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1Q-bit refers to the smallest unit of information in quantum computing. In green computing, it generally refers to energy-oriented communication links   
2Q-bit individual refers to a set of Q-bits representing a possible solution of a problem in quantum computing.  Here, it is an energy-oriented forwarding path 
3Rotation angle refers to the magnitude of solution convergence towards optimal solution in quantum computing. Here, it is the energy difference between paths 
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Abstract—One of the major bottlenecks towards realizing IoT 

systems is the energy constraint of sensors. Prolonging network 

lifetime is a fundamental issue for implementing IoT systems. 

The energy optimization problem, being NP-hard in nature for 

scalable networks, has been addressed in literature using 

traditional meta-heuristic techniques. Quantum inspired meta-

heuristics have shown better performance than their traditional 

counterparts in solving such optimization problems in different 

domains. Towards this end, this paper proposes a Quantum 

inspired green communication framework for Energy Balancing 

in sensor enabled IoT systems (Q-EBIoT). Firstly, an energy 

optimization model for sensor enabled IoT environments is 

presented, where energy consumption is derived as cost of the 

energy-oriented paths. Secondly, a quantum computing oriented 

solution is developed for the optimization problem focusing on 

energy centric solution representation, measurement, and 

rotation angle. The proposed solution is implemented to evaluate 

the comparative performance with the state-of-the-art 

techniques. The evaluation demonstrates the benefit of the 

proposed framework in terms of various energy related metrics 

for sensor enabled IoT environments.  

Index Terms– Internet of things, Green computing, Energy 

balancing, Wireless sensor networks.  
 

I. INTRODUCTION 

ENSOR enabled technologies have been successfully 

leveraged for military, industry, healthcare and agriculture 

purposes [1]. Recently, it has become the center of attraction 

for smart application in emerging research and development 

fields, such as, smart cities, body area networks, Internet of 

Things (IoT), Internet of Vehicles (IoV), and smart grid [2, 3]. 

The sensor enabled IoT environment has potential to integrate 

the cyber and physical world [4]. However, there is an 

inherent issue of network lifetime in sensor enabled IoT 

environments. The battery-operated tiny sensors are power 

constrained, due to the growing computation demand in smart 

applications and smaller battery size. The judicious use of 

energy is quite significant for tiny sensor enabled IoT 

environments [5]. 
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Several energy conservation techniques for sensor enabled 

IoT environments exist in literature [6-7], which have been 

aimed at minimizing the energy consumption. Early energy 

depletion in sensors near to sink leads towards IoT network 

collapse, while the distant sensors still retain sufficient energy 

for operations [8]. The retained energy of distant sensors 

cannot be utilized due to the network breakdown in IoT 

environments. This has shifted the focus of energy related 

research from energy consumption to energy balancing in 

sensor enabled IoT environments [9]. Energy balancing is a 

hard-combinatorial optimization problem considering a large 

number of sensors in realistic IoT implementations [10]. 

Evolutionary and swarm-based techniques have been applied 

for handling optimization problem with larger solution space 

[11-13].  

Recently, quantum inspired meta-heuristic techniques have 

been developed for addressing hard-combinatorial 

optimization problems better than their traditional 

evolutionary counterparts [14-16]. However, the applicability 

of the quantum-inspired implementations in literature is very 

limited for energy balancing in sensor enabled IoT 

environments. The Q-bit1 oriented binary solutions have been 

generated, and subsequently converted into numeric solutions 

in a quantum-based implementation [16]. The binary solutions 

of Q-bit individual2 is repaired repeatedly leading higher 

operation complexity. The generation of binary solutions 

should be avoided due to the processing constraint in sensor 

enabled IoT environments. The consideration of constant 

rotation angle3 also reduces solution convergence. In another 

quantum-oriented network optimization, sensors have been 

represented as Q-bits [14]. The presentation restricts 

pheromone updating to individual sensors. It increases time 

complexity for updating operation as compared to the 

common pheromone updating for all sensors. Similarly, 

network security-oriented quantum implementation has been 

suggested without detailing Q-bit representational and 

pheromone updating operational steps [15]. In these quantum-

oriented implementations, the distance between sensors has 

been considered as heuristic parameter, without relating it to 

energy balancing aspects of the network.    

In this context, this paper proposes a Quantum inspired 

green computing framework for Energy Balancing in sensor 

enabled IoT environments (Q-EBIoT). The framework 

optimizes network lifetime relying on energy-oriented Q-bit 

representation, measurement and rotation angle step size 

calculation. It also improves optimization efficiency by 

directly generating numeric solution and single energy 

updating for all Q-bit individuals.  Specifically, the key 

contributions of the paper are as follows:  
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1) Firstly, the energy optimization model is presented for 

sensor enabled IoT environments deriving energy 

consumption as cost of the energy-oriented paths. 

2) Secondly, a quantum computing oriented solution is 

proposed for the optimization problem focusing on 

quantum representation, measurement, and rotation angle.   

3) The quantum solution is implemented to evaluate the 

performance comparatively with the state-of-the-art 

techniques considering energy related metrics.   

The rest of the paper is organized in following sections.  

Section II qualitatively reviews related literature on energy 

optimization  in IoT.   Section III presents the derivation of 

energy optimization problem. Section IV presents the 

proposed quantum computing solution Q-EBIoT of the 

optimization problem. Section V discusses simulation setting 

and analysis of results, followed by conclusion in Section VI.  

II. RELATED WORK 

Recently, energy balanced position-based routing has been 

suggested using forward search space (FSS) for maximizing 

network lifetime in sensor enabled network environments 

[19]. Energy level-based switching technique has been 

suggested using Markov decision process for rechargeable 

sensor enabled environments [20].  The nodes switch from one 

parent to another parent in the tree based on the energy level 

defined by the harvested-energy and utilized-energy.  

Energy efficient hierarchical routing has been explored 

based on dynamic cluster head rotation and re-clustering in 

sensor enabled network environments [21]. Multiple mobile 

sink-based routing has been investigated to reduce higher 

energy consumption of the nodes closer to the sink [22]. 

However, the network configuration with mobile sink is not 

suitable for indoor IoT environment, where mobility of sink 

could not be guaranteed. The Forward Aware Factor (FAF) 

based energy balanced routing has been suggested to utilize 

the neighborhood awareness [23]. The consideration of energy 

in terms of density reduces practical implementation as the 

density of nodes could be misunderstood as density of energy. 

Some similar non-metaheuristic-based approaches are 

explored [24, 25].     

Recently, Harmony Search (HS) algorithm-based energy 

efficient routing for sensor enabled network environments has 

been suggested for maximizing network lifetime [10]. Energy 

efficient routing path has been represented as harmony in 

Harmony Memory (HM). However, energy balancing is 

compromised in HS based routing, due to the energy 

consumption and hop count-based path selection and 

avoidance of residual energy parameter in the decision.  Bee 

swarm intelligence based hierarchical routing has been 

explored for energy constrained sensor enabled IoT 

environments [18]. The conversion of routing problem into 

bee swarm-based optimization problem is omitted which 

reduces the practical applicability of the suggested solution. A 

cross-layer routing protocol has been suggested based on 

fuzzy and ant colony optimization [17]. In particular, the 

cross-layer protocol is a hierarchical protocol which also 

coordinates with MAC layer.     

Energy efficient multi-path routing has been suggested 

using ant colony optimization [26]. Interference among 

multiple paths is critical for multi-path routing, which has 

been completely omitted from the consideration during 

multiple path establishment. A transmission scheme based on 

ant colony optimization has been investigated to unite energy 

balancing and energy balancing for maximizing network 

lifespan of sensor network [27]. The sensors belonging to the 

strips near the sink have been designated smaller transmission 

range as compared to the outer strip sensors. Disseminating 

the knowledge of the sectors and strips would be another 

computation and communication overhead. 

Quantum computing based evolutionary algorithm (QEA) 

was introduced by Han & Kim for solving combinatorial 

optimization problems [28]. The implementation of QEA for 

solving routing problem in sensor enabled IoT environments is 

quite limited except some initial effort [14-16]. Recently, a 

quantum inspired genetic algorithm has been suggested for 

addressing quality of service (QoS) routing in IoT network 

environments [15]. The population initialization, update 

operator, crossover and mutation have been formulated. 

Quantum inspired evolutionary algorithm-based clustering 

technique has been suggested for hierarchical routing in sensor 

network [14]. Similarly, quantum inspired ant-based routing 

algorithm for sensor enabled IoT environments has been 

suggested considering hop count or distance-based energy 

consumption [16].  Pheromone representation using Q-bits, 

updating using Q-gate operator, and five steps of the algorithm 

are major components of the ant-based routing technique.    

III. ENERGY OPTIMIZATION MODEL IN SENSOR ENABLED IOT-

QUANTUM OPTIMIZATION ASPECT  

A. Energy Consumption Model for Green Computing  

The sensor energy is consumed in performing sensing, 

processing, and communication activities. The data 

communication consumes most of the energy of sensors. it is 

mainly considered during the energy oriented data relaying in 

sensor enabled  IoT environments. Considering the radio 

model for sensor enabled IoT environments [29], energy 

consumption to transmit 𝐸𝑇 and receive 𝐸𝑅 a message at 

distance 𝑑 can be expressed as given by Eq. (1) and (2).   

𝐸𝑇(𝑙, 𝑑) = {
𝑙×𝐸𝑒𝑙𝑒𝑐+ 𝑙×𝜀𝑓𝑠× 𝑑2          𝑖𝑓   𝑑 <  𝑑0

𝑙×𝐸𝑒𝑙𝑒𝑐+ 𝑙×𝜀𝑚𝑝×𝑑4          𝑖𝑓   𝑑 ≥  𝑑0
       (1) 

𝐸𝑅(𝑙) = 𝑙 × 𝐸𝑒𝑙𝑒𝑐     (2) 

where 𝐸𝑒𝑙𝑒𝑐 is the energy requirement for transmitter and 

receiver circuit, 𝑙 is the message length, 𝜀𝑓𝑠 and 𝜀𝑚𝑝 are the 

energy consumption for amplifying transmission using free 

space and multipath model, respectively, in order to attain a 

satisfactory signal to noise ratio (SNR). The threshold distance 

𝑑0 = √
𝜀𝑓𝑠

𝜀𝑚𝑝
⁄   is used to determine the power loss model. 

B. Energy Oriented Cost Model for Sensors 

The energy oriented cost model is directly proportional to the 

energy consumption model. The energy model is utilized to 

derive energy cost (EC) for next hop communication.  An 

energy transfer from a sender node 𝑣𝑖 to neighbor 𝑣𝑗 can be 

expressed as given by Eq. (3). 
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𝐸𝐶𝑖𝑗 =
𝐸𝑇(𝑙,𝑑𝑖,𝑗)

𝐸𝑖
𝑟                (3) 

where 𝑑𝑖,𝑗 is the distance between node 𝑣𝑖 and node 𝑣𝑗, and 

𝐸𝑖
𝑟is the residual energy of node 𝑣𝑖. The total energy cost 

(TEC) of data relaying through a neighbor node 𝑣𝑘 from 

sender 𝑣𝑖 can be expressed as given by Eq. (4).  

𝑇𝐸𝐶𝑖,𝑘  =  𝐸𝐶𝑖,𝑘 + 𝐸𝐶𝑘,𝑆   𝑘 ∈ 𝑁(𝑣𝑖)           (4) 

where 𝐸𝐶𝑖,𝑘 is the cost of transmission from sensor 𝑣𝑖 to 𝑣𝑘, 

and  𝐸𝐶𝑘,𝑆 is the cost of transmission from sensor 𝑘 up to the 

sink node 𝑆.  The set of neighbors of node 𝑣𝑖 is represented by 

𝑁(𝑣𝑖). The sender node also calculates 𝐸𝐶𝑖,𝑆 for the 

comparison purpose. If 𝑇𝐸𝐶𝑖,𝑘 < 𝐸𝐶𝑖,𝑆 then neighbor based 

multi-hop communication path is utilized, otherwise direct 

communication link is considered.  

C. Energy Optimization in Sensor enabled IoT 

An undirected graph based IoT network modelling is 

considered. Specifically, a graph 𝐺 =  (𝑉, 𝐸), where 𝑉 is the 

set of vertices, i.e., sensor nodes and 𝐸 is the set of edges, i.e., 

wireless connection between sensors.  For all 𝑣𝑖 and 𝑣𝑗 ∈ 𝑉, 

𝑣𝑖 ≠ 𝑣𝑗, there exists an edge between 𝑣𝑖 and 𝑣𝑗 if and only if 

𝑣𝑖 is the neighbor of 𝑣𝑗. The set of nodes in the transmission 

range constitute the neighborhood. The graph based network 

with N nodes is represented using an N×N adjacency 

matrix 𝐴 =  (𝑎𝑖𝑗). The matrix elements are defined as 

expressed by Eq. (5) 

𝑎𝑖𝑗 = { 
1     𝑖𝑓  𝑣𝑗  ∈ 𝑁(𝑣𝑖)

0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒       
       (5) 

A relaying path 𝜒 in the graph based network is defined as a 

sequence of distinct sensors initiating from a source node and 

ending at the sink. It can be represented as given by Eq. (6).  

𝜒 = (𝑣1, 𝑣2, … . . , 𝑣𝑛)                (6) 

where 𝑣𝑖 and 𝑣𝑖+1 are adjacent vertices for 1 ≤ 𝑖 < 𝑛 and 𝑣1 is 

a source node, and 𝑣𝑛 is the sink node. A path 𝜒 with 𝑛 sensor 

nodes has (𝑛 − 1) links. The total energy cost of a path 𝑇𝐸𝐶𝜒 

can be expressed as given by Eq. (7). 

𝑇𝐸𝐶𝜒 = ∑ 𝑇𝐸𝐶𝑣𝑖 ,𝑣𝑖+1 

𝑛−1
𝑖=1 , 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝜒           (7) 

The objective of proposed energy-oriented framework for 

sensor enabled IoT environments is to minimize the total 

energy cost over all relaying paths originating from a source 

node. It can be expressed as given by Eq. (8).   

argmin
𝜒 ∈ 𝜑

𝑇𝐸𝐶𝜒                      (8) 

where 𝜑 is the set of all possible relaying paths in the network 

starting from a source node and ending at the sink node.    

D. Quantum Optimization Aspect of Energy 

     Quantum computing employs the principles including 

quantum bits (Q-bits) and superposition [30]. The smallest 

unit of information that can be handled by a two-state 

quantum computer referred as Q-bit. A quantum inspired 

algorithm uses Q-bits for representing solutions instead of 

numeric, binary or symbolic representation as used in 

evolutionary or swarm-based algorithms. The Q-bit state Ѱ 

representation is expedient as it allows linear superposition of 

the solutions which can be expressed as given by Eq. (9).  

│Ѱ > =  c1│0 >  + c2│1 >   (9) 

where │Ѱ > is a quantum superposition of the basic states 

│0 >  and │1 >. Here, hat │0 > is Dirac notation of the basic 

quantum state and will always give the result 0, when it is 

converted to classical logic by a measurement. Similarly, 

│1 > will give the result 1. Different from a classical bit that 

can only be in the state corresponding to either 0 or 1, a qubit 

may be in a superposition of both the states. It means that the 

probabilities of measuring 0 or 1 for a qubit are in general 

neither 0.0 nor 1.0, and multiple measurements made on 

qubits in identical states will not always give the same result. 

The pair (c1, c2) denotes the probability of Q-bit being found 

in state 0 and state 1, respectively, with the constraint |𝑐1|
2 +

|𝑐2|
2 = 1. If the probability of one state increases, the 

probability of other state decreases. A system of 𝑚 Q-bits can 

represent 2𝑚 states simultaneously. This induces parallelism 

in quantum computing. A quantum gate (Q-gate) operator is 

applied for modifying the Q-bits in a solution. It is defined 

based on the characteristics of the problem to be solved. The 

Q-gate is also termed as rotation gate, and it can be expressed 

as given by Eq. (10). 

𝑈(𝛥𝜃𝑖) = [
𝐶𝑜𝑠(∆𝜃𝑖) −𝑆𝑖𝑛(∆𝜃𝑖)
𝑆𝑖𝑛(∆𝜃𝑖) 𝐶𝑜𝑠(∆𝜃𝑖)

]          (10) 

where 𝜃𝑖 is the rotation angle for 𝑖𝑡ℎ Q-bit in a Q-bit string. 

The sign of 𝜃 determines Q-bits to move towards 0 or 1. In 

quantum systems, size of the system affects the computational 

space. Linear increase in size results in exponential increase in 

computational space. It provides the opportunities for 

exponential parallelism in quantum algorithm 

implementations. Thus, it is capable of providing better 

solutions even with very small population size. The efficient 

implementation of quantum computing algorithms demands 

quantum computers, which are not commercially available yet. 

There has been an increasing propensity of blending the 

concepts of quantum computing with evolutionary and swarm 

techniques. A quantum inspired evolutionary or swarm 

algorithm uses the concepts of quantum computing, in order to 

harness the potential of quantum system but runs on a classical 

computer.  

E.  Quantum based Ant Colony Optimization of Energy  

Q-ACO conflates the principals of quantum computing 

with the concepts of ant based optimization, which is a swarm 

based meta-heuristic technique and mimics the foraging 

behaviour of real life ants [12]. The real ants deposit a 

chemical called pheromone on the path travelled from food 

source to their colony, based on the amount or quality of food 

and distance of the food source. The path to the nearest food 

source having quality food is laden with more pheromone. A 

higher pheromone level on a path pulls in more ants on that 

path which ultimately results in shortest path from colony to 

food source. Thus, pheromone is the main element of ant 

colony’s collective learning behaviour. The artificial ants in 
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ACO technique also take into account the heuristic 

information 𝜂𝑖𝑗 in addition to pheromone information 𝜏𝑖𝑗. The 

pheromone matrix is continuously updated during the search 

procedure and it represents the past search experience. The 

four major steps in ACO based energy oriented relaying in 

sensor enabled IoT environments are as follows. 

1) A source node sends a set of forwarder ants towards the 

sink node. 

2) In order to construct a path from sender to the sink, each 

forward ant selects a next hop based on the probability 𝑝𝑖𝑗   

to move from a node 𝑣𝑖 to node 𝑣𝑗 as given by Eq. (11).  

𝑝𝑖𝑗 = {

[𝜏𝑖𝑗]
𝛿[𝜂𝑖𝑗]

𝛽

∑ [𝜏𝑖𝑘]𝛿[𝜂𝑖𝑘]𝛽𝑘∈𝑁(𝑖)
,  𝑖𝑓 𝑣𝑗 ∈ 𝑁(𝑣𝑖),

0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (11) 

where 𝜏𝑖𝑗 and 𝜂𝑖𝑗 are the pheromone intensity and heuristic 

information on a link connecting node 𝑣𝑖 and node 𝑣𝑗.  The 

environmental parameters 𝛿 and  𝛽 are used to control the 

weight of pheromone and heuristic information, and 𝑁(𝑣𝑖) 

represents the set of neighbors for 𝑣𝑖. 

3) Each forward ant 𝑣𝑖 updates the identity set of the visited 

nodes. 

4) A backward ant is created corresponding to each forward 

ant arriving at sink. It deposits pheromone on the path 

established by forward ant. The pheromone is calculated as 

given by Eq. (12) and (13). 

𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 + ∑ ∆𝜏𝑖𝑗
𝑘𝑚

𝑘=1                     (12) 

∆𝜏𝑖𝑗
𝑘  = {

𝑄

𝐻𝑘
    the ant 𝑘 traverses link (𝑖, 𝑗)

0                                          otherwise  
        (13)  

where 𝜌 is the evaporation factor incorporating decrement in 

pheromone intensity with network time, 𝑄 is a constant 

coefficient, 𝐻𝑘 is the number of hops in 𝑘𝑡ℎ forward ant’s path 

and 𝑚 is the total number of ants.  

In Q-ACO, strings of Q-bit individual are used to represent as 

ants and Q-gate operator is considered for updating the 

pheromone trail on the paths established by forward ants [28]. 

The five major steps in Q-ACO based data relaying are as 

follows. 

1) For combinatorial problems with 𝑁 variables and 𝑚 ants, 

Q-bit representation of ant population in 𝑗𝑡ℎ generation, 

𝑄(𝑗) is expressed as given by Eq. (14).  

𝑄(𝑗) = {𝑞1
𝑗
, 𝑞2

𝑗
, 𝑞3

𝑗
, … . , 𝑞𝑚

𝑗
}                     (14) 

where 

𝑞𝑖
𝑗
=

[
 
 
 
 𝑞𝑖

𝑗(1,1) 𝑞𝑖
𝑗(1,2)⋯ 𝑞𝑖

𝑗
(1, 𝑁)

𝑞𝑖
𝑗
(2,1) 𝑞𝑖

𝑗(2,2)⋯ 𝑞𝑖
𝑗(2, 𝑁)

⋮

𝑞𝑖
𝑗
(𝑁, 1)

⋮       

𝑞𝑖
𝑗(𝑁, 2)⋯

⋮

𝑞𝑖
𝑗
(𝑁,𝑁)]

 
 
 
 

for 𝑖 = 1,2,3, … ,m  

𝑞𝑖
𝑗(𝑥, 𝑦) = [

𝑐1𝑖

𝑗
(𝑥, 𝑦)

𝑐2𝑖

𝑗
(𝑥, 𝑦)

]  for 𝑥 , 𝑦 =  1,2,3, … , 𝑁   

where, 𝑞𝑖
𝑗
 represents ith element of the quantum Q-bit in the jth 

iteration. It is a two-dimension matrix for each ant, and each 

element of the matrix 𝑞𝑖
𝑗(𝑥, 𝑦) is a column matrix for 

variables. The initial value for all 𝑐1 and 𝑐2 is taken as 1
√2

⁄  . 

Thus, at the start of algorithmic all the links have equal 

probability for traversal.  

2) The population of binary solutions 𝐵(𝑗) = (𝑏1
𝑗
, 𝑏2

𝑗
, … , 𝑏𝑚

𝑗
) 

is generated by measuring the Q-bit population. The 

measuring operator for quantum inspired algorithm 

measures a Q-bit based on a random number r in the 

interval [0, 1). It can be expressed as given by Eq. (15).  

𝑞𝑖
𝑗(𝑥, 𝑦) = {

1, 𝑟 < │𝑐2𝑖
𝑗
(𝑥, 𝑦)│2 

0,              otherwise 
  (15) 

3) A repair procedure is applied on each binary solution 

violating the constraint. 

4) The binary solutions are then evaluated for their fitness 

with objective function, and the best solution is identified. 

5) The pheromone is updated using Q-gate operator as 

expressed by Eq. (16).  

[
𝑐1

′(𝑥, 𝑦)

𝑐2
′ (𝑥, 𝑦)

] = [
Cos(∆θi) −Sin(∆θi)
Sin(∆θi) Cos(∆θi)

] × [
𝑐1(𝑥, 𝑦)
𝑐2(𝑥, 𝑦)

]    (16)      

IV. QUANTUM INSPIRED GREEN COMPUTING - ENERGY 

BALANCING IN SENSOR ENABLED IOT  

A. Energy oriented Quantum Solution Representation 

The Q-bits are utilized for representing pheromone, instead 

of representing the ants using Q-bits. The pheromone is 

directly related to the quality of communication link in terms 

of energy balancing, and thus, the representation is closer to 

the solution space. In sensor enabled IoT environments with N 

sensors, the pheromone matrix 𝜏𝑗 in 𝑗𝑡ℎ generation is 

expressed as given by Eq. (17). 

𝜏𝑗 =

[
 
 
 
𝜏𝑗(1,1) 𝜏𝑗(1,2)⋯ 𝜏𝑗(1, 𝑁)

𝜏𝑗(2,1) 𝜏𝑗(2,2)⋯ 𝜏𝑗(2, 𝑁)
⋮

𝜏𝑗(𝑁, 1)
⋮       

𝜏𝑗(𝑁, 2)⋯
⋮

𝜏𝑗(𝑁,𝑁)]
 
 
 

                   (17) 

where 

𝜏𝑗(𝑥, 𝑦) = [
𝑐1

𝑗
(𝑥, 𝑦)

𝑐2
𝑗
(𝑥, 𝑦)

]  𝑓𝑜𝑟 𝑥, 𝑦 = 1,2, … , 𝑁 

Here, the pheromone matrix is common for all ants. 

B. Energy Measurement in Quantum Solution 

Conventionally, the ants in the network use quantum 

measuring operator for constructing a set of binary solutions, 

by observing the state of Q-bit pheromone. For energy 

oriented data relaying problem in  IoT environments, the set of 

binary solutions in 𝑗𝑡ℎ generation 𝐵(𝑗) is expressed as given 

by Eq. (18).  

𝐵(𝑗) = (𝑏1
𝑗
, 𝑏2

𝑗
, … , 𝑏𝑚

𝑗
)             (18) 

where 

𝑏𝑖
𝑗
=

[
 
 
 
 𝑏𝑖

𝑗(1,1) 𝑏𝑖
𝑗(1,2)⋯ 𝑏𝑖

𝑗
(1,𝑁)

𝑏𝑖
𝑗
(2,1) 𝑏𝑖

𝑗(2,2)⋯ 𝑏𝑖
𝑗(2,𝑁)

⋮

𝑏𝑖
𝑗
(𝑁, 1)

⋮       

𝑏𝑖
𝑗(𝑁, 2)⋯

⋮

𝑏𝑖
𝑗
(𝑁,𝑁)]

 
 
 
 

for 𝑖 = 1,2, … ,𝑚  
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Such that the below constraints given by Eq. (19)-(22) satisfy.  

∀𝑥 ∀𝑦 𝑏𝑖
𝑗(𝑥, 𝑦) = 0│1    (19) 

∀𝑥 ∀𝑦 𝑖𝑓 𝑥 = 𝑦, 𝑏𝑖
𝑗(𝑥, 𝑦) = 0   (20) 

∀𝑥 ∑ 𝑏𝑖
𝑗(𝑥, 𝑦)𝑁

𝑦=1 = 1, ∀𝑦 ∑ 𝑏𝑖
𝑗
(𝑥, 𝑦)𝑁

𝑥=1 = 1    (21) 

∑ ∑ 𝑏𝑖
𝑗
(𝑥, 𝑦)𝑁

𝑦=1
𝑁
𝑥=1 = 𝑁    (22) 

where 𝑏𝑖
𝑗(𝑥, 𝑦) = 1 is interpreted as, node 𝑦 at 𝑥𝑡ℎ position in 

the ordering of 𝑁 nodes in 𝑖𝑡ℎ solution of 𝑗𝑡ℎ generation.  

 
Algorithm 1: Measurement of Energy of Q-bit  

Input: Q-bit Pheromone 𝜏𝑗, Output: Numeric routing path 

Begin 

1. For each ant 𝑎 =  1 ∶  𝑚 

2.    𝑃 = ∅ ,  𝑆 = 𝑠𝑜𝑢𝑟𝑐𝑒, 𝑃 = 𝑃 ∪ 𝑆,  𝑁𝐵𝑠 = {neighbor of 𝑆} 
3.    While (not empty (NB) & Sink ∉ 𝑃) 

4.              if  𝑟𝑎𝑛𝑑(1)  <  │𝑐2(𝑠𝑜𝑢𝑟𝑐𝑒, 𝑆)│2 

5.                   select a node nb such that  

                    𝑛𝑏 ∈  𝑁𝐵𝑠 , 𝑛𝑏 ∉ 𝑃,    𝑇𝐸𝐶𝑆,𝑛𝑏 = 𝑎𝑟𝑔 min
𝑘∈𝑁𝐵𝑠+{𝑆}

𝑇𝐸𝐶𝑆,𝑘 

6.             else 

7.                     select a node nb randomly such that 𝑛𝑏 ∈ 𝑁𝐵𝑠 , 𝑛𝑏 ∉ 𝑃 

8.             endif 

8.              𝑃 =  𝑃 ∪ 𝑛𝑏,  𝑆 = 𝑛𝑏, 𝑁𝐵𝑠 = {neighbor of 𝑆} 
 Until Sink node is included in 𝑃 

9.     Endwhile 

9.     Return 𝑃 for ant 𝑎 

10. Endfor 

End  

    

 Conventionally, the binary solutions are generated and then 

converted into numeric solutions for evaluating their fitness. 

The construction and then conversion is of 𝑂(𝑁2) operation 

for this energy oriented relaying combinatorial problem in IoT 

environments. In Q-EBIoT, the ants directly generate numeric 

solutions by measuring the Q-bit pheromone, and thus, avoid 

considerable number of operations needed for constructing 

binary solutions. The order number in the solution represents 

the identity of node included in the relaying path. In sensor 

enabled IoT network with 𝑁 sensors, natural numbers from 1 

to 𝑁 are assigned as identifier to the sensors. The sink node is 

assigned an identifier value (𝑁 + 1). The proposed method for 

measuring the Q-bit pheromone to construct the numeric 

solutions directly is presented in Algorithm 1. The complexity 

of the measuring algorithm is lower than 𝑂(𝑁2) complexity of 

its literature counterparts. This is due to the consideration of 

only the set of neighbors rather than all sensor in the network 

during generation progress, and no repairing requirement for 

quantum solutions because of no binary solution generation. 

Explanation of Algorithm 1: In step-2, 𝑆 denotes the source 

node, 𝑁𝐵𝑠 denotes the set of next hop neighbors of 𝑆, path 𝑃 

contains identifiers of nodes on the routing path from source 

to the sink. Initially, the routing path for each ant at 𝑆 contains 

only the source node 𝑆. In step-4, each ant selects one of the 

nodes from 𝑁𝐵𝑠 based on the state of Q-bit pheromone. If the 

probability of being in state 1 is greater than a randomly 

generated number, the node with minimum 𝑇𝐸𝐶 among 𝑁𝐵 is 

selected as the next forwarder node (step-5). Otherwise, the 

next hop is selected randomly from 𝑁𝐵𝑠 by each ant (step-7).  

C. Energy oriented Quantum Gate Operator 

Once a forward ant completes the path from source to sink, a 

backward ant is generated. Backward ant updates the 

pheromone trails on links of the path based on the quality of 

the links in terms of energy balancing capability. A quantum 

gate operator also termed as reversible operator, is used to 

update pheromone information. The rotation gate operator is 

the most commonly used as reversible operator. The updating 

of Q-bit pheromone information by rotation gate operator can 

be expressed as given by Eq. (23). 

[
𝑐1

′(𝑥, 𝑦)

𝑐2
′ (𝑥, 𝑦)

] = 𝑈(ΔΘ) [
𝑐1(𝑥, 𝑦)

𝑐2(𝑥, 𝑦)
]              (23) 

where 𝑈(Δ𝜃)  is the rotation operator, 𝜃 is the angle of 

rotation and 𝛥𝜃 is the step size or the change in angle of 

rotation. The amount and direction of change in the rotation 

angle guide the search process, as it modifies the value of 𝑐1 

and 𝑐2. The exploration and exploitation are performed based 

on the value of 𝑐1 and 𝑐2 as these values are used while 

measuring the Q-bit pheromone. 

TABLE I. LOOK UP TABLE FOR 𝜃 

𝑠𝑖 𝑏𝑖 𝑓(𝑠) ≥
𝑓(𝑏)      

Δ𝜃𝑖 𝑆(𝑐1𝑐2)   

    𝑐1𝑐2

> 0 

𝑐1𝑐2

< 0 

𝑐1 = 0 𝑐2 = 0 

0 0 False 0.01∏ 0 0 0 0 

0 0 True 0.01∏ 0 0 0 0 

0 1 False 0.01∏ 1 -1 0 1 

0 1 True 0.01∏ 1 -1 ±1 0 

1 0 False 0.01∏ -1 +1 ±1 0 

1 0 True 0.01∏ +1 -1 0 ±1 

1 1 False 0.01∏ +1 -1 0 ±1 

1 1 True 0.01∏ +1 1- 0 ±1 

 

 (c1,c2)

(c1
,,c2

,)



(c1,c2)

(c1
,,c2

,)



(c1
,,c2

,)

(c1,c2)

 
                   (a)                                                           (b) 

Fig. 1. The progress of updating procedure (a) Q-EBIoT, (b) Q-ACO 

 

Algorithm 2: Updating of Pheromone: Energy Efficiency  

Input: Q-bit Pheromone (𝜏𝑗), Output: Updated Pheromone (𝜏𝑗+1) 

Begin 

1.  For each routing path Path constructed by the ants 

2.      S = Path(1) 

3.      For  i = 2 : length(Path) 

4.                 Next = Path(i) 

5.                Calculate value of Δθi 

6.                Update pheromone using 

[
𝑐1

𝑗+1
(𝑆, 𝑁𝑒𝑥𝑡)

𝑐2
𝑗+1

(𝑆, 𝑁𝑒𝑥𝑡)
] = 𝑈(ΔΘ) × [

𝑐1
𝑗
(𝑆, 𝑁𝑒𝑥𝑡)

𝑐2
𝑗
(𝑆, 𝑁𝑒𝑥𝑡)

] 

7.                 S = Next 

8.        Endfor 

9.        Return updated Q-bit pheromone 

10. End for 

End 

D. Energy Oriented Step Size for Quantum Rotation  

The value of Δ𝜃 has been decided based on a lookup table 

for energy oriented problem in IoT (see TABLE I). In the 

table, 𝑠𝑖 represents the 𝑖𝑡ℎ bit of current solution, 𝑏𝑖 is the 𝑖𝑡ℎ 

bit of the best solution, 𝑓(𝑠) denotes the fitness value of 
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current solution, and 𝑓(𝑏) is the fitness value of the best 

solution, Δ𝜃𝑖 is the step size for 𝑖𝑡ℎ Q-bit and 𝑆(𝑐1𝑐2) denotes 

the rotation direction. The step size for rotation angle change 

can be expressed as given by Eq. (24).  

 ∆𝜃𝑖 =  𝑆(𝑐1𝑐2) × (𝐸𝑏
𝑟 − 𝐸𝑆

𝑟) × (
𝐻𝑏−𝐻𝑠

𝐻𝑚𝑎𝑥
)𝜋 (24) 

where 𝐸𝑏
𝑟 is the remaining energy of the best path till current 

iteration, 𝐸𝑆
𝑟 is the remaining energy of current path, 𝐻𝑏 is the 

number of hops in the best path, 𝐻𝑆 is the number of hops in 

current path, and 𝐻𝑚𝑎𝑥 is the maximum number of hops in a 

path from all the discovered paths till current generation. The 

direction of rotation can be determined as expressed by Eq. 

(25). 

𝑆(𝑐1𝑐2) =  (𝑇𝐸𝐶(𝑏) − 𝑇𝐸𝐶(𝑠))                (25) 

where 𝑇𝐸𝐶(𝑏) is the total energy cost of best path till current 

generation, and 𝑇𝐸𝐶(𝑠) is the total energy cost of the path in 

current generation. The remaining energy of any path 𝑝 can be 

expressed as given by Eq. (26). 

𝐸𝑝
𝑟 =

∑ 𝑅𝐸𝑛
𝐻𝑝−1

𝑘=1

𝐻𝑝−1
, 𝑛 ∈ 𝑝 such that 𝑛 = 𝑝[𝑘]          (26) 

where 𝑅𝐸𝑛  is the residual energy of a node 𝑛 belonging to 

path 𝑝 and 𝐻𝑝 is the number of hops of path 𝑝. If (𝑆(𝑐1𝑐2)  ≤

0) then current Q-bit solution is rotated toward the best 

solution, otherwise it is rotated in the opposite direction. It is 

better than the update procedure of traditional counterparts 

moving in single direction (see Fig. 1(a) and (b)). A complete 

set of steps for updating Q-bit pheromone measurement using 

rotation gate operator is presented in Algorithm 2. The 

proposed updating procedure considers only the sensor nodes 

of the relaying path, and therefore, time complexity is quite 

lower that its literature counter. It is also worth noting that 

calculation of step size Δ𝜃 according to the energy balancing 

characteristics of the solution enhances the efficiency of Q-

EBIoT. A complete set of steps for the proposed energy 

balancing framework Q-EBIoT is presented in Algorithm 3 

with operational flow (see Fig 2). 

     Complexity Analysis of Algorithm-3: The computational 

complexity or cost of the proposal majorly depends on 

population of ants 𝑚, quantum variable size 𝑁 and the 

quantum gate operator. There are unit initialization operation 

in step 1 and 2. The quantum gate operation in step 3 and 4 is 

of order 𝑚 × 𝑁, as it repeated for all ant population along with 

each quantum variables. There are again unit operations in 

steps 5-7. There is order 𝑚 × 𝑚 × 𝑁 operation in step 8 to 14 

as it is calling algorithm 1 and 2 inside a while loop operation. 

Therefore, the complexity or cost of the overall proposal is 

of 𝑂(𝑚2 × 𝑁).  

 
Algorithm 3: Q-EBIoT 

Input: 𝑚, 𝑗, 𝑁, Output: Energy balanced network 

Begin 

1.   Initialize number of ants m, number of iterations 𝑗 = 0   
2.   Initialize Q-bit pheromone τj at j=0 such that 

3.        𝜏0(𝑥, 𝑦) = [
𝑐1

0(𝑥, 𝑦)

𝑐2
0(𝑥, 𝑦)

]  𝑓𝑜𝑟 𝑥, 𝑦 = 1,2, … , 𝑁 

4.        𝑐1
0(𝑥, 𝑦) =  𝑐2

0(𝑥, 𝑦) =  
1

√2
 

5.   Generate P(j) by measuring state of 𝜏𝑗  using Algorithm 1 

6.   Evaluate P(j) 

7.   Store the best path among P(j) 

8.   While (𝑚 > 𝑗) do 

9.         j = j+1 

10.       Update τj using Algorithm 2 

11.       Generate P(j) using Algorithm 1  

12.       Evaluate P(j) 

13.       Store the optimal routing path among P(j) and the best path                               

14.  Endwhile 

End 
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Fig. 2. Operation flow of the proposed Q-EBIoT framework 

V. SIMULATION RESULTS AND ANALYSIS 

In this section, for network performance analysis (Fig. 4-

7), network simulator (ns-2) was used considering the wide 

range of node level network setting available in the simulator. 

However, for analyzing performance result via ANOVA test, 

MATLAB was used considering library availability for the 

test in the simulator. In the prototype implementation, real 

sensor testbed was used for experiments which is accessible 

via a web-link.   

A. Simulation Setting 

Simulations are carried out in a 500𝑚 × 500𝑚 square area 

with uniform random distribution of sensor enabled nodes. 
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Experiments are performed by varying the number of sensor 

nodes and position of the sink. An event based environment is 

considered for simulating the considered energy oriented 

framework for IoT. The network operation is considered in 

terms of rounds. Events occur randomly throughout the 

simulation area. The sensor enabled node with the highest 

energy in the vicinity of the event reports the event data to the 

sink. The sensing range of a node has been taken as double of 

its communication range. Obviously, if there is no node in the 

neighborhood of an event, which can communicate the event’s 

data to sink, then the event is not reported to the sink.  

The maximum number of events that can take place in each 

round is considered to ten. Experiments are conducted using 

30 different network topologies for each scenario due to the 

random deployment of sensors, random nature of event 

occurrence and stochastic nature of the frameworks. Average 

of each 30 experiments is considered in results.  ANOVA test 

is performed for evaluating the performance of all the three 

frameworks considering average and standard deviation. The 

radio model and network environment settings used in 

simulations are given in TABLE II and TABLE III. The ant 

related parameters are shown in TABLE IV. Other general 

simulation setting is similar to what it is considered in another 

IoT use case [31]. The two network configurations with 150 

nodes and sink at (250, 250) and (250, 600) are considered. 

The configuration with two sink positions enable the 

evaluation under minimum average traffic load, and higher 

varying traffic load for all the sensor enabled nodes in the  IoT 

network. 

  
TABLE II. RADIO MODEL PARAMETERS     TABLE IV. ANT PARAMETERS 

Parameter Value  Parameter Value 

𝜀𝑓𝑠  10 pJ/bit/m2  Ant 10 

𝜀𝑚𝑝 0.0013 pJ/bit/m4  Generations 50 

𝐸𝑒𝑙𝑒𝑐 50 nJ/bit  𝛽 2.5 

𝐸𝑖𝑛𝑖𝑡𝑖𝑎𝑙 5J  𝛼 1 

 Packet length 2000 bit  𝜌 0.1 

TABLE III. NETWORK PARAMETERS 

Parameter Value Parameter Value 

Area 500 × 500 m2 Transmission 

Radius 

30 m 

Sink Location (250,250) 

(250,600) 

Initial Energy 5 J 

Nodes [100~200] Network 

Lifetime 

1st event not 

reported 

B. Analysis of Results 

In literature, the network lifetime has been considered in a 

number of ways such as, the time when first node exhausts its 

energy, or some percentage of nodes becomes inactive. Since 

we considered an event based scenario in experiments, where 

an event is not reported to the sink only if all the sensors in the 

neighborhood of the event are dead.  Therefore, network 

lifetime is defined as the number of communication rounds 

until first event is not reported to the sink node. The results of 

ANOVA test for comparing network lifetime with 𝛼 = 0.05 is 

presented in Table V-VI. In all these results, 𝑃 − 𝑣𝑎𝑙𝑢𝑒 <  𝛼 

and 𝐹 >  𝐹 𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙, so we reject the null hypothesis and 

conclude that mean of at least two of the three techniques are 

different. 

TABLE V. ANOVA WITH 100 NODES 

Summary    

Groups Average Variance     

Q-EBIoT 668.4333 11065.4     

ACO 583.8667 12377.8     

Q-ACO 641.2667 11069.9     

ANOVA 

Variation 

Source 

SS DF MS F P-

value 

F 

critical 

Between 

group 

111843 2 55921.

54 

4.86

089 

0.009

97 

3.101 

Within 

group 

1E+06 87 11504.

38 

   

Total 1E+06 89     

 

TABLE VI. ANOVA WITH 200 NODES  

Summary    

Groups Average Variance     

Q-EBIoT 1662.8 104295.9     

ACO 1384.63 44056.03     

Q-ACO 1495.4 48301.35     

ANOVA 

Variatio

n Source 

SS DF MS F P-

value 

F 

critical 

Between 

group 

1176687.0

8 

2 588343

.54 

8.9

75 

0.0002

8 

3.101 

Within 

group 

5702946.9

6 

87 65551.

11 

   

Total 6879634.0 

5 

89     

  
               (a)                                                          (b)    

Fig. 3. Network lifetime with sink at, (a) (250,250), (b) (250, 600) 

   

Analysis of Network lifetime-Communication Rounds:  

The comparison of impact of network density on network 

lifetime between Q-EBIoT and the state-of-the-art techniques: 

ACO and Q-ACO is presented for the two positions of the sink 

in Fig. 3(a) and (b).  It can be clearly observed that the 

network lifetime of Q-EBIoT is higher than that of ACO and 

Q-ACO. Specifically, with sink at the center of network, i.e., 

(250, 250), the network lifetime of Q-EBIoT is 4.23% higher 

than that of Q-ACO, and 14.48% higher than that of ACO for 

100 nodes network. For higher network density, e.g., 200 

nodes, the lifetime of Q-EBIoT is 11.19% higher than that of 

Q-ACO and 20.08% that of ACO. In the second network 

configuration, i.e., sink is away from the network area at the 

position (250, 600), the performance of Q-EBIoT further 

improves as compared to the network configuration with sink 

at the center of the simulation area considering each network 

density. In particular, the network lifetime of Q-EBIoT is 

9.64% higher than that of Q-ACO, and 15.34% that of ACO 

for 100 nodes in the network. The performance difference 

between Q-EBIoT, Q-ACO and ACO further enhances with 
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higher network density, e.g., 150 and 200 nodes in the 

network area.   
 

  
                   (a)                                                          (b)    

Fig. 4. Energy consumption/node/round, sink at (a) (250,250), (b) (250,600) 

  Analysis of Energy Consumption- per Node and Dead Nodes:  

The comparison of impact of network density on average 

energy consumption between Q-EBIoT and the state-of-the-art 

techniques is presented for the two positions of the sink in Fig. 

4(a) and (b). It can be concluded that energy consumption of a 

node is lesser in Q-EBIoT as compared to that of Q-ACO and 

ACO. With higher network density, energy consumption per 

node decreases for the all the considered protocols due to the 

availability of more neighbors, which enhances the capable of 

sustaining the communication through its neighbors for a 

longer period. It saves energy in comparison to direct 

communication with sink node. With the sink position away 

from the center of network is, the energy consumption of a 

node increases as compared to the scenario when sink is 

located at the center of the network. 

 

  
                (a)                                                           (b)    

Fig. 5. Comparison of (a) Energy Consumption, (b) no of dead nodes 
 

 

The comparison of average energy consumption per 

communication round is shown in Fig. 5(a). It clearly states 

that Q-EBIoT has lower energy consumption than that of Q-

ACO and ACO for both the cases, e.g., sink at the center and 

away from the center. The number of dead nodes, until the 

first event is not reported to the sink, is compared in Fig. 4(b) 

with sink at center of the network area. Q-EBIoT has lesser 

number of dead nodes as compared to QACO and ACO for 

each network density considered. 

Analysis of Execution Time- per Communication Round:  

This metric has been used to show the average time taken by 

each algorithm for one communication round, and the results 

are presented in Fig. 6(a) and (b). The execution time analysis 

is significant due to the limited computing capability of sensor 

nodes and the even-based WSNs environment considered. As 

seen from the results, ACO has the least execution time per 

round. The execution time of Q-EBIoT is slightly more than 

ACO, but the execution time of Q-ACO is much higher than 

that of Q-EBIoT and ACO. This is due to the consideration of 

all the nodes in the network during repairing procedure in Q-

ACO.  

   
              (a)                                                        (b)    

    Fig. 6. (a) Execution time/communication round (a) density, (b) technique 

 

Analysis of Remaining Energy-Communication Rounds:  

This metric is used for comparing the average remaining 

energy of the sensors of the network after each round. The 

comparison of average remaining energy of sensors after each 

communication rounds, between Q-EBIoT and the state-of-

the-art techniques is shown in Fig. 7(a) and (b), for 150 and 

200 nodes in the network area, respectively. It can be clearly 

observed that the average remaining energy of Q-EBIoT is 

higher as compared to the state-of-the-art techniques. Due to 

this, Q-EBIoT is capable of providing longer network lifetime 

which affirms the results shown in Fig. 2. 

  
                (a)                                                        (b)    

 
Fig. 7. Average remaining energy (a) 150 nodes, (b) 200 nodes. 

 

C. The Prototype Implementation 

In this section, the prototype implementation of the 

proposed quantum inspired energy balancing technique is 

performed in ‘INDRIYA’ testbed for wireless sensor network 

of the School of Computing, National University of Singapore 

(NUS) [32].  The testbed nodes or motes 𝑁𝑚 were configured 

for experiment via both offline and online interfaces.  The 

sensors used in these 139 motes of the testbed include WiEye, 

SBT30, SBT80 and TelosB. These motes are specialized in 
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monitoring different activities on the three floors of the school 

building, where these motes are physically deployed. The 

monitored data was accumulated at the interface system of the 

testbed. It is considered at the 2nd floor for the sink 

deployment at the center of monitoring area, whereas it 

considered at the 3rd floor in case of sink deployment at the 

edge of monitoring area. The connectivity probability among 

motes was considered approximately 1.0, due to the calculated 

predefined deployment location for motes on the three floors. 

An approximate view of the mote deployment on the three 

floors of the school. In Table VII, the physical characteristics 

of the components of motes are summarized. A precise set of 

steps followed in this prototype implementation is shown as 

workflow in Fig. 8. 

  
Table VII. Major physical components of the motes 

Components Value Components Value 

Processor 16 bit and 8 MHz Internal Flash 48 KB 

ADC 12 bit Sensitivity -95dBm 

RAM 10 KB Transceiver 250 Kbps 

RF chip TI-2420 Microcontroller TI-MSP430 
D.  

Start
 Implementing activity  

monitoring on motes

Mote selection using 

quantum prioritization 

Logging metrics on interface 

system at data accumulation    

Monitoring of 

experiment

No

Stop the 

experiments

collect logged data from 

the  interface system 

Boxplot visualization 

and analysis of results
End

Yes

Time for monitoring  

finished ?

Fig.8. The prototype implementation as workflow 
 

  
                  (a)                                                       (b)    

  
                    (c)                                                          (d)    

Fig. 9. The prototype results, (a) network lifetime, (b) energy consumption, (c) 

dead nodes, (d) execution time 

The comparison between the prototype results and results 

obtained through simulation for the proposed quantum 

computing based energy balancing technique is presented in 

Fig. 9(a)-(d). It considers four metrics including network 

lifetime, energy consumption, dead nodes, and execution time. 

It can be clearly observed that the prototype results attest 

simulation results, as the average value of metrics measured in 

prototype experiment are close to those noted in simulations. 

Specifically, it is worth noting two major points including 

smaller variance in prototype results, and the difference in 

average value for the network considering 140 motes in all the 

four considered metrics. The smaller variance in metric’s 

observation can be attributed to the single user execution 

environment in motes in case of quantum based prioritization 

in mote selection. However, simulations are affected by the 

system environments resulting in terms of larger variance in 

metric calculation. The difference in average value of metrics 

is due to the limited number of motes in INDRIYA testbed. 

The total number of motes available in the testbed is 140 

including an interface system as sink node. However, 150 

nodes are considered in simulation as larger network 

environments.  

D. Analytical Analysis 

In this section, analytical results are discussed for 

evaluating the characteristics of mathematical derivations. The 

next-hop selection probability has been measured with jointly 

increasing value of pheromone as energy and link heuristic 

information. A critical analysis has been carried out to 

measure the impact of weighting parameters on next-hop 

section probability. Fig. 10(a) shows that next-hop probability 

linearly increases with increasing pheromone as energy in case 

of approximately equal weighting parameters. Specifically, 

next-hop probability linearly increases with parameters 𝛿 =
0.55 and  𝛽 = 0.45 for pheromone as energy and link 

heuristic, respectively. The rate of increment of next-hop 

selection probability becomes higher with the increase of 

parameter 𝛿 of pheromone as energy in comparison with the 

parameter 𝛽 of link heuristic. In particularly, with weighting 

parameters = 0.65 and  𝛽 = 0.35shown in Fig. 4(c), It can be 

clearly observed that the rate of increment in next-hop 

probability is leading towards exponential increment until it 

reaches to 1. Moreover, it is also highlighted that with given 

weighting parameters 𝛿 and 𝛽 and pheromone as energy, the 

increase in link heuristic has negligible impact on next-hop 

probability. Thus, it can be concluded that next-hop 

probability is majorly depended on weighting parameters and 

pheromone as energy. 

  
                   (a)                                                             (b) 

Fig. 10. The impact of weighting parameters 𝛿 and  𝛽 on next-hop probability 
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VI. CONCLUSION  

In this paper, a novel quantum based green communication 

framework (Q-EBIoT) has been presented for solving the 

energy optimization problem in IoT. The quantum measuring 

operator has been modified for energy oriented the problem in 

IoT. A method for computing the value of 𝛥𝜃 has been 

developed for energy balanced routing. The experimental 

evaluation shows that Q-EBIoT performs better than both 

ACO and Q-ACO. The inherent parallelism of quantum 

computing provides better quality solutions, even with a 

smaller population size. Due to the modified measuring 

procedure, Q-EBIoT provides better solution in efficient time 

as compared to Q-ACO. The proposal significantly increases 

the network lifetime. In future research, authors will explore 

Q-EBIoT with other metaheuristic implementation of quantum 

computing for green communication in IoT environments. 
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