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CLOSED INJECTIVE IDEALS OF MULTILINEAR
OPERATORS, RELATED MEASURES AND

INTERPOLATION

ANTONIO MANZANO, PILAR RUEDA, ENRIQUE A. SÁNCHEZ-PÉREZ

Abstract. We introduce and discuss several ways of extending the in-
ner measure arisen from the closed injective hull of an ideal of linear
operators to the multilinear case. In particular, we consider new mea-
sures that allow to characterize the operators that belong to a closed
injective ideal of multilinear operators as those having measure equal to
zero. Some interpolation formulas for these measures, and consequently
interpolation results involving ideals of multilinear operators, are es-
tablished. Examples and applications related to summing multilinear
operators are also shown.
Ideal of multilinear operators, closed ideal, injective ideal, measure as-
sociated to an ideal, interpolation
MSC Primary: 47L22; Secondary: 46B70, 46G25.

1. Introduction

A fruitful classical way of studying some properties of a linear operator is
by considering functionals or measures (of the operator) related to operator
ideals. An example of this is the inner measure βI associated to an arbitrary
ideal I of linear operators. We recall that for a continuous linear operator
T : E → F ,

βI(T ) = βI(T : E → F )

:= inf {ε > 0 : there are a Banach space Z and R ∈ I(E;Z)

such that ‖Tx‖F ≤ ε‖x‖E + ‖Rx‖Z , for any x ∈ E} .
This measure was introduced by Tylli [34] in 1995 and determines the op-

erators T that belong to the closed injective hull I inj (i.e. the smallest
closed injective ideal containing I) of I as those for which βI(T ) = 0 (see
[20, Theorem 20.7.3]). In particular when I is closed and injective, T ∈ I
if and only if βI(T ) = 0. Therefore, the inner measure provides a way of
characterizing when a given operator belongs to the closed injective hull of
a linear operator ideal, and so it allows to quantify (in some sense) how far
is the operator from such a hull.

As far as we know, there is no such notion in the literature as the inner
measure in the setting of multilinear operators. In the present paper we
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introduce some functions that extend the inner measure to the multilinear
case. The paper is organized in five sections. After the preliminary Sec-
tions 1 and 2, we introduce in Section 3 the definitions and main properties
of two measures, naturally given and associated to an ideal of multilinear
operators, that generalize the aforementioned measure defined by Tylli. In
addition, in this section, we establish results concerning the closed injective
hull of certain classes of ideals of multilinear operators. Section 4 is devoted
to establish interpolation formulas for the new measures and to obtain cer-
tain consequences of them. Finally, we show in Section 5 examples and
applications related to summing multilinear operators, using the Jarchow-
Matter interpolation procedure (see [21]). This point of view of Jarchow and
Matter [21] has turned out to be very useful in the study of new (and other
well-known) ideals of linear operators and different properties of Banach
spaces (see for example [23] and references therein). Other interpolation
ideas also used in the multilinear setting giving succesfull results can be
seen, for instance, in [10], [14] and [29].

2. Preliminaries

Throughout the paper we consider real or complex Banach spaces without
distinction. If E1, . . . , En and F are Banach spaces, then L(E1, . . . , En;F )
stands for the Banach space of all continuous n-linear operators T : E1 ×
· · · × En → F with the norm

‖T‖ := sup{‖T (x1, . . . , xn)‖F : x1 ∈ BE1 , . . . , xn ∈ BEn},
where BEj is the closed unit ball of Ej, j = 1, . . . , n. In particular, L(E;F )
is the Banach space of all continuous linear operators from E into F .

Let E1 ⊗ · · · ⊗ En denote the tensor product of E1, . . . , En and let π be
the projective norm given by

π(θ) := inf
m∑
j=1

‖xj1‖ · · · ‖xjn‖, θ ∈ E1 ⊗ · · · ⊗ En,

where the infimum is taken over all possible representations of θ of the form
θ =

∑m
j=1 x

j
1 ⊗ · · · ⊗ xjn, xji ∈ Ei (i = 1, . . . , n). The completed projective

tensor product is denoted by E1⊗̂π · · · ⊗̂πEn.
Given T ∈ L(E1, . . . , En;F ), TL stands for the linearization of T , that is,

the unique continuous linear operator TL : E1⊗̂π · · · ⊗̂πEn → F such that
TL(x1 ⊗ · · · ⊗ xn) = T (x1, . . . , xn), for any x1 ∈ E1, . . . , xn ∈ En.

The notion of linear operator ideal (see [30]) extends to multilinear oper-
ators as follows.

Definition 2.1. Let n ∈ N be fixed. An ideal of n-linear operators, or
an n-ideal, is a class Mn of n-linear maps such that for all Banach spaces
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E1, . . . , En and F , the componentsMn(E1, . . . , En;F ) := L(E1, . . . , En;F )∩
Mn satisfy

(i) Mn(E1, . . . , En;F ) is a linear subspace of L(E1, . . . , En;F ) that con-
tains the n-linear maps of finite type.

(ii) If R ∈ L(F ;H), T ∈ Mn(E1, . . . , En;F ) and Sj ∈ L(Gj;Ej), for
j = 1, . . . , n, then R ◦ T ◦ (S1, . . . , Sn) ∈Mn(G1, . . . , Gn;H).

If for each n ∈ N, Mn is an ideal of n-linear operators, the class

M :=
∞⋃
n=1

Mn

is called an ideal of multilinear operators or a multi-ideal.

The multi-ideal of all continuous multilinear operators is denoted by L.
Let us recall the construction of two examples of ideals of n-linear operators
that can be found in [31] and are related to the classical notion of operator
ideal [30]. To avoid confusions, we will use the letter I to denote an ideal
of linear operators (instead of M1 or I1). Thus, a sequence as I1, . . . , In
means a sequence of n ideals of linear operators.

On the other hand, throughout the paper the symbol
[i]
· · · means that the

i-th term, or the i-th coordinate, does not appear.

Definition 2.2. Linearization ideal. Let I1, . . . , In be linear operator ideals.
The ideal of n-linear operators [I1, . . . , In] is defined as follows: Let T ∈
L(E1, . . . , En;F ),

T ∈ [I1, . . . , In](E1, . . . , En;F ) if and only if Ti ∈ Ii(Ei;L(E1,
[i]. . ., En;F )), i = 1, 2, . . . , n,

where Ti : Ei → L(E1,
[i]. . ., En;F ) is defined as

Ti(xi)(x1,
[i]. . ., xn) := T (x1, . . . , xn), x1 ∈ E1, . . . , xn ∈ En.

Definition 2.3. Factorization ideal. Let I1, . . . , In be linear operator ideals.
The ideal of n-linear operators L(I1, . . . , In) is defined as follows: Let
T ∈ L(E1, . . . , En;F ),

T ∈ L(I1, . . . , In)(E1, . . . , En;F ) if and only if T factors as T = S◦(R1, . . . , Rn),

for some Rj ∈ Ij(Ej;Gj) (j = 1, 2, . . . , n) and S ∈ L(G1, . . . , Gn;F ).

Although both procedures (linearization and factorization) give, in gen-
eral, different ideals of multilinear operators (see [10, p.741]), the inclusion
L(I1, . . . , In) ⊂ [I1, . . . , In] always holds. However, there are examples of
ideals for which the inclusion becomes an equality. For instance, if Ii is the
ideal of compact operators K for i = 1, 2, . . . , n, or if Ii is the ideal of weakly
compact operators W for i = 1, . . . , n, then L(I1, . . . , In) = [I1, . . . , In].
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This is not a mère coincidence: the ideals of compact and weakly com-
pact operators share the properties of being closed and injective. González
and Gutiérrez proved that both procedures (linearization and factorization)
coincide when they are applied to a single closed injective operator ideal
I1 = · · · = In = I (see [16, Theorem 4] and [17]). More recently Braunss
and Junek [10, Theorem 3.4] have shown that L(I1, . . . , In) = [I1, . . . , In]
holds for different closed injective operator ideals I1, . . . , In. Under such
a hypothesis the ideals of n-linear operators L(I1, . . . , In) and [I1, . . . , In]
turn out to be both closed and injective as well.

Definition 2.4. LetMn be an ideal of n-linear operators. It will be denoted
byMn the class of n-linear operators formed by componentsMn(E1, . . . , En;F )
that are given by the closure ofMn(E1, . . . , En;F ) in L(E1, . . . , En;F ). Mn

is said to be closed when Mn =Mn.
The injective hullMinj

n ofMn is defined as follows: T ∈ L(E1, . . . , En;F )
belongs toMinj

n (E1, . . . , En;F ) if JF ◦T ∈Mn(E1, . . . , En; `∞(BF ∗)), where
JF : F → `∞(BF ∗) is the natural metric injection given by JF (y) =
(〈y, y∗〉)y∗∈BF∗ . Mn is called injective ifMn =Minj

n , i.e. if for any Banach
spaces E1, . . . , En, F and each n-linear operator T ∈ L(E1, . . . , En;F ), it
holds that T ∈Mn(E1, . . . , En;F ) whenever JF◦T ∈Mn(E1, . . . , En; `∞(BF ∗)).

The closed injective hull I inj of an ideal I of linear operators can be char-
acterized as follows (see [20, Theorem 20.7.3(i)] or [21, Section 1,(2)(a)]):

Take T ∈ L(E;F ), then T ∈ I inj(E;F ) if and only if for each ε > 0 there
are a Banach space Z and an operator R ∈ I(E;Z) such that ‖Tx‖F ≤
ε‖x‖E + ‖Rx‖Z , for all x ∈ E.

Hence, as it was said in Introduction, the inner measure βI of T ∈
L(E;F ), given by

βI(T ) = βI(T : E → F ) := inf {ε > 0 : there are a Banach space Z and R ∈ I(E;Z)

such that ‖Tx‖F ≤ ε‖x‖E + ‖Rx‖Z , for any x ∈ E} ,
satisfies that

βI(T ) = 0 ⇐⇒ T ∈ I inj(E;F ).

Therefore, βI(T ) = 0 if and only if T ∈ I(E;F ) when I is closed and
injective.

3. Measures associated to ideals of multilinear operators

It is natural to investigate if it is possible to generalize the notion of inner
measure to the setting of ideals of multilinear operators. We will deal with
this issue in this section.

We start by stating two lemmas on the injective hull and the closed hull
of an n-ideal [I1, . . . , In] that are known results (see [8, p.309]). Because
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this type of n-ideal will play an important role in this paper, and for the
sake of completeness, we include such lemmas and their proofs. First recall
that a Banach space H is said to be injective, or it has the metric extension
property, if for any Banach space G, any closed linear subspace E of G,
and any R ∈ L(E;H), there exists an extension S ∈ L(G;H) of R with
‖S‖ = ‖R‖.

Lemma 3.1. Let I1, . . . , In be linear operator ideals. Then,

(a) [I1, . . . , In]inj ⊂ [I inj1 , . . . , I injn ].

(b) [I1, . . . , In] ⊂ [I1, . . . , In].

Proof. (a) Take T ∈ [I1, · · · , In]inj(E1, . . . , En;F ). For each i = 1, . . . , n,
consider the mapping

ji : L(E1,
[i]. . ., En;F )→ L(E1,

[i]. . ., En; `∞(BF ∗))

given by ji(A) := JF ◦ A, A ∈ L(E1,
[i]. . ., En;F ). Since JF is an isometry,

the map ji is a metric injection. For any xi ∈ Ei, we have

ji(Ti(xi))(x1,
[i]. . ., xn) =

(
JF ◦ (Ti(xi))

)
(x1,

[i]. . ., xn)

= JF (T (x1, . . . , xn)) = (JF ◦ T )i(xi)(x1,
[i]. . ., xn).

Using the metric extension property of `∞(BL(E1,
[i]...,En;F )∗

), there is a contin-

uous linear mapping

φi : L(E1,
[i]. . ., En; `∞(BF ∗))→ `∞(BL(E1,

[i]...,En;F )∗
)

such that φi ◦ ji = JL(E1,
[i]...,En;F )

. Then,

JL(E1,
[i]...,En;F )

◦ Ti = φi ◦ (JF ◦ T )i ∈ Ii
(
Ei;L(E1,

[i]. . ., En; `∞
(
BL(E1,

[i]...,En;F )∗
)
)
.

Hence, Ti ∈ I inji

(
Ei;L(E1, ,

[i]. . ., En;F )
)

for all i = 1, . . . , n. Thus, T ∈
[I inj1 , · · · , I injn ].

(b) Let T ∈ [I1, . . . , In](E1, . . . , En;F ). Given ε > 0, we find n-linear op-
erators A,B ∈ L(E1, . . . , En;F ) such that A ∈ [I1, . . . , In](E1, . . . , En;F ),
‖B‖ < ε and T = A+B. For each i = 1, . . . , n, we have Ti = Ai +Bi, Ai ∈
Ii(Ei;L(E1

[i]. . ., En;F )) and ‖Bi‖ < ε. Then, Ti ∈ Ii(Ei;L(E1
[i]. . ., En;F )).

Hence, T ∈ [I1, . . . , In]. �

As a direct consequence of Lemma 3.1 we derive the following result.

Lemma 3.2. Let I1, . . . , In be linear operator ideals.

(a) If I1, . . . , In are injective, then [I1, . . . , In] is injective too.
(b) If I1, . . . , In are closed, then [I1, . . . , In] is closed too.

(c) If Ii = Ii
inj

, i = 1, . . . , n, then [I1, . . . , In] = [I1, . . . , In]
inj

.
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Proof. (a) It follows from

[I1, . . . , In]inj ⊂ [I1
inj, . . . , Ininj] = [I1, . . . , In].

(b) The next inclusion gives the result:

[I1, . . . , In] ⊂ [I1, . . . , In] = [I1, . . . , In].

Now (c) is obvious. �

Let I1, . . . , In be linear operator ideals. By [8, p.309] we trivially have

L(I1, . . . , In)
inj
⊂ L(I1

inj
, . . . , In

inj
).

Let us show that for some particular operators the other inclusion also
holds. To prove the next result, we need to extend a continuous multilinear
operator S : E1 × · · · × En → F to some continuous multilinear operator
ext(S) : E∗∗1 ×· · ·×E∗∗n → F ∗∗. Continuous bilinear operators A : E1×E2 →
F were extended to continuous bilinear operator from E∗∗1 × E∗∗2 into F ∗∗

by Arens [1]. This extension is built by considering three times in a row the
following transpose:

At : F ∗ × E1 → E∗2
(y∗, x1)  At(y∗, x1)(x2) = y∗(A(x1, x2)),

x1 ∈ E1, x2 ∈ E2 and y∗ ∈ F ∗. This procedure gives two, in general different,
extensions: Attt and ATtttT , where BT (x1, x2) = B(x2, x1) for any bilinear
mapping B, and are known as Arens products. This procedure was gen-
eralized by Aron and Berner [2] to arbitrary multilinear mappings. Given
a continuous multilinear operator S : E1 × · · · × En → F we will denote
AB(S) : E∗∗1 × · · · × E∗∗n → F ∗∗ one of the Aron and Berner extensions of
S.

Theorem 3.3. Let I1, . . . , In be linear operator ideals and let E1, . . . , En, F

be Banach spaces. If S ∈ L(c0, . . . , c0;F ) and Ri ∈ Ii
inj

(Ei; c0) for each

i = 1, . . . , n, then S ◦ (R1, . . . , Rn) ∈ L(I1, . . . , In)
inj

.

Proof. We can trivially assume S 6= 0. Fix ε > 0 and i ∈ {1, . . . , n}. Since

Ri ∈ Ii
inj

(Ei; c0), there exist continuous linear operators Ai, Bi ∈ L(Ei; c0)
such that

Ai ∈ I inji (Ei; c0), ‖Bi‖ <
ε1/n

‖S‖1/n
and Ri = Ai +Bi.

Let {ej : j ∈ N} be the usual canonical basis in `1. Having in mind that
(c∗0)∗ = (`1)∗ = `∞, define the map

P : `∞(B`1)→ `∞, P (η) = (ηej)
∞
j=1,
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for any η := (ηy∗)y∗∈B`1 ∈ `∞(B`1). Clearly the map P is well-defined, linear
and continuous, with ‖P‖ ≤ 1. Moreover, P ◦Jc0 = Ic0 , where Ic0 : c0 → `∞
is the canonical injection.

Take any of the Aron and Berner extensions of S : c0 × · · · × c0 → F ,
denoted by AB(S) : `∞×· · ·× `∞ → F ∗∗. Consider the canonical isometric
inclusions IF : F → F ∗∗ and KF : F ∗∗ → `∞(BF ∗), given by y∗∗ ∈ F ∗∗ →
(〈y∗, y∗∗〉)y∗∈BF∗ . These mappings are related via the equality JF = KF ◦IF .
Since Jc0 ◦ Ai ∈ Ii(Ei; `∞(B`1)) for an arbitrary i ∈ {1, . . . , n}, it follows
that the map

T0 := KF ◦ AB(S) ◦ (P ◦ Jc0 ◦ A1, . . . , P ◦ Jc0 ◦ An)

belongs to L(I1, . . . , In)(E1, . . . , En; `∞(BF ∗)). Besides,

T0 = KF ◦ AB(S) ◦ (Ic0 ◦ A1, . . . , Ic0 ◦ An) = JF ◦ S ◦ (A1, . . . , An).

Then, S ◦ (A1, . . . , An) ∈ L(I1, . . . , In)inj(E1, . . . , En;F ). Since

‖S ◦ (R1, . . . , Rn)− S ◦ (A1, . . . , An)‖ ≤ ‖S‖‖R1 − A1‖ · · · ‖Rn − An‖

= ‖S‖‖B1‖ · · · ‖Bn‖ ≤ ‖S‖
ε

‖S‖
= ε,

we conclude that S ◦ (R1, . . . , Rn) ∈ L(I1, . . . , In)
inj

(E1, . . . , En;F ). �

Let us denote by Lc0(I1, . . . , In) those elements in L(I1, . . . , In) that
factor through c0 × · · · × c0, i.e. T ∈ Lc0(I1, . . . , In)(E1, . . . , En;F ) if T =
S ◦ (R1, . . . , Rn) for some S ∈ L(c0, . . . , c0;F ) and some Ri ∈ Ii(Ei; c0),
i = 1, . . . , n. Then, Theorem 3.3 can be rephrased as follows:

Lc0(I1
inj
, . . . , In

inj
) ⊂ L(I1, . . . , In)

inj
.

Next let us extend the inner measure introduced by Tylli [34] to the
setting of multilinear operators.

Definition 3.4. Let I1, . . . , In be linear operator ideals. For T ∈ L(E1, . . . , En;F ),

β[I1,...,In](T ) = β[I1,...,In](T : E1 × · · · × En → F ) :=

inf
{
ε > 0 : there are Banach spaces Zi and Ri ∈ Ii(Ei;Zi) so that if x1 ∈ E1, . . . xn ∈ En,

‖T (x1, . . . , xn)‖F ≤ ε‖x1‖ · · · ‖xn‖+ min
i∈{1,...,n}

{
‖Ri(xi)‖‖x1‖

[i]
· · · ‖xn‖

}}
.

The following result generalizes the well-known characterization of a closed
injective linear operator ideal (that can be found in [20, Theorem 20.7.3(i)]).

Theorem 3.5. Let I1, . . . , In be linear operator ideals and let T ∈ L(E1, . . . , En;F ).
The following statements are equivalent.

(a) T ∈ [I1
inj
, . . . , In

inj
](E1, . . . , En;F ).
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(b) For every ε > 0 there are Banach spaces Zi and operators Ri ∈
Ii(Ei;Zi), i = 1, . . . , n, such that for all x1 ∈ E1, . . . xn ∈ En

‖T (x1, . . . , xn)‖F ≤ ε‖x1‖ · · · ‖xn‖+ min
i∈{1,...,n}

{
‖Ri(xi)‖‖x1‖

[i]
· · · ‖xn‖

}
.

(c) β[I1,...,In](T ) = 0.

Proof. If (a) holds, for every ε > 0 there exists a Banach space Z1 and an
operator R1 ∈ I1(E1;Z1) such that for any x1 ∈ E1, . . . , xn ∈ En
‖T (x1, . . . , xn)‖F = ‖T1(x1)(x2, . . . , xn)‖F ≤ ε‖x1‖ · · · ‖xn‖+‖R1(x1)‖‖x2‖ · · · ‖xn‖.
Since this also holds for every i = 2, . . . , n, we get

‖T (x1, . . . , xn)‖F ≤ ε‖x1‖ · · · ‖xn‖+ min
i∈{1,...,n}

{
‖Ri(xi)‖‖x1‖

[i]
· · · ‖xn‖

}
,

for each x1 ∈ E1, · · · , xn ∈ En, that is, we obtain (b).
Now assume (b) and let us prove (a). Fix ε > 0, then for x1 ∈ E1, . . . , xn ∈

En, we have

‖T (x1, . . . , xn)‖F ≤ ε‖x1‖ · · · ‖xn‖+ ‖R1(x1)‖‖x2‖ · · · ‖xn‖
=
(
ε‖x1‖+ ‖R1(x1)‖

)
‖x2‖ · · · ‖xn‖.

Thus

‖T1(x1)‖L(E2,...,En;F ) = sup
x2∈BE2

,...,xn∈BEn

∥∥T1(x1)(x2, . . . , xn)
∥∥
F
≤ ε‖x1‖+‖R1(x1)‖.

Hence, T1 ∈ I1
inj

(E1;L(E2, . . . , En;F )). Reasoning similarly for i = 2, . . . , n,

we can conclude that Ti ∈ Ii
inj

(Ei;L(E1,
[i]. . ., En;F )) for all i = 1, . . . , n.

Then, it holds that T ∈ [I1
inj
, . . . , In

inj
](E1, . . . , En;F ), so we get (a).

It is obvious that (b) ⇐⇒ (c). �

Remark 3.6. Observe that the proof of Theorem 3.5 also allows to ensure
that for any T ∈ L(E1, . . . , En;F ),

β[I1,...,In](T ) = max{βIi(Ti) : i = 1, . . . n}.

Remark 3.7. We have established in Theorem 3.5 that β[I1,...,In] just char-

acterizes when an n-linear operator belongs to the ideal [I1
inj
, . . . , In

inj
].

However, note that the inclusion [I1, . . . , In]
inj
⊂ [I1

inj
, . . . , In

inj
] always

holds, but it is not an equality in general. In fact, for I1 = I2 = A, the ideal

of (linear) approximable operators, it holds that [A,A]
inj
6= [Ainj,Ainj]. It

is well-known that Ainj = K (see [30, Proposition 4.2.5, Remarks 4.6.13
and 4.7.13]). By [8, Example 3.4] (see also [3, proof of Theorem 4.5]), there
exists a Banach space E without the approximation property and an op-
erator u ∈ L(E;E∗) that is compact, symmetric and non-approximable.
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Let A be the bilinear form on E × E considered in [8, Example 3.4], de-

fined by A(x, y) = u(x)(y). It is immediate that A ∈ [Ainj,Ainj] since

A1 = A2 = u ∈ K(E;E∗). Nevertheless, if A ∈ [A,A]
inj

(E,E;F), taking
into account that F is an injective space and A is closed, it would follow
(see [8, Corollary 2.6]) that

A ∈ [A,A]
inj

(E,E;F) = [A,A](E,E;F) = [A,A](E,E;F),

but this is a contradiction because A1 = A2 = u 6∈ A(E;E∗).

In order to establish the next results, we recall that if I is a Banach
linear operator ideal (see definition for example in [20, 19.3] or [15, Chapter
I, Section 9]), then the closed injective hull of I can be characterized as
follows (see [20, Theorem 20.7.3(ii)] or [21, Section 1,(3)(a)]): An operator

T ∈ L(E;F ) belongs to I inj(E;F ) if and only if there are a function N :
R+ → R+, a Banach space G and an operator S ∈ I(E;G) such that

‖T (x)‖F ≤ N(ε)‖S(x)‖G + ε‖x‖E, for every ε > 0 and each x ∈ E. (1)

Let us see how the inequality (1) results in a general factorization theo-
rem. We will proceed with the multilinear case directly.

Theorem 3.8. Let I1, . . . , In be Banach linear operator ideals, let E1, . . . , En
be Banach spaces and let T ∈ L(E1, . . . , En;F ). Then, T ∈ [I1

inj
, . . . , In

inj
](E1, . . . , En;F )

if and only if for each i = 1, . . . , n, there exist a function Ni : R+ → R+

and a linear operator Si ∈ Ii(Ei;Gi) such that

‖T (x1, . . . , xn)‖ ≤
(
N1(ε1)‖S1(x1)‖+ε1‖x1‖

)
· · ·
(
Nn(εn)‖Sn(xn)‖+εn‖xn‖

)
,

(2)
for all ε1 > 0, . . . , εn > 0 and x1 ∈ E1, . . . , xn ∈ En.

Proof. Assume first that T ∈ [I1
inj
, . . . , In

inj
](E1, . . . , En;F ). Then, there

are Banach spaces H1, . . . , Hn, linear operators Ri ∈ Ii
inj

(Ei;Hi) and a
continuous n-linear operator S ∈ L(H1, . . . , Hn;F ) such that T = S ◦
(R1, . . . , Rn). By (1), there are functions Ni : R+ → R+ and a linear
operator Si ∈ Ii(Ei, Gi) such that for any εi > 0 and xi ∈ Ei (i = 1, . . . , n)

‖Ri(xi)‖ ≤ Ni(ε
′
i)‖Si(xi)‖+ ε′i‖xi‖,

where ε′1 = ε1
‖S‖ and ε′i := εi if i = 2, . . . , n. Hence,

‖T (x1, . . . , xn)‖F ≤ ‖S‖‖R1(x1)‖ · · · ‖Rn(xn)‖
≤ ‖S‖

(
N1(ε′1)‖S1(x1)‖+ ε′1‖x1‖

)
· · ·
(
Nn(εn)‖Sn(xn)‖+ εn‖xn‖

)
.

The functions ‖S‖N1(ε1/‖S‖), N2(ε2), . . . , Nn(εn) and S1, . . . , Sn are what
we were looking for.
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Let us proceed with the converse. Suppose that for every i = 1, . . . , n
there exist a function Ni : R+ → R+ and an operator Si ∈ Ii(Ei;Gi) such
that

‖T (x1, . . . , xn)‖ ≤
(
N1(ε1)‖S1(x1)‖+ε1‖x1‖

)
· · ·
(
Nn(εn)‖Sn(xn)‖+εn‖xn‖

)
,

for all x1 ∈ E1, . . . , xn ∈ En and all ε1 > 0, . . . , εn > 0. We will prove that

Ti ∈ Ii
inj

(Ei;L(E1,
[i]. . ., En;F )), for i = 1, . . . , n. It is enough to see it for a

fixed i, since the argument is the same for the rest. Take for instance i = 1.
Let ε > 0 and x1 ∈ E1. Given arbitrary x2 ∈ BE2 , . . . , xn ∈ BEn , choosing
in (2) any εj > 0 (j = 2, . . . , n) and ε1 = ε/K, with K = (N2(ε2)‖S2‖ +
ε2) · · · (Nn(εn)‖Sn‖+ εn), it follows that

‖T1(x1)(x2, . . . , xn)‖ = ‖T (x1, . . . , xn)‖
≤
(
N1(ε1)‖S1(x1)‖+ ε1‖x1‖

)
· · ·
(
Nn(εn)‖Sn(xn)‖+ εn‖xn‖

)
≤ K

(
N1(ε1)‖S1(x1)‖+ ε1‖x1‖

)
= KN1(ε1)‖S1(x1)‖+ ε‖x1‖.

Hence, denoting N̂1(ε) = KN1(ε/K), we conclude that

‖T1(x1)‖L(E2,...,En;F ) ≤ N̂1(ε)‖S1(x1)‖+ε‖x1‖, for every ε > 0 and each x1 ∈ E1.

Thus T1 ∈ I1
inj

(E1;L(E2, . . . , En;F )), and the proof is complete. �

Remark 3.9. If T satisfies the domination inequality (2) of Theorem 3.8,

then T ∈ L(I1
inj
, . . . , In

inj
). We will just give a sketch of this. For each

i = 1, . . . , n, consider the positively homogeneous function

Φi(x) := inf
ε>0

{
Ni(ε)‖Si(x)‖+ ε‖x‖

}
, x ∈ Ei,

and its convexification

‖xi‖Ni,Si := inf
{ m∑
j=1

Φi(xij) :
m∑
j=1

xij = xi

}
, xi ∈ Ei.

Let ENi,Si be the Banach space defined as the completion of the quotient
space formed by the equivalence classes x ≡ y ↔ ‖x − y‖Ni,Si = 0. Note
that the quotient map ji : Ei → ENi,Si is continuous and so

‖xi‖Ni,Si ≤ KiΦi(xi) ≤ KiNi

( εi
Ki

)
‖Si(xi)‖+ εi‖xi‖,
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for some constant Ki > 0 and all εi > 0 and all xi ∈ Ei. Using (1),

ji ∈ Ii
inj

(Ei;ENi,Si), i = 1, . . . , n. Moreover, T admits the following factor-
ization through the product of the Banach spaces ENi,Si

E1 × · · · × En
T //

(j1,...,jn) ))

F

EN1,S1 × · · · × ENn,Sn
S

66

where S is a continuous multilinear map.

Our aim now is to introduce a multilinear measure that characterizes the
operators that belong to Mn

inj
, for a given n-ideal Mn. It turns out that

this measure will coincide with the inner measure of the linearization of the
multilinear mapping for certain class of multi-ideals. The following result
is a preliminary step before our objective.

Proposition 3.10. Let Mn be an ideal of n-linear operators and T ∈
L(E1, . . . , En;F ). The following assertions are equivalent.

(a) T ∈Minj
n (E1, . . . , En;F ).

(b) There are a Banach space G and an operator R ∈Mn(E1, . . . , En;G)
such that∥∥∥ m∑

j=1

T (xj1, . . . , x
j
n)
∥∥∥ ≤ ∥∥∥ m∑

j=1

R(xj1, . . . , x
j
n)
∥∥∥,

for all m ∈ N and all xj1 ∈ E1, . . . , x
j
n ∈ En, j = 1, . . . ,m.

Proof. (a)=⇒(b) It is enough to take R := JF ◦ T .

(b)=⇒(a) Consider the normed space G0 defined as the linear span of
R(E1 × · · · × En) ⊆ G, i.e. the normed space of all vectors of the form∑m

j=1R(xj1, . . . , x
j
n) ∈ G, with m ∈ N and xj1 ∈ E1, . . . , x

j
n ∈ En, j =

1, . . . ,m. Now observe that the linear operator S0 : G0 → F given by

S0

( m∑
j=1

R(xj1, . . . , x
j
n)
)

:=
m∑
j=1

T (xj1, . . . , x
j
n),

is well-defined. This can be checked using the assumption in (b) and taking
into account that, for each j, it holds that

T (xj1, . . . , x
j
n)− T (yj1, . . . , y

j
n) = T (xj1 − y

j
1, x

j
2, . . . , x

j
n) + T (yj1, x

j
2 − y

j
2, x

j
3, . . . , x

j
n)+

+ T (yj1, y
j
2, x

j
3 − y

j
3, x

j
4, . . . , x

j
n) + · · ·+ T (yj1, y

j
2, . . . , y

j
n−1, x

j
n − yjn).

We can extend S0 to the completion G0 of G0: write S for this extension.
Since `∞(BF ∗) has the metric extension property, we obtain a new operator
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Sext : G → `∞(BF ∗) which satisfies that JF ◦ T = Sext ◦ R. Due to R ∈
Mn(E1, . . . , En;G), we get that JF ◦ T ∈Mn(E1, . . . , En; `∞(BF ∗)). �

In 2010 Botelho, Galindo and Pellegrini [8, Theorem 2.4] proved that,

given T ∈ L(E1, . . . , En;F ), T ∈ Mn
inj

(E1, . . . , En;F ) if, and only if, for
each ε > 0 there is a Banach space Z and R ∈Mn(E1, . . . , En;Z) such that∥∥∥ m∑

j=1

T (xj1, . . . , x
j
n)
∥∥∥
F
≤ ε

m∑
j=1

‖xj1‖E1 · · · ‖xjn‖En +
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥
Z
,

(3)
for any m ∈ N and xj1 ∈ E1, . . . , x

j
n ∈ En, j = 1, . . . ,m.

Inspired by (3), we next introduce a measure β̃Mn which satisfies that

β̃Mn(T ) = 0 if and only if T ∈ Mn
inj

. Thus, in particular, β̃Mn(T ) = 0
if and only if T ∈ Mn, whenever Mn is a closed injective ideal of n-linear
operators.

Definition 3.11. Let Mn be an ideal of n-linear operators. For T ∈
L(E1, . . . , En;F ),

β̃Mn(T ) = β̃Mn(T : E1 × · · · × En → F ) :=

inf
{
ε > 0 : there is a Banach space Z and R ∈Mn(E1, . . . , En;Z) such that∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥
F
≤ ε

m∑
j=1

‖xj1‖ · · · ‖xjn‖+
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥,

for all m ∈ N and all xj1 ∈ E1, . . . , x
j
n ∈ En, j = 1, . . . ,m

}
.

Remark 3.12. It is very easy to check that if Mn = [I1, . . . , In], where
I1, . . . , In are linear operator ideals, it holds that

β[I1,...,In](T ) ≤ β̃[I1,...,In](T ), for every T ∈ L(E1, . . . , En;F ).

Nevertheless, β[I1,...,In] and β̃[I1,...,In] do not coincide in general. In fact,

if ε > β̃[I1,...,In](T ), there are a Banach space Z and an operator R ∈
[I1, . . . , In](E1, . . . , En;Z) such that, for all x1 ∈ E1, . . . , xn ∈ En,

‖T (x1, . . . , xn)‖F ≤ ε‖x1‖ · · · ‖xn‖+ ‖R(x1, . . . , xn)‖

≤ ε‖x1‖ · · · ‖xn‖+ ‖Ri(xi)‖‖x1‖ [i]. . . ‖xn‖

whatever i = 1, . . . , n. Therefore,

‖T (x1, . . . , xn)‖F ≤ ε‖x1‖ · · · ‖xn‖+ min
i∈{1,...,n}

{
‖Ri(xi)‖‖x1‖

[i]
· · · ‖xn‖

}
.
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This implies β[I1,...,In](T ) ≤ β̃[I1,...,In](T ). However, choosing I1 = I2 = A,
the ideal of approximable operators, and taking A the bilinear form consid-

ered in Remark 3.7, we know that β[A,A](A) = 0 becauseA ∈ [Ainj,Ainj](E,E;F),

but β̃[A,A](A) > 0 since A 6∈ [A,A]
inj

(E,E;F).

Remark 3.13. We note that both measures we have introduced so far,

β[I1,...,In] and β̃Mn , coincide with the measure βI when n = 1 and I is any
ideal of linear operators. For instance, if ε > βI(T ) there exist a Banach
space Z and an operator R ∈ I(E;Z) such that

‖T (x)‖F ≤ ε‖x‖E + ‖R(x)‖Z , for all x ∈ E.

Thus, for any m ∈ N and xj ∈ E, j = 1, . . .m,∥∥∥ m∑
j=1

T (xj)
∥∥∥
F

=
∥∥∥T( m∑

j=1

xj
)∥∥∥

F
≤ ε

m∑
j=1

‖xj‖E +
∥∥∥ m∑
j=1

R(xj)
∥∥∥
Z
,

and so ε > β̃I(T ). The other inequality βI(T ) ≤ β̃I(T ) is also trivial.

Remark 3.14. Any R ∈ L(I1, . . . , In)(E1, . . . , En;F ) factors as R = B ◦
(S1, . . . , Sn), for some Si ∈ Ii(Ei;Gi), some B ∈ L(G1, . . . , Gn;F ) and some
Banach space Gi, i = 1, . . . , n. Then

‖R(x1, . . . , xn)‖ ≤ ‖B‖‖S1(x1)‖ · · · ‖Sn(xn)‖.

Hence, it is easy to conclude that β[I1,...,In] ≤ β̃L(I1,...,In).

Proposition 3.15. Let Mn be an ideal of n-linear operators. For T ∈
L(E1, . . . , En;F ),

β̃Mn(T ) = inf
{
ε > 0 : there are a Banach space Z and R ∈Mn(E1, . . . , En;Z) so that∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥
F
≤ ε · π

( m∑
j=1

xj1 ⊗ · · · ⊗ xjn
)

+
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥,

for any m ∈ N and all xj1 ∈ E1, . . . , x
j
n ∈ En, j = 1, . . . ,m

}
.

Proof. Clearly, β̃Mn is less than or equal to the above infimum. To show the

converse inequality take T ∈ L(E1, . . . , En;F ). Let ε > β̃Mn(T ) and let xj1 ∈
E1, . . . , x

j
n ∈ En, j = 1, . . . ,m. Consider the tensor θ =

∑m
j=1 x

j
1 ⊗ · · · ⊗ xjn

and take δ > 0. We can find a representation of θ =
∑l

j=1 y
j
1⊗· · ·⊗yjn such

that
l∑

j=1

‖yj1‖ · · · ‖yjn‖ ≤ π(θ) + δ.
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Then, for some Banach space Z and some operator R ∈Mn(E1, . . . , En;Z),
we have (adding zeros if necessary)∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥ =

∥∥∥TL( m∑
j=1

xj1 ⊗ · · · ⊗ xjn
)∥∥∥ =

∥∥∥TL( l∑
j=1

yj1 ⊗ · · · ⊗ yjn
)∥∥∥

=
∥∥∥ l∑
j=1

T (yj1, . . . , y
j
n)
∥∥∥ ≤ ε

l∑
j=1

‖yj1‖ · · · ‖yjn‖+
∥∥∥ l∑
j=1

R(yj1, . . . , y
j
n)
∥∥∥

≤ ε(π(θ) + δ) +
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥.

As δ is arbitrary, the conclusion follows. �

As mentioned before, in [8, Theorem 2.4] it is proved that given T ∈
L(E1, . . . , En;F ), then β̃Mn(T ) = 0 if, and only if, T ∈Mn

inj
(E1, . . . , En;F ).

Proposition 3.15 seems to indicate that, given a multi-ideal M, β̃Mn(T ) is
close to βM1(TL), and one could even think that both values coincide. This
will be the case if M is closed under linearization, i.e. if TL ∈ M1 when-
ever T ∈ M. However, it cannot be ensured in general that TL ∈ M1

when T ∈ M. Indeed, Botelho [7] gave an example of a p-dominated n-
homogeneous polynomial P0 which is not weakly compact. Therefore, its

linearization L0 is not weakly compact. Given T ∈ L(nE;F ) we denote T̂

the polynomial T̂ (x) = T (x, . . . , x). Consider the ideal M0 of all contin-

uous n-linear operators T such that T̂ is p-dominated. Then, the unique
symmetric n-linear operator T0 associated to P0 satisfies that T0 ∈M0, but
its linearization L0 is not absolutely p-summing, that is, L0 6∈ (M0)1.

Let us show a class of multi-ideals M for which TL ∈ M1 if and only
if T ∈ M. Let I be a linear operator ideal. The composition multi-ideal
I ◦L is formed by all compositions of continuous multilinear mappings with
elements of I; that is, an n-linear operator T belongs to the component
I ◦L(E1, . . . , En;F ) if there are a Banach space G, an n-linear operator S ∈
L(E1, . . . , En;G) and a linear operator R ∈ I(G;F ) such that T = R ◦ S.
By [9, Proposition 3.2] an n-linear operator T ∈ L(E1, . . . , En;F ) belongs
to I ◦ L if and only if its linearization TL belongs to I(E1⊗̂π · · · ⊗̂πEn;F ).
Therefore,

β̃I◦L(T ) = βI(TL), for any T ∈ L(E1, . . . , En;F ).

Examples of this kind of composition multi-ideals are the compact multi-
linear operators, the weakly compact multilinear operators (both as conse-
quences of the work of Pe lczyński [27]), that are composition of continuous
multilinear operators with compact operators and weakly compact operators
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respectively, and the factorable strongly p-summing multilinear operators
introduced in [28], that can be seen as composition of continuous multilinear
operators with absolutely p-summing linear operators (see also [32]). Other
examples can be found in [9].

Corollary 3.16. Let I be a linear operator ideal and let T ∈ L(E1, . . . , En;F ).
The following statements are equivalent:

(a) T ∈ I ◦ Linj(E1, . . . , En;F ).

(b) TL ∈ I
inj

(E1⊗̂π · · · ⊗̂πEn;F ).

(c) β̃I◦L(T ) = 0.
(d) βI(TL) = 0.

Corollary 3.17. Let I be a linear operator ideal. Then, I ◦ Linj = I inj ◦L.

This last Corollary has been already stated in [8, Proposition 4.6].

4. Interpolation properties of the measures

Before of establishing the results of this section, we recall some basic
definitions about interpolation theory.

It is said to be that Ā = (A0, A1) is a Banach couple if A0 and A1

are Banach spaces which are continuously embedded in some Hausdorff
topological vector space. The spaces Σ(Ā) := A0 +A1 and ∆(Ā) := A0∩A1

become Banach spaces when endowed with the norms K(1, ·) and J(1, ·),
respectively, where the K and J functionals are defined, for t > 0, by

K(t, a) = K(t, a; Ā) := inf{‖a0‖A0+ t‖a1‖A1 : a = a0+a1, ai ∈ Ai}, a ∈ Σ(Ā).

J(t, a) = J(t, a; Ā) := max{‖a‖A0 , t‖a‖A1}, a ∈ ∆(Ā).

A Banach space A is called an intermediate space with respect to Ā =
(A0, A1) if ∆(Ā) ↪→ A ↪→ Σ(Ā), where “↪→” means continuous inclusion.
An intermediate space A with respect to Ā = (A0, A1) is said to be of class
CJ(θ; Ā), where 0 < θ < 1, if there exists a constant C > 0 such that for all
t > 0 and a ∈ A0 ∩ A1,

‖a‖A ≤ Ct−θJ(t, a). (4)

The real interpolation space (A0, A1)θ,q and the complex interpolation space
(A0, A1)[θ] are important examples of spaces of class CJ(θ; Ā). We refer to
the books [5] and [33] for wide information about fundamentals of interpo-
lation theory.

Next we investigate the behavior under interpolation of the measures

β[I1,...,In] and β̃Mn , introduced in Section 3. Our techniques are inspired by
ideas used in [11, Theorem 3.3] and [12, Theorem 3.1] (see also [13]) for the
linear case.
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Theorem 4.1. LetMn be any ideal of n-linear operators, let E1, . . . , En be
Banach spaces and let F̄ = (F0, F1) be a Banach couple. Assume that F is
of class CJ(θ, F̄ ) with constant C. For T ∈ L(E1, . . . , En; ∆(F̄ )),

β̃Mn(T : E1 × · · · × En → F ) ≤

Cβ̃Mn(T : E1 × · · · × En → F0)1−θ β̃Mn(T : E1 × · · · × En → F1)θ.

Proof. Let εk > β̃Mn(T : E1 × · · · × En → Fk), k = 0, 1. Then, for certain
Banach space Zk and n-linear operator Rk ∈ Mn(E1, . . . , En;Zk), it holds
that

∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥
Fk
≤ εk

m∑
j=1

‖xj1‖ . . . ‖xjn‖+
∥∥∥ m∑
j=1

Rk(x
j
1, . . . , x

j
n)
∥∥∥
Zk

(k = 0, 1),

for all m ∈ N and xj1 ∈ E1, . . . , x
j
n ∈ En, j = 1, . . . ,m.

Let t > 0. We denote Z := (Z0 ⊕ Z1)1 and ε := min{ε0, ε1}. Moreover, we
define the n-linear operator R ∈ L(E1, . . . , En;Z) by

R(x1, . . . , xn) :=
Ct−θ max{ε0, tε1}

ε
(R0(x1, . . . , xn), R1(x1, . . . , xn)).

Since R = Ct−θ max{ε0,tε1}
ε

(ψ0 ◦ R0 + ψ1 ◦ R1), where ψk : Zk → Z is the
natural inclusion (k = 0, 1), then R ∈Mn(E1, . . . , En;Z).



CLOSED INJECTIVE IDEALS OF MULTILINEAR OPERATORS ... 17

For any m ∈ N and xj1 ∈ E1, . . . , x
j
n ∈ En, j = 1, . . . ,m, it follows from (4)

that∥∥∥ m∑
j=1

T (xj1, · · · , xjn)
∥∥∥
F
≤ Ct−θJ

(
t,

m∑
j=1

T (xj1, . . . , x
j
n)
)

≤ Ct−θ max
{
tk
(
εk

m∑
j=1

‖xj1‖ · · · ‖xjn‖+
∥∥∥ m∑
j=1

Rk(x
j
1, . . . , x

j
n)
∥∥∥
Zk

)
: k = 0, 1

}
≤ Ct−θ max

{
tkεk

( m∑
j=1

‖xj1‖ · · · ‖xjn‖+
1

ε

∥∥∥ m∑
j=1

Rk(x
j
1, . . . , x

j
n)
∥∥∥
Zk

)
: k = 0, 1

}
≤ Ct−θ max{ε0, tε1}max

{ m∑
j=1

‖xj1‖ · · · ‖xjn‖+
1

ε

∥∥∥ m∑
j=1

Rk(x
j
1, . . . , x

j
n)
∥∥∥
Zk

: k = 0, 1
}

≤ Ct−θ max{ε0, tε1}
[ m∑
j=1

‖xj1‖ · · · ‖xjn‖+

+
1

ε

(∥∥∥ m∑
j=1

R0(xj1, . . . , x
j
n)
∥∥∥
Z0

+
∥∥∥ m∑
j=1

R1(xj1, . . . , x
j
n)
∥∥∥
Z1

)]
= Ct−θ max{ε0, t ε1}

[ m∑
j=1

‖xj1‖ · · · ‖xjn‖+
1

ε

ε

Ct−θ max{ε0, tε1}

∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥
Z

]
.

Therefore, for any t > 0, it holds that

β̃Mn(T : E1×· · ·×En → F ) ≤ Ct−θ max
{
tkβ̃Mn(T : E1×· · ·×En → Fk) : k = 0, 1

}
.

(5)
We consider three possibilities:

i) If β̃Mn(T : E1 × · · · × En → F0) = 0, then

β̃Mn(T : E1 × · · · × En → F ) ≤ Ct1−θβ̃Mn(T : E1 × · · · × En → F1)

for each t > 0. Hence, β̃Mn(T : E1 × · · · × En → F ) = 0.

ii) If β̃Mn(T : E1 × · · · × En → F1) = 0, then

β̃Mn(T : E1 × · · · × En → F ) ≤ Ct−θβ̃Mn(T : E1 × · · · × En → F0),

for every t > 0, and so β̃Mn(T : E1 × · · · × En → F ) = 0.

iii) Assume that β̃Mn(T : E1 × · · · × En → Fk) > 0 for k = 0, 1. Then, for

the particular choice t :=
β̃Mn(T : E1 × · · · × En → F0)

β̃Mn(T : E1 × · · · × En → F1)
> 0 in (5), it turns



18 A. MANZANO, PILAR RUEDA, ENRIQUE A. SÁNCHEZ-PÉREZ

out that

β̃Mn(T :E1 × · · · × En → F ) ≤

Cβ̃Mn(T : E1 × · · · × En → F0)1−θ β̃Mn(T : E1 × · · · × En → F1)θ.

�

Corollary 4.2. Let Mn be a closed injective ideal of n-linear operators.
Assume that F̄ = (F0, F1) is a Banach couple and F is of class CJ(θ, F̄ ). For
T ∈ L(E1, . . . , En; ∆(F̄ )), it follows that T ∈ Mn(E1, . . . , En;F ) whenever
T ∈Mn(E1, . . . , En;F0) or T ∈Mn(E1, . . . , En;F1).

Theorem 4.1 recovers [11, Theorem 3.3] in the particular case n = 1
and Corollary 4.2 can be read as a version of [19, Proposition 1.6] in the
multilinear case.

We remark that even for n = 1 a similar result to Theorem 4.1 does
not hold in general if T ∈ L(Σ(Ē);F ), where Ē = (E0, E1) is a Banach
couple and F is a Banach space. To see it, we first recall that if (Ω,Σ) is a
measurable space and µ is a σ-finite measure on (Ω,Σ), then it holds with
equivalence of norms that (see [5, Theorem 5.3.1])

(L∞, L1)θ, q = Lp,q, for 0 < θ = 1/p < 1, 1 ≤ q ≤ ∞. (6)

As usual, the Lorentz space for the particular case Ω = [0, 1] or Ω = [0,∞),
with the usual Lebesgue measure, will be denoted by Lp,q[0, 1] or Lp,q[0,∞),
respectively.

Take I = S, the ideal of strictly singular operators, which is a closed in-
jective operator ideal (see [22]). Let Ē = (L∞[0, 1], L1[0, 1]), let F = L1[0, 1]
and let T be the identity operator. Then T : L∞[0, 1] → L1[0, 1] belongs
to I (see [18]). However, by (6), if 0 < θ = 1/p < 1, then Lp[0, 1] =
(L∞[0, 1], L1[0, 1])θ,p, but as it was pointed out by Beucher [6, Counterex-
ample 2.4] the operator T : Lp[0, 1]→ L1[0, 1] does not belong to the ideal
I since, according to Khintchine’s inequality, the span of the Rademacher
functions in Lp[0, 1] and L1[0, 1] is isomorphic to `2. Thus, the restriction of
the identity operator T to this subspace of Lp[0, 1] is an isomorphism into
L1[0, 1].

The following result provides an estimate in terms of the measures of the
extreme restrictions T : E1×· · ·×En → ∆(F̄ ) and T : E1×· · ·×En → Σ(F̄ ).

It extends [13, Theorem 3.3]. Note that β̃Mn(T : E1× · · · ×En → ∆(F̄ )) ≤
‖T‖E1,...,En,F̄ := max{‖T‖L(E1,...,En;Fk) : k = 0, 1}, and that our proof does
not involve duality arguments.

Theorem 4.3. LetMn be any ideal of n-linear operators, let E1, . . . , En be
Banach spaces and let F̄ = (F0, F1) be a Banach couple. Assume that F is
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of class CJ(θ, F̄ ) with constant C. For T ∈ L(E1, . . . , En; ∆(F̄ )),

β̃Mn(T : E1 × · · · × En → F ) ≤

4Cβ̃Mn(T : E1 × · · · × En → ∆(F̄ ))1−Θ β̃Mn(T : E1 × · · · × En → Σ(F̄ ))Θ,

where Θ = min{θ, 1− θ}.

Proof. Let η > 0. We take any t ≥ 1 such that

t−θ ≤ η and tθ−1 ≤ η. (7)

Let σ > β̃Mn(T : E1 × · · · × En → Σ(F̄ )). Then, it is possible to find
a Banach space H and an n-linear operator R ∈ Mn(E1, . . . , En;H) such
that∥∥∥ m∑

j=1

T (xj1, . . . , x
j
n)
∥∥∥

Σ(F̄ )
≤ σ

m∑
j=1

‖xj1‖ · · · ‖xjn‖+
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥
H
, (8)

for any m ∈ N and xj1 ∈ E1, . . . , x
j
n ∈ En, j = 1, . . . ,m.

On the other hand, if δ > β̃Mn(T : E1×· · ·×En → ∆(F̄ )) then, for certain
Banach space G and n-linear operator S ∈Mn(E1, . . . , En;G), it holds that∥∥∥ m∑

j=1

T (xj1, . . . , x
j
n)
∥∥∥

∆(F̄ )
≤ δ

m∑
j=1

‖xj1‖ · · · ‖xjn‖+
∥∥∥ m∑
j=1

S(xj1, . . . , x
j
n)
∥∥∥
G
, (9)

for every m ∈ N and xj1 ∈ E1, . . . , x
j
n ∈ En, j = 1, . . . ,m.

Let ε > 0. We define V := (H ⊕G)1 and P ∈ L(E1, . . . , En;V ) given by

P (x1, . . . , xn) := (2 + ε)t (R(x1, . . . , xn), S(x1, . . . , xn)).

Due to P = (2 + ε)t(ψ0 ◦ R + ψ1 ◦ S), where ψ0 : H → V and ψ1 : G→ V
are the natural inclusions, it follows that P ∈Mn(E1, . . . , En;V ).
For any m ∈ N and xj1 ∈ E1, . . . , x

j
n ∈ En, j = 1, . . . ,m, there exists

a decomposition of
m∑
j=1

T (xj1, . . . , x
j
n) as

m∑
j=1

T (xj1, . . . , x
j
n) = y0 + y1, with

yk ∈ Fk and

‖yk‖Fk ≤ ‖y0‖F0+‖y1‖F1 ≤ (1+ε)
∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥

Σ(F̄ )
, k = 0, 1. (10)

It follows from (10) and (8) that

‖yk‖Fk ≤ (1+ε)σ
m∑
j=1

‖xj1‖ · · · ‖xjn‖+(1+ε)
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥
H
, k = 0, 1.

(11)
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Since also yk ∈ ∆(F̄ ), k = 0, 1, using (10) we obtain that

‖yk‖F1−k =
∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)− y1−k

∥∥∥
F1−k
≤
∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥
F1−k

+ ‖y1−k‖F1−k

≤
∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥

∆(F̄ )
+ (1 + ε)

∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥

Σ(F̄ )

≤ (2 + ε)
∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥

∆(F̄ )
,

for k = 0, 1. By (9),

‖yk‖F1−k ≤ (2+ε)δ
m∑
j=1

‖xj1‖ · · · ‖xjn‖+(2+ε)
∥∥∥ m∑
j=1

S(xj1, . . . , x
j
n)
∥∥∥
G
, k = 0, 1.

(12)
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Taking into account (4), (7), (11), (12) and the fact that t ≥ 1, it holds that

∥∥∥ m∑
j=1

T (xj1, . . . , x
j
n)
∥∥∥
F
≤ ‖y0‖F + ‖y1‖F ≤ CtθJ(t−1, y0) + Ct−θJ(t, y1)

≤ Cηtmax
{
‖y0‖F0 , t

−1‖y0‖F1

}
+ Cηmax

{
‖y1‖F0 , t‖y1‖F1

}
≤ Cηtmax

{
(1 + ε)σ

m∑
j=1

‖xj1‖ · · · ‖xjn‖+ (1 + ε)
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥
H
,

t−1
[
(2 + ε)δ

m∑
j=1

‖xj1‖ · · · ‖xjn‖+ (2 + ε)
∥∥∥ m∑
j=1

S(xj1, . . . , x
j
n)
∥∥∥
G

]}
+ Cηmax

{
(2 + ε)δ

m∑
j=1

‖xj1‖ · · · ‖xjn‖+ (2 + ε)
∥∥∥ m∑
j=1

S(xj1, . . . , x
j
n)
∥∥∥
G
,

t
[
(1 + ε)σ

m∑
j=1

‖xj1‖ · · · ‖xjn‖+ (1 + ε)
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥
H

]}
= 2Cηmax

{
(1 + ε)σt

m∑
j=1

‖xj1‖ · · · ‖xjn‖+ (1 + ε)t
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥
H
,

(2 + ε)δ
m∑
j=1

‖xj1‖ · · · ‖xjn‖+ (2 + ε)
∥∥∥ m∑
j=1

S(xj1, . . . , x
j
n)
∥∥∥
G

}
≤ 2Cηmax

{
(1 + ε)σt, (2 + ε)δ

} m∑
j=1

‖xj1‖ · · · ‖xjn‖+

+ (1 + ε)t
∥∥∥ m∑
j=1

R(xj1, . . . , x
j
n)
∥∥∥
H

+ (2 + ε)
∥∥∥ m∑
j=1

S(xj1, . . . , x
j
n)
∥∥∥
G

≤ 2Cηmax
{

(1 + ε)σt, (2 + ε)δ
} m∑
j=1

‖xj1‖ · · · ‖xjn‖+

+ (2 + ε)t
(∥∥∥ m∑

j=1

R(xj1, . . . , x
j
n)
∥∥∥
H

+
∥∥∥ m∑
j=1

S(xj1, . . . , x
j
n)
∥∥∥
G

)
= 2Cηmax

{
(1 + ε)σt, (2 + ε)δ

} m∑
j=1

‖xj1‖ · · · ‖xjn‖+
∥∥∥ m∑
j=1

P (xj1, . . . , x
j
n)
∥∥∥
V
.

Hence,

β̃Mn(T : E1 × · · · × En → F ) ≤ 2Cηmax{(1 + ε)σt, (2 + ε)δ}.
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Therefore

β̃Mn(T : E1 × · · · × En → F ) ≤ 2Cη ·

·max{β̃Mn(T : E1 × · · · × En → Σ(F̄ )) t, 2β̃Mn(T : E1 × · · · × En → ∆(F̄ ))}.
(13)

We consider the following two cases:

i) If β̃Mn(T : E1 × · · · × En → Σ(F̄ )) = 0, then β̃Mn(T : E1 × · · · × En →
F ) = 0 as well, since η is arbitrary.

ii) Assume that β̃Mn(T : E1 × · · · × En → Σ(F̄ )) > 0. Note that β̃Mn(T :
E1 × · · · × En → ∆(F̄ )) > 0 too, because

β̃Mn(T : E1 × · · · × En → Σ(F̄ )) ≤ β̃Mn(T : E1 × · · · × En → ∆(F̄ )).

Take

η := max


(
β̃Mn(T : E1 × · · · × En → Σ(F̄ ))

β̃Mn(T : E1 × · · · × En → ∆(F̄ ))

)θ

,

(
β̃Mn(T : E1 × · · · × En → Σ(F̄ ))

β̃Mn(T : E1 × · · · × En → ∆(F̄ ))

)1−θ
 .

The real number

t :=
β̃Mn(T : E1 × · · · × En → ∆(F̄ ))

β̃Mn(T : E1 × · · · × En → Σ(F̄ ))
≥ 1

satisfies (7). If we denote Θ := min{θ, 1− θ} and substitute these concrete
choices of η and t in (13), we obtain that

β̃Mn(T : E1 × · · · × En → F ) ≤ 4Cβ̃Mn(T : E1 × · · · × En → ∆(F̄ ))·

·max


(
β̃Mn(T : E1 × · · · × En → Σ(F̄ ))

β̃Mn(T : E1 × · · · × En → ∆(F̄ ))

)θ

,

(
β̃Mn(T : E1 × · · · × En → Σ(F̄ ))

β̃Mn(T : E1 × · · · × En → ∆(F̄ ))

)1−θ


= 4Cβ̃Mn(T : E1 × · · · × En → ∆(F̄ ))

(
β̃Mn(T : E1 × · · · × En → Σ(F̄ ))

β̃Mn(T : E1 × · · · × En → ∆(F̄ ))

)Θ

= 4Cβ̃Mn(T : E1 × · · · × En → ∆(F̄ ))1−Θ β̃Mn(T : E1 × · · · × En → Σ(F̄ ))Θ.

�

Corollary 4.4. Let Mn be a closed injective ideal of n-linear operators.
Assume that F̄ = (F0, F1) is a Banach couple and F is of class CJ(θ, F̄ ).
For T ∈ L(E1, . . . , En; ∆(F̄ )), it follows that T ∈Mn(E1, . . . , En;F ) if and
only if T ∈Mn(E1, . . . , En; Σ(F̄ )).

We can use Corollaries 4.2 and 4.4 to establish results on the interpo-
lation of certain classes of multilinear operators. Namely when Mn =

[I1
inj
, . . . , In

inj
], where I1, . . . , In are ideals of linear operators, it holds
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that Mn is a closed injective ideal of n-linear operators and so Corollar-
ies 4.2 and 4.4 can be applied to Mn. In particular, let us consider I to
be any of the following ideals: (the closed injective ideal of) compact op-
erators, weakly compact operators, strictly singular operators, Rosenthal
operators, Banach-Saks operators, or decomposing operators (also called
Asplund operators). Then, if Mn = [I, . . . , I] we obtain an extension to
the multilinear case of some interpolation results for these ideals of linear op-
erators established in the literature (see for example [5, Theorem 3.8.1(ii)],
[19, Proposition 1.6], [6, Proposition 2.1] and [25, Proposition 5]).

On the other hand, the previous interpolation formulas can be applied to

provide, for instance, upper estimates for the measure β̃Mn(T : E1 × · · · ×
En → Lp,q[0,∞)) for any Lorentz space Lp,q[0,∞). Thus, because of (6),
the following logarithmically convex inequalities hold (for adequate C > 0
in each case):

β̃Mn(T :E1 × · · · × En → Lp,q[0,∞)) ≤

Cβ̃Mn(T : E1 × · · · × En → L∞[0,∞))1− 1
p β̃Mn(T : E1 × · · · × En → L1[0,∞))

1
p

and

β̃Mn(T :E1 × · · · × En → Lp,q[0,∞)) ≤

Cβ̃Mn(T : E1 × · · · × En → L1[0,∞) ∩ L∞[0,∞))max{ 1
p
,1− 1

p} ·

· β̃Mn(T : E1 × · · · × En → L1[0,∞) + L∞[0,∞))min{ 1
p
,1− 1

p}.
Analogously, taking into account that if F0 = L1[0,∞) ∩ L∞[0,∞) and

F1 = L1[0,∞) + L∞[0,∞), then

(F0, F1)[θ] =

{
Lp[0,∞) ∩ Lp′ [0,∞), 1

p
= 1− θ, 0 < θ ≤ 1/2,

Lp[0,∞) + Lp′ [0,∞), 1
p

= 1− θ, 1/2 ≤ θ < 1,

where 1/p+ 1/p′ = 1 (see [24]), we obtain for 1 < p ≤ 2 (and some C > 0)
that

β̃Mn(T :E1 × · · · × En → Lp[0,∞) ∩ Lp′ [0,∞)) ≤

Cβ̃Mn(T : E1 × · · · × En → L1[0,∞) ∩ L∞[0,∞))
1
p ·

· β̃Mn(T : E1 × · · · × En → L1[0,∞) + L∞[0,∞))1− 1
p ,

and for 2 ≤ p <∞ (and some C > 0) that

β̃Mn(T :E1 × · · · × En → Lp[0,∞) + Lp′ [0,∞)) ≤

Cβ̃Mn(T : E1 × · · · × En → L1[0,∞) ∩ L∞[0,∞))
1
p ·

· β̃Mn(T : E1 × · · · × En → L1[0,∞) + L∞[0,∞))1− 1
p .
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The following result can be proved in a similar way to Theorems 4.1 and
4.3. We include the proof for the sake of completeness.

Theorem 4.5. Let I1, . . . , In be linear operator ideals, let E1, . . . , En be
Banach spaces and let F̄ = (F0, F1) be a Banach couple. Assume that F is
of class CJ(θ, F̄ ) with constant C. For any T ∈ L(E1, . . . , En; ∆(F̄ )),

(a) β[I1,...,In](T : E1 × · · · × En → F ) ≤
Cβ[I1,...,In](T : E1 × · · · × En → F0)1−θβ[I1,...,In](T : E1 × · · · ×

En → F1)θ.
(b) β[I1,...,In](T : E1 × · · · × En → F ) ≤

4Cβ[I1,...,In](T : E1× · · ·×En → Σ(F̄ ))Θβ[I1,...,In](T : E1× · · ·×
En → ∆(F̄ ))1−Θ,
where Θ = min{θ, 1− θ}.

Proof. We start by proving (a). Let εk > β[I1,...,In](T : E1 × · · · × En →
Fk), k = 0, 1. We have that for Banach spaces Zk

i and operators Rk
i ∈

Ii(Ei;Zk
i ) (i = 1, . . . , n), it holds that for all x1 ∈ E1, . . . , xn ∈ En

‖T (x1, · · · , xn)‖Fk ≤ εk‖x1‖ · · · ‖xn‖+ min
i∈{1,...,n}

{
‖Rk

i (xi)‖Zki ‖x1‖
[i]
· · · ‖xn‖

}
, k = 0, 1.

We write Zi for (Z0
i ⊕Z1

i )1 and ε := min{ε0, ε1}. Take t > 0 and consider the

operator given by Rix := Ct−θ max{ε0,tε1}
ε

(R0
ix,R

1
ix), x ∈ Ei (i = 1, . . . , n).

The operators R0
i and R1

i belong to Ii, and so Ri also belongs to Ii (i =
1, . . . , n).
By (4) we have, for any x1 ∈ E1, . . . , xn ∈ En,

‖T (x1, . . . , xn)‖F ≤ Ct−θJ(t, T (x1, . . . , xn))

≤ Ct−θ max
{
tk
(
εk‖x1‖ · · · ‖xn‖+ min

i∈{1,...,n}

{
‖Rk

i (xi)‖Zki ‖x1‖
[i]
· · · ‖xn‖

})
: k = 0, 1

}
≤ Ct−θ max

{
tkεk

(
‖x1‖ · · · ‖xn‖+

1

ε
min

i∈{1,...,n}

{
‖Rk

i (xi)‖Zki ‖x1‖
[i]
· · · ‖xn‖

})
: k = 0, 1

}
≤ Ct−θ max{ε0, tε1}·

·max
{
‖x1‖ · · · ‖xn‖+

1

ε
min

i∈{1,...,n}

{
‖Rk

i (xi)‖Zki ‖x1‖
[i]
· · · ‖xn‖

}
: k = 0, 1

}
.
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Thus,

‖T (x1, . . ., xn)‖F ≤ Ct−θ max{ε0, tε1} ·
[
‖x1‖ · · · ‖xn‖+

+
1

ε
min

i∈{1,...,n}

{(
‖R0

ixi‖Z0
i

+ ‖R1
ixi‖Z1

i

)
‖x1‖

[i]
· · · ‖xn‖

}]
= Ct−θ max{ε0, tε1} ·

[
‖x1‖ · · · ‖xn‖+

+
1

ε

ε

Ct−θ max{ε0, tε1}
min

i∈{1,...,n}

{
‖Ri(xi)‖Zi‖x1‖

[i]
· · · ‖xn‖

}]
= Ct−θ max{ε0, t ε1}‖x1‖ · · · ‖xn‖+ min

i∈{1,...,n}

{
‖Ri(xi)‖Zi‖x1‖

[i]
· · · ‖xn‖

}
.

So we obtain

β[I1,...,In](T : E1×· · ·×En → F ) ≤ Ct−θ max
{
tkβ[I1,··· ,In](T : E1×· · ·×En → Fk) : k = 0, 1

}
,

for any t > 0. Finally using an analogous reasoning to that used in the last
part of the proof of Theorem 4.1, the estimate given in (a) is proved.

Now we establish (b). Fix η > 0 and let t ≥ 1 be such that

t−θ ≤ η and tθ−1 ≤ η. (14)

Consider σ > β[I1,...,In](T : E1 × · · · × En → Σ(F̄ )). We can find Banach
spaces Hi and operators Ri ∈ Ii(Ei;Hi) (i = 1, . . . , n) so that, for all x1 ∈
E1, . . . , xn ∈ En,

‖T (x1, . . . , xn)‖Σ(F̄ ) ≤ σ‖x1‖ · · · ‖xn‖+ min
i∈{1,...,n}

{
‖Ri(xi)‖Hi‖x1‖

[i]
· · · ‖xn‖

}
.

(15)
Moreover, if δ > β[I1,...,In](T : E1×· · ·×En → ∆(F̄ )) then there are Banach
spaces Gi and operators Si ∈ Ii(Ei;Gi) (i = 1, . . . , n) for which we have, for
x1 ∈ E1, . . . , xn ∈ En, that

‖T (x1, . . . , xn)‖∆(F̄ ) ≤ δ‖x1‖ · · · ‖xn‖+ min
i∈{1,...,n}

{
‖Si(xi)‖Gi‖x1‖

[i]
· · · ‖xn‖

}
.

(16)
Now for ε > 0 and x1 ∈ E1, . . . , xn ∈ En, T (x1, . . . , xn) can be written as
T (x1, . . . , xn) = y0 + y1, yk ∈ Fk, and

‖yk‖Fk ≤ ‖y0‖F0 + ‖y1‖F1 ≤ (1 + ε)‖T (x1, . . . , xn)‖Σ(F̄ ), k = 0, 1, (17)

what implies, by (17) and (15), that

‖yk‖Fk ≤ (1+ε)σ‖x1‖ · · · ‖xn‖+(1+ε) min
i∈{1,...,n}

{
‖Ri(xi)‖‖x1‖

[i]
· · · ‖xn‖

}
, k = 0, 1.

(18)
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Taking into account that also yk ∈ ∆(F̄ ), and using (17), we get that

‖yk‖F1−k ≤ ‖T (x1, . . . , xn)‖F1−k+‖y1−k‖F1−k ≤ (2+ε)‖T (x1, . . . , xn)‖∆(F̄ ), k = 0, 1.

By (16) we have finally, for k = 0, 1,

‖yk‖F1−k ≤ (2+ε)δ‖x1‖E1 · · · ‖xn‖En+(2+ε) min
i∈{1,...,n}

{
‖Si(xi)‖‖x1‖

[i]
· · · ‖xn‖

}
.

(19)
Therefore, for any x1 ∈ E1, . . . , xn ∈ En, we obtain from (4), (14), (18),
(19) and the fact that t ≥ 1

‖T (x1, . . . , xn)‖F ≤ ‖y0‖F + ‖y1‖F ≤ CtθJ(t−1, y0) + Ct−θJ(t, y1)

≤ Cηtmax
{
‖y0‖F0 , t

−1‖y0‖F1

}
+ Cηmax

{
‖y1‖F0 , t‖y1‖F1

}
≤ Cηtmax

{
(1 + ε)σ‖x1‖ · · · ‖xn‖+ (1 + ε) min

i∈{1,...,n}

{
‖Ri(xi)‖Hi‖x1‖

[i]
· · · ‖xn‖

}
,

t−1
[
(2 + ε)δ‖x1‖ · · · ‖xn‖+ (2 + ε) min

i∈{1,...,n}

{
‖Si(xi)‖Gi‖x1‖

[i]
· · · ‖xn‖

}]}
+ Cηmax

{
(2 + ε)δ‖x1‖ · · · ‖xn‖+ (2 + ε) min

i∈{1,...,n}

{
‖Si(xi)‖Gi‖x1‖

[i]
· · · ‖xn‖

}
,

t
[
(1 + ε)σ‖x1‖ · · · ‖xn‖+ (1 + ε) min

i∈{1,...,n}

{
‖Ri(xi)‖Hi‖x1‖

[i]
· · · ‖xn‖

}]}
= 2Cηmax

{
(1 + ε)σt‖x1‖ · · · ‖xn‖+ (1 + ε)t min

i∈{1,...,n}

{
‖Ri(xi)‖Hi‖x1‖

[i]
· · · ‖xn‖

}
,

(2 + ε)δ‖x1‖ · · · ‖xn‖+ (2 + ε) min
i∈{1,...,n}

{
‖Si(xi)‖Gi‖x1‖

[i]
· · · ‖xn‖

}}
≤ 2Cηmax

{
(1 + ε)σt, (2 + ε)δ

}
‖x1‖ · · · ‖xn‖+

+ (2 + ε)t min
i∈{1,...,n}

{(
‖Ri(xi)‖Hi + ‖Si(xi)‖Gi

)
‖x1‖

[i]
· · · ‖xn‖

}
= 2Cηmax

{
(1 + ε)σt, (2 + ε)δ

}
‖x1‖ · · · ‖xn‖+ min

i∈{1,...,n}

{
‖Ui(xi)‖Vi‖x1‖

[i]
· · · ‖xn‖

}
,

where Vi := (Hi ⊕ Gi)1 and Uix := (2 + ε)t(Rix, Six) for all x ∈ Ei (i =
1, . . . , n). Since Ri ∈ Ii(Ei;Hi) and Si ∈ Ii(Ei;Gi), it follows that Ui ∈
Ii(Ei;Vi) for every i = 1, . . . , n, and then

β[I1,...,In](T : E1 × · · · × En → F ) ≤ 2Cηmax{(1 + ε)σt, (2 + ε)δ}.

Whence

β[I1,...,In](T : E1 × · · · × En → F ) ≤ 2Cη·
·max{β[I1,...,In](T : E1 × · · · × En → Σ(F̄ ))t, 2β[I1,...,In](T : E1 × · · · × En → ∆(F̄ ))}.



CLOSED INJECTIVE IDEALS OF MULTILINEAR OPERATORS ... 27

Now similar arguments to those used in the final part of the proof of The-
orem 4.3 allow to establish the validity of (b). �

Using Theorem 4.5, analogous estimates to those obtained just before

that theorem for β̃Mn also hold for the measure β[I1,...,In].

5. Some examples and applications related to summing
operators

It is well-known that the notion of summing operator can be generalized
in different ways to the multilinear setting, and each of them has shown
to be useful depending on the particular application. We will center our
attention in generalizations that allow to get factorization theorems for the
corresponding multilinear map. These are mainly variants of dominated
multilinear operators and factorable summing multilinear operators.

5.1. Examples of multilinear operators belonging to the closed
injective hull of summing multilinear operators. Recall that T ∈
L(E;F ) is absolutely summing if there exists K > 0 such that

n∑
k=1

‖T (xk)‖ ≤ K sup
x∗∈BE∗

( n∑
k=1

|〈xk, x∗〉|
)

for every finitely many x1, . . . , xn ∈ E. The set of all absolutely summing
linear operators, which is denoted by Π1, is an injective Banach linear op-
erator ideal (see for instance [20, Theorem 19.5.3] or [15, Chapter I, Section
11]). We will use the following useful characterization [20, Corollary 20.7.5]
(see also [30, Theorem 17.3.2]):

Lemma 5.1. The following assertions are equivalent for any T ∈ L(E;F ).

(a) T ∈ Π1
inj

(E;F ).
(b) There is a function N : R+ → R+ and a regular Borel probability

measure η on BE∗ such that

‖T (x)‖ ≤ N(ε)

∫
BE∗

|〈x, x∗〉| dη(x∗) + ε‖x‖, for each ε > 0 and x ∈ E.

(20)

Remark 5.2. The characterization given by Lemma 5.1 allows to define a
measure associated to the ideal of absolutely summing operators as follows:
given T ∈ L(E;F ), consider the function

βN (T ) := inf
{
ε > 0 : ‖T (x)‖ ≤ N(ε)

∫
BE∗

|〈x, x∗〉|dη(x∗)+ε‖x‖ , x ∈ E, for a given function

N : R+ → R+ and a given regular Borel probability measure η both depending only on T
}
.
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Consequently, T belongs to Π
inj

1 if and only βN (T ) = 0.

Jarchow and Matter [21] considered that concrete choices of the function
N in Lemma 5.1(b) provide better descriptions of classes of operators that
are included in the closed injective hull of the ideal of summing operators.
For any 0 < σ < 1 and K > 0 let r = σ/(1− σ) and define N1(ε) = K

εr
. It

is not hard to check that (20) is equivalent to (see [21, p.47] and also [26,
p.195])

‖T (x)‖ ≤ K‖x‖σ
(∫

BE∗

|〈x, x∗〉|dη(x∗)
)1−σ

, for all x ∈ E.

This last inequality defines, for 0 ≤ σ < 1, the class of (1, σ)-absolutely
continuous operators. Therefore, the class of (1, σ)-absolutely continuous
operators, that trivially contains the class Π1 of all absolutely summing

operators, is actually contained in its closed injective hull Π1
inj

. A similar
treatment can be done for arbitrary 1 ≤ p <∞. The class Π(p,σ) is formed
by all (p, σ)-absolutely continuous operators, that is, all T ∈ L(E;F ) for
which there exist a constant K > 0 and a regular Borel probability measure
η such that

‖T (x)‖ ≤ K‖x‖σ
(∫

BE∗

|〈x, x∗〉|pdη(x∗)
)(1−σ)/p

, for any x ∈ E.

In this general case, Lemma 5.1 reads as follows (see [20, Corollary

20.7.5]): T belongs to Πp
inj

(E;F ) if and only if there is a function N :
R+ → R+ and a regular Borel probability measure η on BE∗ such that

‖T (x)‖ ≤ N(ε)
(∫

BE∗

|〈x, x∗〉|p dη(x∗)
)1/p

+ε‖x‖, for each ε > 0 and x ∈ E.

Replacing N(ε) with a suitable N1(ε) and doing similar calculations as for

p = 1, we get that Π(p,σ) ⊂ Πp
inj

.
Now we use this information in the multilinear case. Take 1 ≤ p ≤

p1, . . . , pn < ∞ such that 1/p =
∑n

i=1 1/pi and 0 ≤ σ < 1. According [14,
Theorem 3.3], an n-linear operator T ∈ L(E1, . . . , En;F ) is (p; p1, . . . , pn;σ)-
absolutely continuous (in symbols T ∈ Lσas,(p;p1,··· ,pn)) if there are regular
Borel probability measures µ1, . . . , µn on BE∗1

, . . . , BE∗n , respectively, and a
constant K > 0, in such a way that for every x1 ∈ E1, . . . , xn ∈ En,

‖T (x1, . . . , xn)‖ ≤ K

n∏
i=1

∥∥xi‖σ (∫
BE∗

i

∣∣〈xi, x∗i 〉∣∣pi dµi(x∗i ))(1−σ)/pi
.
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The infimum of all K > 0 is the norm ‖T‖Lσ
as,(p;p1,...,pn)

. The linear case gives

directly the inclusion:

Lσas,(p;p1,...,pn) ⊂ [Π
inj

p1
, . . . ,Π

inj

pn ].

Therefore, for every T ∈ Lσas,(p;p1,...,pn), it holds that

β[Πp1 ,...,Πpn ](T ) = β̃
[Π
inj
p1

,...,Π
inj
pn ]

(T ) = 0.

Just as some examples, let us apply these ideas to get new classes of

operators contained in Π1
inj

.

Example 5.3. (a) We start by considering a function N0 such that N0 <
N1. Then, when replacing N with N0 in Lemma 5.1(b), we obtain a new
class of operators ΠN0 that is contained in Π(1,σ) for all 0 < σ < 1. This
is the case if we take, for instance, N0(ε) = K log(1

ε
), as we next show.

Fix x ∈ E. The function φ0(ε) = N0(ε)
∫
BE∗
|〈x, x∗〉| dη(x∗) + ε‖x‖ has a

minimum at

εx :=
K
∫
BE∗
|〈x, x∗〉|dη(x∗)

‖x‖
and

φ0(εx) = K
(

log
‖x‖

K
∫
BE∗
|〈x, x∗〉|dη(x∗)

+ 1
)∫

BE∗

|〈x, x∗〉|dη(x∗).

Note that the above holds for arbitrary x ∈ E with ‖T (x)‖ 6= 0. There-
fore, the new class ΠN0 is defined by all T ∈ L(E;F ) for which there is a
probability measure η such that

‖T (x)‖ ≤ K
(

log
‖x‖

K
∫
BE∗
|〈x, x∗〉|dη(x∗)

+ 1
)∫

BE∗

|〈x, x∗〉|dη(x∗)

for all x ∈ E with ‖T (x)‖ 6= 0. Note that this domination shows in particular
that Π1 ⊂ ΠN0 .

(b) If we consider a function N2 with N1 < N2, then we get a new class of
linear operators that contains Π(1,σ) for all 0 < σ < 1 but it is still contained

in Π1
inj

. For instance, take N2(ε) = Ke
1
ε . Fix x ∈ E with T (x) 6= 0. In this

case, it is not possible to give an explicit formula for the point εx where the
function φ2(ε) = N2(ε)

∫
BE∗
|〈x, x∗〉| dη(x∗) + ε‖x‖ attains its minimum, as

this point is given by the solution of the equation

Ke1/εx

∫
BE∗

|〈x, x∗〉|dη(x∗) = ε2
x‖x‖.

The next example refers to the multilinear case.
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Example 5.4. (a) Using arguments as in the second part of the proof of
Theorem 3.8 and taking into account Lemma 5.1, we obtain the following:
Let E1, . . . , En be Banach spaces and let T ∈ L(E1, . . . , En;F ). If there
are functions Ni : R+ → R+ and regular Borel probability measures ηi on
BE∗i

(i = 1, . . . , n) such that

‖T (x1, . . . , xn)‖ ≤
(
N1(ε1)

∫
BE∗1

|〈x1, x
∗
1〉|dη1(x∗1) + ε1‖x1‖

)
· · ·

· · ·
(
Nn(εn)

∫
BE∗n

|〈xn, x∗n〉|dηn(x∗n) + εn‖xn‖
)
,

for all ε1 > 0, . . . , εn > 0 and x1 ∈ E1, . . . , xn ∈ En, then T ∈ [Π1
inj
, . . . ,Π1

inj
](E1, . . . , En;F ).

(b) When we now take, for instance, the functions Ni as the function
N0 considered in Example 5.3(a) we deduce in particular: Let E1, . . . , En
be Banach spaces and let T ∈ L(E1, . . . , En;F ). If there are constants
K1 > 0, . . . , Kn > 0 and regular Borel probability measures η1, . . . , ηn on
BE∗1

, . . . , BE∗n , respectively, such that

‖T (x1, . . . , xn)‖ ≤ K1

(
log

‖x1‖E1

K1

∫
BE∗1
|〈x1, x∗1〉|dη1(x∗1)

+ 1
)∫

BE∗1

|〈x1, x
∗
1〉|dη1(x∗1) · · ·

· · ·Kn

(
log

‖xn‖En
Kn

∫
BE∗n
|〈xn, x∗n〉|dηn(x∗n)

+ 1
)∫

BE∗n

|〈xn, x∗n〉|dηn(x∗n),

for all x1 ∈ E1, . . . , xn ∈ En, then T ∈ [Π1
inj
, . . . ,Π1

inj
](E1, . . . , En;F ).

5.2. Interpolation and closed injective hull of summing multilinear
operators. The application of the corresponding interpolation formulas
obtained in Section 4 allows to relate some classes of multilinear operators
considered in Section 5. Let us finish the paper by showing a concrete
example of this, concerning interpolation and multilinear operators belong-
ing to Lσas,(p;p1,...,pn) with values in Lorentz spaces. We will use (6). Direct
consequences of Theorem 4.5 and Theorem 3.5 are the following results.

Corollary 5.5. Let I1, . . . , In be linear operator ideals and let E1, . . . , En
be Banach spaces. Suppose that T ∈ L(E1, . . . , En;L∞ ∩ L1). For 0 < θ =
1/p < 1, 1 ≤ q ≤ ∞, there is C > 0 such that

β[I1,...,In](T : E1 × · · · × En → Lp,q) ≤
Cβ[I1,...,In](T : E1 × · · · × En → L∞)1−θβ[I1,...,In](T : E1 × · · · × En → L1)θ.

Corollary 5.6. Let 1/p = 1/p1+· · ·+1/pn, 1 < p, pi <∞, θ = 1/p and 1 ≤
q ≤ ∞. Let T ∈ L(E1, . . . , En;L∞∩L1), with T ∈ Lσas,(p;p1,...,pn)(E1, . . . , En;L∞)

or T ∈ Lσas,(p;p1,...,pn)(E1, . . . , En;L1). Then T ∈ [Π
inj

p1
, . . . ,Π

inj

pn ](E1, . . . , En;Lp,q).
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Proof. If for example T ∈ Lσas,(p;p1,...,pn)(E1, . . . , En;L1), then T ∈ [Π
inj

p1
, . . . ,Π

inj

pn ](E1, . . . , En;L1).
By Theorem 3.5,

β[Πp1 ,...,Πpn ](T : E1 × · · · × En → L1) = 0.

It follows from Corollary 5.5 that

β[Πp1 ,...,Πpn ](T : E1 × · · · × En → Lp,q) = 0,

and so, again by Theorem 3.5, we get the result. �
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Escuela Politécnica Superior, C/ Villadiego s/n, 09001 Burgos, Spain.,
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