valenciana under
grant PROMETEO/2019/098 (DeepTrust).

Many thanks to my parents and partner for their unwavering support as well.

i

Resum

Es preveu que els vehicles siguen completament autònoms per a 2040, la qual
cosa aportarà beneficis considerables a la societat. Els vehicles autònoms
(AV) depenen en gran manera dels avanços en moltes de les tècniques i enfo-
caments de la intel·ligència artificial (IA), imposant nous desafiaments quant
a poder garantir la seua seguretat i confiabilitat. La necessitat de protocols
de control de vehicles autònoms la correcció dels quals puga verificar-se for-
malment és primordial per a la seguretat de tots, tant en els centres urbans
com en carretera, el qual només pot abordar-se aplicant mètodes formals

Una situació representativa i de risc que es apareix amb freqüència durant
la conducció ocorre quan dues o més vehicles troben una intersecció. Per a
manejar aquest tipus de situacions perilloses, han d’existir uns certs proto-
cols que puguen garantir un entorn de conducció segur, evitant bloquejos,
col·lisions, inconsistències en la comunicació i altres comportaments indesit-
jables. En aquest escenari, la combinació de tècniques de verificació formal
i raonament simbòlic pot contribuir a aportar les garanties de bon funciona-
ment necessàries.

L’objectiu d’aquest projecte és analitzar formalment algunes propietats crí-
tiques d’un protocol de control de vehicles autònoms recentment proposat a
l’àrea. Per a aconseguir això, primer es desenvoluparà un model formal del
dit protocol en el llenguatge d’especificació d’alt rendiment Maude. A con-
tinuació, es durà a terme una anàlisi simbòlic de l’alcanzabilidad basat en
narrowing per a ajudar a descobrir qualsevol fallada eventual de seguritat en
el model, de manera que es puga identificar situacions de risc i eventualment
obtindre una nova versió corregida del protocol. Usant el comprobador de
models de Maude, es pretén verificar les propietats generals de seguretat i
vivacitat del protocol corregit, demostrant, per exemple, que no es pot acon-
seguir cap estat considerat insegur i que hi ha garantia de servei, és a dir, que
a cap vehicle en la intersecció se li denega perpètuament progrés.

Keywords— Raonament simbòlic, Verificació formal, Narrowing en Maude, Vehicles
autònoms, Intel·ligència artificial

iii

Resumen

Se prevé que los vehículos sean completamente autónomos para 2040, lo que apor-
tará beneficios considerables a la sociedad. Los vehículos autónomos (AV) dependen
en gran medida de los avances en muchas de las técnicas y enfoques de la inteligencia
artificial (IA), imponiendo nuevos desafíos en cuanto a poder garantizar su seguridad
y confiabilidad. La necesidad de protocolos de control de vehículos autónomos cuya
corrección pueda verificarse automáticamente es primordial para la seguridad de to-
dos, tanto en los centros urbanos como en carretera, lo cual sólo puede abordarse
aplicando métodos formales

Una situación representativa y de riesgo que se aparece con frecuencia durante la
conducción ocurre cuando dos o más vehículos encuentran una intersección. Para
manejar este tipo de situaciones peligrosas, deben existir ciertos protocolos que
puedan garantizar un entorno de conducción seguro, evitando bloqueos, colisiones,
inconsistencias en la comunicación y otros comportamientos indeseables. En este es-
cenario, la combinación de técnicas de verificación formal y razonamiento simbólico
puede contribuir a aportar las garantías de buen funcionamiento necesarias.

El objetivo de este proyecto es analizar formalmente algunas propiedades críticas de
un protocolo de control de vehículos autónomos recientemente propuesto en el área.
Para lograr esto, primero se desarrollará un modelo formal de dicho protocolo en el
lenguaje de especificación de alto rendimiento Maude. A continuación, se llevará a
cabo un análisis simbólico de la alcanzabilidad basado en narrowing para ayudar a
descubrir cualquier fallo eventual de seguridad en el modelo, de modo que se puedan
identificar situaciones de riesgo y eventualmente obtener una nueva versión corregida
del protocolo. Usando el comprobador de modelos de Maude, se pretende verificar las
propiedades generales de seguridad y vivacidad del protocolo corregido, demostrando,
por ejemplo, que no se puede alcanzar ningún estado considerado inseguro y que hay
garantía de servicio, es decir, que a ningún vehículo en la intersección se le deniega
perpetuamente el progreso.

Keywords— Razonamiento simbólico, Verificación formal, Narrowing en Maude, Ve-
hículos autónomos, Inteligencia artificial

v

Abstract

Vehicles are predicted to be fully autonomous by 2040, which can bring considerable
benefits to society. Autonomous Vehicles (AV) heavily rely on advances in many Arti-
ficial Intelligence (AI) approaches and techniques, imposing new challenges to assure
their safety and reliability, which can only be tackled by applying formal methods.
The need for autonomous vehicle control protocols whose correctness can be formally
verified is paramount to ensure everyone’s safety, both in urban centers and on the
road.

A representative, risky situation that frequently occurs while driving happens when
two or more vehicles encounter an intersection. In order to handle these kinds of
hazardous situations, some protocols must exist that can ensure a safe driving envi-
ronment by preventing any deadlocks, collisions, communication inconsistencies, or
any incorrect behaviors. In this scenario, the combination of formal verification tech-
niques and symbolic reasoning can contribute to providing the necessary guarantees
of good functioning.

The aim of this project is to formally analyze some critical properties of an au-
tonomous vehicle control protocol that was recently proposed in this area. In order
to achieve this, first a formal model of said control protocol is developed in the high-
performance specification language Maude. A narrowing-based symbolic reachability
analysis is then undertaken to help discover any eventual safety flaws in the protocol
and identify risky situations so that a new, corrected version of the model can be
obtained eventually. By using Maude’s logical model checker (LMC), both safety and
liveness properties of the corrected protocol will be eventually verified, proving that
no states considered unsafe can be reached and that the system is starvation-free,
i.e., that no vehicle at the intersection is perpetually denied to proceed.

Keywords— Symbolic Reasoning, Formal Verification, Narrowing in Maude, Autonomous
Vehicles, Artificial Intelligence

vii

Contents

Acknowledgments i

1 Introduction 1
1.1 Autonomous Vehicles . 2
1.2 Objectives . 5
1.3 Related Work . 5
1.4 Structure of the MSc Thesis . 8

2 Preliminaries 9
2.1 Rewriting Logic . 10
2.2 The Maude Language . 11
2.3 Model Checking . 15
2.4 Formal reasoning in Maude . 18

3 Maude Specification of an Intersection Protocol 21
3.1 LPJL Protocol Variant . 21
3.2 Model development . 23
3.3 Sequences of events in the intersection . 26
3.4 Intersection event characteristics . 27

4 Analysis and Verification of the AV Model 35
4.1 Classical model-checking analysis . 35
4.2 Symbolic, narrowing-based analysis . 41

5 Conclusions and Future Work 47

Bibliography 49

Appendix 53

ix

Chapter 1

Introduction

Many individuals are critically wounded or killed in road accidents as a result of
human failures, such as driver inattention and distraction, reckless driving, or poor
driving capabilities, as well as many other errors (including breaches of traffic regu-
lations). Furthermore, traffic safety is influenced by vehicle malfunction (e.g., brake
failure) and ambient factors (e.g., insufficient road information or a lack of security
infrastructure).

A new form of vehicle, known as an autonomous vehicle, is being developed to in-
crease road traffic safety by allowing a driving automation system to assist a human
driver to operate the vehicle safely with improved detection and recognition, judg-
ment, and driving abilities. Moreover, they communicate with other vehicles as well
as elements of their surroundings, essentially being able to communicate with every-
thing. As a result, once extensively deployed, automated vehicles are predicted to
minimize human mistakes, improve traffic flow, and improve overall road safety and
driving experience [16].

Autonomous vehicles are a burgeoning technology. Sensors are unreliable as of yet,
communication between vehicles is still in its infancy and there is a too large variety
of communication protocols based on IoT technologies with no clear standard with
which companies should work.

Furthermore, the automotive industry advertises some vehicles as self-driving when,
in fact, referring to different levels of circulation assistance. This inaccurate mar-
keting, at its best, cultivates a lukewarm opinion of these vehicles. At its worst and
when taken at face value, however, this marketing can encourage customers to trust
the manufacturer’s criteria when determining how the car should operate, potentially
increasing the risk of an accident. Nevertheless, autonomous vehicles are on the way.

1

The Institute of Electrical and Electronics Engineers (IEEE) has predicted that by
2040, autonomous vehicles will account for up to 75% of all vehicles on the road. The
group went even farther, predicting how infrastructure, culture, and attitudes may
gradually shift by the middle of the century, when self-driving automobiles become
the norm. In order to achieve this, though, a new type of vehicle-to-vehicle com-
munication, as well as vehicle-to-infrastructure communication, must be thoroughly
developed. This would allow vehicles to communicate situational data in order to
prevent colliding with one another, as well as with enabling the exchange of data
such as their location, destination, and intended path with a central station, which
would coordinate and dispatch traffic information to route vehicles appropriately [25].

Vehicles will slowly grow their knowledge database thanks to these vehicle-to-vehicle
and vehicle-to-infrastructure communications. This will allow them to know how to
counter critical situations, but only when a behavior protocol has been established
beforehand. Here is where control protocols come into play. Formally verifiable con-
trol protocols ensure safety, both in cities and on the road, by determining how vehi-
cles should act. Control protocols allow us to prove correct behavior can be provided,
thus making traffic safer and more efficient.

1.1 Autonomous Vehicles
Driving is one of the most performed activities of our daily lives, yet it is also one of
the most hazardous. According to the World Health Organization, approximately 1.3
million people die each year worldwide as a result of road traffic accidents, with an
average of 3,300 daily fatalities [26]. Many of these accidents happen due to human
error:

• Speeding: Higher speeds are directly related to the likelihood of a crash occur-
ring as well as the severity of the crash itself and accidents 65 km/h and above
have a significantly high fatality risk.

• Alcohol and drugs: Driving under the influence of alcohol and psychoactive
drugs drastically increases the chances of a crash occurring.

• Poor use of safety equipment: The lack of use of safety equipment such as
helmets (for bicycles and motorcycles), seat-belts or child restraints affects dra-
matically the probability of fatality happening.

• Distracted driving: The fastest rising problem when driving is the increase of
distractions while driving, especially due to using mobile phones. Drivers using
their phones on the road are around 4 times more likely to be involved in a
crash.

• Unsafe vehicles and road infrastructure: Vehicles that don’t follow United
Nations regulations due to poor manufacturing standards in some countries,
vehicles that have not been properly upkept or don’t pass safety inspections,
poor road design and poor road maintenance can pose significant risks while
driving and can more easily lead to traffic accidents.

Introduction

Although traffic fatalities have steadily declined over the past decade, this decrease
has been due to passive crash protection optimization with systems such as airbags
or seatbelts [8]. Driving assistance systems that are available on modern vehicles,
which provide different levels of assistance during driving, such as speed limit de-
tection or parking assistance, thanks to their sensors and onboard computer units,
have also expedited this decline. Be that as it may, these are merely tools to account
for and mitigate accidents caused by human error; but cannot truly eliminate it.

This is where autonomous vehicles (AVs) come in. AVs are not a tool to assist driving.
Instead, true vehicle autonomy eliminates human error entirely since transportation
is handled in full by the machine. While this technology is still in its infancy, au-
tonomous vehicles promise to represent a good solution to make our roads safer.

Autonomous vehicles can proactively detect risks before they can occur. By using
their communication protocols to obtain information about their environment, these
vehicles can foresee and prevent accidents or other perilous situations by either sup-
porting and warning a human driver or by actively taking control of the vehicle in
order to avoid a crash or, if not possible, mitigate it as much as possible.

However, neither authorities nor manufacturers have established a set of protocols to
follow when encountering hazardous situations, nor have they reached a consensus
on what their vehicles should do when reaching critical situations such as overtaking
another vehicle or arriving at an intersection. On top of that, companies can imple-
ment behaviors that imitate human behavior in such a way that tolerates traffic law
violations, which is proven to be extremely dangerous.

Nowadays, vehicles are equipped with a large amount of sensors, processors and
software. Some even have a new separate core platform and are equipped with a
redesigned wiring distribution to have enough processing power to be “intelligent”,
since traditional wiring is insufficient due to relying on mechanisms that depend on
the engine, transmission, breaking and steering systems.

Nonetheless, relying purely on sensors for hazard detection is highly ineffective. Sen-
sors may fail, a common occurrence, as a result of any number of reasons such as:
normal deterioration, poor production, overuse, inadequate installation, etc. Addi-
tionally, failure can happen due to errors in the information processing unit, like not
properly recognizing an obstacle if it was not in its knowledge database before, not
having enough information about a situation to react or receiving erroneous infor-
mation from the sensors and reacting accordingly to the situation presented by the
faulty hardware. As an example, sensors may fail to detect a fence placed to block
a lane, causing the vehicle to run into it or a vehicle maneuvers to overtake another
vehicle fatally end up merging into a lane occupied by a larger vehicle that its protocol
did not adequately consider.

All the above leads us to one of the many problems these vehicles present: the lack
of protocol standardization. While more and more vehicles are becoming “intelligent”,

3

1.1. Autonomous Vehicles

manufacturers are still the ones responsible for designing the protocols these vehi-
cles must follow, without requiring an established consensus with other companies.
There is no regulated list of actions vehicles must follow when they encounter a crit-
ical situation.

4

Therefore, situations such as always stopping when a stop sign is found, keeping
safe distances when overtaking another vehicle or knowing who has priority in an in-
tersection are situations the manufacturer should account for. In addition, protocol
design that mimics human behavior should be discouraged, as it could reinforce pat-
terns that enable traffic law violations or otherwise allow for dangerous behavior in
critical situations. This would not only put lives at risk, but could result in a vehicle
recall, costing the company large amounts of money.

A relevant protocol considered in this work is the one by Lim, Jeong, Park and Lee
[21], which specifies the safe behavior of autonomous vehicles in an intersection. It
guarantees mutual exclusion while at the same time ensuring deadlock-freedom and
starvation-freedom. We postpone to Section 1.3 the description of this protocol, which
we use as a basis for developing a new variant of this protocol that allows us to deploy
our modeling and verification techniques.

1.2 Objectives
The purpose of this MSc Thesis is to look at the key elements pertaining to a vari-
ant of the well-known autonomous vehicle control system (the Lim-Jeong-Park-Lee
Autonomous Vehicle Intersection Control Protocol [6]) in order to formally verify the
protocol and eventually propose corrections to the system. To do so, we first con-
struct a formal model of the protocol’s variant in the high-performance specification
language Maude. Safety and liveness properties of the updated protocol model is then
verified using Maude’s LTL model-checker, confirming that no dangerous states
can be reached and that the system is starvation-free, i.e. no vehicle at the cross-
ing is refused the right to advance indefinitely. Lastly, the model is subjected to a
configuration-independent, narrowing-based, symbolic reachability analysis to help
in the detection of any potential protocol flaws so that a new, corrected version is
generated, which is also capable of ensuring security properties through reachability.

1.3 Related Work
Two of the biggest technologies to achieve the effective communication from vehi-
cles to their environment and vice-versa are the DSRC (based on WLAN infrastructure)
and V2X (based on 5G infrastructure) communication protocols [7]. Both protocols
support communication among vehicles and allow them to communicate with their
environment, but have not been fully adopted by companies and neither has been
established as an industry standard.

Communication protocols such as DSRC and V2X receive data from vehicles, infras-
tructure or even pedestrians, informing the vehicle of everything that surrounds it
and helping it map the world around it. Furthermore, the low latency of said pro-
tocols keeps the vehicle informed at all times, making it highly reliable. Thanks to
these protocols, vehicles can inform each other of accidents or obstacles so as to
avoid them, as well as situations such as traffic jams, redirecting incoming traffic to

1.3. Related Work

avoid those areas and optimize flow.

Through these communication protocols, vehicles are able to synchronize efficiently
when encountering critical situations that require them to carry out certain behavior
protocols. Here is where behavior protocols would come into play: stop protocols,
overtake protocols, pedestrian crossing protocols, etc. With established, standard-
ized protocols, safety would be ensured through universal verified systems. Vehicles
would carry out said behavior protocols regardless of manufacturer and unwanted
unsafe situations would be avoided.

The problem of coordinating multiple self-driving vehicles is a multidisciplinary en-
deavor that has been studied in multiple research areas (see [4] and references
therein).

In the LJPL Autonomous Vehicle Intersection Control Protocol [21], the authors describe
an intersection consisting of eight lanes of equal importance, as illustrated in Figure
1.1. Once the intersection has been entered, the vehicle or set of vehicles belonging
to the same lane have exclusive access to the intersection until they have all crossed.
Said protocol has been modeled several times, as seen in [18] and [6] (which was later
further developed in [24]).

LJPL considers vehicles in the same lane as a unit to improve efficiency by allowing
them to cross while ensuring mutual exclusion, enhancing efficiency, as well as al-
lowing vehicles from different lanes to cross the intersection at the same time as long
as they do not conflict with each other, as determined by certain parameters defined
in the algorithm. It also utilizes vehicle-to-vehicle communication, decentralizing co-
ordination between vehicles.

In this protocol, vehicles can take a number of actions before finishing the protocol
execution:

• approach the intersection.

• stop at the intersection.

• enter the intersection (with mutual exclusivity between lanes). When the head
vehicle of the lane enters the intersection, all vehicles behind it that have already
stopped can enter the intersection as well.

• exit the intersection. If more than one vehicle had entered the intersection, all
other vehicles from different lanes will wait until the intersection is completely
free before entering. The execution ends when all vehicles have crossed the
intersection.

More sophisticated, vehicle coordination with vehicular communication protocols
have been devised for intelligent intersection control. In most of them, vehicles are
normally assigned priorities based on their arrival times at the intersection, with vehi-
cles reaching the intersection earlier assigned higher priorities than vehicles coming

6

Introduction

later. For instance, Azimi et al. [9] proposed several V2V-based spatio-temporal in-
tersection protocols which are typically priority-based intersection protocols. For a
detailed account of this line of work, we refer to [4].

Figure 1.1: Diagram of an intersection with 8 lanes and the directions vehicles
can choose to take from each lane, as described in [21]

7

A framework for modeling and model checking autonomous vehicles that considers
the impact of communication delays by means of timed automata is proposed in [5].
More related to our work is the approach of [6], which relies on Maude’s interpreter
and model-checker for the analysis of the LJPL protocol.

1.4 Structure of the MSc Thesis
This thesis is organized as follows. First, we introduce the main ingredients of this
work: the language and the protocols to be evaluated. The language used to rep-
resent our models, Maude, is briefly described in Chapter 2. Model-checking is the
subject of Chapter 3. Chapter 4 gives a comprehensive description of the considered
protocols, explaining the algorithms they follow. In Chapter 5, we go through the
model we developed for the analysis of these protocols in great depth. The symbolic
analysis and model-checking method for the created model is described in Chapter
6. Finally, in Chapter 7, we provide some conclusions and directions for future work.
As an addendum, we provide an appendix which details a list of results and coun-
terexamples given by Maude’s model-checker.

Chapter 2

Preliminaries

In this chapter, we start by recounting some fundamentals in order to facilitate
the comprehension of the model’s development and verification process: formal lan-
guages, formal methods and automated reasoning. After this, we examine all of the
elements that were core to our developments. In Section 2.2 we introduce Maude’s
core syntax and how to apply it, in Section 2.3 we briefly describe Maude’s model-
checker and its applications and, lastly, in Section 2.4 we summarize the key ideas
about term rewriting and narrowing in Maude.

Maude, being an exceedingly expressive, flexible, and high-performance language, al-
lows for a natural representation of problems and applications. These qualities make
this language invaluable as a representational device. Furthermore, both Maude’s
interpreter and its built-in model-checker support for deeply thorough analysis and
verification of a provided model, whether through reachability analysis or safety and
liveness verification, ensuring a model fulfills all required properties.

In the most recent Maude versions we can efficiently use narrowing as well, through
the interpreter itself, granting access to even more tools for an in-depth analysis of a
model. The most recent Maude version is available at http://maude.cs.illinois.
edu. For a more detailed description about Maude itself, we refer to [[13], [14],[23]].

Formal language
We can define a formal language, also simply known as language, as an infinite set
of strings from a given alphabet or dictionary. Said alphabet must be a finite set of
symbols. A language can also include the empty string, denoted by λ. Formal gram-
mars and automata that can be defined as modifications of non-deterministic Turing
machines serve to effectively specify a formal language [22]. Several operations can
be applied on formal languages: Kleene closure, union, intersection, complement and
difference [15].

9

http://maude.cs.illinois.edu
http://maude.cs.illinois.edu

A formal language, taken at some level of abstraction, can be expressed as a col-
lection of properties a system should satisfy. This is what we can understand as a
formal specification of the system behavior [20]. This specification can be verified
by checking whether the design satisfies the required properties, analyzing the finite
number of configurations (states) the system can reach [17].

Formal methods
Formal methods can be defined as mathematically-based rigorous techniques and
tools for specifying, developing and verifying systems, both software and hardware.
Formal methods can be used to assist in the elimination of errors by symbolically
examining the entirety of the digital design. This allows for the establishment of cor-
rectness and safety properties that are true for all possible inputs [11].

Automated reasoning
Reasoning can be defined as the ability to make inferences [27]. Therefore, automated
reasoning can be understood as the mechanization of reasoning through computing
systems, following formal logic and, usually, deductive mathematical reasoning (al-
though induction, abduction and non-monotonic reasoning can also be applied). By
implementing an algorithmic description to a formal calculus, theorems of said cal-
culus can be proven efficiently.

Automated reasoning can help tackle problems in mathematics and logic, solve engi-
neering problems and is a widely used tool in computing science. When automated
reasoning lays on a unification-based goal solving mechanism, automated reasoning
is often referred to as symbolic reasoning.

2.1 Rewriting Logic
Rewriting logic can be defined as a logical framework in which we can represent many
different models of concurrency, distributed algorithms, programming languages,
and software and hardware as rewrite theories [23].

In Maude, a functional module represents a theory in membership equational logic. We
can view this theory as E = (Σ, E ∪ A), where Σ, the signature, specifies the type struc-
ture and theory operators, E specifies a collection of equations and A is a collection
of distinguished equations that specify algebraic properties of the theory operators.

If, along with said equational theory, we consider a set R of rewrite rules that specify
a number of local concurrent transitions, we can define a rewrite theory as R = (Σ, E
∪ A, R).

Maude programs can be considered rewriting theories, each of them being a system
module. When no rewrite rules are declared, though, the module is interpreted as a
functional module.

2.2 The Maude Language
Maude is a multi-paradigm declarative language that efficiently implements Rewriting
Logic (RWL). Rewriting logic allows for concurrent systems to be expressed in a sim-
ple and effective way by defining them as a set of terms that define states, equations
that simplify said states and rules that define how those states can be transformed
independently and non-deterministically.

Additionally, Maude is among the fastest equational rewriting systems in its class.
Applications for this programming language include Maude’s metalanguage, theorem
provers, languages, and models of computation [19].

Maude supports both equational and rewriting logic specifications. Maude’s basic
programming statements are equations and rules, both having simple rewriting se-
mantics that allow for replacements from any instance of a left-hand side pattern to
a corresponding instance of the right-hand side pattern of any rule or equation.

Core Maude, Syntax and Basic Parsing
Modules are the main elements that comprise a specification. Signatures and
statements make up said modules. In Core Maude we find two different types of
modules, the distinction between these two being the types of statements they can
host: functional modules, admit equations while system modules also admit rules.
Signatures are the basic syntax declaration part of a module, whereas statements
are made up of equations and rules. Both of these allow the programmer to assert
the behavior of a given system. The syntax declaration includes:

• sorts and subsorts: allow us to name types of data and organize them hierar-
chically.

• kinds: a more general declaration of a type. It is typically used for error han-
dling, as it can handle partially evaluated expressions (we will not go over kinds
in this chapter, as they were not used in our model).

• operators: are used to create operations that can be applied to the data to build
expressions and functional applications.

Identifiers are the basic syntactic elements that constitute a Maude program and are
used to name modules, sorts or form operator names and such. Identifiers are any
finite sequence of ASCII characters that (1) do not contain white space, (2) are not
considered special characters (such as ‘{’, ‘}’, ‘[’, ‘]’, ‘(’, ‘)’ and ‘,’) and are not the
backquote (‘) character which is used as an escape character to express that a blank
space or special characters do not break the sequence. Additionally, backquotes can
only appear immediately before any of the special characters or between nonempty
strings of characters. As an example, let us consider the identifiers Vehicle, Bus,
Motorcycle and Car.

Sorts allow users to declare the types of data they require by using the keyword sort,
followed by an identifier. They are the first element of a module to be declared. In
order to partially order sorts, we can use the keyword subsort, expressing what data
types are a subtype of another, similar to type hierarchies or a parent-child relation.

The sort declaration is structured as follows. Here we can see how a single or mul-
tiple sorts are declared, as well as how a subsort hierarchy can be defined:

1 sort <Sort> .
2 sort <Sort-1> ... <Sort-k> .
3 subsort <Sort-1> < <Sort> .
4 subsorts <Sort-2> ... <Sort-k> < <Sort> .

Following this structure, we can continue with our vehicle example by declaring the
relevant problem sorts, which is graphically represented in Figure 2.2 as an acyclic
graph:

1 sort Zero .
2 sorts NzNat Nat NatList .
3 subsorts Zero NzNat < Nat .
4 subsort Nat < NatList .

NatList

Nat

NzNatZero

An operator is a user-defined structure that is comprised of a list of sorts and pro-
duces a new term of a sort as a result, that can be different from the sorts in the
list. Operators may have arity zero or higher. When arity is zero, following equational
theories, we can consider the operator a constant. Likewise, operators can be param-
eterized by using the underscore (_) character, indicating each parameter’s location
within the notation. This parameterization allows for prefix, suffix or infix notation.

If an operator ’s purpose does not entail transformation by equations (except for
axioms between constructors) or rewrite rules, they are considered constructors,
meaning they are used to organize information and compose simpler terms into more
complex ones. Constructors are indicated by means of the attribute ctor.

The operator declaration is structured as follows:

1 op <OpName> : <Sort-1> ... <Sort-k> -> <Sort> [<OperatorAttributes>] .
2 ops <OpName-1> ... <OpName-n> : <Sort-1> ... <Sort-k> -> <Sort> [<OperatorAttributes>] .

Where <Sort-1> ... <Sort-k> are the sorts provided as arguments for the op-
erator, <Sort> is the type of result and [<OperatorAttributes>] are the possible
attributes the operator might have and express algebraic properties such as the as-
sociativity or commutativity properties. We can also declare various operators at the
same time that share the same structure using the keyword ops. Operators in Maude
can be overloaded.

Following this structure, we can continue with our vehicle example by declaring our
operators:

1 op zero : -> Zero .
2 op s_ Nat : -> NzNat .
3 op __ : Nat Nat -> NatList .

Variables are usually declared using the keyword var, and are constrained to being a
particular sort or kind. When declared this way, their scope is the entire module. That
being said, they can also be declared on-the-fly, which is used as <varName>:<Sort>
due to its scope being the declaration’s occurrence. Variable’s names can be both in
upper and lower case, but it is more customary in Maude to declare them in upper-
case.

We can observe all the different ways variables can be declared:

1 var VarName : Sort .
2 vars VarName1 VarName2 : Sort .
3 var VarName : [Kind] .
4 vars VarName1 VarName2 : [Kind] .
5 rl [RuleName] OpName(VarName:Sort) .
6 rl [RuleName] OpName(VarName:[Kind]) .

2.2. The Maude Language

Therefore, if we wanted to create variables for our example, they would look some-
thing like this:

1 var N : Nat .
2 vars N1 N2 : Nat .
3 var NList : NatList .
4 rl [RuleName] OpName(N:Nat) .

Functional modules and equational theories

Functional modules can be understood as aggregations of operators and equations
that describe the program. When a Maude program is only written as a group of func-
tional modules, it can be considered equivalent to an equational theory. In Maude,
functional modules are assumed to have the capacity to apply its equations repeat-
edly until reaching the canonical (irreducible) form.

Functional module’s key elements are equations, which can be declared with either
the keyword eq or the keyword ceq, depending on whether they are used to declare
unconditional or conditional equations respectively. A condition in an equation can
be either a single equation or a conjunction of equations using the binary conjunction
connective /\ which is assumed to be associative [13].

The keyword eq serves to declare unconditional equations. Both terms from the
equation must be of the same kind and any variable in RTerm must also appear in
LTerm. Equations are written as:

1 eq (LTerm) = (RTerm) [(Attributes)] .
2 ceq (LTerm) = (RTerm)
3 if (Condition-1) /\ ... /\ (Condition-n)
4 [(Attributes)] .

Axioms are properties about a given set, determined by an operator when defining
a said set. They allow Maude to efficiently use equations. Maude currently supports
associativity, commutativity, idempotency, identity element and left or right identity
elements. Declaring these attributes for an operator is equivalent to declaring the
corresponding equations for the operator. We can observe an example of these axioms
being declared when we describe operators in Section 2.2.

System modules and rewrite theories

Rewrite theories with sorts, kinds, and operators are specified in system modules,
as are three types of statements: equations, memberships (i.e., a distinguished kind
of equations that are used to introduce type constraints), and rules, all of which can
be conditional.

System modules contain equations and rules that specify state transitions and change
a state when it matches the left side of a rule, transforming the state according to the

14

Preliminaries

right-hand side of the rule.

The keyword rl serves to declare unconditional rules. Both terms from the rule be-
long to the same kind. As already stated, rules are used to describe local concurrent
transitions in a system. Rules are written as follows:

1 rl [(Label)] : (LTerm) => (RTerm)
2 [(Attributes)] .

The keyword crl serves to declare conditional rules. A condition can be either a
single equation, membership, rewrite or rewrite expression or a conjunction of them
using the binary conjunction connective /\ which is assumed to be associative [13].
The general structure of conditional rules has the following syntax:

1 crl [(Label)] : (LTerm) => (RTerm)
2 if (Condition-1) /\ ... /\
3 (Condition-n)
4 [(Attributes)] .

2.3 Model Checking
Formal methods can be understood as "applied mathematics for modeling and an-
alyzing systems". Using mathematical logic, we can demonstrate that a program’s
behavior fulfills the required specification, thus proving correct behavior in an ac-
curate manner. Formal methods, which use mathematical rigor to establish system
correctness, are widely used for software verification. Verification techniques that
utilize models are based on mathematically precise and unambiguous models that
describe the intended system behavior.

Traditional model-checking is a flexible technique that allows for the verification of
concurrent, distributed and reactive models, thus enabling an automatic and exhaus-
tive exploration all of a system’s states by brute-forcing all possible system states in
a systematic, possibly implicit manner [10]. It allows the user to verify both software
and hardware requirements by obtaining a set of system requirements or design (the
models) and the verifiable properties that the system must sate. This verification
technology, through the use of Temporal Logic (TL) formulas, can determine if a
model satisfies certain required properties [12]. Furthermore, model-checking is cur-
rently the lightest and fastest verification technique available, as well as being fully
automated.

Model-checking has an edge over other types of verification. Experimentation meth-
ods such as simulation and testing cannot be fully comprehensive and exhaustive,
allowing for vulnerabilities in the program to go undetected that could be found and
corrected through model-checking. However, model-checking’s completeness can
only be guaranteed in a system with a huge, yet finite number of states (> 10120).

15

2.3. Model Checking

When a model does not satisfy its required properties, model-checking tools can gen-
erate counterexamples to help pinpoint why the model does not satisfy the specifica-
tion [29]. To deal with systems with infinite states, the use of abstraction techniques
is required.

Expressiveness and efficiency are important criteria for logic. Safety properties, live-
ness properties, fairness properties and security properties, for instance, are exam-
ples of characteristics that can and cannot be captured by logic 1. It is critical for all
required properties to have the capacity to be expressed, else this verification method
would prove futile. Efficiency, on the other hand, refers to the difficulty of a logic’s
model-checking problem as well as the performance of the logic’s model-checking al-
gorithms.

Verifiable model-checking properties can be classified into different types, in accor-
dance with the aspects of a system they correspond with:

• Reachability properties: These are the properties that guarantee the occur-
rence of a desired state.

• Safety properties: are those that ensure that a potentially harmful situation
will not occur, which is the polar opposite of reachability.

• Liveness properties: They ensure system progress by ensuring that a process
does not stop for no reason, that no process dies of starvation, and that no
deadlocks occur.

• Fairness properties: Ensure that a property receives attention an infinite num-
ber of times, either periodically or from a specific state. This includes recurrence
(a property occurs every so often); and also persistence (a property is infinitely
given and maintained).

1Actually, security is considered to be a hyperproperty, as it cannot be expressed in trace-
based specifications languages [1]

16

Temporal Logic
The ability for a logic to specify properties on infinite execution paths is a must-have
in order for a model-checker to verify formulas. This is where temporal logic enters
the picture. A finite state system can be realized if a program can be specified in TL.
This sparked the concept of model-checking, which involves determining whether a
finite state graph is a model of a TL specification. In order to avoid conforming to the
Hoare-style paradigm, such systems should ideally exhibit nonterminating behavior.
They are also usually interactive, distributed, and nondeterministic, i.e., a reactive
system [12].

Temporal logic is a formalism for describing change over time that is used to manage
the system’s executions and fairness issues in order to ensure that it is correct. It
adds modalities to propositional or predicate logic that allow for referral to a reactive
system’s infinite behavior, allowing for the specification of the relative order of events
[10]. The Linear Temporal Logic (or LTL), introduced by Pnueli [28], is the temporal
logic we use in this project.

Temporal logic is useful to express certain properties we are interested in having in
our model. We can control different states of execution, ensuring no undesired states
are found. While some of these properties could be verified through searches, the
rigorous nature of model-checking through the formulation of LTL properties is a
thorough approach that ensures correct behavior of the model and can assist in the
discovery of problems on how the model was constructed.

LTL is not advisable for asynchronous systems, as it represents a singular timeline in
which several different futures are possible depending on which component is chosen
to evolve. LTL uses the logical operators: ∨, ∧, ¬, →, ↔, true and false. In addition,
LTL uses temporal operators such as:

• G: is used for always, indicating that p is globally true.

• F: is used for finally, indicating that p is going to be fulfilled at some future time.

• X: is used for next, indicating that p will be fulfilled in the next state.

• U: is used for until, indicating that p must be fulfilled until q is fulfilled, which
must be done at some point.

• R: is used for release, that q must be true until and also in the state in which p
is fulfilled; if p is never satisfied, q will remain infinitely true.

• W: is used for weak until, indicating that p must be fulfilled at least until q is
fulfilled; if that never happens, p will remain infinitely.

Model-checking in Maude
Maude’s LTL model checker allows algorithmic verification of competing models that
are expressed as rewrite theories. In any Maude system module, we can differentiate

2.4. Formal reasoning in Maude

two levels of specification:

• System specification level: the rewriting theory that defines the behavior of
the system.

• Property specification level: one or more properties of interest to be verified.

To investigate the system specification, it must be run in the Maude environment to
see if it behaves as expected and intended. Property verification, on the other hand,
necessitates both a logic specification and a procedure that allows them to be verified
in a finite range of states.

The LTL syntax is specified in the model-checker.maude file. To carry out property
verification, Maude uses the modules defined in this file.

Maude’s LTL model checker allows you to verify:

• Reachability properties: They ensure that a certain state will be reached.

• Security properties: They guarantee that a certain configuration will not be
given.

• Liveness properties: They ensure that an action will have its reaction.

Despite the fact that fairness can be expressed in LTL, this model checker is unable
to verify fairness properties, which guarantee that a situation will repeat indefinitely.
This is due to the fact that it can only work with a finite number of specific states
and thus is unable to make an equational abstraction to determine whether these
properties will be fulfilled in the future.

2.4 Formal reasoning in Maude
Rewriting is used in the fields of mathematics, computer science and logic to describe
a variety of formal reasoning approaches that heavily rely on replacing subterms in
a formula with other terms. It is possible for rewriting to be non-deterministic. One
rewriting rule could be applied to a term in a variety of ways, including different sub-
terms and the fact that more than one rule can be relevant to rewriting a specific
position or more than one rule could be relevant. Rewriting systems then provide a
set of possible rule applications rather than an algorithm for transforming one term
to another. Rewrite systems, on the other hand, can be considered as computer
programs when combined with the right algorithm, and term rewriting is used in nu-
merous theorem provers and declarative programming languages.

Term rewriting systems are reduction systems whose objects are terms, which are
rewritten according to a set of rules. Term rewriting system rules are usually written

18

Preliminaries

as l → r (indicating that in every possible context, any term matching the left-hand
side can be replaced by the corresponding instance of the right-hand side), where
both l and r are terms, l is not a variable, and every variable from r also exists in l.

A l → r rule can be employed for a term t, simplifying the term to rσ if σ is a matcher
for t and l.

Unification is the algorithmic process of solving equations between symbolic expres-
sions. Depending on which terms appear in a set of equations and which expressions
are considered equal, many frameworks of unification are determined. If higher-order
variables are permitted in an expression, the process is referred to as higher-order
unification. If a solution is required to make both sides of each equation modulo
a set of equations, it is called equational unification. If not, it is called equational
unification. A solution of a unification problem is denoted as a substitution. A unifi-
cation algorithm should compute a complete and minimal set of solutions for a given
problem.

Narrowing allows the use of logical variables in terms and extends term rewriting
by replacing pattern matching with unification. Therefore, when given a term with
variables, it ascertains the most general instances of that term that can be rewritten
with existing rules.

Multi-paradigm languages such as Maude are capable of narrowing. Narrowing is the
operational principle that integrates functional and logic programming features in a
single computational paradigm by enabling the logic-like evaluation of expressions
containing uninstantiated logic variables. Its original purpose was theorem prov-
ing, as it serves as a mechanism for solving equational unification problems but has
found an important number of applications in many areas such as program analysis,
verification, synthesis, and transformation.

Similarly to rewriting steps, with each narrowing step we must choose a subterm of
the term t and an unconditional rule 2 with an instantiation of the variables of t and
the rule’s left-hand side. This is because, unlike rewriting steps, narrowing unifies
the left-hand side l of the chosen subterm of t before using the selected rewrite rule
in R.

The narrowing infrastructure in Maude is a quite sophisticated, three-layer machin-
ery: 1) narrowing with the rules of R modulo equations E and axioms A; 2) equational
narrowing with the equations of E (oriented from left to right as rewrite rules) modulo
the axioms A; unification modulo A. For a gentle description, we refer to [2].

2Conditional narrowing is not natively supported in Maude yet.

19

Chapter 3

Maude Specification of an
Intersection Protocol

In this chapter we focus on describing the formal model of an intersection proto-
col that has been specified in the Maude language. This model follows the protocol
described in the following Section 3.1, which is based on the protocol described in
Section 1.3, having an initial state represented by five different parts: a finality state,
an intersection state, a clock, a set of lanes and a set of vehicles. The number of
lanes in the set is six, and the number of vehicles in the set can vary, depending on
the situation we desire to execute.

The first part of this chapter will break down the protocol, while the following sections
describe the different parts that constitute the model, explaining what each element
represents within the protocol and how they are used.

3.1 LPJL Protocol Variant

In this work, we propose a variant of the LPJL protocol for the case when a vehicle
encounters an intersection that has six lanes: four lanes that comprise the main road
and two secondary lanes that merge into the four main ones. This variation, while
having less lanes, adds the notion of priority.

In the original protocol, all lanes are considered of equal importance. While that is
a useful scenario, the concept of a lane having priority over another cannot be de-
termined and is instead dependent on order of arrival, in which the first vehicle that
arrives at the intersection is the one that determines who should have priority, in
accordance with to traffic laws. In this protocol, however, this only happens with
lanes that are on the same priority, but secondary lanes have modified behavior that
prevents vehicles from entering the intersection if there are priority vehicles nearby.
As we can see in Fig 3.1, these six lanes allow vehicles to enter the intersection either
sequentially or simultaneously (as long as they do not conflict with each other).

21

3.1. LPJL Protocol Variant

Also, depending on the lane, each vehicle has several paths they can take, which de-
termines who they conflict with. Secondary lanes always conflict with primary ones
and vehicles that circulate through them must always wait before entering the inter-
section, allowing priority vehicles to circulate before them. Meanwhile, this protocol
still allows simultaneous entry when lanes do not conflict with each other as well as
keeping maintaining mutual exclusion for when they do conflict.

Figure 3.1: Diagram of an intersection with 6 lanes and the directions vehicles
can choose to take from each lane.

22

The conflicting lanes that we choose for this type of intersection are:

• Lane 0: Conflict with Lane 2 and Lane 5.

• Lane 1: Conflict with Lane 2, Lane 3, Lane 4 and Lane 5.

• Lane 2: Secondary lane that conflicts with all lanes except Lane 5.

• Lane 3: Conflict with Lane 2 and Lane 5.

• Lane 4: Conflict with Lane 0, Lane 1, Lane 2 and Lane 5.

• Lane 5: Secondary lane that conflicts with all lanes except Lane 2.

Although this proposal follows the same basic actions as the LPJL protocol, the dis-
tinction between primary and secondary lanes allows for a representation of priority
that the original protocol lacks, as all lanes are equal priority. This gives us new
scenarios such as a vehicle having already arrived at the intersection but, since it
belongs to a secondary lane, it must now not only check whether the intersection is
empty, but also check if there are vehicles with higher priority since they must enter
the intersection first.

This variation of the LPJL protocol allows for vehicles with the same priority to enter
the intersection simultaneously as well, as long as they are not considered to be in
conflict. In Figure 3.1 we can see the paths vehicles can intend to have, thus allowing
us to visualize when there is or isn’t a conflict between lanes.

Seeing that lanes 0, 1, 3 and 4 are on the same priority level and given the above
explained list of conflicts between lanes, we have three possible combinations of lanes
that allow for simultaneous access to the intersection without risk of collision: L0-L1,
L0-L3 and L3-L4. On the other hand, if there does exist a conflict between lanes, they
will enter the intersection in sequential order. Lastly, vehicles from secondary lanes
(Lanes 2 and 5) will wait until all other vehicles in the high priority lanes have crossed
before entering the intersection.

3.2 Model development
We have specified in Maude a formal model of the considered protocol that is struc-
tured as follows. For more details, the code to this model can be found at https:
//github.com/SilverArrow23/TFM. Firstly, this model is comprised of several mod-
ules involved in vehicle control.

• NATURAL-LIST contains the definition of NatList and NeNatList. This is an
auxiliary module, as using the normal NAT-LIST module generated some prob-
lems at the meta-level.

• FSTATE contains the definition of State.

• VSTATUS contains the definition of VStat.

https://github.com/SilverArrow23/TFM
https://github.com/SilverArrow23/TFM

3.2. Model development

• INTERSECTION contains the definition of all the main elements that belong to
an intersection.

• INTERSECTION-EQ contains the equations with which states can be simplified.

• INTERSECTION-RL contains the rules with which the execution states will progress.

• CONFIG contains the definition the initial configuration for the execution.

Within these modules, we can find all the sorts that define the elements of the soup
that represents the intersection.

• FStatus is used to indicate the status of the execution: ended or not ended.

• FStat allows us to represent a global status of the execution, indicating whether
all vehicles have crossed or not.

• VStat is used do indicate the status of a vehicle.

• IStat allows us to represent a global status for the intersection, indicating
whether it is currently occupied or not.

• Clock equates to a global clock for all vehicles to permit synchronization.

• Id serves as a way of identifying vehicles and lanes.

• Time allows us to represent the time at which a vehicle arrives at an intersec-
tion.

• Lane represents the structure of a lane.

• LaneSet represents the group of lanes that belong to the intersection.

• Vehicle represents the structure of a Vehicle.

• VehicleSet represents the group of Vehicles involved in the intersection during
the execution.

• Config represents the configuration of the model.

Along with these sorts, we have also defined their constructors as well as their differ-
ent algebraic properties:

1 *** Constructors ***
2 ops nEnd end : -> State [ctor] .
3 ops circulating stopping stopped waiting crossing crossed : -> VStat [ctor] .
4 op (fstat:_) : FStatus -> FStat [ctor] .
5 op (istat:_) : Bool -> IStat [ctor] .
6 op (clock:_,_,_) : Nat Bool Bool -> Clock [ctor] .
7 op none : -> LaneSet [ctor] .
8 op (l[_]:_) : Id NatList -> Lane [ctor] .
9 op _;;_ : LaneSet LaneSet -> LaneSet [assoc comm id: none] .

10 op none : -> VehicleSet [ctor] .
11 op (v[_]:_,_,_,_) : Id Nat VStat Time Time -> Vehicle [ctor] .
12 op _;;_ : VehicleSet VehicleSet -> VehicleSet [assoc comm id: none] .

24

Maude Specification of an Intersection Protocol

Finality Status

The indicator of the finality status (to check whether all vehicles have crossed the
intersection or not) has the following structure:

1 op (fstat:_) : FStatus -> FStat [ctor] .

• FStatus: Status of sort FStatus, which indicates if execution has reached its
end.

Intersection Status

The indicator of the intersection’s status (if it is currently occupied or not by a vehicle)
has the following structure:

1 op (istat:_) : Bool -> IStat [ctor] .

• Bool: Boolean flag to indicate if its occuped (true) or not (false).

Clock

Represents ticks of time in a clock that is used to synchronize all elements of the
intersection.

1 op (clock:_,_,_) : Nat Bool Bool -> Clock [ctor] .

• Nat: Natural number that represents the tick of the clock.

• Bool: Boolean to indicate whether the clock can be ticked or not.

• Bool: Boolean to indicate whether the execution can end or not.

Lane

Represents the lanes that form the intersection.

1 op (l[_]:_) : Id NatList -> Lane [ctor] .

• Id: Natural number that represents the Id of the lane. Thanks to Ids, we can
know if a lane is prioritary or not in the representation of the intersection.

• NatList: List of Ids of the vehicles that are currently in the lane.

25

3.3. Sequences of events in the intersection

Vehicle

Represents the vehicles that will enter and exit the intersection.

1 op (v[_]:_,_,_,_) : Id Nat VStat Time Time -> Vehicle [ctor] .

• Id: Natural number that represents the Id of the vehicle.

• Nat: Natural number that represents the lane the vehicle is circulating in.

• VStat: Vehicle status (circulating, waiting, crossing, etc).

• Time: Time at which the head vehicle of the lane has arrived.

• Time: Time at which the vehicle has arrived at the lane.

Config

Once we have seen what all the different parts of the model are for, we can proceed
to describe the structure of an initial state. The initial state is defined as follows:

1 sort Config .
2 op {_|_|_|_|_} : FStat IStat Clock LaneSet VehicleSet -> Config [ctor] .

An example of an initial state is as follows:

1 op init-inter : -> Config .
2 eq init-inter = {
3 (fstat: nEnd) | (istat: false) | (clock: 0, false, false) |
4 (l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;;
5 (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) |
6 (v[0]: 0, circulating, 100, 100) ;;
7 (v[1]: 0, circulating, 100, 100) ;;
8 (v[2]: 0, circulating, 100, 100) ;;
9 (v[3]: 0, circulating, 100, 100)

10 } .

In this state we initialize the Finality Status as nEnd (meaning the execution has not
ended), the Intersection Status as false (no vehicles are occupying the intersection),
Clock is at 0 and time cannot advance and the execution cannot end, all lanes are
empty and five cars are circulating towards the intersection.

3.3 Sequences of events in the intersection
Before diving into the different rules and equations that comprise this program, let
us first define all the actions that can occur in the intersection.

1. Arrival: When a vehicle arrives at the intersection, a tick of the clock is triggered
to assign the vehicle a timestamp, and its state is set to stopping, which is
intended to slow the car down before entering the intersection.

26

Maude Specification of an Intersection Protocol

2. Stop: Once a car has entered a lane that belongs to the intersection (in Arrival)
and has slowed down, it must stop at the intersection. There are two positions
when stopping at the intersection, which are either at the entrance to the inter-
section (the vehicle is the head of the list of vehicles) or behind a vehicle that
arrived before it.

3. Enter: When the vehicle has stopped, several checks are made to determine
whether it can enter the intersection or not.

• The vehicle is in a priority lane and no other vehicles are in the intersection:
it can enter.

• The vehicle is in a priority lane and another vehicle is in the intersection,
but there is no conflict between these lanes: it can enter.

• The vehicle is in a priority lane and another vehicle is in the intersection,
and there is conflict between these lanes: it must wait to enter.

• The vehicle is in a secondary lane: it must wait before entering.

• The vehicle is in a priority lane and has waited until the intersection is
unoccupied: it can enter.

• The vehicle is in a secondary lane and has waited until all nearby priority
vehicles have crossed before: it can enter.

4. Exit: Once the vehicle has crossed the intersection, the action to exit will take
place. This "eliminates" the vehicle from the intersection, since it has completed
its operation.

3.4 Intersection event characteristics
Now that we have presented the initial configuration and the different actions that
can take place in the considered circulation scenario, we can proceed to explain some
of the rules and equations used to transition correctly to the desired states.

Knowing that rules enable state transitions, all rules echo the formerly explained
events. Furthermore, noticing that since the left-hand side of the rule corresponds to
the current state and the right-hand side is the resulting state, we can tightly control
when vehicles trigger certain events. This helps us avoid unwanted or unsafe states,
which is further explored in Chapter 4.2.

Arrival

This is the first set of rules that can be applied. Depending on whether the vehicle
arriving is the first vehicle in the lane or not, we have two different rules. This rule
serves to transition the state of the vehicle circulating -> stopping, in which the
vehicle will start to slow down before arriving at the intersection. As an example, we
present the first rule, where the lane is empty upon arrival:

1 --- Arrive: they make the vehicle go from CIRCULATING to STOPPING. Arrive at intersection
2 --- Two transitions:
3 --- Head vehicle in the lane (lane is empty upon arrival)

27

3.4. Intersection event characteristics

4 rl [arrive1] :
5 { (fstat: nEnd) | (istat: false) | (clock: T, false, B) | LSet ;; (l[LId]: nil) | VSet ;; (v[

VId]: LId, circulating, 100, 100) }
6 =>
7 { (fstat: nEnd) | (istat: false) | (clock: T, true, B) | LSet ;; (l[LId]: VId) | VSet ;; (v[

VId]: LId, stopping, T, T) } [narrowing] .

Stop

For this transition between stopping and stopped, we make use of a rule which stops
the first vehicle of the set that can stop. This ensures all vehicles stop in order of
arrival relative to their clocks, due to it being nonsensical for a vehicle to stop at the
intersection before the vehicle that is directly in front of it:

1 --- Stop: it makes the vehicle go from STOPPING to STOPPED. Stop at intersection
2 --- One transition:
3 rl [stop1] :
4 { (fstat: nEnd) | (istat: false) | (clock: T, false, B) | LSet | VSet ;; (v[VId]: LId,

stopping, VT, VT’) }
5 =>
6 { (fstat: nEnd) | (istat: false) | (clock: T, false, B) | LSet | stopVehicle((v[VId]: LId,

stopping, VT, VT’) ;; VSet) } [narrowing] .

This rule uses the equations stopVehicle and isMinStop to determine which is the
first vehicle that should stop and returns the modified set:

1 op stopVehicle : VehicleSet -> VehicleSet .
2 eq stopVehicle(none) = none [variant] .
3 eq stopVehicle((v[VId]: LId, stopping, VT, VT’) ;; VSet) =
4 if isMinStop((v[VId]: LId, stopping, VT, VT’), VSet)
5 then (v[VId]: LId, stopped, VT, VT’) ;; VSet
6 else (v[VId]: LId, stopping, VT, VT’) ;; stopVehicle(VSet)
7 fi [variant] .
8

9

10 op isMinStop : Vehicle VehicleSet -> Bool .
11 eq isMinStop((v[VId]: LId, stopping, VT, VT’), none) = true [variant] .
12 eq isMinStop((v[VId]: LId, stopping, VT, VT’), (v[VId’]: LId’, VSt, VT2, VT2’) ;; VSet) =
13 if VSt == stopping
14 then
15 if VT’ < VT2’
16 then true and-then isMinStop((v[VId]: LId, stopping, VT, VT’), VSet)
17 else false
18 fi
19 else isMinStop((v[VId]: LId, stopping, VT, VT’), VSet)
20 fi [variant] .

Enter

In order to enter the intersection, the model checks two important properties: if the
vehicle is first in line and if there is already a vehicle in the intersection.

• If there are no cars in the intersection and it is a vehicle in a priority lane, it can
enter directly. If it is not a priority vehicle, it must wait until all present priority
vehicles have already crossed.

• If there is already a vehicle in the intersection but there is no conflict between
lanes, it can enter the intersection as well.

28

Maude Specification of an Intersection Protocol

• If no other criteria has been met, the vehicle will wait. If it is a priority vehicle it
will enter once the intersection is empty. Otherwise, it will make sure all priority
vehicles have already crossed.

In this rule we have the first state it can match with, which is when a vehicle that
has stopped encounters an empty intersection:

1 rl [enter1] :
2 { (fstat: nEnd) | (istat: false) | (clock: T, B, B’) | LSet ;; (l[LId]: VList) | VSet ;; (v[

VId]: LId, stopped, VT, VT) }
3 =>
4 if isPriorityLane(LId)
5 then
6 { (fstat: nEnd) | (istat: true) | (clock: T, B, B’) | LSet ;; (l[LId]: VList) | (v[VId]:

LId, crossing, VT, VT) ;; letCross(VList, VSet) }
7 else
8 if canSecondaryEnter(LSet)
9 then

10 { (fstat: nEnd) | (istat: true) | (clock: T, B, B’) | LSet ;; (l[LId]: VList) | (v[VId
]: LId, crossing, VT, VT) ;; letCross(VList, VSet) }

11 else
12 { (fstat: nEnd) | (istat: false) | (clock: T, B, B’) | LSet ;; (l[LId]: VList) | VSet

;; (v[VId]: LId, waiting, VT, VT) }
13 fi
14 fi [narrowing] .

To make sure a vehicle is in a priority lane, we use the isPriorityLane equation,
which checks the ID of the lane to see if it matches any of the priority lanes.

Once a lead car is crossing the intersection, all vehicles that are behind and have
already stopped are also allowed to cross. This is done with the equation letCross
which checks if any vehicles match with the current stopped vehicles in that lane and
flags all of them to cross. The specification of the letCross operator looks like this:

1 op letCross : NatList VehicleSet -> VehicleSet .
2 eq letCross(VList, none) = none .
3 eq letCross(VList, ((v[VId]: LId, VSt, VT, VT’) ;; VSet)) =
4 if VId in VList and VSt == stopped then (v[VId]: LId, crossing, VT, VT’) ;; letCross(VList

, VSet)
5 else (v[VId]: LId, VSt, VT, VT’) ;; letCross(VList, VSet)
6 fi [variant] .
7

8

9 op _in_ : Nat NatList -> Bool .
10 eq VId in nil = false .
11 eq VId in (H:Nat T:NatList) = VId == H:Nat or-else
12 VId in T:NatList [variant] .

where _in_ is an auxiliary equation that checks if a number is in a list of numbers.

If it is not a priority lane, canSecondaryEnter instead checks if all other nearby
primary vehicles have already crossed:

1 op canSecondaryEnter : LaneSet -> Bool .
2 eq canSecondaryEnter(none) = false .
3 eq canSecondaryEnter((l[0]: VList) ;; (l[1]: VList1) ;; (l[3]: VList2) ;; (l[4]: VList3) ;;

LSet) =
4 if VList == nil and VList1 == nil and VList2 == nil and VList3 == nil

29

3.4. Intersection event characteristics

5 then true
6 else false
7 fi [variant] .

On the other hand, if the intersection is not empty, it will instead check if the vehicle
that is requesting entry is not in conflict with the vehicle within the intersection. If
it is not and it is a priority vehicle, it will be able to enter the intersection as well.
Furthermore, being a priority vehicle, it must check if the lane it is in is the edge type
or the center type, as their behavior is different (as illustrated in Figure 3.1). If, on
the other hand, there is a conflict or it is not a priority vehicle, it will be set to the
waiting state instead:

1 --- Check if a number is even or odd
2 op isEdge : Nat -> Bool .
3 eq isEdge(LId) =
4 LId == 0 or
5 LId == 3 [variant] .
6

7

8 --- Intersection has car. Check to see if lanes are prioritary and in conflict
9 ---- If prioritary and no conflict -> enter the intersection immediately

10 ---- If not prioritary or has conflict -> wait until all other prioritary vehicles have
crossed

11 rl [enter2] :
12 { (fstat: nEnd) | (istat: true) | (clock: T, B, B’) | LSet ;; (l[LId’]: VList) | VSet ;; (v[

VId]: LId, crossing, VT, VT) ;; (v[VId’]: LId’, stopped, VT2, VT2) }
13 =>
14 if isPriorityLane(LId) and isPriorityLane(LId’) and not areConflict(LId, LId’)
15 then
16 { (fstat: nEnd) | (istat: true) | (clock: T, B, B’) | LSet ;; (l[LId’]: VList) | (v[VId]:

LId, crossing, VT, VT) ;; (v[VId’]: LId’, crossing, VT2, VT2) ;; letCross(VList, VSet)
}

17 else
18 { (fstat: nEnd) | (istat: true) | (clock: T, B, B’) | LSet ;; (l[LId’]: VList) | VSet ;; (

v[VId]: LId, crossing, VT, VT) ;; (v[VId’]: LId’, waiting, VT2, VT2) }
19 fi [narrowing] .

Exit

Lastly, the exit rule allows the vehicle to end its interaction with the intersection by
exiting it, freeing the it for the next vehicle or set of vehicles.

This rule first checks if all vehicles that were circulating have approached the inter-
section and if the intersection itself is occupied. It also checks if there are vehicles in
the waiting state once the current vehicle has crossed.

1 --- Exit: it makes the vehicle go from CROSSING to CROSSED. Exit intersection
2 --- One transition:
3 rl [exit1] :
4 { (fstat: nEnd) | (istat: true) | (clock: T, B, B’) | LSet ;; (l[LId]: (VId VList)) | VSet ;;

(v[VId]: LId, crossing, VT, VT’) }
5 =>
6 if haveApproached?(VSet)
7 then
8 if isOccupied(VSet)
9 then

10 { (fstat: nEnd) | (istat: true) | (clock: T, B, true) | LSet ;; (l[LId]: (VList)) | (v
[VId]: LId, crossed, VT, VT’) ;; checkWaiting(VSet) }

11 else

30

Maude Specification of an Intersection Protocol

12 { (fstat: nEnd) | (istat: false) | (clock: T, B, true) | LSet ;; (l[LId]: (VList)) | (
v[VId]: LId, crossed, VT, VT’) ;; checkWaiting(VSet) }

13 fi
14 else
15 if isOccupied(VSet)
16 then
17 { (fstat: nEnd) | (istat: true) | (clock: T, B, B’) | LSet ;; (l[LId]: (VList)) | (v[

VId]: LId, crossed, VT, VT’) ;; checkWaiting(VSet) }
18 else
19 { (fstat: nEnd) | (istat: false) | (clock: T, B, B’) | LSet ;; (l[LId]: (VList)) | (v[

VId]: LId, crossed, VT, VT’) ;; checkWaiting(VSet) }
20 fi
21 fi [narrowing] .

The auxiliary equations haveApproached?, isOccupied and checkWaiting serve
the purpose of seeing if the execution can end because there are no more new ap-
proaching vehicles, if the intersection should still be marked as occupied or not and
to change the state of all waiting vehicles to stopped so as to continue the execution,
respectively.

1 --- Check if all vehicles have approached the intersection
2 op haveApproached? : VehicleSet -> Bool .
3 eq haveApproached?(none) = true .
4 eq haveApproached?((v[VId]: LId, VSt, VT, VT’) ;; VSet) =
5 VSt =/= circulating and-then end?(VSet) [variant] .
6

7

8 op isOccupied : VehicleSet -> Bool .
9 eq isOccupied(none) = false .

10 eq isOccupied((v[VId]: LId, VSt, VT, VT’) ;; VSet) =
11 if VSt == crossing
12 then true
13 else isOccupied(VSet)
14 fi [variant] .
15

16

17 --- Set all waiting cars from WAITING to STOPPED again
18 op checkWaiting : VehicleSet -> VehicleSet .
19 eq checkWaiting(none) = none .
20 eq checkWaiting(((v[VId]: LId, VSt, VT, VT’) ;; VSet)) =
21 if VSt == waiting
22 then
23 (v[VId]: LId, stopped, VT, VT’) ;; checkWaiting(VSet)
24 else
25 (v[VId]: LId, VSt, VT, VT’) ;; checkWaiting(VSet)
26 fi [variant] .

Reset, Clock and End

Additionally, three more rules exist to control the advancement of time, resetting the
head vehicle of a lane as well as checking if the execution has ended.

As we can see here, the tick rule can only advance time once a vehicle has arrived:

1 --- Tick: ticking of clock to pass time. If all vehicles have approached the intersection, the
execution can continue until properly ending.

2 rl [tick] :
3 { (fstat: nEnd) | (istat: false) | (clock: T, true, B) | LSet | VSet }
4 =>
5 { (fstat: nEnd) | (istat: false) | (clock: (T + 1) rem 10, false, B) | LSet | VSet } [

narrowing] .

31

3.4. Intersection event characteristics

This rule is not only useful to track the execution, but serves us also as a tool to verify
certain properties, like not being able to have two vehicles with the same timestamps
on different lanes at the same time.

Meanwhile, reset covers any scenario in which the head vehicle has crossed the
intersection and a vehicle that was too far away and could not cross is now left
stopped at the intersection. This rule turns the first vehicle that is stopped in that
lane into the new head of the lane, allowing it and any others that are behind to cross
the intersection properly. This rule uses the auxiliary equation resetHead:

1 --- Reset: when head vehicle has crossed the intersection, make new first stopped vehicle the
head of the lane.

2 --- One transition:
3 --- Rule for head vehicle stopping
4 rl [reset] :
5 { (fstat: nEnd) | (istat: false) | (clock: T, false, B) | LSet ;; (l[LId]: VId’ VList) | VSet

;; (v[VId]: LId, crossed, VT, VT) ;; (v[VId’]: LId, stopped, VT, VT’) }
6 =>
7 { (fstat: nEnd) | (istat: false) | (clock: T, false, B) | LSet ;; (l[LId]: VId’ VList) | (v[

VId]: LId, crossed, VT, VT) ;; (v[VId’]: LId, stopped, VT’, VT’) ;; resetHead(VId’ VList,
(v[VId’]: LId, stopped, VT’, VT’), VSet) } [narrowing] .

8

9

10 op resetHead : NatList Vehicle VehicleSet -> VehicleSet .
11 eq resetHead(VId VList, (v[VId]: LId, stopped, VT, VT’), none) = none [variant] .
12 eq resetHead(VId VList, (v[VId]: LId, stopped, VT, VT’), (v[VId’]: LId, VSt, VT2, VT2’) ;;

VSet) =
13 if VId’ in VList and VSt == stopped
14 then (v[VId’]: LId, stopped, VT’, VT2’) ;; resetHead(VId VList, (v[VId]: LId, stopped, VT,

VT’), VSet)
15 else (v[VId’]: LId, VSt, VT2, VT2’) ;; resetHead(VId VList, (v[VId]: LId, stopped, VT, VT

’), VSet)
16 fi [variant] .

Lastly, end is a rule that uses the equation end? to make sure all vehicles in the state
have crossed. Here we can see both the equation and the corresponding rule:

1 --- Check if all vehicles have crossed the intersection
2 op end? : VehicleSet -> Bool .
3 eq end?(none) = true .
4 eq end?((v[VId]: LId, VSt, VT, VT’) ;; VSet) =
5 VSt == crossed and-then end?(VSet) [variant] .
6

7

8 rl [end] :
9 { (fstat: nEnd) | (istat: false) | (clock: VT, B, true) | (l[0]: nil) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | VSet } =>
10 if end?(VSet)
11 then
12 { (fstat: end) | (istat: false) | (clock: VT, B, true) | (l[0]: nil) ;; (l[1]: nil) ;; (l

[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | VSet }
13 else
14 { (fstat: nEnd) | (istat: false) | (clock: VT, B, true) | (l[0]: nil) ;; (l[1]: nil) ;; (l

[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | VSet }
15 fi [narrowing] .

During the process of creation of this model, the Anima tool [3] was used, as it helped
visualize how the model behaved and it helped with early stages of error-finding.
It was also used in the model-checking stages of the project as it helped to better

32

Maude Specification of an Intersection Protocol

visualize the counterexamples provided by the model-checker.

33

Chapter 4

Analysis and Verification of the AV
Model

In this Chapter, we proceed to explain the different techniques that we use to verify
our model: Maude’s built-in classical LTL model-checker and Maude’s recently opti-
mized narrowing infrastructure.

4.1 Classical model-checking analysis
After having developed our model specification as a rewrite theory and implemented
all of the INTERSECTION modules, we can now proceed to the verification. This is
done through the composition of atomic propositions (AP), which are predicates refer-
ring to the different states of the system that can be fulfilled, and LTL formulas.

Models of temporal logic can be understood as Kripke structures, which are impor-
tant to define predicates about said model. A Kripke structure is correlatable to a
rewrite theory specified in a Maude system module M.

A Kripke structure can be seen as a transition system in which each of its nodes
represents a reachable state and is generally used in model-cheking to represent the
behavior of a system. It can be defined as a 4-tuple M = (S, S0, R, L) where S is the
finite set of states, S0 is the initial state, R is the transition relation between states
and L is the labeling function L : S → 2AP .

We associate a Kripke structure to a rewrite theory specified in Maude by expounding
both the intended kind k of states in the signature Σ and the relevant set of atomic
propositions, which conform the state predicates Π.

35

4.1. Classical model-checking analysis

In order to achieve this, we first define a module INTERSECTION-PREDS, which im-
ports the model-checker defined in the module SATISFACTION. Within this mod-
ule, we create a subsort association between our type of state Config and the type
State from the SATISFACTION module. This Config will represent the states in our
system as State in the Kripke structure. We then create the atomic propositions:
executionEnd, inIntersection and waitIntersection 1.

1 *** Configuration as subsort of State ***
2 subsort Config < State .
3

4 *** Declaration of predicates ***
5 --- All vehicles have crossed the intersection successfully
6 op executionEnd : -> Prop .
7 --- A vehicle with Id (Nat) is occupying the intersection
8 op inIntersection : Nat -> Prop .
9 op waitIntersection : Nat -> Prop .

After this, we can define our equations, which follow the structure
<State> |= <Predicate>.

The first equation’s purpose is to define when the execution has ended successfully,
meaning all vehicles have crossed the intersection. The second and third equations
define when a vehicle is occupying the intersection and when it is waiting to enter,
respectively. These equations allow us to verify mutual exclusion and liveness prop-
erties. Subsequently we have the equations as:

1 *** Equations for state predicates ***
2 --- Equation for when reaching the end state fulfilled. All vehicles have crossed the

intersection successfully
3 eq { (fstat: end) | (istat: false) | (clock: T, false, true) | (l[0]: nil) ;; (l[1]: nil) ;; (

l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | VSet } |= executionEnd = true .
4

5 --- Equation that checks the intersection’s state and the state of the vehicle (occupied)
6 eq { (fstat: nEnd) | (istat: true) | (clock: T, B, B’) | LSet | VSet ;; (v[VId]: LId, crossing

, VT, VT’) } |= inIntersection(VId) = true .
7

8 --- Equation that checks the intersection’s state and the state of the vehicle (waiting)
9 eq { (fstat: nEnd) | (istat: B) | (clock: T, B’, B’’) | LSet | VSet ;; (v[VId]: LId, stopped,

VT, VT’) } |= waitIntersection(VId) = true .

Now that we have the correlation between our rewrite theory and the Kripke struc-
ture, we can define an initial state in which we can prove our atomic properties. The
assortment of reachable states defined by the initial state must be finite and the equa-
tions D that define the predicates Π in addition to the rewrite theory R = (Σ, E∪A,R),
defined in in INTERSECTION-PREDS, are such that both E and E ∪ D are Church-
Rosser 2 and terminating and R is ground 3.

1Although in LTL predicates are constants, Maude allows the definition of predicates with
parameters, enabling the possibility of checking a property for a specific parameter such as
the ID of a vehicle, for example.

2The order of application of equations does not affect the obtained result.
3The rules of the system do not contain variables.

36

Analysis and Verification of the AV Model

Assuming the compliance of these conditions, we define the module INTERSECTION-CHECK,
which imports INTERSECTION-PREDS as well as MODEL-CHECK and the optional model
LTL-SIMPLIFIER, which is used for efficiency purposes, simplifying the negative nor-
mal form of a formula.

In the following code section we declare the initial states that represent different en-
counters at an intersection that can provide interesting scenarios to be verified. These
initial states are defined as operators with their corresponding equations: {init1,
..., init5}. All initial states have a finality status of not ended, an intersection
status of empty, a clock that starts at 0 in which time cannot advance nor can the
execution end as well as a set of empty lanes, leaving the variation between these
states to be the set of vehicles that will affect the execution:

• init1: Two vehicles in parallel, priority, lanes are circulating.

• init2: Two vehicles in conflicting, one priority and another secondary, lanes
are circulating.

• init3: Two vehicles in conflicting, priority, lanes are circulating.

• init4: Four vehicles in the same lane are circulating.

• init5: Four vehicles from several lanes, priority and secondary as well as par-
allel and conflicting, are circulating.

1 *** Initial States ***
2 ops init1 init2 init3 init4 init5 : -> Config .
3

4 --- Definition of initial state
5 eq init1 = {
6 (fstat: nEnd) | (istat: false) | (clock: 0, false, false) |
7 (l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;;
8 (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) |
9 (v[0]: 0, circulating, 100, 100) ;;

10 (v[1]: 1, circulating, 100, 100)
11 } .
12

13 eq init2 = {
14 (fstat: nEnd) | (istat: false) | (clock: 0, false, false) |
15 (l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;;
16 (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) |
17 (v[0]: 0, circulating, 100, 100) ;;
18 (v[1]: 2, circulating, 100, 100)
19 } .
20

21 eq init3 = {
22 (fstat: nEnd) | (istat: false) | (clock: 0, false, false) |
23 (l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;;
24 (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) |
25 (v[0]: 0, circulating, 100, 100) ;;
26 (v[1]: 4, circulating, 100, 100)
27 } .
28

29 eq init4 = {
30 (fstat: nEnd) | (istat: false) | (clock: 0, false, false) |
31 (l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;;
32 (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) |
33 (v[0]: 0, circulating, 100, 100) ;;
34 (v[1]: 0, circulating, 100, 100) ;;
35 (v[2]: 0, circulating, 100, 100) ;;

37

4.1. Classical model-checking analysis

36 (v[3]: 0, circulating, 100, 100)
37 } .
38

39 eq init5 = {
40 (fstat: nEnd) | (istat: false) | (clock: 0, false, false) |
41 (l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;;
42 (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) |
43 (v[0]: 0, circulating, 100, 100) ;;
44 (v[1]: 2, circulating, 100, 100) ;;
45 (v[2]: 3, circulating, 100, 100) ;;
46 (v[3]: 4, circulating, 100, 100)
47 } .

Mutual exclusion

In order to verify mutual exclusion, we will consider the initial states 1, 2 and 3,
which represent interesting scenarios for proving mutual exclusion, barring the fact
that parallel lanes do not provided for mutual exclusion as their feature is allowing
parallelism.

For the property of mutual exclusion, we must guarantee that vehicles that circulate
across conflicting lanes will not be able to access the critical section, the intersec-
tion, at the same time. Formulated in natural language, the property we desire is
expressed as:

For all possible future states, it is always true that two conflicting vehicles will not be
in the intersection at the same time.

Therefore, the LTL formula we would be interested in proving would be:
G¬(inIntersection(0) ∧ inIntersection(1)).

For the states init2 and init3 we obtain the following when running the model
checker, proving mutual exclusion is guaranteed:

1 Maude> red modelCheck(init2, []~ (inIntersection(0) /\ inIntersection(1))) .
2 reduce in INTERSECTION-CHECK : modelCheck(init2, []~ (inIntersection(0) /\ inIntersection(1)))

.
3 rewrites: 1013 in 3ms cpu (4ms real) (280454 rewrites/second)
4 result Bool: true

1 Maude> red modelCheck(init3, []~ (inIntersection(0) /\ inIntersection(1))) .
2 reduce in INTERSECTION-CHECK : modelCheck(init3, []~ (inIntersection(0) /\ inIntersection(1)))

.
3 rewrites: 1273 in 2ms cpu (5ms real) (456435 rewrites/second)
4 result Bool: true

The same cannot be said for init1, as the vehicles in question reside in parallel lanes
that allows concurrency within the intersection. Therefore, when running the model-
checker, we are provided with a counterexample (given in page 53 of the Appendix
tagged as 1)) that proves mutual exclusion is not possible, just as intended.

38

Analysis and Verification of the AV Model

Strong liveness
Strong liveness verification can be proven by considering the initial states 1, 2 and
3 again, as we want to check that no conflicting or parallel vehicles are waiting in-
finitely.

For the property of strong liveness, we must guarantee that all vehicles that are wait-
ing will, eventually, be able to access the critical section. Formulated in natural
language, the property we desire is expressed as:

For all possible future states, it is always true that if a process waits infinitely often,
then it is in its critical section infinitely often.

Therefore, the LTL formula we would be interested in proving would be:
GF (waitIntersection(0) → inIntersection(0)).

For the state init1, obtain the following when running the model checker:

1 Maude> red modelCheck(init1, ([] <> waitIntersection(0)) -> ([] <> inIntersection(0))) .
2 reduce in INTERSECTION-CHECK : modelCheck(init1, []<> waitIntersection(0) -> []<>

inIntersection(0)) .
3 rewrites: 1339 in 4ms cpu (5ms real) (273992 rewrites/second)
4 result Bool: true

1 Maude> red modelCheck(init1, ([] <> waitIntersection(1)) -> ([] <> inIntersection(1))) .
2 reduce in INTERSECTION-CHECK : modelCheck(init1, []<> waitIntersection(1) -> []<>

inIntersection(1)) .
3 rewrites: 1339 in 3ms cpu (3ms real) (362676 rewrites/second)
4 result Bool: true

Similar results are provided for the states init2 and init3 in page 54 of the Ap-
pendix (tagged as 2) and 3)), proving strong liveness is guaranteed.

End of execution
End of execution verification can be proven by considering the initial states 4 and 5
(initial states 1, 2 and 3 can also be used, but are considered trivial), as these states
include several vehicles that provide a more interesting configuration that could lead
to deadlocks or starvation.

This last property seeks to demonstrate that all vehicles in the execution will eventu-
ally cross, proving there are no deadlocks and the system is starvation free. Formu-
lated in natural language, the property we desire is expressed as:

For all possible future states, it is always true that the execution will eventually reach
the state flagged as end, indicating all vehicles have crossed the intersection.

39

4.1. Classical model-checking analysis

Therefore, the LTL formula we would be interested in proving would be:
GFexecutionEnd.

Before continuing to the results, it is interesting to note that the above property didn’t
hold in the first version of our model and finding this error led us to correct our orig-
inal specification. Actually, it would be remiss to not explore the error in the model
that was found through model-checking.

Intuitively, the stop rule could be written as four separate rules: one rule for when
the head vehicle wants to stop and three for when a non-head vehicle wants to stop
and the head vehicle has already stopped at some point. While this set of rules
seemed to work as intended, they did not control order of arrival when stopping at
the intersection. This meant that a vehicle farther back in the list of a given lane could
stop before one that had not stopped yet, generating an inconsistency that would re-
sult in a deadlock when asking the model-checker to verify the property. Maude’s
model-checker would return a counterexample that can be also found in page 55 of
the Appendix tagged as 4).

These were the rules first used in our model that generated the counterexample in
question:

1 rl [stop1] :
2 { (fstat: nEnd) | (istat: false) | (clock: T, false, false) | LSet | VSet ;; (v[VId]: LId,

stopping, VT, VT) }
3 =>
4 { (fstat: nEnd) | (istat: false) | (clock: T, false, false) | LSet | VSet ;; (v[VId]: LId,

stopped, VT, VT) } [narrowing] .
5

6 rl [stop2] :
7 { (fstat: nEnd) | (istat: false) | (clock: T, false, false) | LSet | VSet ;; (v[VId]: LId,

stopped, VT, VT) ;; (v[VId]: LId, stopping, VT, VT’) }
8 =>
9 { (fstat: nEnd) | (istat: false) | (clock: T, false, false) | LSet | VSet ;; (v[VId]: LId,

stopped, VT, VT) ;; (v[VId]: LId, stopped, VT, VT’) } [narrowing] .
10

11 rl [stop3] :
12 { (fstat: nEnd) | (istat: false) | (clock: T, false, false) | LSet | VSet ;; (v[VId]: LId,

crossing, VT, VT) ;; (v[VId]: LId, stopping, VT, VT’) }
13 =>
14 { (fstat: nEnd) | (istat: false) | (clock: T, false, false) | LSet | VSet ;; (v[VId]: LId,

crossing, VT, VT) ;; (v[VId]: LId, stopped, VT, VT’) } [narrowing] .
15

16 rl [stop4] :
17 { (fstat: nEnd) | (istat: false) | (clock: T, false, false) | LSet | VSet ;; (v[VId]: LId,

crossed, VT, VT) ;; (v[VId]: LId, stopping, VT, VT’) }
18 =>
19 { (fstat: nEnd) | (istat: false) | (clock: T, false, false) | LSet | VSet ;; (v[VId]: LId,

crossed, VT, VT) ;; (v[VId]: LId, stopped, VT, VT’) } [narrowing] .

Once corrected, we can see that for the same initial state init5, we now have a
successful result, as order of arrival is controlled in the current model:

1 Maude> red modelCheck(init5, [] <> executionEnd) .
2 reduce in INTERSECTION-CHECK : modelCheck(init5, []<> executionEnd) .
3 rewrites: 493527 in 214ms cpu (224ms real) (2302574 rewrites/second)
4 result Bool: true

40

Analysis and Verification of the AV Model

End of execution is verified as well when providing several vehicles from different
lanes, thus ensuring correct behavior:

1 Maude> red modelCheck(init4, [] <> executionEnd) .
2 reduce in INTERSECTION-CHECK : modelCheck(init4, []<> executionEnd) .
3 rewrites: 184996 in 144ms cpu (155ms real) (1280027 rewrites/second)
4 result Bool: true

4.2 Symbolic, narrowing-based analysis
Once we have finished with verifying our model through model-checking, we can
proceed to applying narrowing to our model through Maude’s built in narrowing in-
frastructure. This allows us to deal with systems where 1) the number of initial states
can be very big or even infinite (for example, systems parametric in the number of
processes or objects); or 2) we want to perform an analysis that is independent of
said parameters. This second way of applying narrowing allows us to see all possible
solutions to a query, which we can then analyze to ensure no unwanted solutions
are provided. In order to achieve this, we must ignore the INTERSECTION-PREDS and
INTERSECTION-CHECK modules, as they cannot be used for narrowing. We must also
ensure we have added [variant] to all equations and [narrowing] to all rules in
which narrowing is applied.

For narrowing we use the vu-narrow command as well as the Narval tool [2] for
visualization when applying narrowing, similarly to how we made use of the Anima
tool in the implementation and model-checking sections of the project.

Maintaining order
The first property we want to ensure through narrowing would be the fact that ve-
hicles maintain order, meaning a vehicle that is behind another cannot stop at the
intersection before this one. With the initial state in which we have two vehicles

1 { (fstat: nEnd) | (istat: false) | (clock: 0, false, false) | (l[0]: nil) ;; (l[1]: nil) ;; (l
[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | (v[0]: 0, circulating, 100, 100)
;; (v[1]: X:Nat, circulating, 100, 100) } .

and the objective state, in which the vehicle with ID [1] has stopped before the
vehicle with ID [0]

1 { (fstat: nEnd) | (istat: false) | (clock: C:Nat, B:Bool, B’:Bool) | (l[0]: NL0:NatList) ;; (l
[1]: NL1:NatList) ;; (l[2]: NL2:NatList) ;; (l[3]: NL3:NatList) ;; (l[4]: NL4:NatList) ;;
(l[5]: NL5:NatList) | (v[0]: 0, stopping, 0, 0) ;; (v[1]: X:Nat, stopped, T:Nat, T’:Nat) }
.

We use the vehicle with ID [0] as our reference vehicle. It arrives before vehicle ID
[1] at the intersection but is still in the process of decelerating, meaning it has not
arrived at the stopped state yet. Meanwhile vehicle ID [1] has already stopped
before ID [0] although it arrived afterwards. We choose the ID of the Lane as the

41

4.2. Symbolic, narrowing-based analysis

free variable, as we want to check what lanes could possibly allow for a vehicle with a
succeeding timestamp to stop before a vehicle that has arrived earlier. As we checked
previously, in Section 4.1, vehicles belonging to the same lane are unable to stop
before the one that is in front of them. With this free variable we are able to check if
this is true for all lanes, meaning all vehicles arrive in order at the intersection, before
stopping. When we check the reachability of the state, we obtain the expected result
in which all vehicles must stop in order of arrival and therefore finding no solution to
our query:

1 Maude> vu-narrow { (fstat: nEnd) | (istat: false) | (clock: 0, false, false) | (l[0]: nil) ;;
(l[1]: nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | (v[0]: 0,
circulating, 100, 100) ;; (v[1]: X:Nat, circulating, 100, 100) } =>* { (fstat: nEnd) | (
istat: false) | (clock: C:Nat, B:Bool, B’:Bool) | (l[0]: NL0:NatList) ;; (l[1]: NL1:
NatList) ;; (l[2]: NL2:NatList) ;; (l[3]: NL3:NatList) ;; (l[4]: NL4:NatList) ;; (l[5]:
NL5:NatList) | (v[0]: 0, stopping, 0, 0) ;; (v[1]: X:Nat, stopped, T:Nat, T’:Nat) } .

2 vu-narrow in INTERSECTION-RL : {fstat: nEnd | istat: false | clock: 0,false,false | (((((l[4]:
nil) ;; l[5]: nil) ;; l[3]: nil) ;; l[2]:

3 nil) ;; l[1]: nil) ;; l[0]: nil | (v[0]: 0,circulating,100,100) ;; v[1]: X:Nat,circulating
,100,100} =>* {fstat: nEnd | istat: false |

4 clock: C:Nat,B,B’ | (l[0]: NL0:NatList) ;; (l[1]: NL1:NatList) ;; (l[2]: NL2:NatList) ;; (
l[3]: NL3:NatList) ;; (l[4]: NL4:NatList)

5 ;; l[5]: NL5:NatList | (v[0]: 0,stopping,0,0) ;; v[1]: X:Nat,stopped,T:Nat,T’:Nat} .
6

7 No solution.
8 rewrites: 21511 in 6026ms cpu (7606ms real) (3569 rewrites/second)

Maintaining lane priority
Just as we would want to check for the fact that order is maintained, we should also
check the fact that lane priority is maintained. As stated in Section 4.1, vehicles with
lower priority cannot cross when a vehicle of higher priority is in the intersection, but
it should also be stated that they should not be able to cross even if the intersection
is unoccupied if there is a priority vehicle waiting to enter, as they are required to
wait when this occurs. Therefore, with the initial state

1 { (fstat: nEnd) | (istat: false) | (clock: 0, false, false) | (l[0]: nil) ;; (l[1]: nil) ;; (l
[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | (v[0]: 0, circulating, 100, 100)
;; (v[1]: X:Nat, circulating, 100, 100) } .

and the target state

1 { (fstat: nEnd) | (istat: true) | (clock: T:Nat, B:Bool, B’:Bool) | (l[0]: NL0:NatList) ;; (l
[1]: NL1:NatList) ;; (l[2]: NL2:NatList) ;; (l[3]: NL3:NatList) ;; (l[4]: NL4:NatList) ;;
(l[5]: NL5:NatList) | (v[0]: 0, stopped, T1:Nat, T1’:Nat) ;; (v[1]: X:Nat, crossing, T2:
Nat, T2’:Nat) } .

in which we have a reference (priority) vehicle with ID [0] in Lane 0 that has stopped
and we would want to find out what characteristics the vehicle with ID [1] should
have in order to cross before vehicle ID [0]. Our variable targets the Lane vehicle
ID [1] belongs to. We should expect the solution substitution for said Lane’s ID to
be any valid ID other than ID [2] or ID [5], meaning secondary vehicles enter a
state of waiting and cannot cross before a priority vehicle if it is nearby. Therefore,
we obtain the following solution 4 in which we obtain the lane a vehicle should be

4We constrained this solution to the first result so as to save space in this section. For the

42

Analysis and Verification of the AV Model

occupying in order to enter the intersection without respecting the lane priority, in
this case Lane 1 5:

1 Maude> vu-narrow [1] { (fstat: nEnd) | (istat: false) | (clock: 0, false, false) | (l[0]: nil)
;; (l[1]: nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | (v[0]: 0,
circulating, 100, 100) ;; (v[1]: X:Nat, circulating, 100, 100) } =>* { (fstat: nEnd) | (
istat: true) | (clock: T:Nat, B:Bool, B’:Bool) | (l[0]: NL0:NatList) ;; (l[1]: NL1:NatList
) ;; (l[2]: NL2:NatList) ;; (l[3]: NL3:NatList) ;; (l[4]: NL4:NatList) ;; (l[5]: NL5:
NatList) | (v[0]: 0, stopped, T1:Nat, T1’:Nat) ;; (v[1]: X:Nat, crossing, T2:Nat, T2’:Nat)
} .

2 vu-narrow [1] in INTERSECTION-RL : {fstat: nEnd | istat: false | clock: 0,false,false | (((((l
[4]: nil) ;; l[5]: nil) ;; l[3]: nil) ;; l[

3 2]: nil) ;; l[1]: nil) ;; l[0]: nil | (v[0]: 0,circulating,100,100) ;; v[1]: X:Nat,
circulating,100,100} =>* {fstat: nEnd | istat:

4 true | clock: T:Nat,B,B’ | (l[0]: NL0:NatList) ;; (l[1]: NL1:NatList) ;; (l[2]: NL2:
NatList) ;; (l[3]: NL3:NatList) ;; (l[4]:

5 NL4:NatList) ;; l[5]: NL5:NatList | (v[0]: 0,stopped,T1:Nat,T1’:Nat) ;; v[1]: X:Nat,
crossing,T2:Nat,T2’:Nat} .

6

7 Solution 1
8 rewrites: 2583 in 660ms cpu (767ms real) (3911 rewrites/second)
9 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]:
10 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 1,crossing,1,1}
11 accumulated substitution:
12 X:Nat --> 1
13 variant unifier:
14 T:Nat --> 2
15 B --> false
16 B’ --> false
17 NL0:NatList --> 0
18 NL1:NatList --> 1
19 NL2:NatList --> nil
20 NL3:NatList --> nil
21 NL4:NatList --> nil
22 NL5:NatList --> nil
23 T1:Nat --> 0
24 T1’:Nat --> 0
25 T2:Nat --> 1
26 T2’:Nat --> 1

We can also visualize this solution state thanks to the Narval tool, which provides
us with a symbolic execution tree. If we specify a target state, it will be highlighted
as a green node, meaning the desired state was indeed reached. As we can see in
Figure 4.1 and Figure 4.2, Narval provides the same solution we have shown before,
in which the Lane’s ID is [1] and vehicle ID [0] arrived before vehicle ID [1].

results with no constraints check page 61 of the the Appendix (tagged as 5)).
5In the aforementioned unconstrained solution provided in the Appendix we can see that

the IDs of the Lanes are 0, 1, 3 and 4, as these are the lanes with the same level of priority as
the Lane 0. As we proved in the preceding property (Maintaining order), the solution vehicle in
Lane 0 would have an earlier timestamp than the reference vehicle, thus maintaining order.

43

Figure 4.1: Initial state and start of the execution path

Figure 4.2: Path to successful arrival at target state

Analysis and Verification of the AV Model

On the other hand, with the same initial state and the same vehicle ID [1] charac-
teristics, when we assign vehicle ID [1] to Lane 2, it will wait, as it is not allowed to
cross before vehicle Id [0], as we can see in Figure 4.3.

Figure 4.3: Path to unsuccessful arrival at target state

45

Vehicle advancement
Lastly, we should want to check that vehicles cannot backtrack during the execution,
meaning a vehicle with crossing status cannot go back into a stopped status and
similar variations. This ensures there are no loops in the model and that vehicles
cannot reach states that allow them to cross the intersection multiple times or exe-
cute other abnormal behaviors.

Consider the initial state

1 { (fstat: nEnd) | (istat: true) | (clock: T:Nat, B:Bool, B’:Bool) | (l[0]: 0 N0:NatList) ;; (l
[1]: N1:NatList) ;; (l[2]: N2:NatList) ;; (l[3]: N3:NatList) ;; (l[4]: N4:NatList) ;; (l
[5]: N5:NatList) | (v[0]: X:Nat, crossing, VT:Nat, VT’:Nat) } .

and the target state

1 { (fstat: nEnd) | (istat: true) | (clock: T:Nat, B:Bool, B’:Bool) | (l[0]: 0 N0:NatList) ;; (l
[1]: N1:NatList) ;; (l[2]: N2:NatList) ;; (l[3]: N3:NatList) ;; (l[4]: N4:NatList) ;; (l
[5]: N5:NatList) | (v[0]: X:Nat, stopped, VT:Nat, VT’:Nat) } .

We note that there are no possible configurations for which this should be true.
Vehicle lane, time of arrival, state of the clock or lane contents should not influence
the vehicle’s behavior in such a way that it would arrive to a state it has already been
in. We can see that no solutions can be provided, as no loops that would allow this
behavior exist, thus ensuring the correct behavior of the model:

1 Maude> vu-narrow { (fstat: nEnd) | (istat: true) | (clock: T:Nat, B:Bool, B’:Bool) | (l[0]: 0
N0:NatList) ;; (l[1]: N1:NatList) ;; (l[2]: N2:NatList) ;; (l[3]: N3:NatList) ;; (l[4]: N4
:NatList) ;; (l[5]: N5:NatList) | (v[0]: X:Nat, crossing, VT:Nat, VT’:Nat) } =>* { (fstat:
nEnd) | (istat: true) | (clock: T:Nat, B:Bool, B’:Bool) | (l[0]: 0 N0:NatList) ;; (l[1]:
N1:NatList) ;; (l[2]: N2:NatList) ;; (l[3]: N3:NatList) ;; (l[4]: N4:NatList) ;; (l[5]: N5
:NatList) | (v[0]: X:Nat, stopped, VT:Nat, VT’:Nat) } .

2 vu-narrow in INTERSECTION-RL : {fstat: nEnd | istat: true | clock: T:Nat,B,B’ | (((((l[4]: N4:
NatList) ;; l[5]: N5:NatList) ;; l[3]:

3 N3:NatList) ;; l[2]: N2:NatList) ;; l[1]: N1:NatList) ;; l[0]: 0 N0:NatList | v[0]: X:Nat,
crossing,VT:Nat,VT’:Nat} =>* {fstat: nEnd |

4 istat: true | clock: T:Nat,B,B’ | (l[0]: 0 N0:NatList) ;; (l[1]: N1:NatList) ;; (l[2]: N2:
NatList) ;; (l[3]: N3:NatList) ;; (l[4]:

5 N4:NatList) ;; l[5]: N5:NatList | v[0]: X:Nat,stopped,VT:Nat,VT’:Nat} .
6

7 No solution.
8 rewrites: 54 in 110ms cpu (169ms real) (489 rewrites/second)

Chapter 5

Conclusions and Future Work

Behavioral protocols and their implementations for autonomous vehicles are in high
demand. This new and rapidly growing technology requires the study of an immense
amount of scenarios, which themselves require standardization and verification.

This MSc Thesis proposes a verifiable variation of the LPJL protocol. We have been
able to define a formal specification and model of said variant protocol in the Maude
language, which was subsequently thoroughly verified through both Maude’s model-
checker and its narrowing built-in infrastructure. We were also able to enhance both
the creation of the model and its following analysis thanks to the Anima and Narval
tools, which provided visual aid by representing the execution of the model through
a tree whose nodes are each reachable state of the execution obtained through ap-
plying the equations and rules declared in the model.

As a future addition to this work, more scenarios could be considered to be verified
such as platooning (a method for driving a group of vehicles together), incorporation
into a lane, or overtaking another vehicle. These scenarios could be modeled to allow
for a narrowing analysis to be made, as this approach is not widely used and could
aid with efficiency. Another future addition would be to make use of Maude’s symbolic
model-checker. This model-checker was not used as it both requires the use of Full
Maude, it is also rather inefficient, and it has not been updated for the version of
Maude that was used for this project.

47

Bibliography

[1] S. Agrawal and B. Bonakdarpour. “Runtime Verification of k-Safety Hy-
perproperties in HyperLTL”. In: IEEE 29th Computer Security Founda-
tions Symposium, CSF 2016, Lisbon, Portugal, June 27 - July 1, 2016.
IEEE Computer Society, 2016, pp. 239–252. URL: https://doi.org/
10.1109/CSF.2016.24.

[2] M. Alpuente, D. Ballis, S. Escobar, and J. Sapiña. “Symbolic Analysis
of Maude Theories with Narval”. In: Theory Pract. Log. Program. 19.5-6
(2019), pp. 874–890. URL: https://doi.org/10.1017/S1471068419000243.

[3] M. Alpuente, D. Ballis, F. Frechina, and J. Sapiña. “Inspecting Rewriting
Logic Computations (in a Parametric and Stepwise Way)”. In: Specifica-
tion, Algebra, and Software - Essays Dedicated to Kokichi Futatsugi. Ed.
by S. Iida, J. Meseguer, and K. Ogata. Vol. 8373. Lecture Notes in Com-
puter Science. Springer, 2014, pp. 229–255. URL: https://doi.org/
10.1007/978-3-642-54624-2%5C_12.

[4] S. Aoki and R. Rajkumar. “A merging protocol for self-driving vehicles”.
In: Proceedings of the 8th International Conference on Cyber-Physical
Systems, ICCPS 2017, Pittsburgh, Pennsylvania, USA, April 18-20, 2017.
Ed. by S. Martinez, E. Tovar, C. Gill, and B. Sinopoli. ACM, 2017,
pp. 219–228. URL: https://doi.org/10.1145/3055004.3055028.

[5] J. Arcile, R. R. Devillers, and H. Klaudel. “VerifCar: a framework for
modeling and model checking communicating autonomous vehicles”. In:
Auton. Agents Multi Agent Syst. 33.3 (2019), pp. 353–381. URL: https:
//doi.org/10.1007/s10458-019-09409-x.

[6] M. N. Aung, Y. Phyo, and K. Ogata. “Formal Specification and Model
Checking of the Lim-Jeong-Park-Lee Autonomous Vehicle Intersection
Control Protocol (S)”. In: The 31st International Conference on Software
Engineering and Knowledge Engineering, SEKE 2019, Hotel Tivoli, Lis-
bon, Portugal, July 10-12, 2019. Ed. by A. Perkusich. KSI Research Inc.
and Knowledge Systems Institute Graduate School, 2019, pp. 159–208.
URL: https://doi.org/10.18293/SEKE2019-021.

[7] Autocrypt. DSRC vs. C-V2X: A Detailed Comparison of the 2 Types of
V2X Technologies. URL: https://autocrypt.io/dsrc-vs-c-v2x-a-
detailed-comparison-of-the-2-types-of-v2x-technologies/.

[8] Society of Automotive Engineers. Introduction to Highly Automated Vehi-
cles. URL: https://www.sae.org/learn/content/c1603/.

49

https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1017/S1471068419000243
https://doi.org/10.1007/978-3-642-54624-2%5C_12
https://doi.org/10.1007/978-3-642-54624-2%5C_12
https://doi.org/10.1145/3055004.3055028
https://doi.org/10.1007/s10458-019-09409-x
https://doi.org/10.1007/s10458-019-09409-x
https://doi.org/10.18293/SEKE2019-021
https://autocrypt.io/dsrc-vs-c-v2x-a-detailed-comparison-of-the-2-types-of-v2x-technologies/
https://autocrypt.io/dsrc-vs-c-v2x-a-detailed-comparison-of-the-2-types-of-v2x-technologies/
https://www.sae.org/learn/content/c1603/

BIBLIOGRAPHY

[9] S. Azimi, G. Bhatia, R. Rajkumar, and P. Mudalige. “STIP: Spatio-temporal
intersection protocols for autonomous vehicles”. In: ACM/IEEE Interna-
tional Conference on Cyber-Physical Systems, ICCPS, Berlin, Germany,
April 14-17, 2014. IEEE Computer Society, 2014, pp. 1–12. URL: https:
//doi.org/10.1109/ICCPS.2014.6843706.

[10] C. Baier and J. P. Katoen. Principles of model checking. MIT Press, 2008.
ISBN: 978-0-262-02649-9.

[11] R. Butler. Langley Formal Methods Program. What is Formal Methods.
URL: https://shemesh.larc.nasa.gov/fm/fm-what.html.

[12] E. M. Clarke, E. A. Emerson, and J. Sifakis. “Model checking: algo-
rithmic verification and debugging”. In: Commun. ACM 52.11 (2009),
pp. 74–84. URL: https://doi.org/10.1145/1592761.1592781.

[13] M. Clavel, F. Durán, S. Eker, S. Escobar, P. Lincoln, N. Marti-Oliet, J.
Messeguer, and C. Talcott. Maude Manual (Version 3.2.1). URL: https:
//maude.lcc.uma.es/maude321-manual-html/maude-manual.html.

[14] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Marti-Oliet, J. Meseguer,
and C. L. Talcott, eds. All About Maude - A High-Performance Logical
Framework, How to Specify, Program and Verify Systems in Rewriting
Logic. Vol. 4350. Lecture Notes in Computer Science. Springer, 2007.
ISBN: 978-3-540-71940-3. URL: https://doi.org/10.1007/978-3-
540-71999-1.

[15] Department of Computer Science and Electrical Engineering at UMBC.
Formal Language Definitions. URL: https://www.csee.umbc.edu/
portal/help/theory/lang_def.shtml.

[16] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou. “A review on safety
failures, security attacks, and available countermeasures for autonomous
vehicles”. In: Ad Hoc Networks 90 (2019). URL: https://doi.org/10.
1016/j.adhoc.2018.12.006.

[17] Center for Electronic Systems Design. Introduction to Formal Verifica-
tion and Model Checking. URL: https://ptolemy.berkeley.edu/
projects/embedded/research/vis/doc/VisUser/vis_user/node4.
html.

[18] T. Igarashi, M. Nakamura, and K. Sakakibara. “Formal Verification of
the Lim-Jeong-Park-Lee Autonomous Vehicle Control Protocol using the
OTS/CafeOBJ Method”. In: July 2022, pp. 574–579. URL: https://
doi.org/10.18293/SEKE2022-028.

[19] SRI International. Maude software language. URL: https://www.sri.
com/hoi/maude-software-language/.

[20] A. Lamsweerde. “Formal specification: a roadmap”. In: 22nd Interna-
tional Conference on on Software Engineering, Future of Software Engi-
neering Track, ICSE 2000, Limerick Ireland, June 4-11, 2000. Ed. by A.
Finkelstein. ACM, 2000, pp. 147–159. URL: https://doi.org/10.
1145/336512.336546.

[21] J. Lim, Y. S. Jeong, D. S. Park, and H. Lee. “An efficient distributed
mutual exclusion algorithm for intersection traffic control”. In: J. Super-

50

https://doi.org/10.1109/ICCPS.2014.6843706
https://doi.org/10.1109/ICCPS.2014.6843706
https://shemesh.larc.nasa.gov/fm/fm-what.html
https://doi.org/10.1145/1592761.1592781
https://maude.lcc.uma.es/maude321-manual-html/maude-manual.html
https://maude.lcc.uma.es/maude321-manual-html/maude-manual.html
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://www.csee.umbc.edu/portal/help/theory/lang_def.shtml
https://www.csee.umbc.edu/portal/help/theory/lang_def.shtml
https://doi.org/10.1016/j.adhoc.2018.12.006
https://doi.org/10.1016/j.adhoc.2018.12.006
https://ptolemy.berkeley.edu/projects/embedded/research/vis/doc/VisUser/vis_user/node4.html
https://ptolemy.berkeley.edu/projects/embedded/research/vis/doc/VisUser/vis_user/node4.html
https://ptolemy.berkeley.edu/projects/embedded/research/vis/doc/VisUser/vis_user/node4.html
https://doi.org/10.18293/SEKE2022-028
https://doi.org/10.18293/SEKE2022-028
https://www.sri.com/hoi/maude-software-language/
https://www.sri.com/hoi/maude-software-language/
https://doi.org/10.1145/336512.336546
https://doi.org/10.1145/336512.336546

BIBLIOGRAPHY

comput. 74.3 (2018), pp. 1090–1107. URL: https://doi.org/10.1007/
s11227-016-1799-3.

[22] Encyclopedia of Mathematics. Formal language - Encyclopedia of Mathe-
matics. URL: https://encyclopediaofmath.org/index.php?title=
Formal_language.

[23] J. Meseguer. “Twenty years of rewriting logic”. In: J. Log. Algebraic Meth-
ods Program. 81.7-8 (2012), pp. 721–781. URL: https://doi.org/10.
1016/j.jlap.2012.06.003.

[24] W. H. H. Myint, D. D. Bui, D. D. Tran, and K. Ogata. “Graphical An-
imations of the Lim-Jeong-Park-Lee Autonomous Vehicle Intersection
Control Protocol (S)”. In: The 27th International DMS Conference on Vi-
sualization and Visual Languages, DMSVIVA 2021, KSIR Virtual Confer-
ence Center, USA, June 29-30, 2021. Ed. by S. Chang. KSI Research Inc.,
2021, pp. 22–28. URL: https://doi.org/10.18293/DMSVIVA21-004.

[25] D. Newcomb. You Won’t Need a Driver’s License by 2040. URL: https:
//edition.cnn.com/2012/09/18/tech/innovation/ieee-2040-
cars/index.html.

[26] World Health Organization. Road traffic injuries. URL: https://www.
who.int/news-room/fact-sheets/detail/road-traffic-injuries.

[27] Stanford Encyclopedia of Phylosophy. Automated Reasoning. URL: https:
//plato.stanford.edu/entries/reasoning-automated/.

[28] A. Pnueli. “The Temporal Logic of Programs”. In: 18th Annual Sym-
posium on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977. IEEE Computer Society, 1977,
pp. 46–57. URL: https://doi.org/10.1109/SFCS.1977.32.

[29] Embedded Staff. An introduction to model checking. URL: https://www.
embedded.com/an-introduction-to-model-checking/.

51

https://doi.org/10.1007/s11227-016-1799-3
https://doi.org/10.1007/s11227-016-1799-3
https://encyclopediaofmath.org/index.php?title=Formal_language
https://encyclopediaofmath.org/index.php?title=Formal_language
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.18293/DMSVIVA21-004
https://edition.cnn.com/2012/09/18/tech/innovation/ieee-2040-cars/index.html
https://edition.cnn.com/2012/09/18/tech/innovation/ieee-2040-cars/index.html
https://edition.cnn.com/2012/09/18/tech/innovation/ieee-2040-cars/index.html
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://plato.stanford.edu/entries/reasoning-automated/
https://plato.stanford.edu/entries/reasoning-automated/
https://doi.org/10.1109/SFCS.1977.32
https://www.embedded.com/an-introduction-to-model-checking/
https://www.embedded.com/an-introduction-to-model-checking/

Appendix

This appendix provides a list of the results and counterexamples given by Maude’s
model-checker.

1) Counterexample for G¬(inIntersection(0)∧inIntersection(1)) with initial state init1:

1 Maude> red modelCheck(init1, []~ (inIntersection(0) /\ inIntersection(1))) .
2 reduce in INTERSECTION-CHECK : modelCheck(init1, []~ (inIntersection(0) /\ inIntersection(1)))

.
3 rewrites: 192 in 1ms cpu (1ms real) (163543 rewrites/second)
4 result ModelCheckResult: counterexample({{fstat: nEnd | istat: false | clock: 0,false,false |

(l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil)
5 ;; l[5]: nil | (v[0]: 0,circulating,100,100) ;; v[1]: 1,circulating,100,100},’arrive1} {{

fstat: nEnd | istat: false | clock: 0,true,false | (l[0]: 0) ;; (l[1]:
6 nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,stopping,0,0) ;;

v[1]: 1,circulating,100,100},’tick} {{fstat: nEnd | istat: false |
7 clock: 1,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]:

nil) ;; l[5]: nil | (v[0]: 0,stopping,0,0) ;; v[1]: 1,circulating,100,
8 100},’arrive1} {{fstat: nEnd | istat: false | clock: 1,true,false | (l[0]: 0) ;; (l[1]: 1)

;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,
9 stopping,0,0) ;; v[1]: 1,stopping,1,1},’tick} {{fstat: nEnd | istat: false | clock: 2,

false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[
10 4]: nil) ;; l[5]: nil | (v[0]: 0,stopping,0,0) ;; v[1]: 1,stopping,1,1},’stop1} {{fstat:

nEnd | istat: false | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (
11 l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,stopped,0,0) ;; v[1]: 1,

stopping,1,1},’stop1} {{fstat: nEnd | istat: false | clock: 2,false,
12 false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil |

(v[0]: 0,stopped,0,0) ;; v[1]: 1,stopped,1,1},’enter1} {{fstat: nEnd |
13 istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]: nil) ;; (l[3]: nil)

;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,crossing,0,0) ;; v[1]: 1,
14 stopped,1,1},’enter2} {{fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l

[1]: 1) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[
15 0]: 0,crossing,0,0) ;; v[1]: 1,crossing,1,1},’exit1} {{fstat: nEnd | istat: true | clock:

2,false,true | (l[0]: nil) ;; (l[1]: 1) ;; (l[2]: nil) ;; (l[3]: nil)
16 ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,crossed,0,0) ;; v[1]: 1,crossing,1,1},’exit1} {{

fstat: nEnd | istat: false | clock: 2,false,true | (l[0]: nil) ;; (l[1]:
17 nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,crossed,0,0) ;;

v[1]: 1,crossed,1,1},’end}, {{fstat: end | istat: false | clock: 2,
18 false,true | (l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l

[5]: nil | (v[0]: 0,crossed,0,0) ;; v[1]: 1,crossed,1,1},deadlock})

2) Result for GF (waitIntersection(0) → inIntersection(0)) with initial state init2:

1 Maude> red modelCheck(init2, ([] <> waitIntersection(0)) -> ([] <> inIntersection(0))) .
2 reduce in INTERSECTION-CHECK : modelCheck(init2, []<> waitIntersection(0) -> []<>

inIntersection(0)) .
3 rewrites: 1077 in 3ms cpu (3ms real) (337723 rewrites/second)
4 result Bool: true
5 Maude> red modelCheck(init2, ([] <> waitIntersection(1)) -> ([] <> inIntersection(1))) .
6 reduce in INTERSECTION-CHECK : modelCheck(init2, []<> waitIntersection(1) -> []<>

inIntersection(1)) .
7 rewrites: 1075 in 3ms cpu (3ms real) (351882 rewrites/second)

53

8 result Bool: true

3) Result for GF (waitIntersection(0) → inIntersection(0)) with initial state init3:

1 Maude> red modelCheck(init3, ([] <> waitIntersection(0)) -> ([] <> inIntersection(0))) .
2 reduce in INTERSECTION-CHECK : modelCheck(init3, []<> waitIntersection(0) -> []<>

inIntersection(0)) .
3 rewrites: 1339 in 3ms cpu (3ms real) (384770 rewrites/second)
4 result Bool: true
5 Maude> red modelCheck(init3, ([] <> waitIntersection(1)) -> ([] <> inIntersection(1))) .
6 reduce in INTERSECTION-CHECK : modelCheck(init3, []<> waitIntersection(1) -> []<>

inIntersection(1)) .
7 rewrites: 1339 in 2ms cpu (3ms real) (485672 rewrites/second)
8 result Bool: true

4) Counterexample for GFexecutionEnd with initial state init5 that demonstrates an
error in the model:

1 Maude> red modelCheck(init5, [] <> executionEnd) .
2 reduce in INTERSECTION-CHECK : modelCheck(init5, []<> executionEnd) .
3 rewrites: 14317 in 8ms cpu (8ms real) (1625269 rewrites/second)
4 result ModelCheckResult: counterexample({{fstat: nEnd | istat: false | clock: 0,false,false |

(l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil)
5 ;; l[5]: nil | (v[0]: 0,circulating,100,100) ;; (v[1]: 2,circulating,100,100) ;; (v[2]: 3,

circulating,100,100) ;; v[3]: 4,circulating,100,100},’arrive1} {{fstat:
6 nEnd | istat: false | clock: 0,true,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]: nil) ;; (l

[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,stopping,0,0) ;; (v[1]:
7 2,circulating,100,100) ;; (v[2]: 3,circulating,100,100) ;; v[3]: 4,circulating,100,100},’

tick} {{fstat: nEnd | istat: false | clock: 1,false,false | (l[0]: 0) ;;
8 (l[1]: nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,stopping

,0,0) ;; (v[1]: 2,circulating,100,100) ;; (v[2]: 3,circulating,100,100)
9 ;; v[3]: 4,circulating,100,100},’arrive1} {{fstat: nEnd | istat: false | clock: 1,true,

false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: nil) ;; (l[4]:
10 nil) ;; l[5]: nil | (v[0]: 0,stopping,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,

circulating,100,100) ;; v[3]: 4,circulating,100,100},’tick} {{fstat: nEnd |
11 istat: false | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: nil)

;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,stopping,0,0) ;; (v[1]: 2,
12 stopping,1,1) ;; (v[2]: 3,circulating,100,100) ;; v[3]: 4,circulating,100,100},’arrive1}

{{fstat: nEnd | istat: false | clock: 2,true,false | (l[0]: 0) ;; (l[1]:
13 nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,stopping,0,0) ;; (v

[1]: 2,stopping,1,1) ;; (v[2]: 3,stopping,2,2) ;; v[3]: 4,circulating,
14 100,100},’tick} {{fstat: nEnd | istat: false | clock: 3,false,false | (l[0]: 0) ;; (l[1]:

nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: nil) ;; l[5]: nil | (v[0]: 0,
15 stopping,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,stopping,2,2) ;; v[3]: 4,circulating

,100,100},’arrive1} {{fstat: nEnd | istat: false | clock: 3,true,false |
16 (l[0]: 0) ;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: 3) ;; l[5]: nil | (v[0]: 0,

stopping,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,stopping,2,2) ;; v[
17 3]: 4,stopping,3,3},’tick} {{fstat: nEnd | istat: false | clock: 4,false,false | (l[0]: 0)

;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: 3) ;; l[5]: nil | (
18 v[0]: 0,stopping,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,stopping,2,2) ;; v[3]: 4,

stopping,3,3},’stop1} {{fstat: nEnd | istat: false | clock: 4,false,false |
19 (l[0]: 0) ;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: 3) ;; l[5]: nil | (v[0]: 0,

stopped,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,stopping,2,2) ;; v[3]:
20 4,stopping,3,3},’stop1} {{fstat: nEnd | istat: false | clock: 4,false,false | (l[0]: 0) ;;

(l[1]: nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: 3) ;; l[5]: nil | (v[
21 0]: 0,stopped,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,stopped,2,2) ;; v[3]: 4,stopping

,3,3},’stop1} {{fstat: nEnd | istat: false | clock: 4,false,false | (l[
22 0]: 0) ;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: 3) ;; l[5]: nil | (v[0]: 0,

stopped,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,stopped,2,2) ;; v[3]: 4,
23 stopped,3,3},’enter1} {{fstat: nEnd | istat: true | clock: 4,false,false | (l[0]: 0) ;; (l

[1]: nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: 3) ;; l[5]: nil | (v[0]:
24 0,crossing,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,stopped,2,2) ;; v[3]: 4,stopped

,3,3},’enter2} {{fstat: nEnd | istat: true | clock: 4,false,false | (l[0]:
25 0) ;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: 3) ;; l[5]: nil | (v[0]: 0,crossing

,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,crossing,2,2) ;; v[3]: 4,

54

Appendix

26 stopped,3,3},’enter2} {{fstat: nEnd | istat: true | clock: 4,false,false | (l[0]: 0) ;; (l
[1]: nil) ;; (l[2]: 1) ;; (l[3]: 2) ;; (l[4]: 3) ;; l[5]: nil | (v[0]:

27 0,crossing,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,crossing,2,2) ;; v[3]: 4,crossing
,3,3},’exit1} {{fstat: nEnd | istat: true | clock: 4,false,false | (l[0]:

28 0) ;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: nil) ;; (l[4]: 3) ;; l[5]: nil | (v[0]: 0,
crossing,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,crossed,2,2) ;; v[3]: 4,

29 crossing,3,3},’exit1} {{fstat: nEnd | istat: true | clock: 4,false,false | (l[0]: 0) ;; (l
[1]: nil) ;; (l[2]: 1) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[

30 0]: 0,crossing,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,crossed,2,2) ;; v[3]: 4,crossed
,3,3},’exit1}, {{fstat: nEnd | istat: false | clock: 4,false,true | (l[

31 0]: nil) ;; (l[1]: nil) ;; (l[2]: 1) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]: nil | (v[0]:
0,crossed,0,0) ;; (v[1]: 2,stopping,1,1) ;; (v[2]: 3,crossed,2,2) ;; v[

32 3]: 4,crossed,3,3},deadlock})

5) Total solutions to the query vu-narrow (fstat: nEnd) | (istat: false)
| (clock: 0, false, false) | (l[0]: nil) ;; (l[1]: nil) ;; (l[2]: nil)
;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | (v[0]: 0, circulating,
100, 100) ;; (v[1]: X:Nat, circulating, 100, 100) =>* (fstat: nEnd)
| (istat: true) | (clock: T:Nat, B:Bool, B’:Bool) | (l[0]: NL0:NatList)
;; (l[1]: NL1:NatList) ;; (l[2]: NL2:NatList) ;; (l[3]: NL3:NatList)
;; (l[4]: NL4:NatList) ;; (l[5]: NL5:NatList) | (v[0]: 0, stopped,
T1:Nat, T1’:Nat) ;; (v[1]: X:Nat, crossing, T2:Nat, T2’:Nat) .

1 Maude> vu-narrow { (fstat: nEnd) | (istat: false) | (clock: 0, false, false) | (l[0]: nil) ;;
(l[1]: nil) ;; (l[2]: nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; (l[5]: nil) | (v[0]: 0,
circulating, 100, 100) ;; (v[1]: X:Nat, circulating, 100, 100) } =>* { (fstat: nEnd) | (
istat: true) | (clock: T:Nat, B:Bool, B’:Bool) | (l[0]: NL0:NatList) ;; (l[1]: NL1:NatList
) ;; (l[2]: NL2:NatList) ;; (l[3]: NL3:NatList) ;; (l[4]: NL4:NatList) ;; (l[5]: NL5:
NatList) | (v[0]: 0, stopped, T1:Nat, T1’:Nat) ;; (v[1]: X:Nat, crossing, T2:Nat, T2’:Nat)
} .

2 vu-narrow in INTERSECTION-RL : {fstat: nEnd | istat: false | clock: 0,false,false | (((((l[4]:
nil) ;; l[5]: nil) ;; l[3]: nil) ;; l[2]:

3 nil) ;; l[1]: nil) ;; l[0]: nil | (v[0]: 0,circulating,100,100) ;; v[1]: X:Nat,circulating
,100,100} =>* {fstat: nEnd | istat: true |

4 clock: T:Nat,B,B’ | (l[0]: NL0:NatList) ;; (l[1]: NL1:NatList) ;; (l[2]: NL2:NatList) ;; (
l[3]: NL3:NatList) ;; (l[4]: NL4:NatList)

5 ;; l[5]: NL5:NatList | (v[0]: 0,stopped,T1:Nat,T1’:Nat) ;; v[1]: X:Nat,crossing,T2:Nat,T2
’:Nat} .

6

7 Solution 1
8 rewrites: 2583 in 628ms cpu (810ms real) (4107 rewrites/second)
9 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]:
10 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 1,crossing,1,1}
11 accumulated substitution:
12 X:Nat --> 1
13 variant unifier:
14 T:Nat --> 2
15 B --> false
16 B’ --> false
17 NL0:NatList --> 0
18 NL1:NatList --> 1
19 NL2:NatList --> nil
20 NL3:NatList --> nil
21 NL4:NatList --> nil
22 NL5:NatList --> nil
23 T1:Nat --> 0
24 T1’:Nat --> 0
25 T2:Nat --> 1
26 T2’:Nat --> 1
27

28 Solution 2
29 rewrites: 2654 in 643ms cpu (837ms real) (4123 rewrites/second)
30 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]:

55

31 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 1,crossing,1,1}
32 accumulated substitution:
33 X:Nat --> 1
34 variant unifier:
35 T:Nat --> 2
36 B --> false
37 B’ --> false
38 NL0:NatList --> 0
39 NL1:NatList --> 1
40 NL2:NatList --> nil
41 NL3:NatList --> nil
42 NL4:NatList --> nil
43 NL5:NatList --> nil
44 T1:Nat --> 0
45 T1’:Nat --> 0
46 T2:Nat --> 1
47 T2’:Nat --> 1
48

49 Solution 3
50 rewrites: 2869 in 682ms cpu (885ms real) (4205 rewrites/second)
51 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: 1) ;; (l[4]: nil) ;; l[5]:
52 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 3,crossing,1,1}
53 accumulated substitution:
54 X:Nat --> 3
55 variant unifier:
56 T:Nat --> 2
57 B --> false
58 B’ --> false
59 NL0:NatList --> 0
60 NL1:NatList --> nil
61 NL2:NatList --> nil
62 NL3:NatList --> 1
63 NL4:NatList --> nil
64 NL5:NatList --> nil
65 T1:Nat --> 0
66 T1’:Nat --> 0
67 T2:Nat --> 1
68 T2’:Nat --> 1
69

70 Solution 4
71 rewrites: 2940 in 697ms cpu (904ms real) (4215 rewrites/second)
72 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: 1) ;; (l[4]: nil) ;; l[5]:
73 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 3,crossing,1,1}
74 accumulated substitution:
75 X:Nat --> 3
76 variant unifier:
77 T:Nat --> 2
78 B --> false
79 B’ --> false
80 NL0:NatList --> 0
81 NL1:NatList --> nil
82 NL2:NatList --> nil
83 NL3:NatList --> 1
84 NL4:NatList --> nil
85 NL5:NatList --> nil
86 T1:Nat --> 0
87 T1’:Nat --> 0
88 T2:Nat --> 1
89 T2’:Nat --> 1
90

91 Solution 5
92 rewrites: 3011 in 712ms cpu (923ms real) (4225 rewrites/second)
93 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: 1) ;; l[5]:
94 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 4,crossing,1,1}
95 accumulated substitution:
96 X:Nat --> 4
97 variant unifier:

56

Appendix

98 T:Nat --> 2
99 B --> false

100 B’ --> false
101 NL0:NatList --> 0
102 NL1:NatList --> nil
103 NL2:NatList --> nil
104 NL3:NatList --> nil
105 NL4:NatList --> 1
106 NL5:NatList --> nil
107 T1:Nat --> 0
108 T1’:Nat --> 0
109 T2:Nat --> 1
110 T2’:Nat --> 1
111

112 Solution 6
113 rewrites: 3082 in 729ms cpu (974ms real) (4221 rewrites/second)
114 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: 1) ;; l[5]:
115 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 4,crossing,1,1}
116 accumulated substitution:
117 X:Nat --> 4
118 variant unifier:
119 T:Nat --> 2
120 B --> false
121 B’ --> false
122 NL0:NatList --> 0
123 NL1:NatList --> nil
124 NL2:NatList --> nil
125 NL3:NatList --> nil
126 NL4:NatList --> 1
127 NL5:NatList --> nil
128 T1:Nat --> 0
129 T1’:Nat --> 0
130 T2:Nat --> 1
131 T2’:Nat --> 1
132

133 Solution 7
134 rewrites: 3387 in 791ms cpu (1070ms real) (4280 rewrites/second)
135 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]:
136 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 1,crossing,1,1}
137 accumulated substitution:
138 X:Nat --> 1
139 variant unifier:
140 T:Nat --> 2
141 B --> false
142 B’ --> false
143 NL0:NatList --> 0
144 NL1:NatList --> 1
145 NL2:NatList --> nil
146 NL3:NatList --> nil
147 NL4:NatList --> nil
148 NL5:NatList --> nil
149 T1:Nat --> 0
150 T1’:Nat --> 0
151 T2:Nat --> 1
152 T2’:Nat --> 1
153

154 Solution 8
155 rewrites: 3536 in 825ms cpu (1293ms real) (4282 rewrites/second)
156 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: 1) ;; (l[4]: nil) ;; l[5]:
157 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 3,crossing,1,1}
158 accumulated substitution:
159 X:Nat --> 3
160 variant unifier:
161 T:Nat --> 2
162 B --> false
163 B’ --> false
164 NL0:NatList --> 0

57

165 NL1:NatList --> nil
166 NL2:NatList --> nil
167 NL3:NatList --> 1
168 NL4:NatList --> nil
169 NL5:NatList --> nil
170 T1:Nat --> 0
171 T1’:Nat --> 0
172 T2:Nat --> 1
173 T2’:Nat --> 1
174

175 Solution 9
176 rewrites: 3610 in 844ms cpu (1333ms real) (4274 rewrites/second)
177 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: 1) ;; l[5]:
178 nil | (v[0]: 0,stopped,0,0) ;; v[1]: 4,crossing,1,1}
179 accumulated substitution:
180 X:Nat --> 4
181 variant unifier:
182 T:Nat --> 2
183 B --> false
184 B’ --> false
185 NL0:NatList --> 0
186 NL1:NatList --> nil
187 NL2:NatList --> nil
188 NL3:NatList --> nil
189 NL4:NatList --> 1
190 NL5:NatList --> nil
191 T1:Nat --> 0
192 T1’:Nat --> 0
193 T2:Nat --> 1
194 T2’:Nat --> 1
195

196 Solution 10
197 rewrites: 3966 in 944ms cpu (1461ms real) (4198 rewrites/second)
198 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]:
199 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 1,crossing,0,0}
200 accumulated substitution:
201 X:Nat --> 1
202 variant unifier:
203 T:Nat --> 2
204 B --> false
205 B’ --> false
206 NL0:NatList --> 0
207 NL1:NatList --> 1
208 NL2:NatList --> nil
209 NL3:NatList --> nil
210 NL4:NatList --> nil
211 NL5:NatList --> nil
212 T1:Nat --> 1
213 T1’:Nat --> 1
214 T2:Nat --> 0
215 T2’:Nat --> 0
216

217 Solution 11
218 rewrites: 4037 in 958ms cpu (1477ms real) (4210 rewrites/second)
219 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]:
220 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 1,crossing,0,0}
221 accumulated substitution:
222 X:Nat --> 1
223 variant unifier:
224 T:Nat --> 2
225 B --> false
226 B’ --> false
227 NL0:NatList --> 0
228 NL1:NatList --> 1
229 NL2:NatList --> nil
230 NL3:NatList --> nil
231 NL4:NatList --> nil

58

Appendix

232 NL5:NatList --> nil
233 T1:Nat --> 1
234 T1’:Nat --> 1
235 T2:Nat --> 0
236 T2’:Nat --> 0
237

238 Solution 12
239 rewrites: 4108 in 974ms cpu (1496ms real) (4217 rewrites/second)
240 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: 1) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: nil) ;; l[5]:
241 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 1,crossing,0,0}
242 accumulated substitution:
243 X:Nat --> 1
244 variant unifier:
245 T:Nat --> 2
246 B --> false
247 B’ --> false
248 NL0:NatList --> 0
249 NL1:NatList --> 1
250 NL2:NatList --> nil
251 NL3:NatList --> nil
252 NL4:NatList --> nil
253 NL5:NatList --> nil
254 T1:Nat --> 1
255 T1’:Nat --> 1
256 T2:Nat --> 0
257 T2’:Nat --> 0
258

259 Solution 13
260 rewrites: 4387 in 1039ms cpu (1574ms real) (4219 rewrites/second)
261 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: 1) ;; (l[4]: nil) ;; l[5]:
262 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 3,crossing,0,0}
263 accumulated substitution:
264 X:Nat --> 3
265 variant unifier:
266 T:Nat --> 2
267 B --> false
268 B’ --> false
269 NL0:NatList --> 0
270 NL1:NatList --> nil
271 NL2:NatList --> nil
272 NL3:NatList --> 1
273 NL4:NatList --> nil
274 NL5:NatList --> nil
275 T1:Nat --> 1
276 T1’:Nat --> 1
277 T2:Nat --> 0
278 T2’:Nat --> 0
279

280 Solution 14
281 rewrites: 4458 in 1054ms cpu (1593ms real) (4228 rewrites/second)
282 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: 1) ;; (l[4]: nil) ;; l[5]:
283 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 3,crossing,0,0}
284 accumulated substitution:
285 X:Nat --> 3
286 variant unifier:
287 T:Nat --> 2
288 B --> false
289 B’ --> false
290 NL0:NatList --> 0
291 NL1:NatList --> nil
292 NL2:NatList --> nil
293 NL3:NatList --> 1
294 NL4:NatList --> nil
295 NL5:NatList --> nil
296 T1:Nat --> 1
297 T1’:Nat --> 1
298 T2:Nat --> 0

59

299 T2’:Nat --> 0
300

301 Solution 15
302 rewrites: 4529 in 1069ms cpu (1615ms real) (4233 rewrites/second)
303 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: 1) ;; (l[4]: nil) ;; l[5]:
304 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 3,crossing,0,0}
305 accumulated substitution:
306 X:Nat --> 3
307 variant unifier:
308 T:Nat --> 2
309 B --> false
310 B’ --> false
311 NL0:NatList --> 0
312 NL1:NatList --> nil
313 NL2:NatList --> nil
314 NL3:NatList --> 1
315 NL4:NatList --> nil
316 NL5:NatList --> nil
317 T1:Nat --> 1
318 T1’:Nat --> 1
319 T2:Nat --> 0
320 T2’:Nat --> 0
321

322 Solution 16
323 rewrites: 4606 in 1091ms cpu (1643ms real) (4221 rewrites/second)
324 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: 1) ;; l[5]:
325 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 4,crossing,0,0}
326 accumulated substitution:
327 X:Nat --> 4
328 variant unifier:
329 T:Nat --> 2
330 B --> false
331 B’ --> false
332 NL0:NatList --> 0
333 NL1:NatList --> nil
334 NL2:NatList --> nil
335 NL3:NatList --> nil
336 NL4:NatList --> 1
337 NL5:NatList --> nil
338 T1:Nat --> 1
339 T1’:Nat --> 1
340 T2:Nat --> 0
341 T2’:Nat --> 0
342

343 Solution 17
344 rewrites: 4677 in 1106ms cpu (1667ms real) (4225 rewrites/second)
345 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:

nil) ;; (l[3]: nil) ;; (l[4]: 1) ;; l[5]:
346 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 4,crossing,0,0}
347 accumulated substitution:
348 X:Nat --> 4
349 variant unifier:
350 T:Nat --> 2
351 B --> false
352 B’ --> false
353 NL0:NatList --> 0
354 NL1:NatList --> nil
355 NL2:NatList --> nil
356 NL3:NatList --> nil
357 NL4:NatList --> 1
358 NL5:NatList --> nil
359 T1:Nat --> 1
360 T1’:Nat --> 1
361 T2:Nat --> 0
362 T2’:Nat --> 0
363

364 Solution 18
365 rewrites: 4748 in 1121ms cpu (1788ms real) (4233 rewrites/second)

60

Appendix

366 state: {fstat: nEnd | istat: true | clock: 2,false,false | (l[0]: 0) ;; (l[1]: nil) ;; (l[2]:
nil) ;; (l[3]: nil) ;; (l[4]: 1) ;; l[5]:

367 nil | (v[0]: 0,stopped,1,1) ;; v[1]: 4,crossing,0,0}
368 accumulated substitution:
369 X:Nat --> 4
370 variant unifier:
371 T:Nat --> 2
372 B --> false
373 B’ --> false
374 NL0:NatList --> 0
375 NL1:NatList --> nil
376 NL2:NatList --> nil
377 NL3:NatList --> nil
378 NL4:NatList --> 1
379 NL5:NatList --> nil
380 T1:Nat --> 1
381 T1’:Nat --> 1
382 T2:Nat --> 0
383 T2’:Nat --> 0
384

385 No more solutions.
386 rewrites: 21511 in 5180ms cpu (6532ms real) (4152 rewrites/second)

61

	Acknowledgments
	Introduction
	Autonomous Vehicles
	Objectives
	Related Work
	Structure of the MSc Thesis

	Preliminaries
	Rewriting Logic
	The Maude Language
	Model Checking
	Formal reasoning in Maude

	Maude Specification of an Intersection Protocol
	LPJL Protocol Variant
	Model development
	Sequences of events in the intersection
	Intersection event characteristics

	Analysis and Verification of the AV Model
	Classical model-checking analysis
	Symbolic, narrowing-based analysis

	Conclusions and Future Work
	Bibliography
	Appendix

