
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Design Engineering

Visual Servoing and Grasping of Known Objects by a
Mobile Manipulator

End of Degree Project

Bachelor's Degree in Industrial Electronics and Automation
Engineering

AUTHOR: Kiyabala López, Alain

Tutor: Berjano Zanón, Enrique

External cotutor: URBANO DE ALMEIDA LIMA, PEDRO MANUEL

ACADEMIC YEAR: 2021/2022

UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO

 Grado en Ingeniería Electrónica Industrial y Automática

Curso 2021/2022

TRABAJO DE FIN DE GRADO:

VISUAL SERVOING AND GRASPING OF KNOWN OBJECTS BY A
MOBILE MANIPULATOR

DOCUMENTO 1. MEMORIA

AUTOR: Alain Kiyabala López
TUTOR: Dr. Enrique Berjano Zanón

COTUTOR EXTERNO: Dr. Pedro Manuel Urbano de Almeida Lima
(Instituto Superior Técnico, Universidade de Lisboa)

i

ii

ACKNOWLEDGMENTS

I want to express how grateful I feel for having been part of this project.

First of all, thanks to Prof. Pedro Lima and the SocRob @Home team

welcomed me from the beginning with their help and knowledge, even

though I was an Erasmus student. This experience has helped me realise

that I would like to focus my professional career on robotics and continue

facing challenges like this.

I would also like to thank my UPV tutor Enrique Berjano for being so

helpful from the very beginning. The communication with him has been

excellent, and if it was not for that, I do not think I would have been able

to hand it in on time.

Finally, thanks to my family and other loved ones for supporting me

unconditionally all this time. Without a doubt, I owe everything I am to

you. Thank you.

iii

iv

Resumen

El agarre y la manipulación de objetos son capacidades importantes para

los robots de servicio doméstico. Se ha realizado una amplia labor de

investigación en este ámbito que ha llevado al desarrollo de diferentes

métodos, desde enfoques basados en la teoría de control clásica, hasta

sistemas de aprendizaje automático totalmente integrales, aprovechando

los avances en visión por ordenador, aprendizaje supervisado y de

refuerzo.

 Este proyecto propone una cadena de procesos para efectuar una tarea

de pick and place. Para ello, se han planteado distintas aproximaciones

aplicando visual-servoing como componente principal. La cámara de

profundidad, fijada a la cabeza móvil del robot, localiza y sigue el objeto

guardando su posición. Mientras tanto, el robot lee la posición de sus

articulaciones y aplica una ley de control para reducir el error entre su

efector final y el objeto detectado. Para detectar la posición del objeto, se

da uso de una red neuronal convolucional entrenada en el laboratorio que

fue fundamental en este proyecto.

 La cadena de procesos que sigue es capaz de obtener la escena de

octomap, ejecutar movimientos predefinidos para visualizar los objetos,

activar la detección de objetos y efectuar el pick and place. Durante el

proceso han aparecido diversos retos que han impedido el éxito de la

tarea. En este proyecto, también se han usado las herramientas Gazebo,

Rviz y Rqt para crear un entorno de simulación controlado y probar las

distintas funcionalidades del robot. Además de haberse descrito

problemas y soluciones abordadas en el campo de la robótica.

Palabras clave: Robótica, Manipulación, Visual-Servoing

v

Abstract

Object grasping and manipulation are important capabilities for domestic

service robots. Extensive research work has been done in this area leading

to the development of different methods, from approaches based on

classical control theory, to fully end-to-end machine learning systems,

leveraging advances in computer vision, supervised and reinforcement

learning.

This project proposes a pipeline to perform a pick-and-place task. To this

end, different approaches have been considered by applying visual-

servoing as the main component. The depth camera, attached to the

robot’s moving head, locates and tracks the object and stores its position.

Meanwhile, the robot reads the position of its joints and applies a control

law to reduce the error between its fine effector and the detected object.

The use of a convolutional neural network trained in the laboratory to

detect the object’s position was fundamental in this project.

 The process chain that follows is able to obtain the octomap scene,

execute predefined movements to visualise the objects, activate the

object detection, and perform the pick and place. During the process,

several challenges hindered the task’s success. In this project, the tools

Gazebo, Rviz and Rqt have also been used to create a controlled

simulation environment and test the different functionalities of the robot.

In addition, problems and solutions addressed in the field of robotics have

been described.

Key words: Robotics, Manipulation, Visual-Servoing

vi

Table of Contents
1.INTRODUCTION...1

1.1. JUSTIFICATION..1
1.2.1Context and motivation...1

2.Objective...5
3.State of the Art...5

3.1Robotic grasping and visual servoing...5
4. Methodology..9

 4.1 Overall planning...10
 4.2 Team and organization..12

5. Backround..15
 5.1 ROS (Robot Operating System)...15

5.1.1 How to use it?..20
5.1.2 Programing language:..20
5.1.3 Basic ROS constructs:..21
5.1.4 ROS Filesystem Level:..22
5.1.5 Tools...23

 5.2 Robot Kinematics...24
5.2.1 Position and Orientation..34
5.2.2 Forward kinematics..26
5.2.3 Inverse kinematics...27
5.2.4 Differential kinematics...27

5.3 Visual Servoing..29
 5.4 Object detection..30

5.4.1 Neural Networks..30
5.4.2 Convolutional Neural Networks..34
5.4.2 Convolutional Neural Networks..34
5.4.3 Machine Learning..36
5.4.4 Deep Learning..36

6. Possible solutions...37
 6.1Camera configuration..37

6.1.1 Eye-in-hand..37
6.1.2 Eye-to-hand..38

 6. 2Visual Servoing Taxonomy...38
6.2.1 Image-Based Visual-Servoing..38
6.2.2 Position-Based Visual-Servoing..39

6.3 Object detection...41
6.3.1 YOLO Object Detection..41
6.3.2 DOPE (Deep Object Pose Estimation)..42

7. Proposed solution...44
 7.1 General DescrIption..44
 7.2 Pipeline...46

vii

7.2.1 Preparation...56
7.2.2 Grasping...56
7.2.3 Post-grasp...56
7.2.4 Placing..57
7.2.5 Post-place...57

 7.3 Implementation...57
7.3.1 Required packages...57
7.3.2 Pick and place implementation..58

7.4 Debugging...75
7.4.1 Printing messages in the terminal..76
7.4.2 Command lines..76
7.4.3 Rviz..76

8. Experiments and Results..79
 8.1 Functionalities check..79

8.1.1 TIAGo tutorials..80
8.1.2 Test environment..82
8.1.3 Object detectio...82

 8.2 Pick and place task...83
8.2.1 Preparation...83
8.2.2 Grasping...86
8.2.3 Post-gasp..88
8.2.4 Placing..88
8.2.5 Post-place...89

9. Environmental and social impact...89
 9.1 Environmental impact...89
 9.2 Social impact..90

10. Conclusion..91
11. Limitations..93
12. Future work..93
References..95
Appendix A: Repository Code...96
Appendix B: User Manual..97

viii

0

1. INTRODUCTION

1.1. JUSTIFICATION

In Western countries, the population is ageing, which is due to various

improvements in healthcare and lifestyle. In addition, young people have

other priorities than having children and starting a family. Therefore, the

issue of elderly care is in demand. The elderly population is increasing,

but the number of caregivers is not, so the lack of people capable of

caring for them creates the need for robot assistants to help them.

1.2.CONTEXT AND MOTIVATION

This TFG was conducted in the context of my academic staying in the

Institute for Systems and Robotics which is a research centre affiliated to

the Instituto Superior Técnico (IST) of the University of Lisbon. I was there

during the spring semester I went as a student in the master of electronic

engineering in the last semester in which I had to present a dissertation

project. For this, I had to find a scientific advisor and a project to develop

the thesis during the previous months. After contacting several research

centres, Prof. Pedro Lima offered to participate with the socrob@home

group in a robotics competition.

1

Prof. Pedro Lima is a full professor at IST with a PhD in Electrical

Engineering from RPI, USA, and major research interests in formal

approaches to several areas in multi-robot systems and their interaction

with humans. He is the project coordinator and helped me in the control

part, sharing different papers I can take as reference. He introduced me to

Carlos Azevedo, a PhD student who is the team leader of the

socrob@home group. We agreed that Carlos would help me to use the

software, and Prof. Pedro Lima would help me with the theoretical part.

The idea of participating in a competition served as motivation to learn in

the lab in a self-taught way. In this competition the robot has to be

capable of performing various tasks related to the assistance of older

adults. So that it is capable of monitoring the facility's condition,

recognising people's condition, searching for objects, picking them up and

transporting them to specific locations. First, it should be able to map a

room in real-time to adapt to any changes in the layout of the user's

house. Next, to recognise a series of objects previously given in a list, to

pick up objects of different heights and drop them in a given location and

to understand the voice command to find an object and find it. Each team

member is responsible for a specific robot function and organising their

time. There were no schedules, and most of the group worked entirely

remotely. Each week we had different challenges to overcome and thus

had general control of the evolution of the project. In addition to the

project, we also received visits from educational centres and presented

our robot's functionalities as it is shown in Figure 1 .

2

In particular, I was involved in a project to prepare a robot to take care of

household chores to participate in competitions and sell it to a nursing

home after its improvement. My personal tasks were programming the

manipulation part of the robot so it could perform a pick and place

controlled by computer vision.

This project was intended to participate in the ERL CONSUMER LX 2022

(European Robotics League - Consumer Robots). This is a robot

competition that is derived from its predecessor, the RoCKIn@Home

competition, and focuses on tasks that service robots execute in a real

home environment. The Consumer ERL is composed of several "Local

Tournaments" held in different research laboratories across Europe, with

certified testbeds. This competition took place in our laboratory, where a

standardised scenario existed to test our robots [1] (See Fig. 2 & 3).

3

Figure 1: Visit from a educational centre to the ISR

4

Figure 3: Mobile robotics lab, the real standarised scenario for the competition

Figure 2: Mobile robotics lab, map of the scenario
prepared for the competition

2. OBJECTIVE

This project focuses on a technical solution for object grasping by a mobile

robot endowed with a manipulator, with an assembled camera used to

recognise and locate the object, i.e., a visual servoing problem. First, it

should be able to localise the object using vision and move the

manipulator to a suitable nearby location. Next, it uses vision to track the

object localisation and move the manipulator to grasp it, performing visual

servoing. After the object’s picking, it moves the object to a relative pose

and places it again on the table. This has to be tested in an apartment

scenario using Gazebo simulator.

3. STATE OF THE ART

This section shows research work related to this thesis. It discusses

research in the field of manipulator robots, its beginnings using vision and

closed-loop visual control (Visual Servoing).

3.1. ROBOTIC GRASPING AND VISUAL SERVOING

The main tasks of using robots are grasping, manipulation and traUnsport.

The use of robots starts in the automotive industry. The Unimate robot

arm (See Figure 4) had a sequence of stored poses with manual control.

The robot moved through the poses by interpolating its joint coordinates

[2].

5

This type of point-to-point control is minimal, as it will not reach the object

if it is slightly displaced from its position. Moreover, as the arm always

executes the same trajectory, it is not prepared to avoid unexpected

objects.

Vision-based systems were developed to solve this problem. McCarthy et

al. describe one of the first [3], a camera is used to calculate the position

of a cube, obtaining the target pose for the arm’s end-effector. A space

occupancy model is also obtained from the image data, making obstacle

6

Figure 4 The Unimate was the first industrial robot ever built. It was a
hydraulic manipulator arm that could perform repetitive tasks. It was used by
car makers to automate metalworking and welding processes.

avoidance possible. The limitation of this method is that it is an open-loop

control. The camera obtains the object’s coordinates and sends them to

the manipulator control. This is directly dependent on the accuracy and

calibration quality of the camera and the manipulator [4].

A visual-feedback control loop increases the accuracy because the system

can calculate the manipulator’s position and correct it to the desireds

position. Shirai and Inoue developed the first visual-feedback system [5]

that continuously recognises the posture of a cube in the manipulator’s

hand, calculates the difference with the desired pose and moves the

manipulator to compensate. The block can then be accurately placed

inside a box.

Other projects test real-time closed-loop control of a robot end-effector,

making the system robust to kinematic calibration errors. These systems

were given the name visual-servoing.

This concept of visual servoing was firstly introduced in Hill and Park’s

work [6], in which a camera is attached to a manipulator’s end-effector.

The object’s position and orientation in the camera frame is obtained by

processing the image. It uses the fixed transformation from camera to

end-effector for describing the target in the end-effector’s reference

frame. The system guides the end-effector to the target, considering the

kinematic model of the robotic arm and its current joint positions.

These early visual-servoing systems were called position-based (PBVS):

visual features are extracted from the image, and a geometric model of

the target object is used to estimate its 3D pose. Features are often

defined as the position, orientation and size of markers placed on the

7

target. A 3D pose can be calculated from at least 3 points, and the

intrinsic calibration parameters of the camera must be known [7].

Another approach in PBVS systems is to use stereo-vision, as is described

in Anderson [8] Allen et al. [9], Bukowski et al. [10], and Rizzi et al. [11].

In stereo vision, the images from two cameras are analysed to note their

differences and calculate depth using disparity. An example of this

approach is [12], where a PBVS system based on stereo vision techniques

is capable of estimating the 3D coordinates of any point observed in two

views of the same scene applying a triangulation process.

Later, the image-based visual-servoing (IBVS) technique was developed.

Instead of doing 3D pose estimation, image features are directly fed into a

control function that outputs the end-effector Cartesian velocity. For this,

a feature-Jacobian matrix must be defined, relating the feature space

change to the desired end-effector pose change. IBVS does not require

computing the geometric model of the object, improving performance by

making control more direct. However, choosing visual features and

defining a feature-Jacobian that behaves well for multiple poses is

challenging, especially as degrees-of-freedom increase [13].

There is also an approach called Direct Visual-Servoing (DVS), which

considers the whole image as an input for the control system without the

necessity of adding artificial image features. Collewet and Marchand

propose photometric visual-servoing, an IBVS system that uses the

luminance of the image’s pixels as the only essential feature [14]. An

interaction matrix is defined as function of the desired image, which

relates the observed image luminance to the end-effector velocity leading

the arm to approach the desired pose.

8

4. METHODOLOGY

4.1. OVERALL PLANNING

The work team divided this project into different fields: navigation,

perception and sensor fusion, decision making, user interaction, and

manipulation.

Navigation involved most algorithms in robotics expose many

parameters to configure, typically hand-tuned. Our group proposed a

method to tune the parameters of robotics algorithms automatically. The

use case is for the well-known Adaptive Monte Carlo Localization (AMCL)

algorithm. As a result, we improved the localisation accuracy of our robot

by automatically tuning the localisation parameters using several

recorded training datasets.

Perception and Sensor Fusion involved our research in this domain

include vision-based robot localisation, object tracking, simultaneous

localisation and tracking (SLOT), environment modelling, laser-based

robot localisation and vision-based simultaneous localisation and mapping

(SLAM).

Particle filter-based (PF) methods have been the focus of our research to

address most perception-related problems. Using PFs, the key issues that

we have been engaged in solving include the fusion of noisy sensory

information acquired by mobile robots where the robots themselves are

uncertain about their poses and the scalability of such fusion algorithms

9

with reference to the number of robots in the team, as well as the number

of objects being tracked.

For a domestic service robot working in a @Home-type environment,

localisation, mapping, and object/person tracking constitute the basic

requirements. In addition to this, static sensors along with mobile robots

in an NRS, introduce further challenging issues for sensor-fusion

algorithms. Considering these, we intend to drive forward our perception-

related research in SocRob@Home actively.

About Decision Making, in prior work, we have addressed the problem of

decision-making for teams of autonomous robots, primarily through

approaches based on the theory of Discrete Event Systems (DES) and also

through decision-theoretic formalisms for multiagent systems (Partially

Observable Markov Decision Processes– POMDPs). Recently, we have

bridged these two modelling approaches through developing and applying

event-driven decision-theoretic frameworks. The fundamental insight of

this line of research is that decision-making in physical environments is

typically an asynchronous, event-driven process over several levels of

abstraction, based on limited or uncertain sensorial information over each

level, and subject to uncertain outcomes. We have explored this approach

in the ongoing MultiAgent Surveillance Systems (MAIS+S) project (ref.

CMU-PT/SIA/0023/2009), where we have successfully implemented an NRS

for autonomous surveillance, comprising a team of mobile robots and a

set of stationary cameras. The system can automatically detect relevant

events in its operational environment, and the robot team can

cooperatively decide on the appropriate response. In this context, we

have also developed a suite of software tools to aid researchers in the

systematic deployment of these abstract, decision-theoretic

10

methodologies on autonomous robots (the Markov Decision Making

Library).

We seek to continue our work on this topic in SocRob@Home, noting that

the ability to perform decision-making under uncertainty is a fundamental

requirement of any potential domestic robot: given multiple tasks, such a

robot must be able to manage its priorities; establish a plan for each of

them, and still be able to react reliably to external events. Automated

dialogue systems, which we plan to develop as part of our research effort

in SocRob@Home, can also be interpreted as partially observable

decision-making problems.

About Human-Robot Interaction, we focused on service robots in office

environments, addressing symbiotic autonomy: robots execute tasks

requested by users while autonomously aware of their limitations, asking

humans to help the robot overcome them. More recently, we have been

moving towards speech-based communication to address the requirement

of natural human-robot interaction.

Finally, in terms of Manipulation, researchers in our team target the pick

and place scenario from different sources like small and big tables and

floors. We have a 7-degree of freedom (DoF) manipulator to accomplish

those goals. Simultaneously, we also developed a visual servoing

functionality, and we are developing a torque control interface for the

gripper. Machine learning methods have been applied to object grasping

to adapt easily to different targets and make systems more generally.

From now on, we are going to focus on this last part that I have been

working on.

11

4.2. TEAM AND ORGANIZATION

The work methodology was as follows: weekly online meetings in which

we showed our progress to the team leader and suggested new tasks to

present the following week. We have a discord server with different

channels in which we consulted with the rest of the team for any doubt.

There is a channel for each specific function of the robot to record and

organise the information. Since each member works on a different topic,

the way to evolve was mainly self-taught.

SocRob@Home is an enthusiastic team of SocRob, a long-term project at

the Institute for Systems and Robotics from Instituto Superior

Técnico, which focuses efforts on a group of robots to perform tasks, with

a particular focus on participation in scientific competitions.

The SocRob team has been representing ISR/IST since 1998 in the world’s

leading scientific event on Artificial Intelligence and Robotics, RoboCup, as

the application side of SocRob (Soccer Robots or Society of Robots)

ISR/IST research project. Until 2013, the team’s participation

encompassed Simulation, 4-Legged, Middle Size and Robot Rescue

Leagues in several editions of the RoboCup World Championship and

various regional RoboCup events, e.g., the Portuguese, German and Dutch

Opens. The project has involved more than 40 students over these 24

years, from early MSc years to PhD students. It has reached a maturity

level that enables behaviour development that integrates low-level robot

skills such as navigation, perception and manipulation into more complex

behaviours that allow the completion of specific home tasks.

12

https://irsgroup.isr.tecnico.ulisboa.pt/
http://tecnico.ulisboa.pt/en/
http://tecnico.ulisboa.pt/en/
https://irsgroup.isr.tecnico.ulisboa.pt/socrob/

SocRob@Home addresses scientific problems that arise from the effort to

deploy robots in the domestic environment to help humans. One of the

goals of SocRob@Home is inculcating in young researchers the ability to

work as part of an engineering team. This means solving engineering

problems of diverse types (from hardware to software, including wireless

communications, navigation, control, electronics, computer engineering,

and software engineering), integrating contributions from modern

information and communication technologies (e.g., networked robot

systems require a mobile wireless network with robots, off-board

computers, external sensors) and ensuring a background that opens doors

for future bright multi-faceted engineers or engineering researchers.

The team covers many competencies, from Mechatronics integration to

high-level decision making, including perception and task planning.

I briefly describe below the competence of each team member (in

alphabetical order):

• Alain Kiyabala López: MSc student working on manipulation, specifically

in visual-servoing.

• Ana Cruz: MSc student working on human-robot interaction, specifically

in human intention prediction and recognition.

• Carlos Azevedo: PhD student at ISR, working on high-level planning and

learning methods to tackle multi-robot coordination problems under

uncertainty.

13

• Dmytro Kotenko: Technician at ISR, working on the design, construction

and assembly of the electric, electronic and mechanical hardware.

• Emanuel Fernandes: MSc student working on Semantic Mapping and

Automated Planning.

• Rui Bettencourt: PhD student at ISR, working on the cooperation of

heterogeneous multi-robot systems as optimization problems.

• Pedro Lima: Faculty member who has been involved in robot

competitions since the first editions of the RoboCup and ERL events. He is

the project coordinator.

Until March 2022, the was the robot used by the SocRob@Home team for

research (See Fig. 5). After that, the research moved to TIAGo, which is

discussed below. The MONARCH project developed MBot to help

hospitalised children by playing with them. After that, it was in home

robot competitions, where it tested its functionalities in a realistic

domestic environment. The team added to the robot a Kinova Gen2 6DoF

robotic arm to make it able to perform the tasks during the competitions.

After several years of use, the SocRob@Home team switched the robot to

one with the factory-integrated arm, as it saved calibration problems.

14

TIAGo is the collaborative robot used by the team since the spring

semester for research purposes (see Fig. 5). It is developed by the

company PAL robotics to assist in household chores for the elderly. Tiago

has a front laser range finder (LRF) and rear sonars for mapping,

navigation and obstacle avoidance. It consists of a 7 degrees of freedom

(DoF) arm with a parallel gripper as an end-effector and an elevating

torso, allowing the robot to grasp objects from the floor or a high shelf. In

addition, it has a speaker and stereo helpful microphone for human-robot

interaction and a head-mounted RGB-D camera that provides precision

and accuracy for object detection and localization, human tracking,

obstacle perception and visual servo-orientation. The software

architecture is based on ROS for the middleware while using off-the-shelf

components wherever possible, allowing the team to focus on our

research interests.

15

Figure 5: MONARCH MBot robot with a
Kinova Gen2 6DoF robotic arm..

5. BACKROUND

5.1. ROS (ROBOT OPERATING SYSTEM)

ROS is an open-source robotics middleware that lets us build robots and

reuse software between robotics applications using software libraries and

tools. A middleware handles the communication between programs in a

distributed system. Although ROS is not an operating System (OS), it

provides services designed for a heterogeneous computer cluster, such as

hardware abstraction, low-level device control, implementation of

commonly used functionality, message-passing between processes, and

package management.

16

Figure 6: PAL Robotics TIAGo Steel
edition robot (parallel gripper)

The ROS goal is to provide a standard for robotics software's helpful

development on any robot. ROS accelerates the prototyping of robot

software since it is not needed to write everything from scratch. This

standard allows us to focus on our application's essential features, using

an existing foundation, instead of trying to do everything ourselves.

ROS is divided into four main components:

The 'Plumbing' or communication middleware is in charge of process

management and allows programs to communicate with each other. This

part builds a network of programs/nodes sending and receiving different

types of data to communicate with each other. Down below, there is an

example of a ROS Computation graph in Figure 7.

17

Figure 7: Example of a ROS computation graph[15].

While working on a robot, it is common to write many programs to handle

sensor data and control the robot's actuators. With ROS Plumbing is easier

to create a computation graph to manage the robot software.

Some tools help debug and monitor different kinds of data sent and

received by ROS nodes. Some of them are useful, such as Rviz, Gazebo

and Rqt, which will be explained later.

Many robot software blocks are built for various robotic capabilities such

as navigation, perception, manipulation, and human-robot interaction. We

can reuse ROS software and save time implementing these capabilities in

their robot.

The ecosystem is the last component. The ROS open-source robotics

framework is powered by thousands of developers worldwide who

maintain and contribute thousands of ROS packages, tutorials, Q&A, and

helpful material. A vibrant community of developers and users around the

globe makes ROS a unique framework in Robotics.

5.1.1 How To Use It?

To see the big-picture of the system to understand what is going on.

ROS is a loosely coupled system where a process is called a node, and

every node should be responsible for one task. Nodes use messages

passing via logical channels called topics to communicate with each other.

Each node can send or receive data from the other node using the

publish/subscribe model. We are going deeper later.

18

ROS currently only runs on Unix-based platforms. Software for ROS is

primarily tested on Ubuntu and Mac OS X systems, though the ROS

community has been contributing support for Fedra, Gentoo, Arch Linux

and other Linux platforms. In our case, we run it in Ubuntu 18.04 LTS

While a port to Microsoft Windows for ROS is possible, it has not yet been

fully explored.

5.1.2 Programing Language:

ROS is mainly developed using two languages: C++ and Python. Those

are often the most used and preferred languages when developing

robotics applications. It is required to install the roscpp library to write in

C++ code and the rospy library to write in Python code. Our team use

mainly Python to develop our tasks.

5.1.3 Basic ROS Constructs:

 ROS master is the brain of the whole communication, providing

naming and registration services to the rest of the nodes in the ROS

system, enabling communication between nodes. Every node

registers at startup with the master otherwise, nodes would not be

able to find each other, exchange messages, or invoke services.

 A ROS node is a single-purpose and executable program. It is a

process that performs computation. Nodes provide modularity to

robotic projects that use ROS. These nodes operate at a fine-grained

scale; a robot control system usually comprises many nodes.

19

 The topic is a named bus over which nodes broadcast and receive

information. Nodes can publish or subscribe to a topic to

communicate with each other. These nodes are called publishers

and subscribers.

 Messages are simply data structures comprising typed fields. These

messages comprise a nested structure of integers, floats, booleans,

strings and arrays of objects.

 Service is the request/response synchronous interaction with a node

defined by a pair of message structures: one for the request and

one for the reply. A service represents a node's action that will have

a single result. A providing node offers a service under a name, and

a client uses the service by sending the request message and

awaiting the reply.

 Actions are more complex than services. Actions exist to provide us

with an asynchronous client/server architecture, where the client

can send a request that takes a long time. The actions use topics to

send goal messages from a client to the server. After receiving a

goal, the server processes it and can give information back to the

client. This information includes the server's status, the state of the

current goal, feedback on that goal during operation, and finally, a

result message when the goal is complete. The client can

asynchronously monitor the server's state and cancel the request

anytime.

20

 Bags are helpful in ROS for storing ROS message data. There is a

variety of tools to allow us to store, process, analyse, and visualise

them.

5.1.4 ROS Filesystem Level:

The filesystem level concepts mainly cover ROS resources encountered on

the disk, such as:

 Packages: Packages are the central unit for organising software in

ROS. A package may contain ROS runtime processes (nodes), a ROS-

dependent library, datasets, configuration files, or anything else that

is usefully organised together. Packages are the most atomic build

item and release item in ROS, meaning that a package is the most

granular thing able to be built and released.

 Metapackages: Metapackages are specialised Packages which only

serve to represent a group of related other packages. Most

commonly, metapackages are used as a backwards compatible

place holder for converted rosbuild Stacks.

 Package Manifests: Manifests (package.xml) provide metadata

about a package, including its name, version, description, license

information, dependencies, and other meta information like

exported packages

 Repositories: A collection of packages which share a common VCS

system. Packages which share a VCS share the same version and

can be released together using the catkin release automation tool

bloom. Often these repositories will map to converted rosbuild

Stacks. Repositories can also contain only one package.

21

 Message (msg) types: Message descriptions, stored in

my_package/msg/MyMessageType.msg, define the data structures

for messages sent in ROS.

 Service (srv) types: Service descriptions, stored in

my_package/srv/MyServiceType.srv, define the request and

response data structures for services in ROS.

5.1.5 Tools

There are different tools very helpful in the development process.

 Gazebo is an open-source 3D robotics simulator. It integrated the

ODE physics engine, OpenGL rendering, and support code for sensor

simulation and actuator control. It brings a complete toolbox of

development libraries and cloud services to make simulation easy.

Iterate fast on new physical designs in realistic environments with

high-fidelity sensor streams. Test control strategies in safety, and

take advantage of simulation in continuous integration tests.

 Rviz is a three-dimensional visualiser used to visualise robots, the

environments they work in, and sensor data. It is a hugely

configurable tool with many different types of visualisations and

plugins.

 RQT is a software framework that implements the various GUI tools

in the form of plugins. It can run all the existing GUI tools as

dockable windows within rqt. Rqt makes it easy to manage all the

various windows on the screen simultaneously.

22

Once the robot is known, a series of theoretical concepts must be
understood for further development. For the manipulation of the robot,
these concepts are the transform frame, kinematics (direct, inverse,
differential), computer vision and deep learning.

5.2. ROBOT KINEMATICS

Robot kinematics is the field of robotics in charge of studying the

relationship between a robot's joint coordinates and its spatial layout. This

is useful for solving many problems, such as positioning the gripper where

the object to grasp is and moving it from one point to another, avoiding

obstacles and possible collisions. There is an overview of the basic

concepts.

5.2.1 Position And Orientation

A description of the position and the orientation of the robot is defined by

a reference frame. In an n-dimensional Euclidean space, the origin is given

by a vector p ∈ Rn , with n = 3 for the physical universe. Its elements px,

py, and pz define distances along the axes of a corresponding reference

frame such that i⃗ , j⃗ and k⃗ are unit vectors corresponding to the axes of

the Cartesian coordinate system.

 p=p ⋅ x ⋅ i⃗+ p ⋅ y ⋅ j⃗+ p ⋅ z ⋅ k⃗=[px py pz] T (5.1)

23

There are different frames in robotic systems, and knowing the

coordinates of one point from one frame to another can be helpful. The

homogeneous transformation matrix represents a mathematical

relationship between two frames.

The figure 8 shows pc as the Cartesian coordinates of a point P in the

camera frame, p0 as the coordinates of the P in the 0 frame and T0
c as a

homogeneous transformation matrix from c to 0.

In order to calculate p0:

pc=T c
0 pc (5.2)

A homogeneous transformation matrix takes the form:

24

Figure 8: Representation of a point P in different
coordinate frames

0

T0
c

p0

pc

c

P

A1
0
=[R1

0 o1
0

oT 1] (5.3)

where R1
0 is the rotation matrix of frame 1 with respect to frame 0 and o0

1

is the translation vector from the origin of frame 0 to the origin of frame 1.

[16]

5.2.2 Forward Kinematics

Forward kinematics is in charge of calculating the frames of a robot's links,

given the positions and values of all joints and the geometric link

parameters as input. The main goal is to find the end-effector relative to

the base as a function of the joint angles q. For a serial chain manipulator

composed of n joints and n + 1 links, the end-effector's position relative to

the base is obtained by concatenating homogeneous transformations

between frames fixed in adjacent chain links.

 T n
0 (q)=A1

0
(q1) ⋅A2

1
(q2) ⋅ A3

2
(q3)⋅ ... ⋅ An −1n (qn) (5.4)

Where A i
i-1 is the homogeneous transformation matrix between two

consecutive link frames, function of i. And qi, the current angle of joint i

connecting the links.

5.2.3 Inverse Kinematics

Inverse kinematics is the opposite process of forward kinematics. In this

case, the problem is finding the joint positions' values given the end-

effector frame relative to the base.

25

However, unlike forward kinematics, inverse kinematics cannot be solved

in a closed-form expression (in general). We shall see there may be no

solutions, multiple solutions, or even an infinite number of solutions to an

IK problem, everything depending on the number of constraints and

degrees of freedom. In this project, there is no sense in calculating them

manually because there are many useful tools which provide approximate

solutions for every type of manipulator[17]. Once the joint's angles are

known, a motion profile can be generated using the Jacobian matrix to

move the end-effector from the current to the goal position. This is

explained in the following point.

5.2.4 Differential Kinematics

Differential kinematics gives the relationship between the joint velocities

and the end-effector velocity. This can be done through the Jacobian

matrix, which allows the calculation of the end-effector velocities given

the joint velocities (direct differential kinematics) or to determine the joint

velocities in order to move the end-effector with a prescribed speed

(inverse differential kinematics). The mapping described depends on the

current manipulator configuration.

ve=[
ῥe

w e]=J (q)q̇ (5.5)

In this formula (5.5), ve is the end-effector velocity, q̇ is the vector of linear

joint velocities, and J(q) is the Jacobian matrix dependent on joint angles

q.

Following direct kinematics, the Jacobian matrix can be partitioned into

the (3 x 1) column vectors JPi and JOi as (5.6).

26

J=[J P 1 ... J Pn

J O1 ... J On] (5.6)

Where JPi refers to the position and JOi refers to the orientation of the joints.

[J Pi

J Oi]=
[z (i− 1)

0] for a prismatic joint

[zi −1× (pe − p(i − 1))
z (i− 1)

] for arevolute joint

 (5.7)

𝑧 −𝑖− 1 is given by the rotation of z-axis unit vector, pe and pi - 1 are is provided

by the position vector in the transformation matrices 𝑇0
e and 𝑇0

i-1.

However, inverting the Jacobian matrix can be possible to obtain a desired

joint velocity dependent on desired position and orientation of the end-

effector.

q̇ =J−1
(q)ve (5.8)

If J is not invertible. There is a method using the Moore-Penrose inverse (or

pseudoinverse) J†. There are several ways to achieve it, but the most used

computational method is using the SVD (singular value decomposition)

(5.9):

J=UDV T , J †
=VD† U T (5.9)

• U, D and V are SVD(singular value decomposition) of J. Where U is
an orthogonal m 𝚡 m matrix, its columns are the left-singular
vectors of J; V is an orthongonal n n matrix, its columns are the𝚡
right-singular vectors of J. And D is a diagona m n matrix, element 𝚡
along its diagonal are the singular values of J.

• D† = (D with reciprocals of all non-zero elements)T

27

Using J† instead of J-1 provides a computational method to obtain the joint
velocities required for a desired end-effector velocity.

This can be used to solve inverse kinematics: instead of the desired end-

effector velocity we use direct kinematics to compute (5.10)

∆ p=p (q0+∆ q)− p(q0) (5.10)

where the change in end-effector position is given by the current joint

angle changes ∆q. Simultaneously, ∆q can be iteratively improved using

the Newton-Raphson method, minimizing an error function that measures

distance to the desired end-effector position.

error=‖p(q0+∆ q)− pdesired‖[16] (5.11)

5.3. VISUAL SERVOING

Visual Servoing(VS) refers to the control of the motion of the robot with

feedback information extracted from a vision sensor. The idea is to keep a

closed loop with the manipulator. VS is analogous to a PID controller.

Therefore the image is translated into useful track progress metrics. Then,

the robot moves gradually to reduce the error between the current and

the desired position[4].

VS relies on different things such as good camera calibration, an accurate

kinematic model of the robot, good IK and FK solvers, and a quality

camera performance.

VS is a very large field of research, and many approaches have been

developed. In the following paragraphs, some of them are pointed out

based on their camera configurations and control architecture.

28

5.4. OBJECT DETECTION

Object detection is a computer vision technique which identifies and
locates instances of objects within an image or vídeo. There are a diversity
of techniques to perform object detection. Object detection algorithms
leverage machine learning or deep learning to produce meaningful results.
Moreover, some deep learning–based approaches use convolutional neural
networks (CNNs), which automatically learn to detect objects within
images.

5.4.1 Neural Networks

A Neural network, also known as an artificial neural network (ANN), is a
method in artificial intelligence that teaches computers to process data in
a way inspired by the human brain, mimicking how biological neurons
signal to one another.

Every neuron acts as a node with its own linear regression model, where
the input data act as a vector x is multiplied by a weight w, and a bias (or
threshold) value b is added. The result is passed through an activation
function σ, which determines the neuron’s output y. Fig. 9 illustrates this
process.

29

Figure 9: Architecture of a single neuron in a neural
network [18]

There is a given dataset with several input/target pairs {x,t}. The ANN
aims to learn a model of the relationship between x and t. To train the
neural network is to obtain the weight vector w that produces a function y
as close as possible to t.

Target function t does not use to be a linear function of x, so nonlinearity
must be introduced in the system. This is how activation function σ acts.
Several nonlinear functions can be used with different performance
characteristics, the most common being the sigmoid, tanh and ReLU. See
Fig. 10.

A machine learning process called deep learning uses interconnected
nodes in a layered structure. It creates an adaptive system that
computers use to learn from their mistakes and improve continuously. In
this structure, there is an input layer, some hidden layers and an output
layer. Each node is an artificial neuron that connects to another and has
an associated weight and threshold. The output of a node is the input of
the following one. See Figure. 11

30

Figure 10: Popular activation functions

Several network topologies have been developed for different purposes,
e.g. Recurrent Neural Networks (mainly used for natural language
processing) contain loops, allowing the network’s output to be influenced
by temporal sequences in the input. Convolutional Neural Networks
(primarily used for computer vision tasks) introduce convolutional layers
that apply image filters.

5.4.2 Convolutional Neural Networks

A convolutional neural network (CNN or ConvNet), is a type of network
architecture for deep learning which learns directly from data, eliminating
the need for manual feature extraction. ConvNet architectures make the
explicit assumption that the inputs are images, which allows to encode
certain properties into the architecture. These then make the forward
function more efficient to implement and vastly reduce the amount of
parameters in the network. CNNs provide a more scalable approach to
image classification and object recognition tasks, leveraging principles

31

Figure 11: Example of a neural network with only one hidden layer. This
network’s layers are fullyconnected: all neurons connect to all neurons in the
next layer [19]

from linear algebra, specifically matrix multiplication, to identify patterns
within an image. These convolutional layers create feature maps that
record a region of image which is ultimately broken into rectangles and
sent out for nonlinear processing. It consists of a set of learnable filters,
that slide (convolve) through the image space and activate when they
detect visual features such as edges or special shapes. The initial
convolutional layer detects simple shapes, while deeper layers detect
more complex patterns.

There are inserted pooling layers between consecutive convolutional
layers. Their purpose is to downsample the image representation,
reducing its spatial size and therefore the amount of parameters, making
the network more efficient and less susceptible to noise. Pooling layers
don’t add learnable parameters to the network, since they apply a fixed
operation on the input. Fig. 12. shows a pooling layer operation.

It is a common practice to place fully connected layers at the end of the
CNN after the highest level feature outputs. This is done so that these
high-level features can be learned in nonlinear combinations. In the case
of image classification, the size of the final output vector is equal to the
number of detectable classes (see Fig. 13).

32

Figure 12: Pooling operation. Left shows the downsampling effect. Right shows how it’s
achievedthrough max-pooling, the most common method [19]

5.4.3 Machine Learning

Machine learning (ML) is a subset, an application of Artificial Intelligence
(AI) that offers the capacity to the system to learn and improve gradually
from experience without being programmed to that level. Machine
Learning uses data to train and find accurate results. It accesses the data
and uses algorithms to learn from itself, imitating how humans learn.

5.4.4 Deep Learning

Deep Learning (DL) is a subset of Machine Learning in which the artificial
neural network and the recurrent neural network are related. Deep
learning and machine learning differ in the way each algorithm learns.
Machine learning is more dependent on humans because human experts
set the features to understand the differences between data inputs,
requiring more structured data most of the time. On the other side, deep
learning can use labelled datasets, also known as supervised learning, to
inform the algorithm, but it is not needed. Deep learning can admit
unstructured data in its raw format and classify the set of features from
different categories of data from one to the other. The way of creating
algorithms is the same as machine learning but with many more levels of
algorithms. It solves all the complex problems with the support of
algorithms and its process.

33

Figure 13: Full CNN architecture: convolutional layers interspersed with pooling layers
produce acompact representation of high-level image features. The feature matrix is
flattened, and finally one ormore fully connected layers are placed. [20]

6. POSSIBLE SOLUTIONS

6.1. CAMERA CONFIGURATION

There are two common-used configurations for the camera and the joint

effector. These are called eye-in-hand, where the camera is attached to

the end-effector, and eye-to-hand, where the camera is fixed in the

workspace, observing the target and the motion of the end-effector.

6.1.1 Eye-in-hand

In the eye-in-hand system, there exists a known and constant relationship

between the end-effector and the pose of the camera. This has the

advantage that the target position estimation in the end-effector frame is

direct. As a drawback, the camera's view is limited by the end-effector

pose, so there is no view of the whole workspace, and as a consequence,

it is more difficult to avoid obstacles.

34

Figure 14: Camera configurations. Left: eye-to-hand. Right: eye-in-hand

T0
e

0

Te
c

T0
c

T0
e

0

Te
c

6.1.2 Eye-to-hand

In the eye-to-hand system. The camera observes the robot within its

workspace, providing a panoramic view. In this configuration, obtaining

the target’s pose is necessary, and it is additional work to do.

6.2. VISUAL SERVOING TAXONOMY

Visual Servoing systems can be classified by their arquitecture in two

main groups: Image-Based (or 2D) and Position-Based (or 3D) visual

servoing systems.

6.2.1 Image-Based Visual-Servoing

Image-based visual servo control consists of a feedback signal that is

composed of pure image-space information. Which control is based on

how similar the desired image is with the current image, which actually

knows that because of the error between current and desired features on

the image plane. The features can be coordinates of visual features, lines

or moments of regions. Several advantages characterize IBVS. Firstly,

direct control of the feature motion in the image plane allows the

implementation of strategies to keep the target always in the field of the

camera’s view, with approximately straight line trajectories for the image

feature point. Another advantage of IBVS is that the positioning accuracy

is insensitive to the camera and target modelling errors, eliminating errors

due to the calibration. It is essentially a model-free method, without the

explicit requirement of the target model in practical applications, and

convergence is generally robust w.r.t. disturbances and uncertainties in

the camera/robot model.

35

However, some knowledge of the transformation between the sensor and

the robot frame is still required. There are a few drawbacks regarding

IBVS. Firstly, image-based methods are that since the controller is based

on image-feedback, the robot could be commanded to some configuration

that is not physically possible. The end effector and the robot may reach

their joint limits. Secondly, the end-effector translational and rotational

motions are not directly controlled. The usual coupling between these

motions makes it challenging to plan a pure rotational or a pure

translational motion. Also, the controller stability analysis is difficult to

obtain in calibration uncertainty. Furthermore, usual IBVS is only locally

asymptotically stable and may fail in the presence of a large desired

displacement, necessitating a path planning step to split a large

displacement into smaller local movements. Finally, potential failure

occurs when IBVS is subject to image singularities or local minima.

6.2.2 Position-Based Visual-Servoing

In Position-based visual servoing (PBVS), features are extracted from the

image and used to estimate the target's pose concerning the camera. In

this case, the camera detects the object, and the robot controller controls

the end-effector. The principle advantage is that it is possible to describe

tasks in Cartesian pose, as is common in robotics. Feedback is computed

by reducing errors in estimated pose space. This approach avoids image-

Jacobian singularity and local minima problems, generating physically

realisable trajectories. However, the approach is susceptible to

inaccuracies in the task-space reconstruction if the transformation is

corrupted (e.g., uncertain camera calibration). Also, since the controller

36

does not directly use the image features in the feedback, the commanded

robot trajectory may cause the feature points to leave the field-of-view. In

that case, the 3D parameters have to be estimated from a pose

estimation process using the knowledge of the 3D target model. PBVS is

known to have global asymptotic stability, i.e., a controller's ability to

stabilise the camera's pose from any initial condition if 3D estimation is

perfect. When accurate 3D estimation is employed, decoupling rotation

and translation is obtained. Calibration errors propagate to errors in the

3D world, so accurate 3D estimation is essential to ensure the robustness

of PBVS.

To sum up, the main advantages PBVS provides are its performance's

accuracy and robustness. Also, the control law design is more accessible

than in IBVS because once the target position is known, the servoing

scheme attempts to minimise it by moving the robot around, ideally

towards the final desired pose. Moreover, it introduces several simple

positioning primitives based on directly observable feature points, which

can be compounded to achieve more complex positioning tasks.

Nevertheless, there are some disadvantages. PBVS relies too much on

calibration. Feedback is computed using estimated quantities that are

functions of the system calibration parameters. It can become susceptible

to its error. Also, It is dependent on having an accurate model of the

target object. Furthermore, the computation time is an issue because of

the high computational effort. And the possible loss of target for

significant errors.

37

6.3. OBJECT DETECTION

6.3.1 YOLO Object Detection

Prior CNNs were mostly used for image classification, which finds the most

relevant class (e.g. cat, flower, car, etc.) given an input image. Later,

CNNs were adapted for object detection: identifying and locating several

objects in an image. Early object detection systems were simply

repurposed classifier networks, applying them to various image

subregions. The location and scale of the subregions can also be learned

parameters. The runtime performance of these systems is poor since the

classification process must be run many times.

YOLO (You Only Look Once) is a state-of-the-art, real-time object detection

system that uses a single CNN to predict bounding boxes and class

probabilities of objects. This means that prediction in the whole image is

completed in a single algorithm run. This improves its runtime

performance, enabling it to perform real-time object detection at more

than 35 frames per second.YOLO is speedy and accurate. Furthermore,

YOLO reasons globally about the image when making predictions. It sees

the entire image during training and test time, so it implicitly encodes

contextual information about classes and their appearance. This

decreases the number of background errors. In addition, YOLO learns

generalisable representations of objects, so it outperforms top detection

methods like DPM and R-CNN by a wide margin. It is less likely to break

down when applied to new domains or unexpected inputs.

 Moreover, it is accessible to tradeoff between speed and accuracy simply

by changing the model’s size without retraining it. Also, it is difficult for

YOLO to detect small objects that are very close or intersecting with each

other. See an example in Figure. 14.

38

6.3.2 DOPE (Deep Object Pose Estimation)

While 2D object detection problems have been successfully applied by

deep neural networks, 3D object detection and pose estimation have been

recently applied. Unlike 2D object detection, manually labelling data for

3D detection is not a possibility. Due to this difficulty of collecting large

amounts of labelled training data, such approaches are typically trained

on actual data that are highly correlated with the test data (e.g., same

camera, same object instances, similar lighting conditions). As a result,

one challenge of existing approaches is generalising to test data

significantly different from the training set. Synthetic data is a promising

alternative for training such deep neural networks, capable of generating

an almost unlimited amount of pre-labelled training data with little effort.

39

Figure 15: YOLO object detection example.[21]

Networks trained on synthetic data usually do not perform well on actual

data without additional fine-tuning or other tricks. However, this problem

is solved by domain randomisation.

This one-shot deep neural network can perform competitively against a

state-of-the-art network trained on a combination of real and synthetic

data. It is called DOPE (for “deep object pose estimation”) and infers, in

near real-time, the 3D poses of known objects in the clutter from a single

RGB image without requiring post-alignment. This system uses a simple

deep network architecture, trained entirely on simulated data, to infer the

2D image coordinates of projected 3D bounding boxes (See Fig.15),

followed by perspective-n-point (PnP). It bridges the reality gap for real-

world applications by combining non-photorealistic (domain randomised)

and photo-realistic synthetic data for training robust deep neural

networks. Thus, its performance is comparable with state-of-the-art

networks trained on real data. Furthermore, the estimated poses are of

sufficient accuracy to solve real-world tasks such as pick-and-place, object

handoff, and path following

Figure 16: DOPE example which shows the 3D
bounding boxes in a 2D image

40

7. PROPOSED SOLUTION

7.1. General DescrIption

The proposed solution consists of an eye-to-hand camera configuration

because it is embedded with the robot and implementing another camera

on the hand would increase the price and complexity of the task. In

addition, by pointing it at the workspace, it is easier to avoid collisions.

The PBVS taxonomy has been chosen because of its versatility in actuator

control. TIAGo is a well-calibrated robot; the task's success depends

mainly on the object's positioning. Image features are extracted to

estimate 3D information (pose of the object in Cartesian space) from the

geometric model of the object. The control function is separated from the

pose estimation problem. In this case, the feedback is calculated by

reducing the errors of the estimated pose. The kinematic error function is

given by (7.1):

E(h0 , g0)=h0−g0 (7.1)

 Where h0 are the end-effector coordinates in the base root frame of TIAGo

(0), we control this variable to move the end-effector to the desired pose,

in this case, a fixed goal position g0.

Applying the linear velocity u0 to the end-effector minimises the above

error. The proportional control law can achieve open-loop positioning.

T̂ c
0
⋅ĝc≃g 0 (7.2)

41

u0=−k (ĥ0−T̂ c
0
⋅ĝc) (7.3)

Where T̂0
c is the estimated transformation matrix from the camera frame

to the root frame (usually based on fixed transformations from manual

measurements) and ĝ c is the estimated grip pose of the target in the

camera frame, given by the vision system. k > 0 is a proportional

feedback gain.

It uses YOLO for image detection and location because it was used for

different projects previously, and there was a trained model with the

objects for the ERL Consumer. Also, it is fast and less computational

consuming than other object detection approaches.[21]

The system divides the input image into an S × S grid. Each cell predicts

B-bounding boxes centred on that cell. Confidence scores are assigned to

the boxes, the confidence that shows how likely it is for the box to contain

an object and how accurate the box is, measured by the intersection-over-

union (IOU) metric. Each cell also predicts C class probabilities P (Class i |

Object), where C is the number of detectable classes. This number is

independent of the number of bounding boxes B. This means it is difficult

for YOLO to detect small objects that are very close or intersecting with

each other. See fig 17.

42

The YOLO CNN has 24 convolutional layers, with maxpool layers between

them. 2 fully connected layers are placed at the end. Using YOLO, the first

20 convolutional layers are pretrained on the ImageNet dataset to detect

and locate the object.

7.2. Pipeline

There are five phases which divide the task: TIAGo’s preparation and

detection of the objects (preparation), grasp acquisition (grasping), post-

grasp transport (post-grasp), place of the object (placing), and leave the

workspace (post-place); in brackets are indicated names for the pipeline.

Each of these phases carries sub-tasks inside of them. See Figure 18.

43

Figure 17: YOLO model predictions: bounding boxes and class probabilities are combined to
optain the final result: object labels and their bounding boxes [22]

7.2.1 Preparation

Initialise the robot, every node and prepares the robot for object

detection. To do it, TIAGo raises the torso, unfolds the arm, opens the

gripper and moves its head down to see the objects. Then it lowers the

torso a bit to get a different sight of the objects. After localising the

object, creates a grasp location adding an offset to the object pose to

facilitate the grasping. Then, it adds to the scene a virtual object and a

virtual table to plan the grasping from them.

7.2.2 Grasping

TIAGo locates the end effector near the grasping pose, then moves the

gripper linearly until it reaches the grasping pose and closes it. After this,

it checks whether the grip was completed successfully.

7.2.3 Post-grasp

44

Figure 18: Pipeline applied to perfomr the pick and place task

After the grasping phase, raise the arm and torso to their limit and hold

the object until starts the next phase.

7.2.4 Placing

TIAGo moves the end effector just above the placement position, then is

ready to place the object in a linear movement. When it reaches the

placement position, it opens the gripper releasing the object.

7.2.5 Post-place

This is the last phase. It moves the arm to a secure position to avoid

disturbing the workspace with the next movement. From this position, the

robot comes back to the home pose to finalise its task.

7.3. Implementation

This section divides the implementation of the project into two parts:

required packages, pick and place implementation.

7.3.1 Required Packages

These are the required packages implemented in this project.

MoveIt!

This is a ROS package used for motion planning and task handling. It

consists of an inverse kinematics solver, path planning algorithms and

collision detection. This project uses the TRAC-IK solver [24] because it

obtains reasonable resolution rates for challenging positions while keeping

45

the computation time low by running two solvers concurrently. One of

them is called KDL solver, which detects and mitigates local minima that

may occur when joint boundaries are encountered during gradient

descent. The other is called SQP (Sequential Quadratic Programming) IK,

which uses quasi-Newton methods[Reference] that are known to handle

non-smooth search spaces better but with longer computational time -

and stopping when the first solution is found.

The Open Motion Planning Library (OMPL) [25], a collection of sampling-

based motion planning algorithms, is the default planner in MoveIt! The

RRT-Connect algorithm [26] was chosen for its efficiency, which is

achieved by building two Randomized Random Exploration Trees (RRTs),

one from the start point and one from the endpoint, progressively moving

towards each other until they are connected.

Play motion

The function of this package is to be able to execute predefined motions.

7.3.2 Pick And Place Implementation

Launch files

Launch files are essential for starting the main features of the package.

Launch files are XML format files that, using the roslaunch tool, allow the

start of the master node (necessary for ROS 1 to work) and multiple nodes

simultaneously. They can manage the passing of arguments and the

46

loading of parameters, possibly by calling additional launch files and thus

generating a launch-tree.

This project uses three fundamental launch files. The first one starts the

simulation in gazebo, places the robot in front of a table with three cans

and enables the TRAC-IK solver. TIAGo's manufacturer, PAL Robotics,

developed this document. To access it, download the TIAGo tutorial

repository [Reference]. To run it, it is necessary to enter into the

workspace folder and run the following command:

IK_SOLVER=trac_ik roslaunch tiago_gazebo tiago_gazebo.launch

public_sim:=true robot:=steel world:=tutorial_office gzpose:="-x 1.40 -y -

2.79 -z -0.003 -R 0.0 -P 0.0 -Y 0.0" use_moveit_camera:=true

Terminal 1: Command line to initialise the gazebo simulator and use trac-ik as ik solver.

The following launch file activates object tracking. It activates a node

called "bayes_object_tracker", which is in charge of tracking the detected

objects. In addition, this file also calls two additional launch files:

darknet_ros_py.launch, in charge of detecting objects, and

mbot_perception.launch, used to log the detected objects. This is done by

running the command:

roslaunch bayes_objects_tracker

bayes_objects_tracker_no_namespaces.launch

Terminal 2: Command line to initialise the object tracker.

The last launch file is responsible for loading the predefined motions for

the tasks, starting the pick_and_place_server node by adding the target

object parameters and opening the Rviz model, ready to observe the

47

robot's behaviour. It is necessary to understand how these actions are

implemented.

- Predefined motions

There are some predefined motions used during this proyect. To create

them there are three steps to follow.

1. Pose the robot

2. Capture the values of the joints

3. Save joints' values in a yaml file

To pose the robot to a desired position, there are many ways. It can be

done manually with the physical robot by moving every joint or either use

rqt_joint_trajectory_controller or the motion planning tool in Rviz.

In the rqt_joint_trajectory_controller way, there is a menu where it is

possible to select the group of joints and then it is allowed to change the

position of every joint. To do it, just run:

rosrun rqt_joint_trallectory_controller rqt_joint_trallectory_controller

Terminal 3: Command line to open a graphical frontend for interacting with
joint_trajectory_controller instances

Press the power button to set up, select the group of joints and change

the position of the joints. As soon it is visible the desired position, there

are two ways of continue. See figure 19.

48

First is done by reading the state of the arm and torso and writing them

into a yaml file. To read the state of the arm:

rostopic echo /arm_controller/state

Terminal 4: Command line to read the arm controller state

To read the state of the torso:

rostopic echo /torso_controller/state

Terminal 5: Command line to read the torso controller state

49

Figure 19: Rqt joint trayectory controller GUI

Then, write the values into the pick_motions.yaml file. It should be similar

to the example below.

play_motion:
 motions:
 pregrasp:
 joints: [torso_lift_joint, arm_1_joint,
 arm_2_joint, arm_3_joint, arm_4_joint, arm_5_joint,
 arm_6_joint, arm_7_joint]
 points:
 - positions: [0.15, 0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]
 time_from_start: 0.0
 - positions: [0.34, 0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]
 time_from_start: 2.0
 - positions: [0.34, 0.21, -1.02, -0.20, 1.94, -1.57, 1.52, 0.0]
 time_from_start: 3.5
 - positions: [0.34, 0.21, 0.35, -0.2, 2.0, -1.57, 1.52, 0.0]
 time_from_start: 6.5
 - positions: [0.34, 0.21, 0.35, -0.2, 0.0, -1.57, 1.52, 0.0]
 time_from_start: 10.0
 - positions: [0.34, 0.21, 0.35, -3.0, 0.0, -1.57, 1.52, 0.0]
 time_from_start: 12.0
 - positions: [0.34, 0.05, -0.07, -3.0, 1.5, -1.57, 0.2, 0.0]
 time_from_start: 17

Code extraction 1: Example of a predefined motion in a .yaml file.

The other way of doing it is with the play_motion_builder.

This tool presents a simple interface to create play_motion based motions

by defining lists of keyframes which the system will then interpolate

between. The tool simplifies capturing, editing and modifying these

keyframes.

To create new motions play_motion_builder packages have to be installed

correctly[27].

50

Play motion builder must to be running, to do it:

rosrun play_motion_builder play_motion_builder_node

Terminal 6: Command line to run play_motion_builder_node

Then, we run rqt_play_motion_builder to use the tool which allows simple

control of the motion creation pipeline. See figure 20.

`rosrun rqt_play_motion_builder rqt_play_motion_builder``

Terminal 7: Command line to run GUI to handle the creation of new motions for play_motion
called rqt

Press New to set up, there is a box where it is able to select the group

joints which are wanted to safe and also can be added the head's joints if

51

Figure 20: rqt play motion builder GUI

it is required. Then, press to Capture Keyframe and edit the time if it is

needed. Save it and it can be used with the rest of pre-defined

configurations.

After all, in both ways it is needed to load the yaml file to the parameter

server.

rosparam load <yaml_file_path> the new motions are saved:

rosparam load <yaml_file_path>

Terminal 8: Command line to load a file in the project

- Rviz test environment

The rviz model of the project was the default model in the octomap

tutorial, edited later to suit the project better. To do this, it ran the launch

files needed to activate the nodes and the rviz model in the terminal:

roslaunch tiago_moveit_tutorial octomap_tiago.launch

Terminal 9: Command line to laucnh the octomap_tiago.lauch which initialises octomap.

Moreover, from this RViz model, complementary tools were added. When

clicking on add, a window opens that shows the possibility to create a

visualisation from the display type and add from the topic. In this case,

the last was chosen. See Image ... All active topics are displayed here.

From there, it is easy to add them:

/bayes_object_tracker/pose_array - PoseArray

/object_detector/detection_image/compressed - Image

/object_localizer/localized_object_poses - PoseArray

52

Next, the gripper frame is added. To do this, click on add, in by display

type search for tf in the rviz folder and leave only gripper_grasping_frame

visible. To change the colour of the PoseArray, select any of them. The

name of the topic and the colour appears. By clicking on it, it can be

changed easily. See image 22.

53

Figure 21: Rviz configuration by topics underlined

Knowing this, the pick_place_server.launch can be run in the terminal:

roslaunch manipulation pick_place_server.launch

Terminal 10: Command line to run the pick_place_server.launh which initialises the server.

54

Figure 22: How to change PoseArray colours in Rviz

pick_and_place_server.py

This code is inside the tiago tutorials folder. The project works with a

system of actions in which the server manages the project's tasks and

messages. Because there is a pick and place demo, it has been decided to

use the same server as it fits with this project editing the object

parameters. For this purpose, it has been added to the launch file as

follows:

 <!-- Pick & place server -->

<node name="pick_and_place_server" pkg="tiago_pick_demo"

type="pick_and_place_server.py" output="screen">

<rosparam command="load" file="$(find

tiago_pick_demo)/config/pick_and_place_params.yaml" />

<param name="object_width" value="0.11" />

<param name="object_height" value="0.07" />

<param name="object_depth" value="0.11" />
</node>

Code extraction 1: Pick and place server node declaration in

pick_place_server.launch

manipulation.py

The manipulation actions are implemented in this file. When this code is

executed, the task is started. The design pattern used by the team is

singleton, so this code consists of only one class. For this reason, two

classes have been imported from different files called: PickObjectPose()

and PlaceObjectPose().

55

import rospy

from pick import PickObjectPose
from place import PlaceObjectPose

Code extraction 2: How the classes PickObjectPose and PlaceObjectPose are

imported.

Where the program runs:

Usage Example

if __name__ == '__main__':

rospy.init_node('manipulation_client')

manipulate = Manipulation()

manipulate.pick(pick_object_uuid='e7be927c-3e58-507f-a9e6-

eaadce759be2',pick_object_name='cup', lift_object=True)

manipulate.place(predefined_location='table', tuck_arm=True)

Code extraction 3: Usage example from manipulation.py.

Where, it is shown manipulate.pick(pick_object_uuid='e7be927c-3e58-

507f-a9e6-eaadce759be2',pick_object_name='cup', lift_object=True), It

calls a function of the PickObjectPose() class and

manipulate.place(predefined_location='table', tuck_arm=True) calls

another one of PlaceObjectPose().

pick.py

This is the code from which the PickObjectPose() class comes. Its pseudo-

code is presented below.

56

class PickObjectPose(object):

def __init__(self):

def pick(self, pick_object_uuid=None, pick_object_name=None,
lift_object=True):

 if not pick_object_uuid and not pick_object_name:#Exeption

 self.prepare_robot()

 object_detected = False

 if pick_object_uuid: # localized_objects = rospy.wait_for_message("/
bayes_objects_tracker/tracked_objects", TrackedObject3DList)

 elif pick_object_name: # localized_objects =

 rospy.wait_for_message("/object_localizer/localized_objects",

 RecognizedObject3DList)

 object_perceived = object_detected

 if not object_detected:# Failed to detect object

 self.transformToBaseFrame(object_perceived)

 object_to_grasp = object_perceived

 self.transformToBaseFrame(object_to_grasp)# Add offset to the pose

 self.pick_as.send_goal_and_wait(object_to_grasp)

 rospy.loginfo("Done!")
 if lift_object:

 self.move_arm_to_post_grasp()

 rospy.loginfo("Pick Success")

 return Truee

Code extraction 4: Pseudo-code from pick.py

57

There are several functions to discuss from Code extraction 4.

Firstly, the init() function is in charge of initialising the Pick Client and

Object tracker, connecting to the /pickup_pose action server, setting

publishers to the torso and head controller, connecting to /play_motion

action server, and clear octomap service.

The prepare_robot() function is in charge of unfolding the arm safely,

opening the gripper and looking from different sights to detect objects.

At this point, depending on the argument received it will read the topic

/bayes_objects_tracker/tracked_objects or

/object_localizer/localized_objects. In either case, it senses the object and

stores its pose in the detected object.

As the pose of the detected object is given with the camera frame, it is

entered into a function that transforms the pose to the base_footprint

frame.

This pose is stored in a variable called object_to_grasp, and an offset is

added to it. The object detected pose is from the front face of the object

and seeks to be grabbed from the centre. Therefore, a slight offset is

added to correct this error.

Once the pose is saved, it is sent to the pick_as, which is in charge of

performing the grasping routine. This routine has no visual feedback

because it was not implemented due to some limitations explained later.

When finished, it lifts the object and finishes this part of the task.

58

place.py

This is the code from which the PlacebjectPose() class comes which is

slightly different from pick.py. Its pseudo-code is resented below.

class PlaceObjectPose(object):

def __init__(self):

def place(self, location_uuid=None, location_name=None,

location_pose=None,

predefined_location=None, tuck_arm=True):

 if not location_uuid and not location_name and not location_pose and not

 predefined_location: # Execption

 self.lower_head()

 if location_uuid: # The idea is to perceive a suitable location and place the

 object there

 elif location_name: # The idea is to place the object above an object given

 as parameter.

 elif location_pose: # Here the location pose is given

 elif predefined_location: # Here a predefined motion name is given to run it

 self.predefined_motion('open') # open the gripper

 self.move_arm_to_post_place()

 if tuck_arm: # tuck the arm back

 self.predefined_motion('home')

 rospy.loginfo("Place Success")

 return True

Code extraction 5: Pseudo-code from place.py

59

In Code extraction 5, it is also interesting to consider a few things. The

init() function does the same as in pick.py.

Next, it lowers its head to get a better view of where to release the object.

Then, depending on the given argument, it takes the object pose data as

written in the comments. To reduce the complexity of the task, it performs

a predefined motion for placing.

When the object is placed in the given pose, it opens the gripper and

moves the arm to a safe pose that does not interfere with the workspace

by executing the move_arm_to_post_place() function.

Finally, TIAGo returns to the home pose and finishes the task.

7.4. Debugging

Debugging in ROS could be challenging. There are many packages

connected, and it is difficult to understand where the error comes from if

there is no organisation in the program. Since this project is done with

part of the work from previous teammates in the group with different

coding styles and robots, merging these functionalities with this project

could be arduous. That is why some tools help understand what is going

on in the project.

60

7.4.1 Printing Messages In The Terminal

One of the most basic techniques for debugging our system is printing

messages in the terminal, that says which function is running at every

moment.

7.4.2 Command lines

Some commands are substantial to read what the nodes are doing and

how they are connected.

-rosnode list: Display a list of active nodes from our application

-rosnode info: Print information about the node

-rostopic list: Display a list of active topics from our application

-rostopic info: Print information about the node

-rostopic echo: Print messages to the screen

-rosservice list: Lists active services from the application

-rosservice type: Display the name of the node that provides a particular

service

61

7.4.3 Rviz

Rviz is a visualiser for ros. It can represent in a graphical way what nodes

see. In this project, there is a rviz configuration. This shows a 3D model of

the robot, the gripper’s frame (which shows a 3D representation of the

environment seen by the robot called octomap), the position of the object

detected with the preteained neural network and another trained for this

project, and a virtual model of the object and the table with the possible

grasping poses as it shows the figure 23.

7.4.4 Rqt

Rqt is a framework of ROS that implements the various GUI tools in the

form of plugins. One is rqt_graph, a GUI plugin for visualising the ROS

computation graph. This graphic tool makes comprehending the

connections between nodes and topics much more manageable. The

figure below shows where the node is pointing and

from which one is pointed too.

62

Figure 23: The first capture shows the octomap view with the pose of the object reprensented by arrows, the red is
localised by the pretrained neural network and the black with the trained. The following capture shows the virtual
object and table with the possible grasp in yellow. The last capture shows all together.

8. EXPERIMENTS AND RESULTS

In this section, the experiments done are discussed. These experiments

are divided into two main blocks: functionalities check and pick and place.

8.1. FUNCTIONALITIES CHECK

Before developing the project task, it has been checked that all the

components work correctly. For this purpose, the official TIAGo tutorials

63

Figure 24: Shows the magnitude of the computation graph

[Reference] developed by PAL Robotics have been used. These are useful

to understand how TIAGo works and its limitations. After the tutorials were

completed, a test environment was created to carry out one’s

experiments. Finally, object detection has been tested.

8.1.1 TIAGo Tutorials

Several tutorials have been beneficial.

Joint trajectory Controller

Use joint_trayectory_controller to move the TIAGo arm showing the type of

messages it uses. The mechanisms described for sending trajectories to

the controller are through actions or topics. The results are correct, and it

moves on to the next one.

Playing pre-defined upper body motions.

Learn how to create, visualise and run pre-defined upper body motions

with TIAGo using the play_motion package, which enables executing

simultaneous trajectories in multiple groups of joints. Different motions

have been created to test their operation at the limits of the robot. With

RViz motion planning, moves the robot, extracts and saves the values of

the joints with the other motions. After achieving positive results, we

move on to the following tutorial.

Planning in Cartesian space.

This tutorial teaches the use of MoveIt! to place the end effector frame at

the desired position in Cartesian space. It has been tested by sending the

64

arm to random positions, some of which were impossible and aborted its

execution. There are positive and robust results, so we move on to the

following tutorial.

Planning in Cartesian space with TRAC-IK

Unlike the previous tutorial, this one uses TRAC-IK, an alternative Inverse

Kinematic solver. TRAC-IK runs two IK implementations. One is a simple

extension to KDL's Newton-based convergence algorithm that detects and

mitigates local minima due to joint limits by random jumps. The second is

an SQP (Sequential Quadratic Programming) nonlinear optimization

approach which uses quasi-Newton methods that better handle joint

limits.The results are also correct.

Planning with Octomap demo

This tutorial is an example of using Octomap in Movit! to plan with TIAGo.

It gives a 3D representation of the environment around the robot, letting

the robot avoid them in the planning.

Pick & Place demo

It is a grasping example with TIAGo. A simulation environment comprising

a table and a box with an ArUco marker is defined. The robot then locates

the object in the RGB of its camera and reconstructs its 3D pose. Then,

MoveIt! is used to plan a pick trajectory to grasp the object, which is lifted

up and a place trajectory is planned to restore the object to its former

position. Sometimes release the object in the lifting part, failing the task.

Nevertheless, this is a great beginning.

65

8.1.2 Test Environment

This is a simulated robot space in front of a table with three cans on top of

it. In this space, the robot can carry out its experiments with ease. To

check if it works correctly, RViz is opened so that a graphical

representation of the individual nodes can be seen. This environment

helps with debugging.

8.1.3 Object detection

Testing the object detector in the simulator runs the test environment and

the perception module. When the robot is looking at the objects, it is able

to recognise the can in the centre but has difficulty recognising the ones

on the sides, and if it does, it distinguishes mainly the one on the right.

This is because the can in the centre is more prominent, closer, and the

difference in colour to the background is more striking. Moreover, when it

distinguishes the two cans, it recognises them as different classes: the

can in the centre is recognised as a cup, while the one on the right is

recognised as a bottle. The reason for these results is that the neural

network has not been trained with the can class, and as they have

different sizes and colours, it does not associate them with the same

class. On the other hand, these locations are correct, being the decisive

part of performing the task. Therefore, despite the errors in recognition of

the object, this phase is admissible because its location is correct, and the

rest of the project can continue without further modifications. (See Fig.20)

66

After these experiments, it is concluded that the robot fulfils the

necessary capabilities to perform the pick and place task.

8.2. PICK AND PLACE TASK

TIAGo has to perform a pick and place task with one of the test

environment cans. In one of the steps discussed below, a bug appears

that makes it impossible to finish the task. Therefore, the experiment is

divided into five pipeline phases:

67

Figure 25: Image from the object detection with two objects
detected and the confidence of their recognision

8.2.1 Preparation

Before starting the grasping, the robot must be prepared.

 To do this, it initialises and connects all the necessary nodes to start the

task. While this happens, it prints messages on the terminal as it

completes each step to check its status.

Then, the robot raises its torso, lifts its arm into a comfortable position

and opens the gripper. This pose allows the arm to move towards its

target without taking complicated trajectories to avoid the table. From this

position, the robot lowers the head to locate the objects and lowers his

torso to see them from a different perspective. This increases the

probability of detecting them. This practice was added after several

experiments as it was difficult to detect objects occasionally. After this

correction, the results improved considerably.

Next, save the can's coordinates, and add a virtual model of the object

and the table to the workspace (See Fig. 21). After several tests, an offset

was added to the object's location by placing it back further. This is

because it locates the object's front face instead of at its centre, giving

errors in the next phase (grasping).

68

Finally, calculate the different grasping possibilities and choose one.

These grasping possibilities are represented in Rviz in Figure 27.

The preparation phase works correctly on most occasions, but when it

fails, it is due to two main failures. The first one is in object detection

since, for unknown reasons, the detector does not work, and the program

has to be restarted. The second is calculating trajectories because

sometimes it saturates without getting a result and has to abort the task.

The calculating trayectories error was solved using TRAK-IK solver, the

other error occur infrequently, The project development has continued , as

this error is usually solved by restarting the program.

69

Figure 26: Virtual table and virtual object represented in green

8.2.2 Grasping

Once the object is located, and the orientation of its grip has been chosen,

the next step is grasping. TIAGo places the arm close to the object at a

point where it starts a rectilinear trajectory to the grasping position of the

object. Then, it closes the gripper and checks that the object has been

grasped correctly.

TIAGo usually succeeds in grasping the object, but the results are

confusing. When it successfully grasps the object, it sends an error

message and aborts the task by returning to the robot's home position.

See Fig. 28.

70

Figure 27: Virtual objects in green and possible grasp poses in yellow.

On the other hand, when it fails to grasp and closes the gripper, it detects

that the grasp was successful and continues with the task as it is shown in

the figure 29, Priority is given to the failure to verify that the grasping has

been successful, as the grasping fails sporadically. The task runs

faultlessly until it reaches this error that has not been solved.

71

Figure 28: In the left, the terminal prints an underlined error aborting the task. Then, inside
the red squares, it is visible that the grasping was actually succesful.

Then, the rest of the tests were carried out by removing the object just

before it was grasped to prevent it from aborting the task. This way, the

grasping is booming, and the experiment can continue as the virtual

object is represented as grasped.

8.2.3 Post-gasp

After grasping the object, it raises the torso and the arm to its limits and

holds the object there, showing that it is correctly grasped. This task has

no errors considering that there is not an object grasped.

8.2.4 Placing

Lower the torso again to put the object down and place it above the initial

position. Then lower the end effector in a rectilinear movement and open

72

Figure 29: The terminal prints the pick result as succesful. TIAGo picks the virtual object but
there is not actually an object as it is shown inside the red squares.

the gripper releasing the object. Despite not having the actual object, it

does not show any error in the virtual object.

8.2.5 Post-place

Once the object is released, this phase takes care of moving the end

effector away from the workspace without interfering with the object

returning to the home pose. Previous tests did not find paths to return to

the home pose without colliding with the object. Therefore, several

waypoints have been added to the postplace motion to solve this problem.

So the task is completed correctly.

9. ENVIRONMENTAL AND SOCIAL IMPACT

The abilities of service robots have gradually exceeded human’s

performance in specific areas over time. It is necessary to consider some

impacts these new technologies bring with them. Ethics is a fundamental

field in robotics, so in this chapter, there is a small discussion about

environmental and social impact.

9.1. ENVIRONMENTAL IMPACT

Innovation in robotics looks to be linked to energy consumption and other

environmental issues. This is an overview of them. Like any other

industry, robotics requires energy consumption for production and after it

during their performance. In service robots, the performance consumption

is lower, and this energy can be gathered using clean sources, so the

impact relies mainly on the energy supplier. Also, it is essential to point

out that robots work more efficiently than humans, reducing energy waste

and materials.

73

Another issue comes after the life span of the robot. If the robot is not

recycled correctly, it will negatively impact waste management.

9.2. SOCIAL IMPACT

There are some ethical questions about how ready society is for robots.

This type of service robot will have a substantial socioeconomic level.

These robots will work in professional areas like medicine, cleaning,

construction, space, etc. In the same way, they will reach our homes with

domestic robots which will bring entertainment and household services.

There are some topics which concern people about this kind of robot.

- The integration of robots into society depends on several factors, such as

their appearance. If a robot looks too much like a human, it can cause a

lot of 'creepy' rejection. On the other hand, a friendly-looking robot can

facilitate the process of acceptance by humans.

- Aspects like gross losses in employment make people worry about

robots. However, this type of robot is intended to support other

professionals. In nursing, different tasks can put the nurse in a vulnerable

situation in terms of hygiene. Therefore, a collaborative robot such as

TIAGo could perform the part of the tasks that could be harmful to

humans with the support of a nurse to complement the task.

To conclude, this project might be a very tiny step for developing service

robots, and thus, it might contribute to these processes making it an

important thing to reflect on. There are many possibilities in the future,

74

and it is necessary to understand which role robotic engineers must play

in it to perform a responsible innovation.

10. CONCLUSION

Different libraries have been implemented to create the final program.

The most helpful was the action server from Tiago's pick and place demo

used in the test environment. To perform the task, it uses artificial vision

to obtain the object's position. The robot functionalities were tested

separately, demonstrating that the task can be performed.

The different tasks have been discussed for a correct analysis of the

project development.

Following the pipeline, the first is the preparation. This task initialises

every node without problems and performs the predefined motions to look

at the object correctly. This shows that the implementation of the new

motions was successful. This phase activates object detection, in charge

of the perception and localisation of objects, which was achieved. Despite

exceeding the target, object detection is not very robust, as it can

distinguish and position the closest object in the scene but struggles to

identify the other two. This can happen for several reasons. One is that

the neural network has not been trained with these objects but with

objects in the lab. Therefore, when it switches to the simulation because

they are different objects, it has trouble identifying them. In addition,

colour, distance and size also influence its recognition. Next, TIAGo adds

the virtual objects loaded from the pick_and_place.launch file to the

scene. Rviz renders them accurately, so this part is also a success. Now it

is ready to calculate the possible grab to finish this phase. In previous

75

tests, sometimes the planner exceeded the calculation time aborting the

task. Since the trac-ik solver was implemented, this is no longer a

problem.

The next target to be overcome is the grasping phase, starting with the

pregrasp pose. It brings the arm into a position relative to the object so it

can execute the grappling with a straight movement. In the grappling

part, TIAGo grabs the object perfectly, but due to a bug, every time it

grabs it, it sends an error message that prevents it from continuing with

the pipeline. This is a weird error because the real robot works without

problems, but this bug appears in the simulation.

From this point on, the tests were carried out without the actual can, as

explained in the results chapter. The post-grip, placement and post-

placement phases are error-free, but to be confident in them, it is

necessary to test them with the objects.

During the development of this thesis, the concepts of robotics,

programming and operating systems have been consolidated. In addition

to learning how to use ROS and python programming.

During my laboratory stay, I have seen how a research group works,

developing teamwork and self-learning skills.

Finally, the project could have been approached in a different way, as it

has been challenging to program some things from scratch instead of

relying on GUI that could have facilitated its implementation. This was so

time-consuming and prevented the implementation from being

completed. The code should have been approached in a modular way with

the help of a behaviour tree.

76

11. LIMITATIONS

There are factors that have influenced the project that has limited its

results.

Previous knowledge was required for its realisation, and a large part of the

project time was spent on acquiring this knowledge, such as the need to

learn ROS and Python. The rest of the team worked telematically, which

made communication between us slow.

Firstly, the project had to be implemented on the physical robot, but due

to lack of time, I had to return to Spain and adapt the project to the

simulation. Also, it would be presented as a master's thesis at Tecnico de

Lisboa instead of a bachelor's thesis in Spain, so the project requirements

had to be adapted too. I also had to go to Spain on several occasions to

take exams in site for subjects that I could not validate during my

erasmus.

Regarding the limitations presented by the robot, the gripper was parallel,

so it was impossible to grasp the objects optimally. For example, it cannot

grasp objects with complicated shapes such as keys. It is arduous to

debug the program due to there is not modularity and test every function

12. FUTURE WORK

This thesis opens research problems requiring further consideration to

implement the visual servoing correctly. This section lists ideas, proposals

or advice for future works of various kinds, whether they are additions,

modifications or improvements.

77

- Wait for the fix of the bug with the pick up action in the grasping phase

of the pick-and-place pipeline to verify the complete task.

- Try DOPE in object detection in order to locate the objects accurately.

This brings the possibility of training the network efficiently.

- To be able to create a 3D model of the grasping object without knowing

the object previously.

- Implementation of real-time functionality for task execution in

environments with more complex dynamics, such as pick-and-place of

moving objects.

- To generate a task manager modularly with the help of the behaviour

tree library. This isolates each task from the rest of the code, making it

possible to communicate among all tasks. This way, it is not a problem to

add new tasks, and the debugging problem disappears, because when

something is not working quite well, it is possible to debug just the task

that is not working without affecting the rest of the tasks. Another

advantage of being modular, is that the system can be built in a different

order, just ordering differently these modules, like black boxes, without

having big problems.

78

References

[1] ISR. Isrobonet@home testbed, 2014. URLhttps://welcome.isr.tecnico.ulisboa.pt/
i srobonet/ .

[2] B. Singh, N. Sellappan, and P. Kumaradhas. Evolution of industrial robots and their
applications.2013.

[3] J. McCarthy, L. Earnest, D. R. Reddy, and P. J. Vicens. A computer with hands, eyes, and
ears. In Proceedings of the December 9-11, 1968, fall joint computer conference, part I,
pages 329–338,1968.

[4] S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo control. IEEE
Transactions on Robotics and Automation, 12(5):651–670, 1996. ISSN 1042296X. Doi:
10.1109/70.538972.

[5] Y. Shirai and H. Inoue. Guiding a robot by visual feedback in assembling tasks. Pattern
Recognition,5(2):99 – 108, 1973. ISSN 0031-3203. doi: 10.1016/0031-3203(73)90015-
0.URLhttp://www.sciencedirect.com/science/article/pii/0031320373900150.

[6] J. Hill. Real time control of a robot with a mobile camera. 1979
.
[7] F. Chaumette and S. Hutchinson. Visual servo control. I. Basic approaches. IEEE
Robotics and
Automation Magazine, 13(4):82–90, 2006. ISSN 10709932. doi: 10.1109/MRA.2006.250573.

[8] Andersson, R.L.: Real time expert system to control a robot ping-pong player (1988)

[9] Allen, P.K., Yoshimi, B., Timcenko, A.: Real-time visual servoing (1990)

[10] Bukowski, R., Haynes, L., Geng, Z., Coleman, N., Santucci, A., Lam, K., Paz, A., May,
R., DeVito, M.: Robot hand-eye coordination rapid prototyping environment. In: Proc. ISIR,
vol.16 (1991)

[11] Rizzi, A.A., Koditschek, D.E.: Preliminary experiments in spatial robot juggling. In:
Experimental Robotics II, pp. 282–298. Springer (1993)

[12] Hager, G.D., Chang, W.C., Morse, A.S.: Robot hand-eye coordination based on stereo
vision. IEEE Control. Syst. Mag. 15(1), 30–39 (1995)

[13] P. I. Corke.Visual Control of Robot Manipulators — A Review, pages 1–31.
10.1142/97898145037090001.doi:URL
https://www.worldscientific.com/doi/abs/10.1142/9789814503709_0001.

[14] C. Collewet and E. Marchand. Photometric visual servoing. Robotics, IEEE Transactions
on, 27: 828 – 834, 09 2011. doi: 10.1109/TRO.2011.2112593.

79

https://www.worldscientific.com/doi/abs/10.1142/9789814503709_0001
http://www.sciencedirect.com/science/article/pii/0031320373900150
https://welcome.isr.tecnico.ulisboa.pt/isrobonet/
https://welcome.isr.tecnico.ulisboa.pt/isrobonet/
https://welcome.isr.tecnico.ulisboa.pt/isrobonet/
mailto:Isrobonet@home

[15] Lentin, A. (2020, July 3). What is ROS? Roboacademy. URL
https://robocademy.com/2020/07/01/what-is-ros/

[16] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning and
Control. Springer Publishing Company, Incorporated, 1st edition, 2008. ISBN 1846286417.

[17] S. Haykin. Neural Networks and Learning Machines. Pearson Education, third edition,
2008. ISBN 9780133002553. URL https://books.google.pt/books?id=faouAAAAQBAJ.

[18] [26] S. Haykin. Neural Networks and Learning Machines. Pearson Education, third
edition, 2008. ISBN 9780133002553. URL https://books.google.pt/books?
id=faouAAAAQBAJ.

[19] S. University. Cs231n convolutional neural networks for visual recognition, 2020. URL
https://cs231n.github.io/convolutional-networks

[20] MathWorks. Deep learning - convolutional neural network, 2020. URL
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html

[21] Redmon, J. (n.d.). YOLO: Real-Time Object Detection. Retrieved September 13, 2022,
from https://pjreddie.com/darknet/yolo/

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-
time object detection. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 779–788, 2016

[24]P. Beeson and B. Ames. Trac-ik: An open-source library for improved solving of generic
inverse kinematics. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots
(Humanoids), pages 928–935, 2015. doi: 10.1109/HUMANOIDS.2015.7363472.

[25]I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE
Robotics & Automation Magazine, 19(4):72–82, December 2012. doi:
10.1109/MRA.2012.2205651. https://ompl.kavrakilab.org.

[26]J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path
planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics andAutomation. Symposia Proceedings (Cat. No.00CH37065), volume 2, pages
995–1001 vol.2, 2000.

[27] Lopez, V., Moreno, I., & Fernandez, D. (2021, November 18). Play Motion Builder. Github.
https://github.com/pal-robotics/play_motion_builder

80

https://github.com/pal-robotics/play_motion_builder
https://ompl.kavrakilab.org/
https://pjreddie.com/darknet/yolo/
https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
https://cs231n.github.io/convolutional-networks
https://books.google.pt/books?id=faouAAAAQBAJ
https://books.google.pt/books?id=faouAAAAQBAJ
https://books.google.pt/books?id=faouAAAAQBAJ
https://robocademy.com/2020/07/01/what-is-ros/

Appendix A: Repository Code

All the software packages developed have been uploaded into the IOC

robotics lab repository. The link is presented next.

https://github.com/alain00lpez/akiyabala_tiago

Before starting, make sure that ROS is already installed and tiago's

packages for the simulation. Follow the next tutorial:

http://wiki.ros.org/Robots/TIAGo/Tutorials/Installation/

InstallUbuntuAndROS

This repository contains the work developed for Alain's thesis. Here is the

route to find the files developed:

• /akiyabala_tiago/perception_packages/bayes_objects_tracker/launch/

bayes_objects_tracker_no_namespaces.launch

• /akiyabala_tiago/manipulation/launch/pick_place_server.launch

• /akiyabala_tiago/actions_tiago_src/actions_tiago_ros/manipulation.py

• /akiyabala_tiago/actions_tiago_src/actions_tiago_ros/pick.py

• /akiyabala_tiago/actions_tiago_src/actions_tiago_ros/place.py

Please check PAL Robotics documentation:

https://cloud.pal-robotics.com/index.php/s/eocg4B27ITWbsvI?path=

%2FTIAGo%20Iron%20(no%20arm)%2FROS%20Melodic#pdfviewer

81

http://wiki.ros.org/Robots/TIAGo/Tutorials/Installation/InstallUbuntuAndROS
http://wiki.ros.org/Robots/TIAGo/Tutorials/Installation/InstallUbuntuAndROS
https://cloud.pal-robotics.com/index.php/s/eocg4B27ITWbsvI?path=%2FTIAGo%20Iron%20(no%20arm)%2FROS%20Melodic#pdfviewer
https://cloud.pal-robotics.com/index.php/s/eocg4B27ITWbsvI?path=%2FTIAGo%20Iron%20(no%20arm)%2FROS%20Melodic#pdfviewer
https://github.com/alain00lpez/akiyabala_tiago

Appendix B: User Manual

The first step is to install Ubuntu 18.04. Click in the next link to go to the

turotial to do it.

https://ubuntu.com/tutorials/install-ubuntu-desktop-1804#1-overview

Now the instalation of ROS Melodic is required.

Follow these instructions:

http://wiki.ros.org/melodic/Installation/Ubuntu

Or use the following commands:

sudo apt update
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -
sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt install curl
curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc |
sudo apt-key add -
sudo apt update
sudo apt install ros-melodic-desktop-full -y
sudo rosdep init
rosdep update
sudo apt install python-rosinstall -y
source /opt/ros/melodic/setup.bash

Terminal 11: Commands for installing ROS Melodic.

82

http://wiki.ros.org/melodic/Installation/Ubuntu
https://ubuntu.com/tutorials/install-ubuntu-desktop-1804#1-overview

Now, follow these command lines to set up SocRob/TIAGo environment.

mkdir -p ~/ros_ws/src
cd ~/ros_ws
sudo apt install python-catkin-tools -y
catkin init
catkin build
cd ~/ros_ws/src
git clone https://github.com/alain00lpez/akiyabala_tiago.git
cd akiyabala_tiago/
./repository.debs
source ~/ros_ws/devel/setup.bash
cd ~/ros_ws/
catkin build -c

Terminal 12: Commands for setting up SocRob/TIAGo environment.

Please, follow this tutorial to set up TIAGo drivers and simulation

http://wiki.ros.org/Robots/TIAGo/Tutorials/Installation/

InstallUbuntuAndROS

Take into account that your environment is called ros_ws and not

tiago_public_ws.

In case of compilation errors, report them to the older members. Some

package may not compile, but it may be outdated packages that you don't

need.

In case you get permission denied error when running any node, try sudo

rosdep fix-permissions

83

http://wiki.ros.org/Robots/TIAGo/Tutorials/Installation/InstallUbuntuAndROS
http://wiki.ros.org/Robots/TIAGo/Tutorials/Installation/InstallUbuntuAndROS

UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO

 Grado en Ingeniería Electrónica Industrial y Automática

Curso 2021/2022

TRABAJO DE FIN DE GRADO:

VISUAL SERVOING AND GRASPING OF KNOWN OBJECTS BY A
MOBILA MANIPULATOR

DOCUMENTO 2. PLANOS

AUTOR: Alain Kiyabala López
TUTOR: Dr. Enrique Berjano Zanón

COTUTOR EXTERNO: Dr. Pedro Manuel Urbano de Almeida Lima
(Instituto Superior Técnico, Universidade de Lisboa)

84

1.OBJECT

This project is entirely software based. Therefore, no hardware requiring

drawings has been implemented. All the graphical information needed to

understand this TFG has been included as figures in the "DOCUMENTO 1.

MEMORIA".

85

UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO

 Grado en Ingeniería Electrónica Industrial y Automática

Curso 2021/2022

TRABAJO DE FIN DE GRADO:

VISUAL SERVOING AND GRASPING OF KNOWN OBJECTS BY A
MOBILA MANIPULATOR

DOCUMENTO 3. PRESUPUESTO

AUTOR: Alain Kiyabala López
TUTOR: Dr. Enrique Berjano Zanón

COTUTOR EXTERNO: Dr. Pedro Manuel Urbano de Almeida Lima
(Instituto Superior Técnico, Universidade de Lisboa)

86

1. OBJECT

The purpose of this document is to show the project's total cost as

approximately as possible. The following sections detail the costs

necessary for realising the project and its execution, dividing the budget

into three distinct blocks: materials, labour, and other expenses. The sum

of these costs makes up the cost of executing the material.

1.1 HARDWARE

The hardware cost is only from TIAGo robot as it is shown in table 1.

87

Table 1: Hardware cost
Hardware

Units Description Manufacturer Fixed cost [€]
1 TIAGo Robot with parallel gripper PAL Robotics

Total:

35 000,00 €

35 000,00 €

1.2 LABOUR COST

There is only an industrial technical engineer in charge of the software

development and documentation. This is shown in table 2.

1.3 OTHER EXPENSES

Other expenses are taken into account, such as the electricity

consumption of each computer and its depreciation during its use. In this

case, there is only one computer used.

88

Table 2: Labour costs

Table 3: Other expenses prevision

Labour cost

Description type number cost/hour Hours cost
Software development Industrial technical engineer 1 25,00 € 300

Total:

7 500,00 €

7 500,00 €

Other expenses

Cost factor

Lab computer
Depreciation 1500 12000 0,13 300 39,00 €

0,14 300 42,00 €
Total: 81,00 €

Fixed cost
 [€]

Life
Expectancy [h]

Variable
Cost [€/h]

Time refered to
 The proyect [ħ]

Cost Related to
The project

Electric
Consumption

1.4 MATERIAL EXECUTION

The execution cost is the sum of the hardware with labour and other costs

as it is shown in table 4.

1.5 TOTAL COST

Finally, the budget for the whole project is obtained, applying the taxes

corresponding to the IVA and the profit derived from the realisation of the

project as it is shown in table 5.

The budget for this project is one hundred and thirty-nine thousand and

one hundred and twelve euros and twenty-eight cents (139,112.28 €).

89

Table 4: Material execution cost

Table 5: Final budget summary

Material execution
Hardware
Labour Cost
Other expenses 81,00 €
Total

35 000,00 €
7 500,00 €

42 581,00 €

Budget Summary
TIAGO ROBOT WITH SW IMPLEMENTED
EXECUTION MATERIAL

13% GENERAL COSTS
7% INDUSTRIAL PROFIT

PARTIAL SUM
21% IVA

TOTAL BUDGET

42 581,00 €
42 581,00 €

42 581,13 €
29 806,70 €

114 968,83 €
24 143,45 €

139 112,28 €

UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEL DISEÑO

 Grado en Ingeniería Electrónica Industrial y Automática

Curso 2021/2022

TRABAJO DE FIN DE GRADO:

VISUAL SERVOING AND GRASPING OF KNOWN OBJECTS BY A
MOBILE MANIPULATOR

DOCUMENTO 4. PLIEGO DE CONDICIONES

AUTOR: Alain Kiyabala López
TUTOR: Dr. Enrique Berjano Zanón

COTUTOR EXTERNO: Dr. Pedro Manuel Urbano de Almeida Lima
(Instituto Superior Técnico, Universidade de Lisboa)

90

1. OBJECT

This document aims to establish the minimum conditions to be met by the

TIAGo robot for the support of people in a situation of dependency,

specifying the durability, reliability and safety requirements.

The scope of this document extends to all the computer systems that form

part of this project.

2. WORKING MATERIALS

2.1 HARDWARE.

• Laptop ASUS TUF Gaming F17 FX706HM-HX059:

- Processor: Intel i7-8750H 4.1GHz

- RAM: 43.9 cm (17.3") Full HD 1920 x 1080 IPS 144Hz sRGB Colour

gamut 62.5%

- Drive:SSD 1TB

- Graphics card: NVIDIA GeForce RTX 3060 (6GB GDDR6)

- Display: 1980x1280 144Hz LED display

- Operating system: Ubuntu 18.04

• TIAGo robot:

- 2 degrees of freedom (DoF) mobile head

- RGB-D camera

- 7 DoF robotic arm

- Parallel gripper as end-effector

- prismatic joint to raise the torso

- mobile base which gathers all the necessary elements for

navigation.

91

2.2 SOFTWARE

-ROS: A middleware which is responsible for handling the communication

between programs in a distributed system.

-Gazebo simulator: Robot simulation with a complete toolbox of

development libraries.

-Reviz: 3D visualisation tool for ROS.

-Visual Studio: IDE used for programming the robot.

3. IMPLEMENTATION CONDITIONS

3.1 STANDARDS

ISO/TS 15066:2016 - Robots and robotic devices specify safety

requirements for collaborative industrial robot systems.

A robot is a quasi-machine, according to Directive 2006/42. The

manufacturer relies on harmonised standards (EN ISO 10218-1) to ensure

compliance with the Machinery Directive.

- The integrator is the one who integrates the robot and other components

into a system for a robotic application (specific use). To comply with the

Directive, he must perform a risk assessment and protect against residual

risks of the resulting machine and robotic application. It can rely on

existing harmonised standards or technical specifications (EN ISO 10218-

2). Robots with collaborative operation can be based on the TS 15066

specification. Following the risk assessment, safety functions shall be

selected for the robotic application to ensure that no contact with the

person or no harm is caused. If these measures are insufficient, additional

92

protective measures (guards, sensing devices, etc.) must be used in a

mixed solution. Not all robotic applications can be “pure” collaborative.

- The relevant technical documentation, assembly instructions and

declaration of incorporation are drawn up by the robot manufacturer and

accompany the robot until it is incorporated into the final machine and

forms part of its technical file.

- A competent body can certify that a collaborative robot application

complies with the requirements applicable to the workstations.

3.2 DESCRIPTION

As the requirements for the implementation are already implemented in

TIAGO, an initial verification test is carried out. For this purpose, a

computer is used with the software programmes detailed in the user

manual (appended to the report) and the installation of the code on the

robot is completed.

Once the system is installed, the correct operation of the robot is verified

in a controlled environment. To this end, a series of conditions must be

met to evaluate its operation.

3.3 QUALITY CONTROL

For the correct evaluation of the execution of the system and its phases, a

staggering procedure is used to verify the robot's operation.

In the integration phase, a specialised technician must ensure that the

robot is in an environment that meets the following conditions:

93

- The working temperatures are between +10°C ~ +35°C.

- The terrain must be capable of supporting the weight of the robot. It

must be horizontal and flat. Do not use carpets, as the robot can trip over

them.

- Make sure the robot has adequate space for any unexpected operation.

- Make sure the environment is free from objects that could pose a risk if

the robot is knocked, hit, or otherwise affected.

- Make sure no cables or ropes are caught in the covers or wheels; these

could pull other objects over.

- Make sure no animals are near the robot.

- Be aware of the location of emergency exits and make sure the robot

cannot block them.

- Do not operate the robot outdoors.

- Keep the robot away from flames and other sources of heat.

- Do not allow the robot to come into contact with liquids.

- Avoid the use or presence of magnetic devices near the robot.

The technician must then connect his computer to TIAGo and run the test.

To do this, the robot must be placed in front of a flat table with a can

above. The robot must be at a distance of less than one metre. When the

program runs, messages indicating the status of the initialisation

connections will be printed on the computer screen, and the pick and

place task will start.

94

95

	TRABAJO DE FIN DE GRADO:
	VISUAL SERVOING AND GRASPING OF KNOWN OBJECTS BY A MOBILE MANIPULATOR
	AUTOR: Alain Kiyabala López
	TUTOR: Dr. Enrique Berjano Zanón
	COTUTOR EXTERNO: Dr. Pedro Manuel Urbano de Almeida Lima (Instituto Superior Técnico, Universidade de Lisboa)
	Resumen
	
	
	El agarre y la manipulación de objetos son capacidades importantes para los robots de servicio doméstico. Se ha realizado una amplia labor de investigación en este ámbito que ha llevado al desarrollo de diferentes métodos, desde enfoques basados en la teoría de control clásica, hasta sistemas de aprendizaje automático totalmente integrales, aprovechando los avances en visión por ordenador, aprendizaje supervisado y de refuerzo.
	Este proyecto propone una cadena de procesos para efectuar una tarea de pick and place. Para ello, se han planteado distintas aproximaciones aplicando visual-servoing como componente principal. La cámara de profundidad, fijada a la cabeza móvil del robot, localiza y sigue el objeto guardando su posición. Mientras tanto, el robot lee la posición de sus articulaciones y aplica una ley de control para reducir el error entre su efector final y el objeto detectado. Para detectar la posición del objeto, se da uso de una red neuronal convolucional entrenada en el laboratorio que fue fundamental en este proyecto.
	La cadena de procesos que sigue es capaz de obtener la escena de octomap, ejecutar movimientos predefinidos para visualizar los objetos, activar la detección de objetos y efectuar el pick and place. Durante el proceso han aparecido diversos retos que han impedido el éxito de la tarea. En este proyecto, también se han usado las herramientas Gazebo, Rviz y Rqt para crear un entorno de simulación controlado y probar las distintas funcionalidades del robot. Además de haberse descrito problemas y soluciones abordadas en el campo de la robótica.
	Palabras clave: Robótica, Manipulación, Visual-Servoing
	Abstract
	Object grasping and manipulation are important capabilities for domestic service robots. Extensive research work has been done in this area leading to the development of different methods, from approaches based on classical control theory, to fully end-to-end machine learning systems, leveraging advances in computer vision, supervised and reinforcement learning.
	This project proposes a pipeline to perform a pick-and-place task. To this end, different approaches have been considered by applying visual-servoing as the main component. The depth camera, attached to the robot’s moving head, locates and tracks the object and stores its position. Meanwhile, the robot reads the position of its joints and applies a control law to reduce the error between its fine effector and the detected object. The use of a convolutional neural network trained in the laboratory to detect the object’s position was fundamental in this project.
	The process chain that follows is able to obtain the octomap scene, execute predefined movements to visualise the objects, activate the object detection, and perform the pick and place. During the process, several challenges hindered the task’s success. In this project, the tools Gazebo, Rviz and Rqt have also been used to create a controlled simulation environment and test the different functionalities of the robot. In addition, problems and solutions addressed in the field of robotics have been described.
	Key words: Robotics, Manipulation, Visual-Servoing
	(5.5)
	Using J† instead of J-1 provides a computational method to obtain the joint velocities required for a desired end-effector velocity.
	5.4.2 Convolutional Neural Networks

	
	play_motion:
	motions:
	pregrasp:
	joints: [torso_lift_joint, arm_1_joint,
	arm_2_joint, arm_3_joint, arm_4_joint, arm_5_joint,
	arm_6_joint, arm_7_joint]
	points:
	- positions: [0.15, 0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]
	time_from_start: 0.0
	- positions: [0.34, 0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]
	time_from_start: 2.0
	- positions: [0.34, 0.21, -1.02, -0.20, 1.94, -1.57, 1.52, 0.0]
	time_from_start: 3.5
	- positions: [0.34, 0.21, 0.35, -0.2, 2.0, -1.57, 1.52, 0.0]
	time_from_start: 6.5
	- positions: [0.34, 0.21, 0.35, -0.2, 0.0, -1.57, 1.52, 0.0]
	time_from_start: 10.0
	- positions: [0.34, 0.21, 0.35, -3.0, 0.0, -1.57, 1.52, 0.0]
	time_from_start: 12.0
	- positions: [0.34, 0.05, -0.07, -3.0, 1.5, -1.57, 0.2, 0.0]
	time_from_start: 17
	<node name="pick_and_place_server" pkg="tiago_pick_demo" type="pick_and_place_server.py" output="screen">
	<rosparam command="load" file="$(find 	tiago_pick_demo)/config/pick_and_place_params.yaml" />
	<param name="object_width" value="0.11" />
	<param name="object_height" value="0.07" />
	<param name="object_depth" value="0.11" />
	</node>
	import rospy
	from pick import PickObjectPose
	from place import PlaceObjectPose
	# Usage Example
	if __name__ == '__main__':
	rospy.init_node('manipulation_client')
	manipulate = Manipulation()
	manipulate.pick(pick_object_uuid='e7be927c-3e58-507f-a9e6-	eaadce759be2',pick_object_name='cup', lift_object=True)
	manipulate.place(predefined_location='table', tuck_arm=True)
	class PickObjectPose(object):
	def __init__(self):
	def pick(self, pick_object_uuid=None, pick_object_name=None,
	lift_object=True):
	if not pick_object_uuid and not pick_object_name:#Exeption
	self.prepare_robot()
	object_detected = False
	if pick_object_uuid: # localized_objects = rospy.wait_for_message("/ bayes_objects_tracker/tracked_objects", TrackedObject3DList) elif pick_object_name: # localized_objects = rospy.wait_for_message("/object_localizer/localized_objects", RecognizedObject3DList)
	object_perceived = object_detected
	if not object_detected:# Failed to detect object
	self.transformToBaseFrame(object_perceived)
	object_to_grasp = object_perceived
	self.transformToBaseFrame(object_to_grasp)# Add offset to the pose self.pick_as.send_goal_and_wait(object_to_grasp)
	rospy.loginfo("Done!")
	if lift_object:
	self.move_arm_to_post_grasp() rospy.loginfo("Pick Success")
	
	return Truee
	class PlaceObjectPose(object):
	def __init__(self):
	def place(self, location_uuid=None, location_name=None, location_pose=None, predefined_location=None, tuck_arm=True):
	if not location_uuid and not location_name and not location_pose and not predefined_location: # Execption
	self.lower_head()
	if location_uuid: # The idea is to perceive a suitable location and place the object there
	elif location_name: # The idea is to place the object above an object given as parameter.
	elif location_pose: # Here the location pose is given
	elif predefined_location: # Here a predefined motion name is given to run it
	self.predefined_motion('open') # open the gripper
	self.move_arm_to_post_place()
	if tuck_arm: # tuck the arm back
	self.predefined_motion('home')
	rospy.loginfo("Place Success")
	return True
	[1] ISR. Isrobonet@home testbed, 2014. URLhttps://welcome.isr.tecnico.ulisboa.pt/isrobonet/.
	[2] B. Singh, N. Sellappan, and P. Kumaradhas. Evolution of industrial robots and their applications.2013.
	[3] J. McCarthy, L. Earnest, D. R. Reddy, and P. J. Vicens. A computer with hands, eyes, and ears. In Proceedings of the December 9-11, 1968, fall joint computer conference, part I, pages 329–338,1968.
	[4] S. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5):651–670, 1996. ISSN 1042296X. Doi: 10.1109/70.538972.
	[5] Y. Shirai and H. Inoue. Guiding a robot by visual feedback in assembling tasks. Pattern Recognition,5(2):99 – 108, 1973. ISSN 0031-3203. doi: 10.1016/0031-3203(73)90015-0.URLhttp://www.sciencedirect.com/science/article/pii/0031320373900150.
	[6] J. Hill. Real time control of a robot with a mobile camera. 1979
	.
	[7] F. Chaumette and S. Hutchinson. Visual servo control. I. Basic approaches. IEEE Robotics and
	Automation Magazine, 13(4):82–90, 2006. ISSN 10709932. doi: 10.1109/MRA.2006.250573.
	[8] Andersson, R.L.: Real time expert system to control a robot ping-pong player (1988)
	[9] Allen, P.K., Yoshimi, B., Timcenko, A.: Real-time visual servoing (1990)
	[10] Bukowski, R., Haynes, L., Geng, Z., Coleman, N., Santucci, A., Lam, K., Paz, A., May, R., DeVito, M.: Robot hand-eye coordination rapid prototyping environment. In: Proc. ISIR, vol.16 (1991)
	[11] Rizzi, A.A., Koditschek, D.E.: Preliminary experiments in spatial robot juggling. In: Experimental Robotics II, pp. 282–298. Springer (1993)
	[12] Hager, G.D., Chang, W.C., Morse, A.S.: Robot hand-eye coordination based on stereo vision. IEEE Control. Syst. Mag. 15(1), 30–39 (1995)
	[13] P. I. Corke.Visual Control of Robot Manipulators — A Review, pages 1–31.
	10.1142/97898145037090001.doi:URL https://www.worldscientific.com/doi/abs/10.1142/9789814503709_0001.
	[14] C. Collewet and E. Marchand. Photometric visual servoing. Robotics, IEEE Transactions on, 27: 828 – 834, 09 2011. doi: 10.1109/TRO.2011.2112593.
	[15] Lentin, A. (2020, July 3). What is ROS? Roboacademy. URL https://robocademy.com/2020/07/01/what-is-ros/
	[16] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo. Robotics: Modelling, Planning and Control. Springer Publishing Company, Incorporated, 1st edition, 2008. ISBN 1846286417.
	[17] S. Haykin. Neural Networks and Learning Machines. Pearson Education, third edition, 2008. ISBN 9780133002553. URL https://books.google.pt/books?id=faouAAAAQBAJ.
	[18] [26] S. Haykin. Neural Networks and Learning Machines. Pearson Education, third edition, 2008. ISBN 9780133002553. URL https://books.google.pt/books?id=faouAAAAQBAJ.
	[19] S. University. Cs231n convolutional neural networks for visual recognition, 2020. URL https://cs231n.github.io/convolutional-networks
	[20] MathWorks. Deep learning - convolutional neural network, 2020. URL https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
	[21] Redmon, J. (n.d.). YOLO: Real-Time Object Detection. Retrieved September 13, 2022, from https://pjreddie.com/darknet/yolo/
	[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 779–788, 2016
	[24]P. Beeson and B. Ames. Trac-ik: An open-source library for improved solving of generic inverse kinematics. In 2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids), pages 928–935, 2015. doi: 10.1109/HUMANOIDS.2015.7363472.
	[25]I. A. Şucan, M. Moll, and L. E. Kavraki. The Open Motion Planning Library. IEEE Robotics & Automation Magazine, 19(4):72–82, December 2012. doi: 10.1109/MRA.2012.2205651. https://ompl.kavrakilab.org.
	[26]J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path planning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics andAutomation. Symposia Proceedings (Cat. No.00CH37065), volume 2, pages 995–1001 vol.2, 2000.
	[27] Lopez, V., Moreno, I., & Fernandez, D. (2021, November 18). Play Motion Builder. Github. https://github.com/pal-robotics/play_motion_builder
	sudo apt update
	sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
	sudo apt install curl
	curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add -
	sudo apt update
	sudo apt install ros-melodic-desktop-full -y
	sudo rosdep init
	rosdep update
	sudo apt install python-rosinstall -y
	source /opt/ros/melodic/setup.bash
	mkdir -p ~/ros_ws/src
	cd ~/ros_ws
	sudo apt install python-catkin-tools -y
	catkin init
	catkin build
	cd ~/ros_ws/src
	git clone https://github.com/alain00lpez/akiyabala_tiago.git
	cd akiyabala_tiago/
	./repository.debs
	source ~/ros_ws/devel/setup.bash
	cd ~/ros_ws/
	catkin build -c
	TRABAJO DE FIN DE GRADO:
	VISUAL SERVOING AND GRASPING OF KNOWN OBJECTS BY A MOBILA MANIPULATOR
	AUTOR: Alain Kiyabala López
	TUTOR: Dr. Enrique Berjano Zanón
	COTUTOR EXTERNO: Dr. Pedro Manuel Urbano de Almeida Lima (Instituto Superior Técnico, Universidade de Lisboa)
	
	TRABAJO DE FIN DE GRADO:
	VISUAL SERVOING AND GRASPING OF KNOWN OBJECTS BY A MOBILA MANIPULATOR
	AUTOR: Alain Kiyabala López
	TUTOR: Dr. Enrique Berjano Zanón
	COTUTOR EXTERNO: Dr. Pedro Manuel Urbano de Almeida Lima (Instituto Superior Técnico, Universidade de Lisboa)
	TRABAJO DE FIN DE GRADO:
	VISUAL SERVOING AND GRASPING OF KNOWN OBJECTS BY A MOBILE MANIPULATOR
	AUTOR: Alain Kiyabala López
	TUTOR: Dr. Enrique Berjano Zanón
	COTUTOR EXTERNO: Dr. Pedro Manuel Urbano de Almeida Lima (Instituto Superior Técnico, Universidade de Lisboa)

