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Resumen

 

    

El agarre y la manipulación de objetos son capacidades importantes para

los  robots  de servicio  doméstico.  Se ha realizado una amplia  labor de

investigación en este ámbito que ha llevado al desarrollo de diferentes

métodos, desde enfoques basados en la teoría de control clásica, hasta

sistemas de aprendizaje automático totalmente integrales, aprovechando

los  avances  en  visión  por  ordenador,  aprendizaje  supervisado  y  de

refuerzo.

    Este proyecto propone una cadena de procesos para efectuar una tarea

de pick and place. Para ello, se han planteado distintas aproximaciones

aplicando  visual-servoing  como  componente  principal.  La  cámara  de

profundidad, fijada a la cabeza móvil del robot, localiza y sigue el objeto

guardando su  posición.  Mientras  tanto,  el  robot  lee  la  posición  de sus

articulaciones y aplica una ley de control para reducir el error entre su

efector final y el objeto detectado. Para detectar la posición del objeto, se

da uso de una red neuronal convolucional entrenada en el laboratorio que

fue fundamental en este proyecto.

  La cadena de procesos que sigue es capaz de obtener la escena de

octomap, ejecutar movimientos predefinidos para visualizar los objetos,

activar la detección de objetos y efectuar el pick and place.  Durante el

proceso han aparecido diversos retos que han impedido el  éxito de la

tarea. En este proyecto, también se han usado las herramientas Gazebo,

Rviz y Rqt para crear un entorno de simulación controlado y probar las

distintas  funcionalidades  del  robot.  Además  de  haberse  descrito

problemas y soluciones abordadas en el campo de la robótica. 

Palabras clave: Robótica, Manipulación, Visual-Servoing
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Abstract

Object grasping and manipulation are important capabilities for domestic

service robots. Extensive research work has been done in this area leading

to  the  development  of  different  methods,  from  approaches  based  on

classical  control  theory,  to  fully  end-to-end  machine  learning  systems,

leveraging  advances  in  computer  vision,  supervised  and  reinforcement

learning.

This project proposes a pipeline to perform a pick-and-place task. To this

end,  different  approaches  have  been  considered  by  applying  visual-

servoing  as  the  main  component.  The  depth  camera,  attached  to  the

robot’s moving head, locates and tracks the object and stores its position.

Meanwhile, the robot reads the position of its joints and applies a control

law to reduce the error between its fine effector and the detected object.

The use of  a convolutional  neural  network trained in  the laboratory to

detect the object’s position was fundamental in this project. 

  The process  chain that  follows is  able to obtain the octomap scene,

execute  predefined  movements  to  visualise  the  objects,  activate  the

object  detection,  and perform the pick  and place.  During  the  process,

several challenges hindered the task’s success. In this project, the tools

Gazebo,  Rviz  and  Rqt  have  also  been  used  to  create  a  controlled

simulation environment and test the different functionalities of the robot.

In addition, problems and solutions addressed in the field of robotics have

been described. 

Key words: Robotics, Manipulation, Visual-Servoing
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1. INTRODUCTION

1.1. JUSTIFICATION

In Western countries,  the population is ageing, which is due to various

improvements in healthcare and lifestyle. In addition, young people have

other priorities than having children and starting a family. Therefore, the

issue of elderly care is in demand. The elderly population is increasing,

but  the number of  caregivers  is  not,  so the lack of  people  capable of

caring for them creates the need for robot assistants to help them.

1.2.CONTEXT AND MOTIVATION

This  TFG was conducted in the context of  my academic staying in the

Institute for Systems and Robotics which is a research centre affiliated to

the Instituto Superior Técnico (IST) of the University of Lisbon. I was there

during the spring semester I went as a student in the master of electronic

engineering in the last semester in which I had to present a dissertation

project. For this, I had to find a scientific advisor and a project to develop

the thesis during the previous months. After contacting several research

centres,  Prof.  Pedro Lima offered to participate with the socrob@home

group in a robotics competition.
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Prof.  Pedro  Lima  is  a  full  professor  at  IST  with  a  PhD  in  Electrical

Engineering  from  RPI,  USA,  and  major  research  interests  in  formal

approaches to several areas in multi-robot systems and their interaction

with humans. He is the project coordinator and helped me in the control

part, sharing different papers I can take as reference. He introduced me to

Carlos  Azevedo,  a  PhD  student  who  is  the  team  leader  of  the

socrob@home group. We agreed that Carlos would help me to use the

software, and Prof. Pedro Lima would help me with the theoretical part.

The idea of participating in a competition served as motivation to learn in

the  lab  in  a  self-taught  way.  In  this  competition  the  robot  has  to  be

capable  of  performing  various  tasks  related to  the  assistance of  older

adults.  So  that  it  is  capable  of  monitoring  the  facility's  condition,

recognising people's condition, searching for objects, picking them up and

transporting them to specific locations. First, it should be able to map a

room in real-time to adapt to any changes in  the layout  of  the user's

house. Next, to recognise a series of objects previously given in a list, to

pick up objects of different heights and drop them in a given location and

to understand the voice command to find an object and find it. Each team

member is responsible for a specific robot function and organising their

time. There were no schedules, and most of the group worked entirely

remotely. Each week we had different challenges to overcome and thus

had general  control  of  the  evolution  of  the  project.  In  addition  to  the

project,  we also received visits from educational centres and presented

our robot's functionalities as it is shown in Figure 1 .
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In particular, I was  involved in a project to prepare a robot to take care of

household chores to participate in competitions and sell it to a nursing

home after its improvement. My personal tasks were  programming the

manipulation  part  of  the  robot  so  it  could  perform  a  pick  and  place

controlled by computer vision.

This project was intended to participate in the ERL CONSUMER LX 2022

(European  Robotics  League  -  Consumer  Robots).  This  is  a  robot

competition  that  is  derived  from  its  predecessor,  the  RoCKIn@Home

competition, and focuses on tasks that service robots execute in a real

home  environment.  The  Consumer  ERL  is  composed  of  several  "Local

Tournaments" held in different research laboratories across Europe, with

certified testbeds. This competition took place in our laboratory, where a

standardised scenario existed to test our robots [1] (See Fig. 2 & 3).
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Figure 3: Mobile robotics lab, the real standarised scenario for the competition

Figure 2: Mobile robotics lab, map of the scenario 
prepared for the competition



2. OBJECTIVE

This project focuses on a technical solution for object grasping by a mobile

robot endowed with a manipulator,  with an assembled camera used to

recognise and locate the object, i.e., a visual servoing problem. First, it

should  be  able  to  localise  the  object  using  vision  and  move  the

manipulator to a suitable nearby location. Next, it uses vision to track the

object localisation and move the manipulator to grasp it, performing visual

servoing. After the object’s picking, it moves the object to a relative pose

and places it again on the table. This has to be tested in an apartment

scenario using Gazebo simulator.

3. STATE OF THE ART

This  section  shows  research  work  related  to  this  thesis.  It  discusses

research in the field of manipulator robots, its beginnings using vision and

closed-loop visual control (Visual Servoing). 

3.1. ROBOTIC GRASPING AND VISUAL SERVOING

The main tasks of using robots are grasping, manipulation and traUnsport.

The use of robots starts in the automotive industry. The Unimate robot

arm (See Figure 4) had a sequence of stored poses with manual control.

The robot moved through the poses by interpolating its joint coordinates

[2].
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This type of point-to-point control is minimal, as it will not reach the object

if it is slightly displaced from its position. Moreover, as the arm always

executes  the  same  trajectory,  it  is  not  prepared  to  avoid  unexpected

objects.

Vision-based systems were developed to solve this problem. McCarthy et

al. describe one of the first [3], a camera is used to calculate the position

of a cube, obtaining the target pose for the arm’s end-effector. A space

occupancy model is also obtained from the image data, making obstacle

6

Figure 4 The Unimate was the first industrial robot ever built. It was a 
hydraulic manipulator arm that could perform repetitive tasks. It was used by 
car makers to automate metalworking and welding processes.



avoidance possible. The limitation of this method is that it is an open-loop

control. The camera obtains the object’s coordinates and sends them to

the manipulator control. This is directly dependent on the accuracy and

calibration quality of the camera and the manipulator [4]. 

A visual-feedback control loop increases the accuracy because the system

can calculate  the manipulator’s  position  and correct  it  to  the desireds

position. Shirai and Inoue developed the first visual-feedback system [5]

that continuously recognises the posture of a cube in the manipulator’s

hand,  calculates  the  difference  with  the  desired  pose  and  moves  the

manipulator  to  compensate.  The  block  can  then  be  accurately  placed

inside a box.

Other projects test real-time closed-loop control of a robot end-effector,

making the system robust to kinematic calibration errors. These systems

were given the name visual-servoing.

This concept of  visual servoing was firstly introduced in Hill  and Park’s

work [6], in which a camera is attached to a manipulator’s end-effector.

The object’s position and orientation in the camera frame is obtained by

processing the image. It  uses the fixed transformation from camera to

end-effector  for  describing  the  target  in  the  end-effector’s  reference

frame. The system guides the end-effector to the target, considering the

kinematic model of the robotic arm and its current joint positions.

These early  visual-servoing systems were called position-based (PBVS):

visual features are extracted from the image, and a geometric model of

the  target  object  is  used  to  estimate  its  3D  pose.  Features  are  often

defined as the position,  orientation  and size of  markers  placed on the
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target.  A  3D  pose  can  be  calculated  from  at  least  3  points,  and  the

intrinsic calibration parameters of the camera must be known [7].

Another approach in PBVS systems is to use stereo-vision, as is described

in Anderson [8]  Allen et al. [9], Bukowski et al. [10], and Rizzi et al. [11].

In stereo vision, the images from two cameras are analysed to note their

differences  and  calculate  depth  using  disparity.  An  example  of  this

approach is [12], where a PBVS system based on stereo vision techniques

is capable of estimating the 3D coordinates of any point observed in two

views of the same scene applying a triangulation process.

Later, the image-based visual-servoing (IBVS) technique was developed.

Instead of doing 3D pose estimation, image features are directly fed into a

control function that outputs the end-effector Cartesian velocity. For this,

a  feature-Jacobian  matrix  must  be  defined,  relating  the  feature  space

change to the desired end-effector pose change. IBVS does not require

computing the geometric model of the object, improving performance by

making  control  more  direct.  However,  choosing  visual  features  and

defining  a  feature-Jacobian  that  behaves  well  for  multiple  poses  is

challenging, especially as degrees-of-freedom increase [13].

There  is  also  an  approach  called  Direct  Visual-Servoing  (DVS),  which

considers the whole image as an input for the control system without the

necessity  of  adding  artificial  image  features.  Collewet  and  Marchand

propose  photometric  visual-servoing,  an  IBVS  system  that  uses  the

luminance of  the image’s  pixels  as  the only  essential  feature [14].  An

interaction  matrix  is  defined  as  function  of  the  desired  image,  which

relates the observed image luminance to the end-effector velocity leading

the arm to approach the desired pose.
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4. METHODOLOGY

4.1. OVERALL PLANNING

The  work  team  divided  this  project  into  different  fields:  navigation,

perception  and  sensor  fusion,  decision  making,  user  interaction,  and

manipulation.

Navigation involved  most  algorithms  in  robotics  expose  many

parameters  to  configure,  typically  hand-tuned.  Our  group  proposed  a

method to tune the parameters of robotics algorithms automatically. The

use case is for the well-known Adaptive Monte Carlo Localization (AMCL)

algorithm. As a result, we improved the localisation accuracy of our robot

by  automatically  tuning  the  localisation  parameters  using  several

recorded training datasets.

Perception and Sensor Fusion involved our research in this  domain

include  vision-based  robot  localisation,  object  tracking,  simultaneous

localisation  and  tracking  (SLOT),  environment  modelling,  laser-based

robot localisation and vision-based simultaneous localisation and mapping

(SLAM).

Particle filter-based (PF) methods have been the focus of our research to

address most perception-related problems. Using PFs, the key issues that

we have  been engaged in  solving  include  the  fusion  of  noisy  sensory

information acquired by mobile robots where the robots themselves are

uncertain about their poses and the scalability of such fusion algorithms
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with reference to the number of robots in the team, as well as the number

of objects being tracked.

For  a  domestic  service  robot  working  in  a  @Home-type  environment,

localisation,  mapping,  and  object/person  tracking  constitute  the  basic

requirements. In addition to this, static sensors along with mobile robots

in  an  NRS,  introduce  further  challenging  issues  for  sensor-fusion

algorithms. Considering these, we intend to drive forward our perception-

related research in SocRob@Home actively.

About Decision Making, in prior work, we have addressed the problem of

decision-making  for  teams  of  autonomous  robots,  primarily  through

approaches based on the theory of Discrete Event Systems (DES) and also

through  decision-theoretic  formalisms  for  multiagent  systems  (Partially

Observable  Markov  Decision  Processes–  POMDPs).  Recently,  we  have

bridged these two modelling approaches through developing and applying

event-driven  decision-theoretic  frameworks.  The fundamental  insight  of

this line of research is that decision-making in physical environments is

typically  an  asynchronous,  event-driven  process  over  several  levels  of

abstraction, based on limited or uncertain sensorial information over each

level, and subject to uncertain outcomes. We have explored this approach

in  the  ongoing  MultiAgent  Surveillance  Systems  (MAIS+S)  project  (ref.

CMU-PT/SIA/0023/2009), where we have successfully implemented an NRS

for autonomous surveillance, comprising a team of mobile robots and a

set of stationary cameras. The system can automatically detect relevant

events  in  its  operational  environment,  and  the  robot  team  can

cooperatively  decide  on  the  appropriate  response.  In  this  context,  we

have also developed a suite of software tools to aid researchers in the

systematic  deployment  of  these  abstract,  decision-theoretic
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methodologies  on  autonomous  robots  (the  Markov  Decision  Making

Library).

We seek to continue our work on this topic in SocRob@Home, noting that

the ability to perform decision-making under uncertainty is a fundamental

requirement of any potential domestic robot: given multiple tasks, such a

robot must be able to manage its priorities; establish a plan for each of

them, and still  be able to react reliably to external  events.  Automated

dialogue systems, which we plan to develop as part of our research effort

in  SocRob@Home,  can  also  be  interpreted  as  partially  observable

decision-making problems.

About Human-Robot Interaction, we focused on service robots in office

environments,  addressing  symbiotic  autonomy:  robots  execute  tasks

requested by users while autonomously aware of their limitations, asking

humans to help the robot overcome them. More recently, we have been

moving towards speech-based communication to address the requirement

of natural human-robot interaction.

Finally, in terms of Manipulation, researchers in our team target the pick

and place scenario from different sources like small and big tables and

floors. We have a 7-degree of freedom (DoF) manipulator to accomplish

those  goals.  Simultaneously,  we  also  developed  a  visual  servoing

functionality,  and we are developing a torque control  interface for  the

gripper. Machine learning methods have been applied to object grasping

to adapt easily to different targets and make systems more generally.

From now on, we are going to focus on this last part that I have been

working on.
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4.2. TEAM AND ORGANIZATION

The work methodology was as follows: weekly online meetings in which

we showed our progress to the team leader and suggested new tasks to

present  the  following  week.  We  have  a  discord  server  with  different

channels in which we consulted with the rest of the team for any doubt.

There is a channel for each specific function of the robot to record and

organise the information. Since each member works on a different topic,

the way to evolve was mainly self-taught.

SocRob@Home is an enthusiastic team of SocRob, a long-term project at

the  Institute  for  Systems  and  Robotics from  Instituto  Superior

Técnico, which focuses efforts on a group of robots to perform tasks, with

a particular focus on participation in scientific competitions.

The SocRob team has been representing ISR/IST since 1998 in the world’s

leading scientific event on Artificial Intelligence and Robotics, RoboCup, as

the  application  side  of  SocRob  (Soccer  Robots  or  Society  of  Robots)

ISR/IST  research  project.  Until  2013,  the  team’s  participation

encompassed  Simulation,  4-Legged,  Middle  Size  and  Robot  Rescue

Leagues  in  several  editions  of  the  RoboCup  World  Championship  and

various regional RoboCup events, e.g., the Portuguese, German and Dutch

Opens. The project has involved more than 40 students over these 24

years, from early MSc years to PhD students. It has reached a maturity

level that enables behaviour development that integrates low-level robot

skills such as navigation, perception and manipulation into more complex

behaviours that allow the completion of specific home tasks. 

12
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SocRob@Home addresses scientific problems that arise from the effort to

deploy robots in the domestic environment to help humans. One of the

goals of SocRob@Home is inculcating in young researchers the ability to

work  as  part  of  an  engineering  team.  This  means  solving  engineering

problems of diverse types (from hardware to software, including wireless

communications,  navigation,  control,  electronics,  computer engineering,

and  software  engineering),  integrating  contributions  from  modern

information  and  communication  technologies  (e.g.,  networked  robot

systems  require  a  mobile  wireless  network  with  robots,  off-board

computers, external sensors) and ensuring a background that opens doors

for future bright multi-faceted engineers or engineering researchers.

The team covers many competencies, from Mechatronics integration to

high-level decision making, including perception and task planning. 

I  briefly  describe  below  the  competence  of  each  team  member  (in

alphabetical order):

• Alain Kiyabala López: MSc student working on manipulation, specifically

in visual-servoing.

• Ana Cruz: MSc student working on human-robot interaction, specifically

in human intention prediction and recognition.

• Carlos Azevedo: PhD student at ISR, working on high-level planning and

learning  methods  to  tackle  multi-robot  coordination  problems  under

uncertainty.

13



• Dmytro Kotenko: Technician at ISR, working on the design, construction

and assembly of the electric, electronic and mechanical hardware.

•  Emanuel  Fernandes:  MSc student  working on Semantic  Mapping and

Automated Planning.

•  Rui  Bettencourt:  PhD student  at  ISR,  working  on  the  cooperation  of

heterogeneous multi-robot systems as optimization problems.

•  Pedro  Lima:  Faculty  member  who  has  been  involved  in  robot

competitions since the first editions of the RoboCup and ERL events. He is

the project coordinator.

Until March 2022, the  was the robot used by the SocRob@Home team for

research (See Fig. 5). After that, the research moved to TIAGo, which is

discussed  below.  The  MONARCH  project  developed  MBot  to  help

hospitalised  children  by  playing  with  them.  After  that,  it  was  in  home

robot  competitions,  where  it  tested  its  functionalities  in  a  realistic

domestic environment. The team added to the robot a Kinova Gen2 6DoF

robotic arm to make it able to perform the tasks during the competitions.

After several years of use, the SocRob@Home team switched the robot to

one with the factory-integrated arm, as it saved calibration problems.

14



TIAGo is  the  collaborative  robot  used  by  the  team  since  the  spring

semester  for  research  purposes  (see  Fig.  5).  It  is  developed  by  the

company PAL robotics to assist in household chores for the elderly. Tiago

has  a  front  laser  range  finder  (LRF)  and  rear  sonars  for  mapping,

navigation and obstacle avoidance. It consists of a 7 degrees of freedom

(DoF)  arm with  a  parallel  gripper  as  an end-effector  and an elevating

torso, allowing the robot to grasp objects from the floor or a high shelf. In

addition, it has a speaker and stereo helpful microphone for human-robot

interaction and a head-mounted RGB-D camera that provides precision

and  accuracy  for object  detection and  localization,  human  tracking,

obstacle  perception  and  visual  servo-orientation.  The  software

architecture is based on ROS for the middleware while using off-the-shelf

components  wherever  possible,  allowing  the  team  to  focus  on  our

research interests.
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Figure 5: MONARCH MBot robot with a 
Kinova Gen2 6DoF robotic arm..



5. BACKROUND

5.1. ROS (ROBOT OPERATING SYSTEM)

ROS is an open-source robotics middleware that lets us build robots and

reuse software between robotics applications using software libraries and

tools. A middleware handles the communication between programs in a

distributed  system.  Although  ROS  is  not  an  operating  System (OS),  it

provides services designed for a heterogeneous computer cluster, such as

hardware  abstraction,  low-level  device  control,  implementation  of

commonly used functionality, message-passing between processes, and

package management.
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Figure 6: PAL Robotics TIAGo Steel 
edition  robot (parallel gripper)



The  ROS  goal  is  to  provide  a  standard  for  robotics  software's  helpful

development  on  any  robot.  ROS  accelerates  the  prototyping  of  robot

software  since  it  is  not  needed to  write  everything  from scratch.  This

standard allows us to focus on our application's essential features, using

an existing foundation, instead of trying to do everything ourselves.

ROS is divided into four main components:

The  'Plumbing'  or  communication  middleware  is  in  charge of  process

management and allows programs to communicate with each other. This

part builds a network of programs/nodes sending and receiving different

types of data to communicate with each other. Down below, there is an

example of a ROS Computation graph in Figure 7. 
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Figure 7: Example of a ROS computation graph[15].



While working on a robot, it is common to write many programs to handle

sensor data and control the robot's actuators. With ROS Plumbing is easier

to create a computation graph to manage the robot software.

Some  tools help  debug  and  monitor  different  kinds  of  data  sent  and

received by ROS nodes. Some of them are useful, such as Rviz, Gazebo

and Rqt, which will be explained later.

Many robot software blocks are built for various robotic capabilities such

as navigation, perception, manipulation, and human-robot interaction. We

can reuse ROS software and save time implementing these capabilities in

their robot.

The  ecosystem is  the  last  component.  The  ROS open-source  robotics

framework  is  powered  by  thousands  of  developers  worldwide  who

maintain and contribute thousands of ROS packages, tutorials, Q&A, and

helpful material. A vibrant community of developers and users around the

globe makes ROS a unique framework in Robotics.

5.1.1 How To Use It?

To see the big-picture of the system to understand what is going on.

ROS is a loosely coupled system where a process is called a node, and

every  node  should  be  responsible  for  one  task.  Nodes  use  messages 

passing via logical channels called topics to communicate with each other.

Each  node  can  send  or  receive  data  from  the  other  node  using  the

publish/subscribe model. We are going deeper later.
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ROS currently  only  runs  on  Unix-based  platforms.  Software  for  ROS is

primarily  tested  on  Ubuntu  and  Mac  OS  X  systems,  though  the  ROS

community has been contributing support for Fedra, Gentoo, Arch Linux

and other Linux platforms. In our case, we run it in Ubuntu 18.04 LTS

While a port to Microsoft Windows for ROS is possible, it has not yet been

fully explored.

5.1.2 Programing Language:

ROS is mainly developed using two languages: C++ and Python. Those

are  often  the  most  used  and  preferred  languages  when  developing

robotics applications. It is required to install the roscpp library to write in

C++ code and the rospy library to write in Python code. Our team use

mainly Python to develop our tasks.

5.1.3 Basic ROS Constructs:

 ROS  master is  the  brain  of  the  whole  communication,  providing

naming and registration services to the rest of the nodes in the ROS

system,  enabling  communication  between  nodes.  Every  node

registers at startup with the master otherwise, nodes would not be

able to find each other, exchange messages, or invoke services.

 A ROS  node is  a  single-purpose and  executable  program.  It  is  a

process  that  performs  computation.  Nodes  provide  modularity  to

robotic projects that use ROS. These nodes operate at a fine-grained

scale; a robot control system usually comprises many nodes.
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 The topic is a named bus over which nodes broadcast and receive

information.  Nodes  can  publish  or  subscribe  to  a  topic  to

communicate with  each other.  These nodes are called  publishers

and subscribers.

 Messages are simply data structures comprising typed fields. These

messages comprise a nested structure of integers, floats, booleans,

strings and arrays of objects.

 Service is the request/response synchronous interaction with a node

defined by a pair of message structures: one for the request and

one for the reply. A service represents a node's action that will have

a single result. A providing node offers a service under a name, and

a  client  uses  the  service  by  sending  the  request  message  and

awaiting the reply.

 Actions are more complex than services. Actions exist to provide us

with  an  asynchronous  client/server  architecture,  where  the  client

can send a request that takes a long time. The actions use topics to

send goal messages from a client to the server. After receiving a

goal, the server processes it and can give information back to the

client. This information includes the server's status, the state of the

current goal, feedback on that goal during operation, and finally, a

result  message  when  the  goal  is  complete.  The  client  can

asynchronously monitor the server's state and cancel the request

anytime.
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 Bags are helpful in ROS for storing ROS message data. There is a

variety of tools to allow us to store, process, analyse, and visualise

them.

5.1.4 ROS Filesystem Level:

The filesystem level concepts mainly cover ROS resources encountered on

the disk, such as:

 Packages: Packages are the central unit for organising software in

ROS. A package may contain ROS runtime processes (nodes), a ROS-

dependent library, datasets, configuration files, or anything else that

is usefully organised together. Packages are the most atomic build

item and release item in ROS, meaning that a package is the most

granular thing able to be built and released.

 Metapackages: Metapackages are specialised Packages which only

serve  to  represent  a  group  of  related  other  packages.  Most

commonly,  metapackages  are  used  as  a  backwards  compatible

place holder for converted rosbuild Stacks.

 Package  Manifests:  Manifests  (package.xml)  provide  metadata

about a package, including its  name, version,  description,  license

information,  dependencies,  and  other  meta  information  like

exported packages

 Repositories: A collection of packages which share a common VCS

system. Packages which share a VCS share the same version and

can be released together using the catkin release automation tool

bloom.  Often  these  repositories  will  map  to  converted  rosbuild

Stacks. Repositories can also contain only one package.
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 Message  (msg)  types:  Message  descriptions,  stored  in

my_package/msg/MyMessageType.msg,  define  the  data  structures

for messages sent in ROS.

 Service  (srv)  types:  Service  descriptions,  stored  in

my_package/srv/MyServiceType.srv,  define  the  request  and

response data structures for services in ROS.

5.1.5 Tools

There are different tools very helpful in the development process. 

 Gazebo is an open-source 3D robotics simulator.  It  integrated the

ODE physics engine, OpenGL rendering, and support code for sensor

simulation  and  actuator  control.  It  brings  a  complete  toolbox  of

development libraries and cloud services to make simulation easy.

Iterate fast on new physical designs in realistic environments with

high-fidelity sensor streams. Test control  strategies in  safety,  and

take advantage of simulation in continuous integration tests. 

 Rviz is a three-dimensional visualiser used to visualise robots, the

environments  they  work  in,  and  sensor  data.  It  is  a  hugely

configurable  tool  with  many  different  types  of  visualisations  and

plugins. 

 RQT is a software framework that implements the various GUI tools

in  the  form  of  plugins.  It  can  run  all  the  existing  GUI  tools  as

dockable windows within rqt. Rqt makes it easy to manage all the

various windows on the screen simultaneously.
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Once  the  robot  is  known,  a  series  of  theoretical  concepts  must  be
understood for further development.  For the manipulation of the robot,
these  concepts  are  the  transform  frame,  kinematics  (direct,  inverse,
differential), computer vision and deep learning.

5.2. ROBOT KINEMATICS

Robot  kinematics  is  the  field  of  robotics  in  charge  of  studying  the

relationship between a robot's joint coordinates and its spatial layout. This

is useful for solving many problems, such as positioning the gripper where

the object to grasp is and moving it from one point to another, avoiding

obstacles  and  possible  collisions.  There  is  an  overview  of  the  basic

concepts. 

5.2.1 Position And Orientation

A description of the position and the orientation of the robot is defined by

a reference frame. In an n-dimensional Euclidean space, the origin is given

by a vector p ∈ Rn , with n = 3 for the physical universe. Its elements px,

py, and pz define distances along the axes of a corresponding reference

frame such that i⃗ ,  j⃗ and k⃗ are unit vectors corresponding to the axes of

the Cartesian coordinate system.

 p=p ⋅ x ⋅ i⃗+ p ⋅ y ⋅ j⃗+ p ⋅ z ⋅ k⃗=[ px py pz ] T                                    (5.1)
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There  are  different  frames  in  robotic  systems,  and  knowing  the

coordinates of one point from one frame to another can be helpful.  The

homogeneous  transformation  matrix  represents  a  mathematical

relationship between two frames.

The figure 8 shows  pc as the Cartesian coordinates of a point  P in the

camera frame, p0 as the coordinates of the P in the 0 frame and T0
c as a

homogeneous transformation matrix from c to 0.

In order to calculate p0:

pc=T c
0 pc                                              (5.2)

A homogeneous transformation matrix takes the form:
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Figure 8: Representation of a point P in different 
coordinate frames
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A1
0
=[R1

0 o1
0

oT 1 ]                                            (5.3)

where R1
0 is the rotation matrix of frame 1 with respect to frame 0 and o0

1

is the translation vector from the origin of frame 0 to the origin of frame 1.

[16]

5.2.2 Forward Kinematics

Forward kinematics is in charge of calculating the frames of a robot's links,

given  the  positions  and  values  of  all  joints  and  the  geometric  link

parameters as input. The main goal is to find the end-effector relative to

the base as a function of the joint angles q. For a serial chain manipulator

composed of n joints and n + 1 links, the end-effector's position relative to

the  base  is  obtained  by  concatenating  homogeneous  transformations

between frames fixed in adjacent chain links.

 T n
0 ( q )=A1

0
( q1 ) ⋅A2

1
( q2 ) ⋅ A3

2
(q3 )⋅ ... ⋅ An −1n (qn )                               (5.4)

Where  A  i
i-1  is  the  homogeneous  transformation  matrix  between  two

consecutive link frames, function of  i. And qi, the current angle of joint i

connecting the links.

5.2.3 Inverse Kinematics

Inverse kinematics is the opposite process of forward kinematics. In this

case,  the  problem is  finding  the  joint  positions'  values  given  the  end-

effector frame relative to the base.
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However, unlike forward kinematics, inverse kinematics cannot be solved

in a closed-form expression (in general). We shall see there may be no

solutions, multiple solutions, or even an infinite number of solutions to an

IK  problem,  everything  depending  on  the  number  of  constraints  and

degrees of freedom. In this project, there is no sense in calculating them

manually because there are many useful tools which provide approximate

solutions for every type of manipulator[17]. Once the joint's angles are

known, a motion profile can be generated using the Jacobian matrix to

move  the  end-effector  from  the  current  to  the  goal  position.  This  is

explained in the following point.

5.2.4 Differential Kinematics

Differential kinematics gives the relationship between the joint velocities

and  the  end-effector  velocity.  This  can  be  done  through  the  Jacobian

matrix, which allows the calculation of the end-effector velocities given

the joint velocities (direct differential kinematics) or to determine the joint

velocities  in  order  to  move  the  end-effector  with  a  prescribed  speed

(inverse differential kinematics). The mapping described depends on the

current manipulator configuration.

ve=[
ῥe

w e]=J (q)q̇                                            (5.5)

In this formula (5.5), ve is the end-effector velocity, q̇ is the vector of linear

joint velocities, and J(q) is the Jacobian matrix dependent on joint angles

q.

Following direct kinematics, the Jacobian matrix can be partitioned into

the (3 x 1) column vectors JPi and JOi as (5.6).
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J=[ J P 1 ... J Pn

J O1 ... J On]                                           (5.6)

Where JPi refers to the position and JOi refers to the orientation of the joints.

[J Pi

J Oi]=
[z ( i− 1)

0 ] for a prismatic joint

[zi −1× ( pe − p(i − 1) )
z ( i− 1)

] for arevolute joint

                     (5.7)

𝑧 −𝑖− 1 is given by the rotation of z-axis unit vector, pe and pi - 1 are is provided

by the position vector in the transformation matrices 𝑇0
e and 𝑇0

i-1.

However, inverting the Jacobian matrix can be possible to obtain a desired

joint velocity dependent on desired position and orientation of the end-

effector.

q̇ =J−1
(q)ve                                           (5.8)

If J is not invertible. There is a method using the Moore-Penrose inverse (or

pseudoinverse) J†. There are several ways to achieve it, but the most used

computational  method is  using the SVD (singular  value decomposition)

(5.9):

J=UDV T , J †
=VD† U T                                   (5.9)

• U, D and V are SVD( singular value decomposition) of J. Where U is
an  orthogonal  m  𝚡 m  matrix,  its  columns  are  the  left-singular
vectors of J; V is an orthongonal n   n matrix, its columns are the𝚡
right-singular vectors of J. And D is a diagona m  n matrix, element 𝚡
along its diagonal are the singular values of J.

• D† = (D with reciprocals of all non-zero elements)T

27



Using J† instead of J-1 provides a computational method to obtain the joint
velocities required for a desired end-effector velocity.

This can be used to solve inverse kinematics: instead of the desired end-

effector velocity we use direct kinematics to compute (5.10)

∆ p=p (q0+∆ q)− p(q0)                                    (5.10)

where the change in end-effector position is given by the current joint

angle changes ∆q. Simultaneously,  ∆q can be iteratively improved using

the Newton-Raphson method, minimizing an error function that measures

distance to the desired end-effector position.

error=‖p(q0+∆ q )− pdesired‖[16]                      (5.11)

5.3. VISUAL SERVOING

Visual Servoing(VS) refers to the control of the motion of the robot with

feedback information extracted from a vision sensor. The idea is to keep a

closed  loop  with  the  manipulator.  VS  is  analogous  to  a  PID  controller.

Therefore the image is translated into useful track progress metrics. Then,

the robot moves gradually to reduce the error between the current and

the desired position[4].

VS relies on different things such as good camera calibration, an accurate

kinematic  model  of  the  robot,  good  IK  and  FK  solvers,  and  a  quality

camera performance.

VS is  a very large field of  research,  and many approaches have been

developed.  In  the following paragraphs,  some of  them are pointed out

based on their camera configurations and control architecture.
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5.4. OBJECT DETECTION

Object  detection  is  a  computer  vision  technique  which  identifies  and
locates instances of objects within an image or vídeo. There are a diversity
of  techniques  to  perform object  detection. Object  detection algorithms
leverage machine learning or deep learning to produce meaningful results.
Moreover, some deep learning–based approaches use convolutional neural
networks  (CNNs),  which  automatically  learn  to  detect  objects  within
images.

5.4.1 Neural Networks

A Neural network, also known as an artificial neural network (ANN), is a
method in artificial intelligence that teaches computers to process data in
a way inspired by the human brain,  mimicking how biological neurons
signal to one another. 

Every neuron acts as a node with its own linear regression model, where
the input data act as a vector x is multiplied by a weight w, and a bias (or
threshold) value b is added. The result is passed through an activation
function σ, which determines the neuron’s output y.  Fig. 9 illustrates this
process.
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Figure 9: Architecture of a single neuron in a neural 
network [18]



There is a given dataset with several input/target pairs {x,t}. The ANN
aims to learn a model of the relationship between x and t. To train the
neural network is to obtain the weight vector w that produces a function y
as close as possible to t.

Target function t does not use to be a linear function of x, so nonlinearity
must be introduced in the system. This is how activation function σ acts.
Several  nonlinear  functions  can  be  used  with  different  performance
characteristics, the most common being the sigmoid, tanh and ReLU. See
Fig. 10.

A  machine  learning  process  called  deep  learning  uses  interconnected
nodes  in  a  layered  structure.  It  creates  an  adaptive  system  that
computers use to learn from their mistakes and improve continuously. In
this structure, there is an input layer, some hidden layers and an output
layer. Each node is an artificial neuron that connects to another and has
an associated weight and threshold. The output of a node is the input of
the following one. See Figure. 11
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Figure 10: Popular activation functions



Several network topologies have been developed for different purposes,
e.g.  Recurrent  Neural  Networks  (mainly  used  for  natural  language
processing) contain loops, allowing the network’s output to be influenced
by  temporal  sequences  in  the  input.  Convolutional  Neural  Networks
(primarily used for computer vision tasks) introduce convolutional layers
that apply image filters. 

5.4.2 Convolutional Neural Networks

A convolutional neural network (CNN or ConvNet), is a type of network
architecture for deep learning which learns directly from data, eliminating
the need for manual feature extraction. ConvNet architectures make the
explicit assumption that the inputs are images, which allows to encode
certain  properties  into  the  architecture.  These  then  make  the  forward
function  more efficient  to  implement and vastly  reduce the amount  of
parameters in the network. CNNs provide a more scalable approach to
image  classification  and  object  recognition  tasks,  leveraging  principles
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Figure 11: Example of a neural network with only one hidden layer. This 
network’s layers are fullyconnected: all neurons connect to all neurons in the 
next layer [19]



from linear algebra, specifically matrix multiplication, to identify patterns
within an image.   These convolutional  layers create feature maps that
record a region of image which is ultimately broken into rectangles and
sent out for nonlinear processing. It consists of a set of learnable filters,
that slide (convolve) through the image space and activate when they
detect  visual  features  such  as  edges  or  special  shapes.  The  initial
convolutional  layer  detects  simple  shapes,  while  deeper  layers  detect
more complex patterns.

There  are  inserted  pooling  layers  between  consecutive  convolutional
layers.  Their  purpose  is  to  downsample  the  image  representation,
reducing its spatial size and therefore the amount of parameters, making
the network more efficient and less susceptible to noise. Pooling layers
don’t add learnable parameters to the network, since they apply a fixed
operation on the input. Fig. 12. shows a pooling layer operation.

It is a common practice to place fully connected layers at the end of the
CNN after the highest level feature outputs. This is done so that these
high-level features can be learned in nonlinear combinations. In the case
of image classification, the size of the final output vector is equal to the
number of detectable classes (see Fig. 13).
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Figure 12: Pooling operation. Left shows the downsampling effect. Right shows how it’s 
achievedthrough max-pooling, the most common method [19]



5.4.3 Machine Learning

Machine learning (ML) is a subset, an application of Artificial Intelligence
(AI) that offers the capacity to the system to learn and improve gradually
from  experience  without  being  programmed  to  that  level.  Machine
Learning uses data to train and find accurate results. It accesses the data
and uses algorithms to learn from itself, imitating how humans learn.

5.4.4 Deep Learning

Deep Learning (DL) is a subset of Machine Learning in which the artificial
neural  network  and  the  recurrent  neural  network  are  related.  Deep
learning and machine learning differ in the way each algorithm learns.
Machine learning is more dependent on humans because human experts
set  the  features  to  understand  the  differences  between  data  inputs,
requiring more structured data most of the time. On the other side, deep
learning can use labelled datasets, also known as supervised learning, to
inform  the  algorithm,  but  it  is  not  needed.  Deep  learning  can  admit
unstructured data in its raw format and classify the set of features from
different categories of data from one to the other. The way of creating
algorithms is the same as machine learning but with many more levels of
algorithms.  It  solves  all  the  complex  problems  with  the  support  of
algorithms and its process.
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Figure 13: Full CNN architecture: convolutional layers interspersed with pooling layers 
produce acompact representation of high-level image features. The feature matrix is 
flattened, and finally one ormore fully connected layers are placed. [20]



6. POSSIBLE SOLUTIONS

6.1. CAMERA CONFIGURATION

There are two common-used configurations for the camera and the joint

effector. These are called eye-in-hand, where the camera is attached to

the  end-effector,  and  eye-to-hand,  where  the  camera  is  fixed  in  the

workspace, observing the target and the motion of the end-effector.

6.1.1 Eye-in-hand

In the eye-in-hand system, there exists a known and constant relationship

between  the  end-effector  and  the  pose  of  the  camera.  This  has  the

advantage that the target position estimation in the end-effector frame is

direct. As a drawback, the camera's view is limited by the end-effector

pose, so there is no view of the whole workspace, and as a consequence,

it is more difficult to avoid obstacles.
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Figure 14: Camera configurations. Left: eye-to-hand. Right: eye-in-hand

T0
e

0

Te
c

T0
c

T0
e

0

Te
c



6.1.2 Eye-to-hand

In  the  eye-to-hand  system.  The  camera  observes  the  robot  within  its

workspace, providing a panoramic view. In this configuration,  obtaining

the target’s pose is necessary, and it is additional work to do.

6.2. VISUAL SERVOING TAXONOMY

Visual  Servoing  systems  can  be  classified  by  their  arquitecture  in  two

main  groups:   Image-Based  (or  2D)  and  Position-Based  (or  3D)  visual

servoing systems.

6.2.1 Image-Based Visual-Servoing

Image-based  visual  servo  control  consists  of  a  feedback  signal  that  is

composed of  pure image-space information.  Which control  is  based on

how similar the desired image is with the current image, which actually

knows that because of the error between current and desired features on

the image plane. The features can be coordinates of visual features, lines

or  moments  of  regions.  Several  advantages  characterize  IBVS.  Firstly,

direct  control  of  the  feature  motion  in  the  image  plane  allows  the

implementation of strategies to keep the target always in the field of the

camera’s view, with approximately straight line trajectories for the image

feature point. Another advantage of IBVS is that the positioning accuracy

is insensitive to the camera and target modelling errors, eliminating errors

due to the calibration. It is essentially a model-free method, without the

explicit  requirement  of  the  target  model  in  practical  applications,  and

convergence is generally robust w.r.t.  disturbances and uncertainties in

the camera/robot model.
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However, some knowledge of the transformation between the sensor and

the robot  frame is  still  required.  There are a few drawbacks regarding

IBVS. Firstly, image-based methods are that since the controller is based

on image-feedback, the robot could be commanded to some configuration

that is not physically possible. The end effector and the robot may reach

their  joint  limits.  Secondly,  the end-effector  translational  and rotational

motions  are  not  directly  controlled.  The usual  coupling  between these

motions  makes  it  challenging  to  plan  a  pure  rotational  or  a  pure

translational  motion.  Also,  the controller  stability  analysis  is  difficult  to

obtain in calibration uncertainty. Furthermore, usual IBVS is only locally

asymptotically  stable  and  may fail  in  the  presence  of  a  large  desired

displacement,  necessitating  a  path  planning  step  to  split  a  large

displacement  into  smaller  local  movements.  Finally,  potential  failure

occurs when IBVS is subject to image singularities or local minima.

6.2.2 Position-Based Visual-Servoing

In Position-based visual servoing (PBVS), features are extracted from the

image and used to estimate the target's pose concerning the camera. In

this case, the camera detects the object, and the robot controller controls

the end-effector. The principle advantage is that it is possible to describe

tasks in Cartesian pose, as is common in robotics. Feedback is computed

by reducing errors in estimated pose space. This approach avoids image-

Jacobian  singularity  and  local  minima  problems,  generating  physically

realisable  trajectories.  However,  the  approach  is  susceptible  to

inaccuracies  in  the  task-space  reconstruction  if  the  transformation  is

corrupted (e.g., uncertain camera calibration). Also, since the controller
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does not directly use the image features in the feedback, the commanded

robot trajectory may cause the feature points to leave the field-of-view. In

that  case,  the  3D  parameters  have  to  be  estimated  from  a  pose

estimation process using the knowledge of the 3D target model. PBVS is

known  to  have global  asymptotic  stability,  i.e.,  a  controller's  ability  to

stabilise the camera's pose from any initial condition if 3D estimation is

perfect.  When accurate 3D estimation is employed, decoupling rotation

and translation is obtained. Calibration errors propagate to errors in the

3D world, so accurate 3D estimation is essential to ensure the robustness

of PBVS.

To sum up,  the main advantages PBVS provides  are its  performance's

accuracy and robustness. Also, the control law design is more accessible

than  in  IBVS because once  the  target  position  is  known,  the  servoing

scheme  attempts  to  minimise  it  by  moving  the  robot  around,  ideally

towards  the  final  desired  pose.  Moreover,  it  introduces  several  simple

positioning primitives based on directly observable feature points, which

can be compounded to achieve more complex positioning tasks. 

Nevertheless,  there are some disadvantages.  PBVS relies  too much on

calibration.  Feedback  is  computed  using  estimated  quantities  that  are

functions of the system calibration parameters. It can become susceptible

to  its  error. Also,  It  is  dependent  on having an accurate  model  of  the

target object. Furthermore, the computation time is an issue because of

the  high  computational  effort.  And  the  possible  loss  of  target  for

significant errors.
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6.3. OBJECT DETECTION

6.3.1 YOLO Object Detection

Prior CNNs were mostly used for image classification, which finds the most

relevant  class  (e.g.  cat,  flower,  car,  etc.)  given an input  image.  Later,

CNNs were adapted for object detection: identifying and locating several

objects  in  an  image.  Early object  detection systems  were  simply

repurposed  classifier  networks,  applying  them  to  various  image

subregions. The location and scale of the subregions can also be learned

parameters. The runtime performance of these systems is poor since the

classification process must be run many times.

YOLO (You Only Look Once) is a state-of-the-art, real-time object detection

system  that  uses  a  single  CNN  to  predict  bounding  boxes  and  class

probabilities of objects. This means that prediction in the whole image is

completed  in  a  single  algorithm  run.  This  improves  its  runtime

performance,  enabling it  to perform real-time object  detection at more

than 35 frames per second.YOLO is speedy and accurate. Furthermore,

YOLO reasons globally about the image when making predictions. It sees

the entire image during training and test time, so it  implicitly encodes

contextual  information  about  classes  and  their  appearance.  This

decreases  the  number  of  background  errors.  In  addition,  YOLO  learns

generalisable representations of objects, so it outperforms top detection

methods like DPM and R-CNN by a wide margin. It is less likely to break

down when applied to new domains or unexpected inputs.

 Moreover, it is accessible to tradeoff between speed and accuracy simply

by changing the model’s size without retraining it. Also, it is difficult for

YOLO to detect small objects that are very close or intersecting with each

other. See an example in Figure. 14.
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6.3.2 DOPE (Deep Object Pose Estimation) 

While  2D object  detection problems have been successfully  applied by

deep neural networks, 3D object detection and pose estimation have been

recently applied. Unlike 2D object detection, manually labelling data for

3D detection is not a possibility. Due to this difficulty of collecting large

amounts of labelled training data, such approaches are typically trained

on actual data that are highly correlated with the test data (e.g., same

camera, same object instances, similar lighting conditions).  As a result,

one  challenge  of  existing  approaches  is  generalising  to  test  data

significantly different from the training set. Synthetic data is a promising

alternative for training such deep neural networks, capable of generating

an almost unlimited amount of pre-labelled training data with little effort.
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Networks trained on synthetic data usually do not perform well on actual

data without additional fine-tuning or other tricks. However, this problem

is solved by domain randomisation.

This one-shot deep neural network can perform competitively against a

state-of-the-art network trained on a combination of  real  and synthetic

data. It is called DOPE (for “deep object pose estimation”) and infers, in

near real-time, the 3D poses of known objects in the clutter from a single

RGB image without requiring post-alignment. This system uses a simple

deep network architecture, trained entirely on simulated data, to infer the

2D  image  coordinates  of  projected  3D  bounding  boxes  (See  Fig.15),

followed by perspective-n-point (PnP). It bridges the reality gap for real-

world applications by combining non-photorealistic (domain randomised)

and  photo-realistic  synthetic  data  for  training  robust  deep  neural

networks.  Thus,  its  performance  is  comparable  with  state-of-the-art

networks trained on real data. Furthermore, the estimated poses are of

sufficient accuracy to solve real-world tasks such as pick-and-place, object

handoff, and path following

Figure 16: DOPE example which shows the 3D 
bounding boxes in a 2D image 
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7. PROPOSED SOLUTION

7.1. General DescrIption

The proposed solution consists  of  an eye-to-hand camera configuration

because it is embedded with the robot and implementing another camera

on  the  hand  would  increase  the  price  and  complexity  of  the  task.  In

addition, by pointing it at the workspace, it is easier to avoid collisions.

The PBVS taxonomy has been chosen because of its versatility in actuator

control.  TIAGo  is  a  well-calibrated  robot;  the  task's  success  depends

mainly  on  the  object's  positioning.  Image  features  are  extracted  to

estimate 3D information (pose of the object in Cartesian space) from the

geometric model of the object. The control function is separated from the

pose  estimation  problem.  In  this  case,  the  feedback  is  calculated  by

reducing the errors of the estimated pose. The kinematic error function is

given by (7.1):

E(h0 , g0)=h0−g0                                           (7.1)

 Where h0 are the end-effector coordinates in the base root frame of TIAGo

(0), we control this variable to move the end-effector to the desired pose,

in this case, a fixed goal position g0.

Applying the linear velocity  u0 to the end-effector minimises the above

error. The proportional control law can achieve open-loop positioning.

T̂ c
0
⋅ĝc≃g 0                                           (7.2)

41



u0=−k (ĥ0−T̂ c
0
⋅ĝc)                                     (7.3)

Where T̂0
c  is the estimated transformation matrix from the camera frame

to the root frame (usually based on fixed transformations from manual

measurements) and  ĝ c is  the estimated grip pose of  the target in the

camera  frame,  given  by  the  vision  system.  k  >  0  is  a  proportional

feedback gain.

It  uses YOLO for image detection and location because it was used for

different  projects  previously,  and  there  was  a  trained  model  with  the

objects  for  the  ERL  Consumer.  Also,  it  is  fast  and  less  computational

consuming than other object detection approaches.[21]

The system divides the input image into an S × S grid. Each cell predicts

B-bounding boxes centred on that cell. Confidence scores are assigned to

the boxes, the confidence that shows how likely it is for the box to contain

an object and how accurate the box is, measured by the intersection-over-

union (IOU) metric. Each cell also predicts C class probabilities P (Class i |

Object),  where  C  is  the  number  of  detectable  classes.  This  number  is

independent of the number of bounding boxes B. This means it is difficult

for YOLO to detect small objects that are very close or intersecting with

each other. See fig 17.
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The YOLO CNN has 24 convolutional layers, with maxpool layers between

them. 2 fully connected layers are placed at the end. Using YOLO, the first

20 convolutional layers are pretrained on the ImageNet dataset to detect

and locate the object.

7.2. Pipeline

There  are  five  phases  which  divide  the  task:  TIAGo’s  preparation  and

detection of the objects (preparation), grasp acquisition (grasping), post-

grasp transport (post-grasp), place of the object (placing), and leave the

workspace (post-place); in brackets are indicated names for the pipeline.

Each of these phases carries sub-tasks inside of them. See Figure 18.
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7.2.1 Preparation

Initialise  the  robot,  every  node  and  prepares  the  robot  for object

detection. To do it,  TIAGo raises the torso,  unfolds the arm, opens the

gripper and moves its head down to see the objects. Then it lowers the

torso  a  bit  to  get  a  different  sight  of  the  objects.  After  localising  the

object,  creates a grasp location adding an offset to the object pose to

facilitate the grasping. Then, it adds to the scene a virtual object and a

virtual table to plan the grasping from them. 

7.2.2 Grasping

TIAGo locates the end effector near the grasping pose, then moves the

gripper linearly until it reaches the grasping pose and closes it. After this,

it checks whether the grip was completed successfully.  

7.2.3 Post-grasp
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After the grasping phase, raise the arm and torso to their limit and hold

the object until starts the next phase.

7.2.4 Placing

TIAGo moves the end effector just above the placement position, then is

ready to  place  the  object  in  a  linear  movement.  When it  reaches  the

placement position, it opens the gripper releasing the object.

7.2.5 Post-place

This  is  the last phase. It  moves the arm to a secure position to avoid

disturbing the workspace with the next movement. From this position, the

robot comes back to the home pose to finalise its task.

7.3. Implementation 

This  section  divides  the  implementation  of  the  project  into  two  parts:

required packages, pick and place implementation.

7.3.1 Required Packages

These are the required packages implemented in this project. 

MoveIt!

This  is  a ROS package used for  motion  planning and task handling.  It

consists  of  an inverse kinematics solver,  path planning algorithms and

collision detection. This project uses the TRAC-IK solver [24] because it

obtains reasonable resolution rates for challenging positions while keeping
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the computation time low by running two solvers concurrently.  One of

them is called KDL solver, which detects and mitigates local minima that

may  occur  when  joint  boundaries  are  encountered  during  gradient

descent. The other is called SQP (Sequential Quadratic Programming) IK,

which uses quasi-Newton methods[Reference] that are known to handle

non-smooth search spaces better but  with longer computational  time -

and stopping when the first solution is found.

The Open Motion Planning Library (OMPL) [25], a collection of sampling-

based motion planning algorithms, is the default planner in MoveIt! The

RRT-Connect  algorithm  [26]  was  chosen  for  its  efficiency,  which  is

achieved by building two Randomized Random Exploration Trees (RRTs),

one from the start point and one from the endpoint, progressively moving

towards each other until they are connected.

Play motion

The function of this package is to be able to execute predefined motions.

7.3.2 Pick And Place Implementation

Launch files

Launch files are essential for starting the main features of the package.

Launch files are XML format files that, using the roslaunch tool, allow the

start of the master node (necessary for ROS 1 to work) and multiple nodes

simultaneously.  They  can  manage  the  passing  of  arguments  and  the
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loading of parameters, possibly by calling additional launch files and thus

generating a launch-tree.

This project uses three fundamental launch files. The first one starts the

simulation in gazebo, places the robot in front of a table with three cans

and  enables  the  TRAC-IK  solver.  TIAGo's  manufacturer,  PAL  Robotics,

developed  this  document.  To  access  it,  download  the  TIAGo  tutorial

repository  [Reference].  To  run  it,  it  is  necessary  to  enter  into  the

workspace folder and run the following command:

IK_SOLVER=trac_ik  roslaunch  tiago_gazebo  tiago_gazebo.launch

public_sim:=true robot:=steel world:=tutorial_office gzpose:="-x 1.40 -y -

2.79 -z -0.003 -R 0.0 -P 0.0 -Y 0.0" use_moveit_camera:=true

Terminal 1: Command line to initialise the gazebo simulator and use trac-ik as ik solver.

The  following  launch  file  activates  object  tracking.  It  activates  a  node

called "bayes_object_tracker", which is in charge of tracking the detected

objects.  In  addition,  this  file  also  calls  two  additional  launch  files:

darknet_ros_py.launch,  in  charge  of  detecting  objects,  and

mbot_perception.launch, used to log the detected objects. This is done by

running the command:

roslaunch bayes_objects_tracker 

bayes_objects_tracker_no_namespaces.launch

Terminal 2: Command line to initialise the object tracker.

The last launch file is responsible for loading the predefined motions for

the tasks, starting the  pick_and_place_server node  by adding the target

object  parameters  and  opening  the  Rviz  model,  ready  to  observe  the
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robot's  behaviour.  It  is  necessary to understand how these actions are

implemented. 

- Predefined motions

There are some predefined motions used during this proyect. To create

them there are three steps to follow. 

1. Pose the robot 

2. Capture the values of the joints 

3. Save joints' values in a yaml file 

To pose the robot to a desired position, there are many ways. It can be

done manually with the physical robot by moving every joint or either use

rqt_joint_trajectory_controller or the motion planning tool in Rviz.

In  the  rqt_joint_trajectory_controller  way,  there  is  a  menu  where  it  is

possible to select the group of joints and then it is allowed to change the

position of every joint. To do it, just run:

rosrun rqt_joint_trallectory_controller  rqt_joint_trallectory_controller

Terminal 3: Command line to open a graphical frontend for interacting with 
joint_trajectory_controller instances

 

Press the power button to set up, select the group of joints and change

the position of the joints. As soon it is visible the desired position, there

are two ways of continue. See figure 19.
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First is done by reading the state of the arm and torso and writing them

into a yaml file. To read the state of the arm:

rostopic echo /arm_controller/state

Terminal 4: Command line to read the arm controller state

To read the state of the torso:

rostopic echo /torso_controller/state

Terminal 5: Command line to read the torso controller state
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Then, write the values into the pick_motions.yaml file. It should be similar

to the example below.

play_motion:
    motions:
        pregrasp:
            joints: [torso_lift_joint, arm_1_joint,
            arm_2_joint, arm_3_joint, arm_4_joint, arm_5_joint,
            arm_6_joint, arm_7_joint]
            points:
            - positions: [0.15, 0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]
              time_from_start: 0.0
            - positions: [0.34, 0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]
              time_from_start: 2.0
            - positions: [0.34, 0.21, -1.02, -0.20, 1.94, -1.57, 1.52, 0.0]
              time_from_start: 3.5
            - positions: [0.34, 0.21, 0.35, -0.2, 2.0, -1.57, 1.52, 0.0]
              time_from_start: 6.5
            - positions: [0.34, 0.21, 0.35, -0.2, 0.0, -1.57, 1.52, 0.0]
              time_from_start: 10.0
            - positions: [0.34, 0.21, 0.35, -3.0, 0.0, -1.57, 1.52, 0.0]
              time_from_start: 12.0
            - positions: [0.34, 0.05, -0.07, -3.0, 1.5, -1.57, 0.2, 0.0]
              time_from_start: 17

Code extraction 1: Example of a predefined motion in a .yaml file.

The other way of doing it is with the play_motion_builder.

This tool presents a simple interface to create play_motion based motions

by  defining  lists  of  keyframes  which  the  system  will  then  interpolate

between.  The  tool  simplifies  capturing,  editing  and  modifying  these

keyframes. 

To create new motions play_motion_builder packages have to be installed

correctly[27].  
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Play motion builder must to be running, to do it:

rosrun play_motion_builder play_motion_builder_node

Terminal 6: Command line to run play_motion_builder_node

Then, we run rqt_play_motion_builder to use the tool which allows simple

control of the motion creation pipeline. See figure 20.

`rosrun rqt_play_motion_builder rqt_play_motion_builder``

Terminal 7: Command line to run GUI to handle the creation of new motions for play_motion
called rqt

Press  New to set up, there is a box where it is able to select the group

joints which are wanted to safe and also can be added the head's joints if
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it is required. Then, press to  Capture Keyframe and edit the time if it is

needed.  Save  it  and  it  can  be  used  with  the  rest  of  pre-defined

configurations.

After all, in both ways it is needed to load the yaml file to the parameter

server.

rosparam load <yaml_file_path> the new motions are saved:

rosparam load <yaml_file_path> 

Terminal 8: Command line to load a file in the project

 

- Rviz test environment

The  rviz  model  of  the  project  was  the  default  model  in  the  octomap

tutorial, edited later to suit the project better. To do this, it ran the launch

files needed to activate the nodes and the rviz model in the terminal:

roslaunch tiago_moveit_tutorial octomap_tiago.launch

Terminal 9: Command line to laucnh the octomap_tiago.lauch which initialises octomap.

Moreover, from this RViz model, complementary tools were added. When

clicking on add, a window opens that shows the possibility to create a

visualisation from the display type and add from the topic. In this case,

the last was chosen. See Image ... All active topics are displayed here.

From there, it is easy to add them: 

/bayes_object_tracker/pose_array - PoseArray

/object_detector/detection_image/compressed - Image

/object_localizer/localized_object_poses - PoseArray
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Next, the gripper frame is added. To do this, click on add, in by display

type search for tf in the rviz folder and leave only gripper_grasping_frame

visible. To change the colour of the PoseArray, select any of them. The

name of the topic  and the colour appears.  By clicking on it,  it  can be

changed easily. See image 22.
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Knowing this, the pick_place_server.launch can be run in the terminal:

roslaunch manipulation pick_place_server.launch

Terminal 10: Command line to run the pick_place_server.launh which initialises the server.
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pick_and_place_server.py

This  code is  inside  the tiago tutorials  folder.  The project  works  with  a

system of actions in which the server manages the project's tasks and

messages. Because there is a pick and place demo, it has been decided to

use  the  same  server  as  it  fits  with  this  project  editing  the  object

parameters.  For  this  purpose,  it  has  been added to  the launch file  as

follows:

 <!-- Pick & place server -->

<node name="pick_and_place_server" pkg="tiago_pick_demo" 

type="pick_and_place_server.py" output="screen">

<rosparam command="load" file="$(find 

tiago_pick_demo)/config/pick_and_place_params.yaml" />

<param name="object_width" value="0.11" />

<param name="object_height" value="0.07" />

<param name="object_depth" value="0.11" />
</node>

Code  extraction  1:  Pick and  place  server  node  declaration  in

pick_place_server.launch

manipulation.py

The manipulation actions are implemented in this file. When this code is

executed, the task is  started.  The design pattern used by the team is

singleton,  so this code consists of  only one class.  For this  reason, two

classes have been imported from different files called:  PickObjectPose()

and PlaceObjectPose(). 
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import rospy

from pick import PickObjectPose
from place import PlaceObjectPose

Code  extraction  2:  How  the  classes  PickObjectPose  and  PlaceObjectPose  are

imported.

Where the program runs:

# Usage Example

if __name__ == '__main__':

rospy.init_node('manipulation_client')

manipulate = Manipulation()

manipulate.pick(pick_object_uuid='e7be927c-3e58-507f-a9e6-

eaadce759be2',pick_object_name='cup', lift_object=True)

manipulate.place(predefined_location='table', tuck_arm=True)

Code extraction 3: Usage example from manipulation.py.

Where,  it  is  shown  manipulate.pick(pick_object_uuid='e7be927c-3e58-

507f-a9e6-eaadce759be2',pick_object_name='cup',  lift_object=True),  It

calls  a  function  of  the  PickObjectPose()  class  and

manipulate.place(predefined_location='table',  tuck_arm=True) calls

another one of PlaceObjectPose().

pick.py

This is the code from which the PickObjectPose() class comes. Its pseudo-

code is presented below.
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class PickObjectPose(object):

def __init__(self):

def pick(self, pick_object_uuid=None, pick_object_name=None, 
lift_object=True):

    if not pick_object_uuid and not pick_object_name:#Exeption

    self.prepare_robot()

    object_detected = False

    if pick_object_uuid: # localized_objects =                        rospy.wait_for_message("/
bayes_objects_tracker/tracked_objects",     TrackedObject3DList)

    elif pick_object_name: # localized_objects = 

    rospy.wait_for_message("/object_localizer/localized_objects", 

    RecognizedObject3DList)

    object_perceived = object_detected

    if not object_detected:# Failed to detect object

    self.transformToBaseFrame(object_perceived)

    object_to_grasp = object_perceived

    self.transformToBaseFrame(object_to_grasp)# Add offset to the pose

    self.pick_as.send_goal_and_wait(object_to_grasp)

    rospy.loginfo("Done!")
    if lift_object:

        self.move_arm_to_post_grasp() 

    rospy.loginfo("Pick Success")

    return Truee

Code extraction 4: Pseudo-code from pick.py
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There are several functions to discuss from Code extraction 4.

Firstly,  the  init() function is in charge of  initialising the  Pick Client and

Object  tracker,  connecting  to  the  /pickup_pose  action  server,  setting

publishers to the torso and head controller,  connecting to /play_motion

action server, and clear octomap service. 

The  prepare_robot() function  is  in  charge  of  unfolding  the  arm safely,

opening the gripper and looking from different sights to detect objects.

At this point, depending on the argument received it will read the topic

/bayes_objects_tracker/tracked_objects or

/object_localizer/localized_objects. In either case, it senses the object and

stores its pose in the detected object. 

As the pose of the detected object is given with the camera frame, it is

entered into  a function  that  transforms the pose to  the  base_footprint

frame. 

This pose is stored in a variable called  object_to_grasp, and an offset is

added to it. The object detected pose is from the front face of the object

and seeks to be grabbed from the centre.  Therefore,  a slight  offset  is

added to correct this error.

Once the pose is saved, it is sent to the  pick_as, which is in charge of

performing  the  grasping  routine.  This  routine  has  no  visual  feedback

because it was not implemented due to some limitations explained later.

When finished, it lifts the object and finishes this part of the task.
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place.py

This  is  the code from which the  PlacebjectPose() class comes which is

slightly different from pick.py. Its pseudo-code is resented below.

class PlaceObjectPose(object):

def __init__(self):

def place(self,  location_uuid=None,  location_name=None,

location_pose=None,  

predefined_location=None, tuck_arm=True):

    if not location_uuid and not location_name and not location_pose and not 

    predefined_location: # Execption

    self.lower_head()

    if location_uuid: # The idea is to perceive a suitable location and place the 

    object there

    elif location_name: # The idea is to place the object above an object given    

    as parameter. 

    elif location_pose: # Here the location pose is given

    elif predefined_location: # Here a predefined motion name is given to run it

    self.predefined_motion('open') # open the gripper

    self.move_arm_to_post_place()

    if tuck_arm: # tuck the arm back

        self.predefined_motion('home')

    rospy.loginfo("Place Success")

    return True

Code extraction 5: Pseudo-code from place.py
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In Code extraction 5, it is also interesting to consider a few things. The

init() function does the same as in pick.py. 

Next, it lowers its head to get a better view of where to release the object.

Then, depending on the given argument, it takes the object pose data as

written in the comments. To reduce the complexity of the task, it performs

a predefined motion for placing.

When the object is  placed in the given pose, it  opens the gripper and

moves the arm to a safe pose that does not interfere with the workspace

by executing the move_arm_to_post_place() function. 

Finally, TIAGo returns to the home pose and finishes the task.

7.4. Debugging 

Debugging  in  ROS  could  be  challenging.  There  are  many  packages

connected, and it is difficult to understand where the error comes from if

there is no organisation in the program. Since this project is done with

part  of  the work from previous teammates in  the group with  different

coding styles and robots, merging these functionalities with this project

could be arduous. That is why some tools help understand what is going

on in the project. 
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7.4.1 Printing Messages In The Terminal

One of the most basic techniques for debugging our system is printing

messages in the terminal,  that says which function is running at every

moment. 

7.4.2 Command lines

Some  commands are substantial to read what the nodes are doing and

how they are connected. 

-rosnode list: Display a list of active nodes from our application

-rosnode info: Print information about the node

-rostopic list: Display a list of active topics from our application

-rostopic info: Print information about the node

-rostopic echo: Print messages to the screen

-rosservice list: Lists active services from the application

-rosservice type: Display the name of the node that provides a particular

service
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7.4.3 Rviz

Rviz is a visualiser for ros. It can represent in a graphical way what nodes

see. In this project, there is a rviz configuration. This shows a 3D model of

the robot, the gripper’s frame (which shows a 3D representation of the

environment seen by the robot called octomap),  the position of the object

detected with the preteained neural network and another trained for this

project, and a virtual model of the object and the table with the possible

grasping poses as it shows the figure 23.

7.4.4 Rqt

Rqt is a framework of ROS that implements the various GUI tools in the

form of plugins.  One is rqt_graph, a GUI plugin for visualising the ROS

computation  graph.  This  graphic  tool  makes  comprehending  the

connections  between  nodes  and  topics  much  more  manageable.  The

figure below shows where the node is pointing and 

from which one is pointed too.
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object and table with the possible grasp in yellow. The last capture shows all together.



8. EXPERIMENTS AND RESULTS

In this section, the experiments done are discussed. These experiments

are divided into two main blocks: functionalities check and pick and place.

8.1. FUNCTIONALITIES CHECK

Before  developing  the  project  task,  it  has  been  checked  that  all  the

components work correctly. For this purpose, the official TIAGo tutorials
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Figure 24: Shows the magnitude of the computation graph



[Reference] developed by PAL Robotics have been used. These are useful

to understand how TIAGo works and its limitations. After the tutorials were

completed,  a  test  environment  was  created  to  carry  out  one’s

experiments. Finally, object detection has been tested. 

8.1.1 TIAGo Tutorials

Several tutorials have been beneficial.

Joint trajectory Controller

Use joint_trayectory_controller to move the TIAGo arm showing the type of

messages it uses. The mechanisms described for sending trajectories to

the controller are through actions or topics. The results are correct, and it

moves on to the next one. 

Playing pre-defined upper body motions.

Learn how to create, visualise and run pre-defined upper body motions

with  TIAGo  using  the  play_motion  package,  which  enables  executing

simultaneous trajectories in multiple  groups of  joints.  Different  motions

have been created to test their operation at the limits of the robot. With

RViz motion planning, moves the robot, extracts and saves the values of

the  joints  with  the  other  motions.  After  achieving  positive  results,  we

move on to the following tutorial.

Planning in Cartesian space.

This tutorial teaches the use of MoveIt! to place the end effector frame at

the desired position in Cartesian space. It has been tested by sending the
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arm to random positions, some of which were impossible and aborted its

execution. There are positive and robust results, so we move on to the

following tutorial. 

Planning in Cartesian space with TRAC-IK

Unlike the previous tutorial, this one uses TRAC-IK, an alternative Inverse

Kinematic solver.  TRAC-IK runs two IK implementations. One is a simple

extension to KDL's Newton-based convergence algorithm that detects and

mitigates local minima due to joint limits by random jumps. The second is

an  SQP  (Sequential  Quadratic  Programming)  nonlinear  optimization

approach  which  uses  quasi-Newton  methods  that  better  handle  joint

limits.The results are also correct. 

Planning with Octomap demo

This tutorial is an example of using Octomap in Movit! to plan with TIAGo.

It gives a 3D representation of the environment around the robot, letting

the robot avoid them in the planning. 

Pick & Place demo

It is a grasping example with TIAGo. A simulation environment comprising

a table and a box with an ArUco marker is defined. The robot then locates

the object in the RGB of its camera and reconstructs its 3D pose. Then,

MoveIt! is used to plan a pick trajectory to grasp the object, which is lifted

up and a place trajectory is planned to restore the object to its former

position. Sometimes release the object in the lifting part, failing the task.

Nevertheless, this is a great beginning.

65



8.1.2 Test Environment

This is a simulated robot space in front of a table with three cans on top of

it.  In this space, the robot can carry out its experiments with ease. To

check  if  it  works  correctly,  RViz  is  opened  so  that  a  graphical

representation  of  the  individual  nodes  can  be  seen.  This  environment

helps with debugging.  

8.1.3 Object detection

Testing the object detector in the simulator runs the test environment and

the perception module. When the robot is looking at the objects, it is able

to recognise the can in the centre but has difficulty recognising the ones

on the sides, and if it does, it distinguishes mainly the one on the right.

This is because the can in the centre is more prominent, closer,  and the

difference in colour to the background is more striking. Moreover, when it

distinguishes the two cans, it recognises them as different classes: the

can in the centre is recognised as a cup, while the one on the right is

recognised as a bottle.  The reason for  these results  is  that the neural

network  has  not  been  trained  with  the  can  class,  and  as  they  have

different  sizes  and colours,  it  does  not  associate  them with  the  same

class. On the other hand, these locations are correct, being the decisive

part of performing the task. Therefore, despite the errors in recognition of

the object, this phase is admissible because its location is correct, and the

rest of the project can continue without further modifications. (See Fig.20)
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After  these  experiments,  it  is  concluded  that  the  robot  fulfils  the

necessary capabilities to perform the pick and place task. 

8.2. PICK AND PLACE TASK

TIAGo  has  to  perform  a  pick  and  place  task  with  one  of  the  test

environment cans. In one of the steps discussed below, a bug appears

that makes it impossible to finish the task. Therefore, the experiment is

divided into five pipeline phases: 
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Figure 25: Image from the object detection with two objects 
detected and the confidence of their recognision



8.2.1 Preparation

Before starting the grasping, the robot must be prepared.

 To do this, it initialises and connects all the necessary nodes to start the

task.  While  this  happens,  it  prints  messages  on  the  terminal  as  it

completes each step to check its status. 

Then, the robot raises its torso, lifts its arm into a comfortable position

and opens  the  gripper.  This  pose allows the  arm to  move towards  its

target without taking complicated trajectories to avoid the table. From this

position, the robot lowers the head to locate the objects and lowers his

torso  to  see  them  from  a  different  perspective.  This  increases  the

probability  of  detecting  them.  This  practice  was  added  after  several

experiments as it was difficult  to detect objects occasionally.  After this

correction, the results improved considerably. 

Next, save the can's coordinates, and add a virtual model of the object

and the table to the workspace (See Fig. 21). After several tests, an offset

was  added  to  the  object's  location  by  placing  it  back  further.  This  is

because it locates the object's front face instead of at its centre, giving

errors in the next phase (grasping).
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Finally,  calculate  the  different  grasping  possibilities  and  choose  one.

These grasping possibilities are represented in Rviz in Figure 27. 

The preparation phase works  correctly  on most occasions,  but  when it

fails, it is due to two main failures. The first one is in object detection

since, for unknown reasons, the detector does not work, and the program

has  to  be  restarted.  The  second  is  calculating  trajectories  because

sometimes it saturates without getting a result and has to abort the task.

The calculating trayectories  error  was solved using TRAK-IK solver,  the

other error occur infrequently, The project development has continued , as

this error is usually solved by restarting the program.
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Figure 26: Virtual table and virtual object represented in green



8.2.2 Grasping

Once the object is located, and the orientation of its grip has been chosen,

the next step is grasping. TIAGo places the arm close to the object at a

point where it starts a rectilinear trajectory to the grasping position of the

object. Then, it closes the gripper and checks that the object has been

grasped correctly.

TIAGo  usually  succeeds  in  grasping  the  object,  but  the  results  are

confusing.  When  it  successfully  grasps  the  object,  it  sends  an  error

message and aborts the task by returning to the robot's home position.

See Fig. 28.
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Figure 27: Virtual objects in green and possible grasp poses in yellow.



On the other hand, when it fails to grasp and closes the gripper, it detects

that the grasp was successful and continues with the task as it is shown in

the figure 29, Priority is given to the failure to verify that the grasping has

been  successful,  as  the  grasping  fails  sporadically.  The  task  runs

faultlessly until it reaches this error that has not been solved. 
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Figure 28: In the left, the terminal prints an underlined error aborting the task. Then, inside 
the red squares, it is visible that the grasping was actually succesful.



Then, the rest of the tests were carried out by removing the object just

before it was grasped to prevent it from aborting the task. This way, the

grasping  is  booming,  and  the  experiment  can  continue  as  the  virtual

object is represented as grasped.

8.2.3 Post-gasp

After grasping the object, it raises the torso and the arm to its limits and

holds the object there, showing that it is correctly grasped. This task has

no errors considering that there is not an object grasped. 

8.2.4 Placing 

Lower the torso again to put the object down and place it above the initial

position. Then lower the end effector in a rectilinear movement and open
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Figure 29: The terminal prints the pick result as succesful. TIAGo picks the virtual object but
there is not actually an object as it is shown inside the red squares.



the gripper releasing the object. Despite not having the actual object, it

does not show any error in the virtual object.

8.2.5 Post-place

Once the object  is  released,  this  phase takes  care  of  moving  the  end

effector  away  from  the  workspace  without  interfering  with  the  object

returning to the home pose. Previous tests did not find paths to return to

the  home  pose  without  colliding  with  the  object.  Therefore,  several

waypoints have been added to the postplace motion to solve this problem.

So the task is completed correctly.

9. ENVIRONMENTAL AND SOCIAL IMPACT

The  abilities  of  service  robots  have  gradually  exceeded  human’s

performance in specific areas over time. It is necessary to consider some

impacts these new technologies bring with them. Ethics is a fundamental

field  in  robotics,  so  in  this  chapter,  there  is  a  small  discussion  about

environmental and social impact. 

9.1. ENVIRONMENTAL IMPACT

Innovation in robotics looks to be linked to energy consumption and other

environmental  issues.  This  is  an  overview  of  them.  Like  any  other

industry, robotics requires energy consumption for production and after it

during their performance. In service robots, the performance consumption

is  lower,  and this  energy can be gathered using clean sources,  so the

impact relies mainly on the energy supplier. Also, it is essential to point

out that robots work more efficiently than humans, reducing energy waste

and materials.  
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Another issue comes after the life span of the robot. If the robot is not

recycled correctly, it will negatively impact waste management.

9.2. SOCIAL IMPACT

There are some ethical questions about how ready society is for robots.

This  type of  service  robot  will  have a  substantial  socioeconomic  level.

These  robots  will  work  in  professional  areas  like  medicine,  cleaning,

construction, space, etc. In the same way, they will reach our homes with

domestic robots which will  bring entertainment and household services.

There are some topics which concern people about this kind of robot.

- The integration of robots into society depends on several factors, such as

their appearance. If a robot looks too much like a human, it can cause a

lot of 'creepy' rejection. On the other hand, a friendly-looking robot can

facilitate the process of acceptance by humans.

-  Aspects  like  gross  losses  in  employment  make  people  worry  about

robots.  However,  this  type  of  robot  is  intended  to  support  other

professionals. In nursing, different tasks can put the nurse in a vulnerable

situation  in  terms of  hygiene.  Therefore,  a  collaborative  robot  such as

TIAGo  could  perform  the  part  of  the  tasks  that  could  be  harmful  to

humans with the support of a nurse to complement the task.

To conclude, this project might be a very tiny step for developing service

robots,  and thus,  it  might  contribute  to  these processes  making  it  an

important thing to reflect on. There are many possibilities in the future,
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and it is necessary to understand which role robotic engineers must play

in it to perform a responsible innovation.

10. CONCLUSION

Different  libraries  have been implemented to create the final  program.

The most helpful was the action server from Tiago's pick and place demo

used in the test environment. To perform the task, it uses artificial vision

to  obtain  the  object's  position.  The  robot  functionalities  were  tested

separately, demonstrating that the task can be performed.

The  different  tasks  have  been  discussed  for  a  correct  analysis  of  the

project development. 

Following  the  pipeline,  the  first  is  the  preparation.  This  task  initialises

every node without problems and performs the predefined motions to look

at the object correctly.  This shows that the implementation of the new

motions was successful. This phase activates object detection, in charge

of the perception and localisation of objects, which was achieved. Despite

exceeding  the  target, object  detection is  not  very  robust,  as  it  can

distinguish and position the closest object in the scene but struggles to

identify the other two. This can happen for several reasons. One is that

the  neural  network  has  not  been  trained  with  these  objects  but  with

objects in the lab. Therefore, when it switches to the simulation because

they  are  different  objects,  it  has  trouble  identifying  them.  In  addition,

colour, distance and size also influence its recognition.   Next, TIAGo adds

the  virtual  objects  loaded  from  the  pick_and_place.launch  file  to  the

scene. Rviz renders them accurately, so this part is also a success. Now it

is ready to calculate the possible grab to finish this phase. In previous
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tests, sometimes the planner exceeded the calculation time aborting the

task.  Since  the  trac-ik  solver  was  implemented,  this  is  no  longer  a

problem.

The next target to be overcome is the grasping phase, starting with the

pregrasp pose. It brings the arm into a position relative to the object so it

can execute the grappling with  a straight  movement.  In  the grappling

part,  TIAGo grabs the object perfectly, but due to a bug, every time it

grabs it, it sends an error message that prevents it from continuing with

the pipeline. This is a weird error because the real robot works without

problems, but this bug appears in the simulation.

From this point on, the tests were carried out without the actual can, as

explained  in  the  results  chapter.  The  post-grip,  placement  and  post-

placement  phases  are  error-free,  but  to  be  confident  in  them,  it  is

necessary to test them with the objects. 

During  the  development  of  this  thesis,  the  concepts  of  robotics,

programming and operating systems have been consolidated. In addition

to learning how to use ROS and python programming. 

During  my laboratory  stay,  I  have  seen  how a  research  group  works,

developing teamwork and self-learning skills.

 

Finally, the project could have been approached in a different way, as it

has been challenging to program some things from scratch instead  of

relying on GUI that could have facilitated its implementation.  This was so

time-consuming  and  prevented  the  implementation  from  being

completed. The code should have been approached in a modular way with

the help of a behaviour tree.
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11. LIMITATIONS 

There  are factors  that  have influenced  the project  that  has  limited  its

results.

Previous knowledge was required for its realisation, and a large part of the

project time was spent on acquiring this knowledge, such as the need to

learn ROS and Python. The rest of the team worked telematically, which

made communication between us slow. 

Firstly, the project had to be implemented on the physical robot, but due

to lack of  time,  I  had to return to Spain and adapt  the project  to the

simulation. Also, it would be presented as a master's thesis at Tecnico de

Lisboa instead of a bachelor's thesis in Spain, so the project requirements

had to be adapted too. I also had to go to Spain on several occasions to

take  exams  in  site  for  subjects  that  I  could  not  validate  during  my

erasmus.

Regarding the limitations presented by the robot, the gripper was parallel,

so it was impossible to grasp the objects optimally. For example, it cannot

grasp  objects  with  complicated  shapes  such  as  keys.  It  is  arduous  to

debug the program due to there is not modularity and test every function

12. FUTURE WORK

This  thesis  opens  research  problems  requiring  further  consideration  to

implement the visual servoing correctly. This section lists ideas, proposals

or advice for future works of various kinds, whether they are additions,

modifications or improvements.
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- Wait for the fix of the bug with the pick up action in the grasping phase

of the pick-and-place pipeline to verify the complete task.

- Try DOPE in object detection in order to locate the objects accurately.

This brings the possibility of training the network efficiently.

- To be able to create a 3D model of the grasping object without knowing

the object previously.

-  Implementation  of  real-time  functionality  for  task  execution  in

environments  with  more  complex  dynamics,  such  as  pick-and-place  of

moving objects.

- To generate a task manager modularly with the help of the behaviour

tree library. This isolates each task from the rest of the code, making it

possible to communicate among all tasks. This way, it is not a problem to

add new tasks,  and the debugging problem disappears,  because when

something is not working quite well, it is possible to debug just the task

that  is  not  working  without  affecting  the  rest  of  the  tasks.  Another

advantage of being modular, is that the system can be built in a different

order, just ordering differently these modules, like black boxes, without

having big problems.
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Appendix A: Repository Code

All  the software packages developed have been uploaded into the IOC

robotics lab repository. The link is presented next.

https://github.com/alain00lpez/akiyabala_tiago

Before  starting,  make  sure  that  ROS  is  already  installed  and  tiago's

packages for the simulation. Follow the next tutorial:

http://wiki.ros.org/Robots/TIAGo/Tutorials/Installation/

InstallUbuntuAndROS

This repository contains the work developed for Alain's thesis. Here is the

route to find the files developed:

• /akiyabala_tiago/perception_packages/bayes_objects_tracker/launch/

bayes_objects_tracker_no_namespaces.launch

• /akiyabala_tiago/manipulation/launch/pick_place_server.launch

• /akiyabala_tiago/actions_tiago_src/actions_tiago_ros/manipulation.py

• /akiyabala_tiago/actions_tiago_src/actions_tiago_ros/pick.py

• /akiyabala_tiago/actions_tiago_src/actions_tiago_ros/place.py

Please check PAL Robotics documentation:

https://cloud.pal-robotics.com/index.php/s/eocg4B27ITWbsvI?path=

%2FTIAGo%20Iron%20(no%20arm)%2FROS%20Melodic#pdfviewer
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Appendix B: User Manual

The first step is to install Ubuntu 18.04. Click in the next link to go to the

turotial to do it. 

https://ubuntu.com/tutorials/install-ubuntu-desktop-1804#1-overview

Now the instalation of ROS Melodic is required.

Follow these instructions: 

http://wiki.ros.org/melodic/Installation/Ubuntu

Or use the following commands:

sudo apt update
sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -
sc) main" > /etc/apt/sources.list.d/ros-latest.list'
sudo apt install curl
curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | 
sudo apt-key add -
sudo apt update
sudo apt install ros-melodic-desktop-full -y
sudo rosdep init
rosdep update
sudo apt install python-rosinstall -y
source /opt/ros/melodic/setup.bash

Terminal 11: Commands for installing ROS Melodic.
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Now, follow these command lines to set up SocRob/TIAGo environment.

mkdir -p ~/ros_ws/src
cd ~/ros_ws
sudo apt install python-catkin-tools -y
catkin init
catkin build
cd ~/ros_ws/src
git clone https://github.com/alain00lpez/akiyabala_tiago.git
cd akiyabala_tiago/
./repository.debs 
source ~/ros_ws/devel/setup.bash
cd  ~/ros_ws/
catkin build -c

Terminal 12: Commands for setting up SocRob/TIAGo environment.

Please, follow this tutorial to set up TIAGo drivers and simulation

http://wiki.ros.org/Robots/TIAGo/Tutorials/Installation/

InstallUbuntuAndROS

Take  into  account  that  your  environment  is  called  ros_ws and  not

tiago_public_ws.

In case of compilation errors, report them to the older members. Some

package may not compile, but it may be outdated packages that you don't

need.

In case you get permission denied error when running any node, try sudo

rosdep fix-permissions
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1.OBJECT

This project is entirely software based. Therefore, no hardware requiring

drawings has been implemented. All the graphical information needed to

understand this TFG has been included as figures in the "DOCUMENTO 1.

MEMORIA".
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1. OBJECT

The  purpose  of  this  document  is  to  show  the  project's  total  cost  as

approximately  as  possible.  The  following  sections  detail  the  costs

necessary for realising the project and its execution, dividing the budget

into three distinct blocks: materials, labour, and other expenses. The sum

of these costs makes up the cost of executing the material.

1.1 HARDWARE

The hardware cost is only from TIAGo robot  as it is shown in table 1.
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Table 1: Hardware cost
Hardware

Units Description Manufacturer Fixed cost [€]
1 TIAGo Robot with parallel gripper PAL Robotics

Total:

35 000,00 €

35 000,00 €



1.2 LABOUR COST

There is only an industrial technical engineer in charge of the software

development and documentation.  This is shown in table 2.

1.3 OTHER EXPENSES

Other  expenses  are  taken  into  account,  such  as  the  electricity

consumption of each computer and its depreciation during its use. In this

case, there is only one computer used. 
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Table 2: Labour costs

Table 3: Other expenses prevision

Labour cost

Description type number cost/hour Hours cost
Software development Industrial technical engineer 1 25,00 € 300

Total:

7 500,00 €

7 500,00 €

Other expenses

Cost factor

Lab computer
Depreciation 1500 12000 0,13 300 39,00 €

0,14 300 42,00 €
Total: 81,00 €

Fixed cost
 [€]

Life 
Expectancy [h]

Variable
Cost [€/h]

Time refered to
 The proyect [ħ]

Cost Related to
The project

Electric 
Consumption



1.4 MATERIAL EXECUTION

The execution cost is the sum of the hardware with labour and other costs

as it is shown in table 4.

1.5 TOTAL COST

Finally, the budget for the whole project is obtained, applying the taxes

corresponding to the IVA and the profit derived from the realisation of the

project as it is shown in table 5.

The budget for this project is one hundred and thirty-nine thousand and

one hundred and twelve euros and twenty-eight cents (139,112.28 €).
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Table 4: Material execution cost

Table 5: Final budget summary

Material execution
Hardware
Labour Cost
Other expenses 81,00 €
Total

35 000,00 €
7 500,00 €

42 581,00 €

Budget Summary
TIAGO ROBOT WITH SW IMPLEMENTED
EXECUTION MATERIAL

13% GENERAL COSTS
7% INDUSTRIAL PROFIT

PARTIAL SUM
21% IVA

TOTAL BUDGET

42 581,00 €
42 581,00 €

42 581,13 €
29 806,70 €

114 968,83 €
24 143,45 €

139 112,28 €
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1. OBJECT

This document aims to establish the minimum conditions to be met by the

TIAGo  robot  for  the  support  of  people  in  a  situation  of  dependency,

specifying the durability, reliability and safety requirements. 

The scope of this document extends to all the computer systems that form

part of this project. 

2. WORKING MATERIALS

2.1 HARDWARE.

• Laptop ASUS TUF Gaming F17 FX706HM-HX059:

- Processor: Intel i7-8750H 4.1GHz

- RAM: 43.9 cm (17.3") Full HD 1920 x 1080 IPS 144Hz sRGB Colour

gamut 62.5%

- Drive:SSD 1TB

- Graphics card: NVIDIA GeForce RTX 3060 (6GB GDDR6)

- Display: 1980x1280 144Hz LED display

- Operating system: Ubuntu 18.04

• TIAGo robot: 

- 2 degrees of freedom (DoF) mobile head

- RGB-D camera 

- 7 DoF robotic arm

- Parallel gripper as end-effector 

- prismatic joint to raise the torso

-  mobile  base  which  gathers  all  the  necessary  elements  for  

navigation.
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2.2 SOFTWARE

-ROS: A middleware which is responsible for handling the communication

between programs in a distributed system.

-Gazebo  simulator:  Robot  simulation  with  a  complete  toolbox  of

development libraries. 

-Reviz: 3D visualisation tool for ROS.

-Visual Studio: IDE used for programming the robot.

3. IMPLEMENTATION CONDITIONS

3.1 STANDARDS

ISO/TS  15066:2016  -  Robots  and  robotic  devices  specify  safety

requirements for collaborative industrial robot systems.

A  robot  is  a  quasi-machine,  according  to  Directive  2006/42.  The

manufacturer relies on harmonised standards (EN ISO 10218-1) to ensure

compliance with the Machinery Directive.

- The integrator is the one who integrates the robot and other components

into a system for a robotic application (specific use). To comply with the

Directive, he must perform a risk assessment and protect against residual

risks  of  the  resulting  machine  and  robotic  application.  It  can  rely  on

existing harmonised standards or technical specifications (EN ISO 10218-

2).  Robots  with collaborative operation can be based on the TS 15066

specification.  Following  the  risk  assessment,  safety  functions  shall  be

selected for  the robotic  application to ensure that no contact with the

person or no harm is caused. If these measures are insufficient, additional
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protective measures (guards,  sensing devices,  etc.)  must be used in a

mixed solution. Not all robotic applications can be “pure” collaborative. 

-  The  relevant  technical  documentation,  assembly  instructions  and

declaration of incorporation are drawn up by the robot manufacturer and

accompany the robot until  it is incorporated into the final machine and

forms part of its technical file.

-  A  competent  body  can  certify  that  a  collaborative  robot  application

complies with the requirements applicable to the workstations.

3.2 DESCRIPTION 

As the requirements for the implementation are already implemented in

TIAGO,  an  initial  verification  test  is  carried  out.  For  this  purpose,  a

computer  is  used  with  the  software  programmes  detailed  in  the  user

manual (appended to the report) and the installation of the code on the

robot is completed. 

Once the system is installed, the correct operation of the robot is verified

in a controlled environment. To this end, a series of conditions must be

met to evaluate its operation. 

3.3 QUALITY CONTROL

For the correct evaluation of the execution of the system and its phases, a

staggering procedure is used to verify the robot's operation.

In the integration phase, a specialised technician must ensure that the

robot is in an environment that meets the following conditions:

93



- The working temperatures are between +10°C ~ +35°C.

- The terrain must be capable of supporting the weight of the robot. It

must be horizontal and flat. Do not use carpets, as the robot can trip over

them.

- Make sure the robot has adequate space for any unexpected operation.

- Make sure the environment is free from objects that could pose a risk if

the robot is knocked, hit, or otherwise affected.

- Make sure no cables or ropes are caught in the covers or wheels; these

could pull other objects over.

- Make sure no animals are near the robot.

- Be aware of the location of emergency exits and make sure the robot

cannot block them.

- Do not operate the robot outdoors.

- Keep the robot away from flames and other sources of heat.

- Do not allow the robot to come into contact with liquids.

- Avoid the use or presence of magnetic devices near the robot.

The technician must then connect his computer to TIAGo and run the test.

To do this, the robot must be placed in front of a flat table with a can

above. The robot must be at a distance of less than one metre. When the

program  runs,  messages  indicating  the  status  of  the  initialisation

connections  will  be printed on the computer  screen,  and the pick  and

place task will start. 
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	Object grasping and manipulation are important capabilities for domestic service robots. Extensive research work has been done in this area leading to the development of different methods, from approaches based on classical control theory, to fully end-to-end machine learning systems, leveraging advances in computer vision, supervised and reinforcement learning.
	This project proposes a pipeline to perform a pick-and-place task. To this end, different approaches have been considered by applying visual-servoing as the main component. The depth camera, attached to the robot’s moving head, locates and tracks the object and stores its position. Meanwhile, the robot reads the position of its joints and applies a control law to reduce the error between its fine effector and the detected object. The use of a convolutional neural network trained in the laboratory to detect the object’s position was fundamental in this project.
	The process chain that follows is able to obtain the octomap scene, execute predefined movements to visualise the objects, activate the object detection, and perform the pick and place. During the process, several challenges hindered the task’s success. In this project, the tools Gazebo, Rviz and Rqt have also been used to create a controlled simulation environment and test the different functionalities of the robot. In addition, problems and solutions addressed in the field of robotics have been described.
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	play_motion:
	motions:
	pregrasp:
	joints: [torso_lift_joint, arm_1_joint,
	arm_2_joint, arm_3_joint, arm_4_joint, arm_5_joint,
	arm_6_joint, arm_7_joint]
	points:
	- positions: [0.15, 0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]
	time_from_start: 0.0
	- positions: [0.34, 0.20, -1.34, -0.20, 1.94, -1.57, 1.37, 0.0]
	time_from_start: 2.0
	- positions: [0.34, 0.21, -1.02, -0.20, 1.94, -1.57, 1.52, 0.0]
	time_from_start: 3.5
	- positions: [0.34, 0.21, 0.35, -0.2, 2.0, -1.57, 1.52, 0.0]
	time_from_start: 6.5
	- positions: [0.34, 0.21, 0.35, -0.2, 0.0, -1.57, 1.52, 0.0]
	time_from_start: 10.0
	- positions: [0.34, 0.21, 0.35, -3.0, 0.0, -1.57, 1.52, 0.0]
	time_from_start: 12.0
	- positions: [0.34, 0.05, -0.07, -3.0, 1.5, -1.57, 0.2, 0.0]
	time_from_start: 17
	<node name="pick_and_place_server" pkg="tiago_pick_demo" type="pick_and_place_server.py" output="screen">
	<rosparam command="load" file="$(find 	tiago_pick_demo)/config/pick_and_place_params.yaml" />
	<param name="object_width" value="0.11" />
	<param name="object_height" value="0.07" />
	<param name="object_depth" value="0.11" />
	</node>
	import rospy
	from pick import PickObjectPose
	from place import PlaceObjectPose
	# Usage Example
	if __name__ == '__main__':
	rospy.init_node('manipulation_client')
	manipulate = Manipulation()
	manipulate.pick(pick_object_uuid='e7be927c-3e58-507f-a9e6-	eaadce759be2',pick_object_name='cup', lift_object=True)
	manipulate.place(predefined_location='table', tuck_arm=True)
	class PickObjectPose(object):
	def __init__(self):
	def pick(self, pick_object_uuid=None, pick_object_name=None,
	lift_object=True):
	if not pick_object_uuid and not pick_object_name:#Exeption
	self.prepare_robot()
	object_detected = False
	if pick_object_uuid: # localized_objects = rospy.wait_for_message("/                                                                                   bayes_objects_tracker/tracked_objects", TrackedObject3DList) elif pick_object_name: # localized_objects = rospy.wait_for_message("/object_localizer/localized_objects", RecognizedObject3DList)
	object_perceived = object_detected
	if not object_detected:# Failed to detect object
	self.transformToBaseFrame(object_perceived)
	object_to_grasp = object_perceived
	self.transformToBaseFrame(object_to_grasp)# Add offset to the pose self.pick_as.send_goal_and_wait(object_to_grasp)
	rospy.loginfo("Done!")
	if lift_object:
	self.move_arm_to_post_grasp() rospy.loginfo("Pick Success")
	
	return Truee
	class PlaceObjectPose(object):
	def __init__(self):
	def place(self, location_uuid=None, location_name=None, location_pose=None, predefined_location=None, tuck_arm=True):
	if not location_uuid and not location_name and not location_pose and not predefined_location: # Execption
	self.lower_head()
	if location_uuid: # The idea is to perceive a suitable location and place the object there
	elif location_name: # The idea is to place the object above an object given as parameter.
	elif location_pose: # Here the location pose is given
	elif predefined_location: # Here a predefined motion name is given to run it
	self.predefined_motion('open') # open the gripper
	self.move_arm_to_post_place()
	if tuck_arm: # tuck the arm back
	self.predefined_motion('home')
	rospy.loginfo("Place Success")
	return True
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	sudo apt update
	sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'
	sudo apt install curl
	curl -s https://raw.githubusercontent.com/ros/rosdistro/master/ros.asc | sudo apt-key add -
	sudo apt update
	sudo apt install ros-melodic-desktop-full -y
	sudo rosdep init
	rosdep update
	sudo apt install python-rosinstall -y
	source /opt/ros/melodic/setup.bash
	mkdir -p ~/ros_ws/src
	cd ~/ros_ws
	sudo apt install python-catkin-tools -y
	catkin init
	catkin build
	cd ~/ros_ws/src
	git clone https://github.com/alain00lpez/akiyabala_tiago.git
	cd akiyabala_tiago/
	./repository.debs
	source ~/ros_ws/devel/setup.bash
	cd ~/ros_ws/
	catkin build -c
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