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Fréchet spaces of general Dirichlet series

Andreas Defant* Tomás Fernández Vidal† Ingo Schoolmann‡ Pablo Sevilla-Peris§

Abstract

Inspired by a recent article on Fréchet spaces of ordinary Dirichlet series ∑ann−s due to J. Bonet,
we study topological and geometrical properties of certain scales of Fréchet spaces of general Dirich-
let spaces ∑ane−λns. More precisely, fixing a frequency λ = (λn), we focus on the Fréchet space of
λ -Dirichlet series which have limit functions bounded on all half planes strictly smaller than the right
half plane [Re > 0]. We develop an abstract setting of pre-Fréchet spaces of λ -Dirichlet series gen-
erated by certain admissible normed spaces of λ -Dirichlet series and the abscissas of convergence
they generate, which allows also to define Fréchet spaces of λ -Dirichlet series for which ane−λn/k for
each k equals the Fourier coefficients of a function on an appropriate λ -Dirichlet group.

1 Introduction

Given a frequency λ = (λn), i.e. a strictly increasing unbounded sequence of nonnegative real numbers,
a λ -Dirichlet series is a (formal) series of the form D = ∑ane−λns, where s is a complex variable and
the an ∈ C the Dirichlet coefficients. It is a well known fact that general Dirichlet series naturally con-
verge on half planes [Re > σ ], and there they define holomorphic functions (see [17, Theorem 2] or [23,
Lemma 4.1.1]).
The study of these series has a long history initiated at the beginning of the 20th century by prominent
mathematicians like H. Bohr, G.H. Hardy, and M. Riesz, among others. One of their main contributions
was the study of the analytic properties of the functions defined by general Dirichlet series. The most
important example of a frequency is certainly given by λ = (logn), leading to ordinary Dirichlet series
∑ann−s, which play a fundamental role in analytic number theory.

In recent years there has been a revival of interest in the interplay between analysis and Dirichlet
series opened up by those early contributions. This ‘modern theory of Dirichlet series’ mainly focuses
on the study of ordinary series, which involves the intertwining of classical work with modern analysis –
like functional analysis, harmonic analysis, infinite dimensional holomorphy, probability theory, as well
as analytic number theory.
The space of Dirichlet series that define a bounded holomorphic function on [Re > 0] plays a major
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role within this modern approach. Bonet in [7] defined and studied the Fréchet space of all (ordinary)
Dirichlet series which converge (and hence define a holomorphic function) on [Re > 0] and are bounded
on every smaller half plane [Re > σ ] for σ > 0. Given a frequency λ , the space D∞(λ ) of all λ -Dirichlet
series that define a bounded holomorphic function on [Re > 0] was defined in [26]. Inspired by the work
of Bonet, in this article we focus on the space D∞,+(λ ) of all λ -Dirichlet series that on [Re > 0] converge
to a (then necessarily holomorphic) function which is bounded on each half plane [Re > σ ] with σ > 0.
Carrying its natural topological structure, this space D∞,+(λ ) is a pre-Fréchet space which (as we
will see) in general fails to be a Fréchet space. Bonet proved in [7] that the topological structure of
D∞,+((logn)) is rich. It is a Fréchet algebra which is a Schwartz space, and the monomials (n−s) form a
Schauder basis, but which is not nuclear. His proofs combine modern techniques from the theory of or-
dinary Dirichlet series like Bohr’s inequality or Bayart’s Montel theorem with classical results on Köthe
sequence spaces like the Grothendieck-Pietsch test for nuclearity.

Making the jump from the frequency (logn) to an arbitrary frequency reveals challenging conse-
quences. For example, much of the theory for ordinary series relies on ‘Bohr’s theorem’, which in
particular implies that each ordinary Dirichlet series which converges to a bounded function on some
half plane [Re > σ ], in fact converges uniformly on each smaller half plane [Re > µ] with µ > σ . How-
ever, for general Dirichlet series, it is known that the validity of Bohr’s theorem depends very much on
the ‘structure’ of the frequency (see Section 3.4).
As a consequence, for Dirichlet series build over an arbitrary frequency λ , the general occurrence for
D∞,+(λ ) is much more complex. To illustrate this, consider the frequency λ = (n). Then, looking at the
change of variables s ∈ [Re > 0] ! z = e−s ∈ D, each Dirichlet series ∑ane−ns is transformed into a
power series ∑anzn. It turns out that D∞,+((n)) is nothing else than the nuclear Fréchet space H(D) of all
holomorphic functions f : D→ C (with the topology of uniform convergence on compact sets). In par-
ticular, D∞,+((n)) is isomorphic to a countable projective limit of Banach spaces, all isometrically equal
to the Hardy space H∞(T), which relates its study with Fourier analysis on a compact abelian group.
A third natural example of frequency is λ = (log pn), where pn stands for the nth prime. We show that
for this frequency D∞,+(λ ) is a Fréchet space that, by a result of Bohr, may be identified with a Köthe
echelon space (a projective limit of countably many weighted `1-spaces) which, though Schwartz, again
fails to be nuclear.

One of our main purposes here is to clarify the situation, studying the structure of the pre-Fréchet
spaces D∞,+(λ ) depending on the frequency λ . First of all we see that these are always Schwartz.
Then we focus on the following properties: completeness, barrelledness, Montel, the monomials being
a Schauder basis and nuclearity. We show that for D∞,+(λ ) the first three properties are equivalent, and
that they hold if and only if Bohr’s theorem holds for λ and in this case, the space can be identified with
a countable projective limit of certain Hardy spaces on so-called Dirichlet groups and the limit functions
defined by the Dirichlet series in D∞,+(λ ) have a natural description in terms of uniformly almost pe-
riodic functions on the right half plane. The monomials are a Schauder basis whenever Bohr’s theorem
holds for λ . Finally we also characterise those frequencies for which the space D∞,+(λ ) is nuclear.
We present a more general setting, which allows to study various similar types of (pre-)Fréchet spaces of
general Dirichlet series with similar ideas. Fixing a frequency λ , the idea is to study (pre-)Fréchet spaces
of λ -Dirichlet series which are generated by what we call a ‘λ -admissible’ normed space of λ -Dirichlet
series. This allows to incorporate not only D∞,+(λ ) in our study, but also Hardy-type Fréchet spaces
generated by Hp(λ ) with 1≤ p≤ ∞, following what was done in [15].
One of our main tools is the representation of our pre-Fréchet spaces as countable projective limits of
their natural ‘Banach space precursors’ (D∞(λ ) and Hp(λ )). In this sense our article continues a series
of recent articles on general Dirichlet series (see [8, 11, 14, 26, 25]), which combine classical results
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from the deep analysis presented by Hardy and Riesz in [17], with various topics from modern analysis
(as complex analysis, functional analysis in Banach and Fréchet spaces, Fourier analysis on R, or har-
monic analysis on compact abelian groups).

Finally, we remark that the study on Fréchet spaces of general Dirichlet series undertaken here,
forces us to consider independently interesting issues within related Banach spaces – such as the hy-
percontractivity of translation operators, or Montel-type theorems for Banach spaces of uniformly λ -
almost-periodic functions and for Hardy-type spaces of λ -Dirichlet series.

2 Preliminaries

We collect the basic results on Dirichlet series and Fréchet spaces needed in following.

2.1 Dirichlet series

We begin with a short account of the basic facts on general Dirichlet series that will be needed along the
article. We refer the reader to [9, 17, 23] for the basics on ordinary and general Dirichlet series.
Given a frequency λ , all (formal) λ -Dirichlet series ∑ane−λns are denoted by D(λ ). The following
‘abscissas’ rule the convergence theory of general Dirichlet series D = ∑ane−λns:

σc(D) = inf{σ ∈ R : D converges on [Re > σ ]},
σa(D) = inf{σ ∈ R : D converges absolutely on [Re > σ ]},
σu(D) = inf{σ ∈ R : D converges uniformly on [Re > σ ]},

σb(D) = inf{σ ∈ R : D converges and defines a bounded function on [Re > σ ]} .

By definition σc(D) ≤ σb(D) ≤ σu(D) ≤ σa(D), and in general all these abscissas differ. Let us recall
once again that a general Dirichlet series D=∑ane−λns defines a holomorphic functions on the half plane
[Re > σc(D)].

Another important, say geometric, value associated to a frequency λ is the maximal width of the
strip of convergence and non absolutely convergence, that is

L(λ ) := sup
D∈D(λ )

σa(D)−σc(D),

which, as shown by Bohr in [6, §3, Hilfssatz 2 and 3], can be computed as follows

L(λ ) = σc
(

∑e−λns
)
= limsup

n→∞

log(n)
λn

.

As we already pointed out earlier, fulfilling Bohr’s theorem is one of the key properties within the
theory. Let us succinctly explain what does that mean. Let Dext

∞ (λ ) denote the space of λ -Dirichlet
series that converge somewhere, and whose limit function extends to a bounded holomorphic function
on [Re > 0]. Then the frequency λ is said to satisfy ‘Bohr’s theorem’ (or that Bohr’s theorem holds for
λ ) if σu(D)≤ 0 for every D ∈Dext

∞ (λ ).
The question then is to find conditions on λ so that this property holds. The first one to address this
question was Bohr (thus explaining the name), who in [5] isolated a concrete sufficient condition which
roughly speaking prevents the λns from getting too close too fast. More precisely, he showed that if λ

satisfies what we now call ‘Bohr’s condition’:

∃ l = l(λ )> 0 ∀ δ > 0 ∃C > 0 ∀ n ∈ N : λn+1−λn ≥Ce−(l+δ )λn , (BC)
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then it satisfies Bohr’s theorem. Note that λ = (logn) satisfies (BC) with l = 1 and, then, Bohr’s theorem
holds for ordinary Dirichlet series. This is one of the fundamental tools within the theory of ordinary
Dirichlet series (see [9, Theorem 1.13] or [23, Theorem 6.2.2]).
Later Landau in [20] improved Bohr’s result by showing that the weaker condition

∀ δ > 0 ∃C > 0 ∀ n ∈ N : λn+1−λn ≥Ce−eδλn
. (LC)

is also sufficient for Bohr’s theorem. Observe that (BC) implies (LC), and that the frequencies λ =
((logn)α) satisfy (LC) for every α > 0 but for example λ = (

√
logn) (i.e. α = 1/2) fails (BC).

We know (see e.g. [26, Remark 4.8]) that Bohr’s theorem holds for λ in each of the following ‘testable’
cases:

• λ is Q-linearly independent,

• L(λ ) := limsupn→∞

logn
λn

= 0,

• λ fulfills (LC) (and in particular, if it fulfills (BC)).

Then, Bohr’s theorem holds for the frequencies λ = (log pn) (because it is Q-l.i.), λ = (n) (for which
L(λ ) = 0) and λ = ((logn)α) for α > 0 (since, as we just mentioned, it satisfies (LC)). Recently some
other sufficient conditions have been found by Bayart [3, Section 4.2].

2.2 Fréchet spaces

We collect here some basic definitions and facts on Fréchet spaces that we need all along this article –
all results mentioned are included in the monographs [16, 19, 21].

Let E be vector space and P a family of seminorms satisfying the following two conditions: first,
for every x ∈ E there is p ∈P so that p(x) 6= 0 and, second, that for all p1, p2 ∈P there is some c > 0
and p ∈P with max(p1(x), p2(x)) ≤ cp(x) for every x ∈ E. Then the pair (E,P) defines a (locally
convex Hausdorff) topology on E in the following way. A set O ⊂ E is open whenever for each x ∈ O
there are p ∈P and ε > 0 so that {y ∈ E : p(x− y)< ε} ⊆ O.
A net (xα) in (E,P) is Cauchy if for each p ∈P and each ε > 0 there is some α0 such that for all
α1,α2 > α0 we have p(xα1−xα2)< ε . A locally convex space is said to be complete if every Cauchy net
in E is convergent.

For each seminorm p ∈P we consider the normed space (Ep,‖ r‖p) given by

Ep := E/ker p and
∥∥x+ker p

∥∥
p := p(x) ,

and for all p,q∈P for which there is some c > 0 such that q≤ cp, we may define the (so-called) linking
maps

πp,q : Ep→ Eq by x+ker p 7→ x+kerq ,

which are all linear with norm ≤ c.
Then, E is called Schwartz (resp. nuclear) if for every q ∈P there are p ∈P and c > 0 with q ≤ cp
such that πp,q : Ep→ Eq is precompact (resp. nuclear). Recall that a (bounded, linear) operator u : X→Y
between normed spaces is precompact whenever u maps the unit ball of X into a precompact set of Y ,
and it is is nuclear whenever there are sequences (x∗n) in X∗ and (yn) in Y such that ∑n ‖x∗n‖‖yn‖< ∞ and
u(x) = ∑n x∗n(x)yn for all x ∈ X .

A locally convex space (E,P) is
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• barrelled if every barrel set (i.e., every absolutely convex, closed, and absorbing set in E) is a zero-
neighbourhood, or equivalently, if it satisfies the uniform boundedness principle (every pointwise
bounded set of continuous operators from E into some locally convex space F is equicontinuous).

• semi Montel if every bounded set is relatively compact.

• Montel if it is barrelled and semi-Montel.

• pre-Fréchet if P = {pk : k ∈ N} is countable, and in this case we may assume without loss of
generality that the seminorms are increasing.

• Fréchet if it is pre-Fréchet and complete.

A standard argument shows that the locally convex topology of a pre-Fréchet space is given by a trans-
lation invariant metric. It is important to note that every Fréchet space is barreled, and that Fréchet-
Schwartz spaces are Montel.

A sequence (en)n in a locally convex space E is a Schauder basis if for every x ∈ E there is a unique
sequence (αn)n of scalars such that x = ∑

∞
n=1 αnen. In this case all coefficient functionals e∗n defined by

e∗n(x) = αn are continuous. If (en) is a Schauder basis of a Fréchet (or more generally barreled) space
(E,P), then for every p ∈P there is q ∈P and a constant C > 0 such that for every M ≥ N and every
complex sequences (αn)

p
( N

∑
n=1

αnen
)
≤C q

( M

∑
n=1

αnen
)
. (1)

Let (Xk)k be a (countable) family of normed spaces and, for each k consider a bounded linear operator
ik : Xk+1→ Xk. Then the pair (

Xk, ik
)

k∈N

is called a countable projective spectrum. The projective limit projXk is defined to be the topological
subspace of ∏k Xk consisting of those (xk) so that ik(xk+1) = xk for every k. If we denote by πn the
canonical projection from projXk to Xn, then

pn(x) = max
1≤m≤n

‖πm(x)‖Xm (2)

defines a seminorm on projXk. It is easy to see that the collection of all these seminorms generates a
locally convex topology on projXk that coincides with the one induced by ∏Xk. Hence the projective
limit of countably many normed spaces is always a pre-Fréchet space. If every Xk is Banach, then ∏k Xk
is complete and, then so also is the closed subspace projXk (then a Fréchet space).
To see an example, we recall that a real matrix A = (a jk)

∞
j,k=1 is said to be a (positive) Köthe matrix,

whenever 0 < a jk < a j,k+1 for all k, j. Then, given 1≤ p < ∞, each of the weighted `p-spaces

`p((a j,k)
∞
j=1) =

{
x ∈ CN : ‖x‖k =

( ∞

∑
j=1
|a jkx j|p

) 1
p
< ∞

}
for k ∈N is obviously isometrically isomorphic to `p. Together with the canonical inclusions these form
a countable projective spectrum which defines the Fréchet space

`p(A) = proj`p((a j,k)
∞
j=1) =

{
x ∈ CN : ‖x‖k =

( ∞

∑
j=1
|a jkx j|p

) 1
p
< ∞ for k ∈ N

}
. (3)

Replacing `p by the space c0 of null sequences and proceeding in the same way c0(A) is defined.
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Remark 2.1. Assume that
(
Xk, ik

)
k∈N and

(
Yk, jk

)
k∈N are two projective spectra of normed spaces, and

denote by πm and ρm (for each m) the corresponding projection into Xm and Ym. If we have a family of
bounded operators {Sk : Xk→ Yk}k satisfying Sk ◦ ik = jk ◦Sk+1 for each k, then the operator

S : projXk→ projYk given by (xk) 7→ (Skxk)

is obviously well defined. It is also continuous, since for each m we have ρm ◦S = Sm ◦πm. Clearly, if all
Sk are continuous bijections with continuous inverse, then S is an isomorphism of pre-Fréchet spaces.

Remark 2.2. If in a projective limit X = projXk we consider the canonical seminorm defined in (2),
it is easily seen that Xpn =

⊕n
k=1 Xk holds isometrically. Taking the cartesian product of finitely many

precompact (resp. nuclear) operators in Banach spaces again leads to a precompact (resp. nuclear)
operator. As a consequence, X is Schwartz (resp. nuclear) whenever for each k there is m > k such that
the canonical mapping from Xm into Xk given by im,k = im−1 ◦ · · · ◦ ik is precompact (resp. nuclear).

3 Banach space protagonists

Here we recall some definitions and facts on the ’underlying Banach spaces’ of the Fréchet spaces of
λ -Dirichlet series, which we later intend to study. In Section 3.3 we add new information on Hardy
spaces of general Dirichlet series, which seems of independent interest.

3.1 Hardy spaces

As we have already seen, D∞(λ ) is perhaps the most important space within the theory of general Dirich-
let series; but it is not the only one. There is also the scale of Hardy spaces Hp(λ ) of Dirichlet series,
which was introduced in [11].
Given a frequency, a λ -Dirichlet polynomial is just a finite λ -Dirichlet series ∑

N
n=1 ane−λns. For every

such polynomial and 1≤ p < ∞ (
lim

T→∞

1
2T

∫ T

−T

∣∣∣ N

∑
n=1

ane−λnit
∣∣∣pdt

) 1
p

exists, and in this way one defines a norm on the space of all λ -Dirichlet polynomial. The Hardy space
Hp(λ ) is defined as the completion of this space.
This definition makes the space difficult to handle. There is however a different, more convenient ap-
proach that links these spaces with Fourier analysis on groups (see [12, Section 3]). This requires a little
bit of preparation.

Following standard notation, given a topological group G, we denote by Ĝ its dual group of all
characters (i.e., all continuous homomorphisms γ : G→T). If β : G→H is a continuous homomorphism
between two such groups, then the dual map β̂ : Ĝ → Ĥ is given by β̂ = γ ◦ β . If G is the group
R= (R,+,τ) endowed with its canonical topology τ , then all characters are of the form t 7→ e−ixt , where
x ∈ R .
Now, let G be a compact abelian group and β : R→ G a continuous homomorphism with dense range.
Then for every character γ ∈ Ĝ there is a (by density unique) x ∈ R so that γ ◦β (t) = e−itx for all t ∈ R.
For simplicity we write γ = hx, and get

Ĝ = {hx : x ∈ β̂ (Ĝ)} .
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In other terms, this identifies Ĝ and β̂ (Ĝ), and the characters γ = hx in Ĝ have a unique ‘real index’
x ∈ β̂ (Ĝ).
With this, the pair (G,β ) is said to be a λ -Dirichlet group if for every n ∈N there is a (unique) character
γ ∈ Ĝ so that γ = hλn . A more detailed account on this subject can be found in [11, 12].

For every frequency such an object exists. The Bohr compactification R := ̂(R,+,d) of R with d the
discrete topology together with the embedding βR : R ↪→ R given by x 7→

[
t 7→ e−ixt

]
, forms a Dirichlet

group, which obviously for any arbitrary frequency λ serves as a λ -Dirichlet group. Below we indicate
that special λ s often allow λ -Dirichlet groups which are more adjusted to the concrete structure of the
sequence.

Given a λ -Dirichlet group (G,β ) and 1 ≤ p ≤ ∞, the Hardy space Hλ
p (G) is defined as the closed

subspace of Lp(G) = Lp(G,µ,) (where µ is the Haar measure on G) consisting of those f whose Fourier
coefficients

f̂ (hx) =
∫

G
f (t)hx(t)dµ(t)

are 0 whenever x 6∈ {λn : n ∈ N}. With this the space Hp(λ ) is defined as

Hp(λ ) =
{
∑ane−λns : there is (a unique) f ∈ Hλ

p (G), with an = f̂ (hλn) for all n ∈ N
}
,

and the definition does not depend on the choice of the λ -Dirichlet group [11, Theorem 3.24]. This is a
Banach space with the norm given by

∥∥∑ane−λns
∥∥

Hp(λ )
= ‖ f‖Lp(G), whenever ∑ane−λns and f are re-

lated to each other. Let us note that for 1≤ p < ∞ this Banach space coincides with the definition that we
gave above (see [12, Theorem 3.26]) – but, moreover, in this way we have a proper definition for H∞(λ ).

We finish this section by describing λ -Dirichlet groups for some of our basic examples of frequen-
cies, and what do the corresponding Hardy spaces look like. For λ = (logn) we denote by p= (pn) the
sequence of prime numbers. Then the infinite dimensional torus T∞ := ∏

∞
n=1T (with its natural group

structure) together with the so-called Kronecker flow

βT∞ : R→ T∞ defined as t 7→ p−it = (2−it ,3−it ,5−it , . . .),

gives a (logn)-Dirichlet group. Then f ∈ H(logn)
p (T∞) if and only if f ∈ Lp(T∞) and the Fourier coeffi-

cient f̂ (α) = 0 for any finite sequence α = (αk) of integers with αk < 0 for some k. In other terms,

Hp(T∞) := H(logn)
p (T∞) = Hp((logn))

holds isometrically, and hlogn = zα whenever n= pα . So the above definition of Hp(λ ) actually coincides
with Bayart’s definition of Hp((logn)) in the ordinary case given in [2].
The second example is the frequency λ = (n) = (0,1,2, . . .). Then G := T together with βT(t) := e−it is
a (n)-Dirichlet group, and Hp((n)) equals the classical Hardy space Hp(T) := H(n)

p (T).

3.2 Almost periodic functions

A continuous function g : R→C is said to be uniformly almost periodic if for every ε > 0 there is ` > 0
so that for every interval I ⊆ R of length ` there exists τ ∈ I such that

sup
x∈R
|g(x)−g(x+ τ)|< ε .
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Equivalently, a continuous function g : R→C is uniformly almost periodic if and only if it is the uniform
limit of trigonometric polynomials of the form ∑

N
n=1 axne−itxn , where xn ∈ R (see [4, Chapter 1, §5,

2◦ Theorem, p. 29]).
A continuous function f : [Re > σ0]→ C is said to be uniformly almost periodic if for every σ > σ0
the function R→ C defined as t 7→ f (σ + it) (which we also will sometimes denote by fσ = f (σ + i r))
is uniformly almost periodic. Given f : [Re > σ0]→ C, bounded, holomorphic and uniformly almost
periodic, for each x ∈ R the corresponding Bohr coefficient is defined as

ax( f ) = lim
T→∞

1
2T

∫ T

−T
f (σ + it)e(σ+it)xdt , (4)

where the integral is convergent for every σ > σ0 and independent of each such σ (see [4, page 147]).
These coefficients are 0 except for at most countably many x, and f = 0 if and only if ax( f ) = 0 for every
x (see [4, pages 148 and 18]). The reader is referred to [4] for more details on almost periodic functions.

With all this, for a given frequency λ , the space Hλ
∞ [Re > 0] is defined in [13, Definition 2.15] as

consisting of those functions f : [Re > 0]→ C which are bounded, holomorphic, and uniformly almost
periodic such that ax( f ) = 0 unless x = λn for some n.

The following result from [13, Theorem 2.16] characterizes the limit functions of Dirichlet series in
H∞(λ ) in terms of almost periodicity.

Theorem 3.1. For every frequency λ the identification f 7→∑aλn( f )e−λns defines an isometric bijection

Hλ
∞ [Re > 0] = H∞(λ )

preserving Bohr and Dirichlet coefficients.

3.3 Montel theorems

Bayart showed in [2, Lemma 18] that if
(

∑aN
n n−s

)
N is a bounded sequence in D∞((logn)), then there

is a subsequence (Nk)k and a Dirichlet series ∑ann−s ∈ D∞((logn)) so that
(

∑aNk
n n−s

)
k converges to

∑ann−s uniformly on [Re > σ ] for every σ > 0. This result, often known as Bayart’s Montel theorem
for Dirichlet series, has become one of the cornerstones of the modern, functional-analytic approach to
ordinary Dirichlet series (see [9, Theorem 3.11] or [23, Theorem 6.3.1]).
Extending this to general Dirichlet series and to spaces other than D∞(λ ) has been a major concern. It
is known that such a result holds for D∞(λ ) if and only if Bohr’s theorem holds for λ (see Theorem 3.8
below). As for Hardy spaces, [14, Theorem 5.8] shows that an analogous result holds for Hp(λ ) (with
1≤ p≤ ∞) if the frequency satisfies Bohr’s theorem. We show now that this assumption is actually not
needed, and that such a Montel-type theorem in fact holds for every frequency. This is one of our main
tools, and it seems of independent interest for the structure theory of Hardy spaces of general Dirichlet
series .

Theorem 3.2. Let λ = (λn) be a frequency and 1≤ p≤∞. For every bounded sequence
(

∑a(N)
n e−λns

)
N

in Hp(λ ), there exists a subsequence (Nk)k and a λ -Dirichlet series ∑ane−λns ∈Hp(λ ) so that

lim
k→∞

∑a(Nk)
n e−λnσ e−λns = ∑ane−λnσ e−λns

in Hp(λ ) for every σ > 0.
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As a matter of fact, we prove a more general result for uniformly almost periodic functions (Theo-
rem 3.4), from which this follows. We need some preliminary work. We begin by fixing some notation
and collecting basic properties of the main tools that we are going to use. All of them are rather stan-
dard, and can be found in several monographs, like e.g. [22, 24]. First of all, the Fourier transform of a
function f ∈ L1(R) is denoted either by F ( f ) or f̂ and is defined as

F ( f )(t) = f̂ (t) =
∫ +∞

−∞

f (t)e−itxdx ,

for t ∈ R. The Féjer kernel is defined, for x > 0, as

Kx(t) =
1

2πx

(sin(xt/2)
t/2

)2

for t ∈R. These belong to L1(R) and ‖Kx‖1 = 1 for every x. The family {Kx}x>0 is a summability kernel
(i.e. Kx ∗ f → f in L1(R) as x→ ∞ for every f ∈ L1(R)). Also it is not difficult to check that

K̂x(t) =
(

1− |t|
x

)
χ[−x,x](t) , (5)

where χA denotes the indicator function of the set A. The Poisson kernel is defined for σ > 0 as

Pσ (t) =
1
π

σ

t2 +σ2

for t ∈ R. Again, this belongs to L1(R) with ‖Pσ‖1 = 1, and for every σ , t

P̂σ (t) = e−|t|σ . (6)

Finally, given a frequency λ and D = ∑ane−λns ∈D(λ ), for each x > 0 the corresponding Riesz mean
of D of order 1 (see [13]) is given by

Rλ
x (D) = ∑

λn<x
an
(
1− λn

x

)
e−λns .

Since every f ∈ Hλ
∞ [Re > 0] formally defines the Dirichlet series D = ∑aλn( f )e−λns, the Riesz mean of

f of length x and order 1 is given by the entire function

Rλ
x ( f )(s) = ∑

λn<x
aλn( f )

(
1− λn

x

)
e−λns .

Let us note that, for a given λ -Dirichlet series D = ∑ane−λns, the result [26, Lemma 3.8] shows

inf
{

σ ∈ R : (Rλ
x (D))x converges uniformly on [Re > σ ]

}
≤ limsup

x→∞

log
(

supRes>0

∣∣Rx(D)(s)
∣∣)

x
. (7)

With this we have at hand everything we need to proceed. We begin by isolating some observations.

Lemma 3.3. Let λ = (λn) be an arbitrary frequency, and f ∈ Hλ
∞ [Re > 0].

(i) For all σ ,ε,x > 0 and t ∈ R we have

Rλ
x ( f )(σ + ε + it) = ( fε ∗Pσ ∗Kx)(t) . (8)
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(ii) ‖Rλ
x ( f )‖∞ ≤ ‖ f‖∞ for every x > 0. In particular, (Rλ

x ( f ))x converges uniformly to f on all half-
planes [Re > σ ], σ > 0.

(iii)
(

supRes=σ | f (s)|
)

σ>0 is decreasing in σ > 0, and ‖ f‖∞ = limσ→0 supRes=σ | f (s)| .

(iv) For all σ > 0 we have
sup

Res≥σ

| f (s)|= sup
Res=σ

| f (s)| .

Proof. (i) Let us take in first place a λ -polynomial Q(t) = ∑n∈F cne−λnit , where F is finite. Then, for
fixed σ > 0 and t ∈ R we have, using (5) and (6)

(Q∗Pσ ∗Kx)(t) = ∑
n∈F

cne−λnitF (Pσ ∗Kx)(λn) = ∑
n∈F

cne−λnit P̂σ (λn)K̂x(λn)

= ∑
n∈F

cne−λnite−λnσ

(
1− λn

x

)
χ[−x,x](λn) = ∑

n∈F
λn<x

cne−λn(σ+it)
(

1− λn

x

)
.

(9)

Fix now ε > 0. Since fε is uniformly almost periodic, there exists a sequence (Qε
N)N of λ -polynomials

that converge to fε uniformly on [Re > 0]. Moreover,

lim
N→∞

aλn(Q
ε
N) = aλn( fε) = aλn( f )e−ελn

for every n. Hence, applying (9) (for Qε
N) and letting N→ ∞ yields the claim in (8).

In order to prove (ii), let us note that (8) immediately implies

sup
t∈R
|Rλ

x ( f )(σ + ε + it)| ≤ ‖ fε‖∞‖Pσ‖1‖Kx‖1 ≤ ‖ f‖∞ .

Tending ε,σ → 0 we obtain the claim. The uniform convergence on half-planes follows immediately
from (7), and the fact that the Bohr coefficients determine uniquely an almost periodic function (see [4]).
Since the Riesz means are finite sums we have (see [26, Section 2] or [9, Lemma 1.7], from which the
argument can be adapted)

sup
Res=σ

∣∣Rλ
x ( f )(s)

∣∣= sup
Res≥σ

∣∣Rλ
x ( f )(s)

∣∣ .
This gives

sup
t∈R

∣∣Rλ
x ( f )(µ + it)

∣∣≤ sup
t∈R

∣∣Rλ
x ( f )(σ + it)

∣∣ ,
for 0 < σ < µ , and (iii) follows from (ii). Once we have this, (iv) follows immediately from the
fact that f (σ + r) is uniformly almost periodic, that supRes=ρ | f (s)| increases as ρ → σ+ and that
supRes=σ | f (s)|< ∞.

We now proceed to the announced Montel-type theorem for Hλ
∞ [Re > 0].

Theorem 3.4. Let λ be an arbitrary frequency. For every bounded sequence ( fN)N in Hλ
∞ [Re > 0], there

is a subsequence ( fNk)k and f ∈ Hλ
∞ [Re > 0] such that fNk(σ + r)→ f (σ + r) in Hλ

∞ [Re > 0] for every
σ > 0.

Proof. Since |aλn( fN)| ≤ ‖ fN‖∞ ≤ supN ‖ fN‖∞ < ∞ for all n and N, a standard diagonal process provides
us with a subsequence (Nk)k so that

(
aλn( fNk)

)
k converges (in C) for every n as k→ ∞. Define

aλn := lim
k→∞

aλn( fNk)
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for each n. Using Lemma 3.3–(ii) we conclude that∣∣∣ ∑
λn<x

aλne−λnσ
(
1− λn

x

)
e−iλnt

∣∣∣= lim
k→∞

|Rλ
x ( fNk)(σ + it)| ≤ sup

N
‖ fN‖∞ ,

for every x > 0, t ∈ R and σ > 0. Then (7) gives

s 7→ ∑
λn<x

aλn

(
1− λn

x

)
e−λns

converges as x→ ∞ uniformly on every half plane [Re > σ ] with σ > 0, and let us denote the limit
function by f . The uniform convergence on half planes easily gives that f ∈ Hλ

∞ [Re > 0] with Bohr
coefficients aλn( f ) = aλn , and it only remains to see that limk→∞ fNk(σ + r) = f (σ + r) in Hλ

∞ [Re > 0] for
every σ > 0. Therefore fix σ > 0 and observe that, by Lemma 3.3–(iv) it suffices to check that

lim
k→∞

sup
t∈R
| fNk(σ + it)− f (σ + it)|= 0 .

Let us note first that by Lemma 3.3–(ii) letting x→ ∞ in (8) gives gσ/2 ∗Pσ/2 = g(σ + i r) for every
g ∈ Hλ

∞ [Re > 0]. This, together with Lemma 3.3–(i) yields,

sup
t∈R
|Rλ

x (g)(σ + it)−g(σ + it)|= sup
t∈R
|gσ/2 ∗Pσ/2 ∗Kx(t)−gσ/2∗Pσ/2(t)|

≤ ‖g‖∞‖Pσ/2−Pσ/2 ∗Kx‖L1(R) .

for every such g and x > 0. Being (Kx)x a summability kernel, the latter term tends to 0 as x→∞. Hence,
given ε > 0 we can find x0 so that for all x > x0

sup
t∈R
| f (σ + it)−Rλ

x ( f )(σ + it)| ≤ ε

3

sup
N∈N

sup
t∈R
| fN(σ + it)−Rλ

x ( fN)(σ + it)| ≤ ε

3
.

On the other hand, since limk→∞ aλn( fNk) = aλn for every n, fixing x = 2x0 we may find k0 so that

∑
λn<x
|aλn−aλn( fNk)| ≤

ε

3
,

for every k ≥ k0. Joining all this together, given k ≥ k0 and t ∈ R we have

| f (σ + it)− fNk(σ + it)|
≤ | f (σ + it)−Rλ

x ( f )(σ + it)|+ |Rλ
x ( f )(σ + it)−Rλ

x ( fNk)(σ + it)|+ | f (σ + it)−Rλ
x ( fNk)(σ + it)| ,

and the previous three estimates complete the proof.

We go now for a moment to vector-valued functions, considering for a given Banach space X , the
space Hλ

∞([Re > 0],X) defined in the obvious way. Also in this case X-valued almost periodic functions
on R, like in the scalar case, are uniformly approximable by X-valued almost periodic polynomials (see
[1, page 15]). Then the proof of Theorem 3.4 can be followed step by step, replacing modulus by norms
to get the following vector valued version.
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Theorem 3.5. Let λ be an arbitrary frequency and X a Banach space. Assume that ( fN)N is bounded
in Hλ

∞([Re > 0],X), and that there is a subsequence (Nk) for which
(
aλn( fNk)

)
k is convergent for all n.

Then there is f ∈ Hλ
∞([Re > 0],X) such that limk→∞ fNk(σ + r) = f (σ + r) in Hλ

∞([Re > 0],X) for every
σ > 0.

As the final ingredient for the proof of Theorem 3.2 let us recall that by [12, Lemma 4.9], for each
1≤ p < ∞ there is an isometric embedding

Ψ : Hp(λ ) ↪→ Hλ
∞([Re > 0],Hp(λ ))

so that, if f = Ψ
(

∑ane−λns
)
, then aλn( f ) = ane−λnz ∈Hp(λ ).

Proof of Theorem 3.2. The case p = ∞ follows immediately from Theorems 3.4 and 3.1. The case 1 ≤
p < ∞ is going to follow from Theorem 3.5, combined with the action of the embedding Ψ. To begin
with, let us recall that |a(N)

n | ≤ supN∈N
∥∥∑a(M)

m e−λns
∥∥

Hp(λ )
=: C for eveyr m and M. Then a diagonal

argument shows that we can find a subsequence (Nk)k so that
(
aNk

n
)

k converges for every n. Let us define

an := lim
k→∞

a(Nk)
n ,

and consider the (formal) λ -Dirichlet series ∑ane−λns. Our aim now is to check that this belongs to
Hp(λ ), and that it is the limit of the subsequence of λ -Dirichlet series.
For each N take the function fN = Ψ

(
∑a(N)

n e−λns
)

and note that

lim
k

aλn( fNk) = lim
k

a(Nk)
n e−λnz = ane−λnz

exists (in Hp(λ )) for every n. Now we can use Theorem 3.5 to find some f ∈Hλ
∞([Re > 0],Hp(λ )) such

that limk→∞ fNk(σ + r) = f (σ + r) in Hλ
∞([Re > 0],Hp(λ )) for every σ > 0 as k→ ∞.

Now, since Ψ is isometric and Ψ(∑aNk
n e−λnσ e−λns)= fNk(σ + r), the sequence ∑aNk

n e−λnσ e−λns is Cauchy
in Hp(λ ) and so converges with limit ∑ane−λnσ e−λns. Hence ∑ane−λnσ e−λns ∈Hp(λ ) for every σ > 0
with ‖∑ane−λnσ e−λns‖p ≤ C, and so by [12, Theorem 4.7] indeed ∑ane−λns ∈Hp(λ ). Moreover, the
fact that the embedding Ψ is isometric gives∥∥∥∑a(Nk)

n e−λnσ e−λns−∑ane−λnσ e−λns
∥∥∥

Hp(λ )
= ‖ f (σ + i r)− f Nk(σ + i r)‖∞ ,

for every σ > 0. This completes the proof.

Given a somewhere convergent λ -Dirichlet series D = ∑ane−λ s and σ > 0 we define the translated
series as

Dσ = ∑ane−λσ e−λ s . (10)

Note that if the first series converges at s, then so also does the translated series and Dσ (s) = D(s+σ)
(justifying the name). It is easy to see that the translation operator τσ : Hp(λ )→Hp(λ ) given by

∑ane−λns 7→∑ane−λnσ e−λns (11)

is well defined and continuous. As a straightforward consequence of Theorem 3.2 we can say more.

Corollary 3.6. For every σ > 0 and 1≤ p≤ ∞ the translation operator τσ : Hp(λ )→Hp(λ ) is com-
pact.
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We recall the following notions going back to Bohr (see [12]). An infinite matrix R = (rn
k)n,k∈N of

rational numbers is called Bohr matrix whenever each row Rn = (rn
k)k is finite, i.e. rn

k 6= 0 for only finitely
many ks. Given a sequence λ = (λn) of real numbers, a (finite or infinite) sequence B = (bk) in R is said
to be a basis for λ if it is Q-linearly independent and for each n there is a finite sequence (rn

k)k of rational
coefficients such that λn = ∑k rn

k bk. In this case, the matrix R = (rn
j )n, j is said to be a Bohr matrix of λ

with respect to the basis B. If λ is a frequency, such a basis always exists (in fact it can be chosen as a
subsequence of λ ), and if R is the associated Bohr matrix R, we write λ = (R,B). Observe that neither B
nor R need to be unique.

With this, the Nth Abschnitt (for N ∈ N) of a λ -Dirichlet series D = ∑ane−λns is the series

D|N = ∑
λn∈spanQ{b1,...,bN}

ane−λns .

To illustrate this let us note that, for ordinary Dirichlet series (i.e. λ = (logn)), the Nth Abschnitt of a
Dirichlet series is built by taking the coefficients an for which n depends only on the first N primes. It
is well known (see e.g. [9, Corollary 13.9]) that a Dirichlet series belongs to Hp((logn)) if and only if
its Nth Abschnitt belongs to Hp((logn)) for every N, and their norms (in Hp((logn))) are bounded. It
was shown in [14, Theorem 5.9] that an analogous result holds for Hp(λ ) whenever λ satisfies Bohr’s
theorem. This is an immediate consequence of [14, Theorem 5.8], a Montel-type theorem for frequencies
satisfying Bohr’s theorem. Now that we have dropped this hypothesis in Theorem 3.2, we can proceed
exactly as in [14, Theorem 5.9], to have the following version for arbitrary frequencies.

Corollary 3.7. Let λ be a frequency with a decomposition (B,R), and 1 ≤ p ≤ ∞. A λ -Dirichlet series
D belongs to Hp(λ ) if and only if D|N ∈Hp(λ ) for all N and supN ‖D|N‖Hp(λ ) < ∞. Moreover, in this
case, ‖D‖Hp(λ ) = supN ‖D|N‖Hp(λ ).

3.4 Equivalence theorem

As we have repeatedly mentioned, the space D∞(λ ) is one of the main actors within the theory of general
Dirichlet series. It consists of all ∑ane−λns which converge on [Re > 0] such that the limit function
f (s) = ∑

∞
n=1 ane−λns : [Re > 0]→ C is bounded. Together with∥∥∥∑ane−λns

∥∥∥
∞

= sup
s∈[Re>0]

| f (s)|

we obtain a normed space (see [26] or [11]). Since the limit function f of every ∑ane−λns ∈ D∞(λ )
belongs to Hλ

∞ [Re > 0] (see e.g. [26, Corollary 3.9]), where an = aλn( f ) for all n, we may identify
D∞(λ ) with the subspace of all f ∈ Hλ

∞ [Re > 0], which are represented by their Dirichlet series, that is
we have f (s) = ∑

∞
n=1 aλn( f )e−λns for every s ∈ [Re > 0]. In particular, for every ∑ane−λns ∈D∞(λ ) have

that

an = lim
T→∞

1
2T

∫ T

−T
f (σ + it)e(σ+it)λndt ,

for all n ∈ N and σ > 0, which implies

sup
n∈N
|an| ≤

∥∥∥∑ane−λns
∥∥∥

∞

. (12)

But in general (D∞(λ ),‖ r‖∞) is no Banach space, or equivalently it does not form a closed subspace of
Hλ

∞ [Re > 0] (see [26, Theorem 5.2]). The normed space D∞(λ ), and in particular the question when it is
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complete, was extensively studied in [8, 11, 14, 26, 25].

One of the celebrated results in the theory of ordinary Dirichlet series is due to Hedenmalm, Lindqvist
and Seip [18] and shows that

D∞((logn)) = H∞((logn))

isometrically and coefficient preserving. The result reflects that the theory of ordinary Dirichlet series
generating bounded, holomorphic functions on the positive half plane, is intimately linked with Fourier
analysis on the group T∞, and its proof uses Diophantine approximation just to mention one of its crucial
tools. The question of whether or not an analogous equality holds for arbitrary frequencies has also called
a deal of attention over the last years. Another important topic is Bayart’s version of Montel theorem
(see Section 3.3). The question here was to find out for which frequencies does D∞(λ ) satisfy Montel’s
theorem: every bounded sequence

(
∑aN

n e−λns
)

N of Dirichlet series in D∞(λ ) admits a subsequence (Nk)

and ∑ane−λns ∈D∞(λ ) such that
(

∑aNk
n e−λns

)
k converges to ∑ane−λns uniformly on [Re > σ ] for every

σ > 0 as k→ ∞ (or, to put it in other terms, Theorem 3.4 holds entirely for the subspace D∞(λ ) of
Hλ

∞ [Re > 0]).

All these questions were clarified in [14, Theorem 5.1], showing that actually they are all equivalent
to each other, and equivalent to λ satisfying Bohr’s theorem. We recall here the result.

Theorem 3.8. For every frequency λ the following statements are equivalent:

(i) Bohr’s theorem holds for λ ,

(ii) D∞(λ ) is a Banach space,

(iii) D∞(λ ) satisfies Montel’s theorem,

(iv) D∞(λ ) = H∞(λ ), isometrically and coefficient preserving,

(v) D∞(λ ) = Hλ
∞ [Re > 0] , isometrically and coefficient preserving.

Therefore, under the three concrete conditions given in Section 2.1 (in particular for our main exam-
ples (logn)α , (n) and (log pn)) all these statements are equivalent.

4 Pre-Fréchet spaces generated by abscissas

Following an idea from [10], we suggest an abstract approach to define certain (pre-)Fréchet spaces of
λ -Dirichlet series derived from some pre-existing normed space. In a first step, given a normed space of
λ -Dirichlet series X(λ ) (satisfying certain conditions that we explicit later), we define

• the abscissa σX(λ )(D) associated to X(λ ) for each λ -Dirichlet series D,

and then in a second step generate the

• space X+(λ ) of all λ -Dirichlet series for which σX(λ )(D) ≤ 0 (which is, as we will see, pre-
Fréchet) .

We will later apply this general procedure to study the spaces D∞,+(λ ) and Hp,+(λ ) for 1 ≤ p ≤ ∞,
generated by D∞(λ ) and the Hp(λ )s. We will also use an analogous procedure to define the space
Hλ

∞,+[Re > 0] (that consists of uniformly almost periodic functions) from Hλ
∞ [Re > 0].
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4.1 Abscissas

Given a frequency λ , we consider normed spaces X(λ ) of λ -Dirichlet series satisfying the following
three requirements:

(AS1) All monomials e−λns belong to X(λ ) and have norm 1. In particular, all λ -Dirichlet polynomials
∑

N
n=1 ane−λns belong to X(λ ), and ∥∥∥ N

∑
n=1

ane−λns
∥∥∥
X(λ )
≤

N

∑
n=1
|an| .

(AS2) All coefficient functionals X(λ )→ C given by ∑ane−λns 7→ an, are uniformly bounded. In partic-
ular, there is some C ≥ 0 such that for all λ -Dirichlet polynomials ∑

N
n=1 ane−λns we have

max
1≤n≤N

|an| ≤C
∥∥∥ N

∑
n=1

ane−λns
∥∥∥
X(λ )

.

(AS3) For every σ > 0 the translation operator

τσ : X(λ )→ X(λ ) ,

defined as in (11) is well defined and bounded.

Whenever this is the case, we say that the space X(λ ) is λ -admissible. We also define the subspace

X0(λ ) =
{

∑ane−λns ∈ X(λ ) : ∀σ > 0,
(

∑
λn<x

ane−λnσ e−λns
)

x
converges in X(λ )

}
.

This is again a λ -admissible space. Note that, if the sequence of monomials {e−λns}n constitutes a basis
of X(λ ), then X(λ ) = X0(λ ). We show now some examples of admissible spaces.

Example 4.1. Let λ be any frequency.

(a) Let us fix some Banach space X of complex sequences satisfying the following two properties:
(1) the eks form a normalised basis of X (so in particular, `1 ⊂ X ⊂ c0), and (2) if (an) ∈ X , then
(e−λnσ an) ∈ X .
Examples of such X are `p for 1≤ p < ∞ and c0. Another relevant Banach space for our purposes
is Σ, defined as the linear space of all complex sequences (an) such that ∑an converges, normed
by ‖(an)‖Σ = supN |∑N

n=1 an|. Property (1) is straightforward, and (2) may be either proved di-
rectly or by observing that, for a given (an) ∈ Σ, the Dirichlet series ∑ane−λns converges in s = 0,
hence also on [Re > 0]. Let us observe that Σ is isomorphic to c0, with the identification given by
(an) 7→

(
∑

∞
n=N an

)
N .

We define DX(λ ) as the linear space of all λ -Dirichlet series ∑ane−λns such that (an) ∈ X . To-
gether with the norm

∥∥∑ane−λns
∥∥

DX (λ )
= ‖(an)‖X it is easy to see that DX(λ ) is a λ -admissible

Banach space. Since we here (by definition) identify DX(λ ) and X as Banach spaces, the mono-
mials {e−λns}n form a basis of DX(λ ) and, in particular, DX(λ ) = D0

X(λ ).

Especially interesting for us are the λ -admissible Banach spaces D`p(λ ), DΣ(λ ) and Dc0(λ ).
Moreover, for any X as above we clearly have

D`1(λ )⊂DX(λ )⊂Dc0(λ ) .
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(b) For each 1 ≤ p ≤ ∞ the space Hp(λ ) is λ -admissible. Moreover, Hp(λ ) = H 0
p (λ ) for 1 <

p < ∞, since in this case the sequence {e−λns}n forms a basis (see [11, Theorem 4.16]). Note that
D`2(λ ) = H2(λ ) as Banach spaces (identifying (an)n with ∑ane−λns).

(c) The space D∞(λ ) is clearly a λ -admissible normed space, and if λ satisfies Bohr’s theorem (recall
Section 2.1) it coincides with D0

∞(λ ). Moreover, we have from Theorem 3.8 that D∞(λ ) =H∞(λ )
iff λ satisfies Bohr’s theorem.

Given a λ -admissible space X(λ ) the X(λ )-abscissa of an arbitrary λ -Dirichlet series D = ∑ane−λns

is defined as
σX(λ )(D) = inf

{
σ ∈ R : ∑ane−λnσ e−λns ∈ X(λ )

}
∈ [−∞,∞] . (13)

Also, the X0(λ )-abscissa (recall that this is also a λ -admissible space) of D = ∑ane−λns is the infimum
all real σ for which the partial sums

(
∑

N
1 ane−λnσ e−λns

)
N

converges in X(λ ).

Example 4.2. As in [10], the classical abscissas of convergence (recall Section 2.1) can be reformulated
in terms of abscissas of certain admissible spaces. Let λ be a frequency, and D ∈D(λ ). Then

(a) σc(D) = σDΣ(λ )(D)

(b) σa(D) = σD`1 (λ )
(D)

(c) σb(D) = σD∞(λ )(D)

(d) σu(D) = σX0(λ )(D), where X(λ ) = D∞(λ ) or H∞(λ ).

A useful tool for the understanding of such abscissas are the so-called Bohr-Cahen formulas for
σi(D) with i = c,u,a. A careful analysis of the typical proofs shows how to extend these formulas to our
abstract setting (see e.g [9, 23] and in particular [10, Proposition 2.2]), provided that X(λ ) is a Banach
space.

Proposition 4.3. Let X(λ ) be a λ -admissible Banach space of λ -Dirichlet series. Then for every D =

∑ane−λns ∈D(λ ) we have

σX0(λ )(D)≤ limsup
x→∞

log
∥∥∑λn<x ane−λns

∥∥
X(λ )

x
,

where equality holds whenever the abscissa is nonnegative.

4.2 The space

Given a λ -admissible normed space X(λ ), we define the vector space

X+(λ ) =
{

D ∈D(λ ) : σX(λ )(D)≤ 0
}
, (14)

which consists of all λ -Dirichlet series so that every translation belongs to X(λ ). Our first task now is to
endow this space with some structure. To begin with, for each k ∈ N the expression

‖D‖X(λ ),k = ‖D1/k‖X(λ ) (15)

defines a norm (recall (10) for the definition of D1/k), so that the sequence
(
‖ r‖X(λ ),k)k endows X(λ ) with

a pre-Fréchet topology. Our second step is to give a representation as a projective limit of a countable
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projective spectrum of normed spaces. In fact, we do it in two different ways.
On the one hand, for each k we consider the space

Xk(λ ) =
{

D ∈D(λ ) : D1/k ∈ X(λ )
}
, (16)

on which ‖ r‖X(λ ),k defines a norm. If ik : Xk+1(λ ) ↪→ Xk(λ ) is the canonical injection, then the pair(
Xk(λ ), ik

)
k∈N (17)

forms a countable projective spectrum of normed spaces.
On the other hand, for each k we define the mapping τk : X(λ ) ↪→X(λ ) by D 7→D 1

k−
1

k+1
. Again, the pair(

X(λ ),τk
)

k∈N , (18)

defines a countable projective spectrum of normed spaces.
Let us observe that

ϕk : Xk(λ )→ X(λ ) given by ∑ane−λns→∑ane−
λn
k e−λns (19)

is an isometric bijection, where the inverse is given by ϕ
−1
k (∑ane−λns) = ∑ane

λn
k e−λns. With this, it is

plain that the spectra defined in (17) and (18) are equivalent, in the sense that

τk ◦ϕk+1 = ϕk ◦ ik (20)

for all k (see Remark 2.1). This leads to the two announced representations of the pre-Fréchet space
X+(λ ) as a projective limit of a countable spectrum of normed spaces.

Proposition 4.4. Let λ be a frequency and X(λ ) be a λ -admissible normed space. Then X+(λ ) is a
pre-Fréchet space, which is a Fréchet space whenever X(λ ) is a Banach space. Also, the mappings

X+(λ ) = proj(Xk(λ ), ik)given by D 7→ (D)∞
k=1

and
X+(λ ) = proj(X(λ ),τk)given by D 7→ (D1/k)

∞
k=1

are isomorphisms of pre-Fréchet spaces.

Proof. By (20) (see Remark 2.1) it is enough to check this just for the first representation. We denote
the mapping by Φ, which is clearly linear and injective. By the very definition of the spectrum, if
(Dk) ∈ proj(Xk(λ ), ik), then there is some D ∈D(λ ) so that D(k) = D for every k. Note that this implies
that σX(λ )(D) ≤ 1/k for all k, hence D ∈ X+(λ ) and clearly Φ(D) = (D(k)), so that Φ is surjective.
Finally, if πk : proj(Xk(λ ), ik)→ Xk(λ ) is the canonical projection, one easily gets that both πk ◦Φ

and Φ−1 ◦π
−1
k are continuous for every k; hence both Φ and Φ−1 are continuous. This completes the

argument. If X(λ ) is complete, then the description as a projective limit yields the completeness of
X+(λ ).

Remark 4.5. Given a frequency λ , we define the Köthe matrix

A(λ ) = (e−
λn
k )∞

n,k=1 . (21)

As a consequence of Proposition 4.4 and Remark 2.1 we have

D`p,+(λ ) = `p(A(λ )) and Dc0,+(λ ) = c0(A(λ )) , (22)
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where in both cases ∑ane−λns is identified with the sequence (an)n. Note the particular case H2,+(λ ) =
`2(A). All these spaces are Fréchet-Schwartz, since diagonal operators on `p or c0 are compact whenever
the diagonal is a zero sequence (see again Remark 2.2). We show now, in a more general context, that

DΣ,+(λ ) ↪→Dc0,+(λ ) = c0(A(λ )) . (23)

(as sequence spaces), but that in contrast to (22) this inclusion in general is strict.

If X(λ ) is an admissible normed space, then by (AS2), we can find some C ≥ 1 so that

|ane−λn/k| ≤C
∥∥∑ane−λns‖X(λ ),k

for every ∑ane−λns ∈ X+(λ ) and all k. Then, given some k we can pick any k < m to have

|ane−λn/k| ≤C
∥∥∑ane−λns‖X(λ ),m|e−λn(1/k−1/m)|

This shows that (an)n ∈ c0(A(λ )) and the inclusion

X+(λ ) ↪→ c0(A(λ ))

is continuous. Taking X+(λ ) = DΣ,+(λ ) this gives the inclusion in (23). Note that, for λ = (logn), the
series ζ = ∑n−s /∈ DΣ,+(λ ) (because σDΣ(λ )(ζ ) = σc(ζ ) = 1, recall Example 4.2), but the sequence of
coefficients belongs to c0(A(logn)). This shows that the inclusion is (as we announced) in general strict.
On the other hand, if ∑ane−λns ∈D`1,+(λ ), then by (AS1), the sequence (∑N

n=1 ane−λn/ke−λns)N is Cauchy
for every k. If X(λ ) is complete, then the sequence converges and, by (AS2), it does it to ∑ane−λn/ke−λns,
that therefore belongs to X(λ ). This shows that ∑ane−λns ∈ X0

+(λ ) or, to put it in other terms

D`1,+(λ ) ↪→ X0
+(λ ) (24)

(with continuous inclusion) for every λ -admissible Banach space X(λ ). This in particular gives, for
every λ -admissible Banach space X(λ ), the canonical continuous inclusions

`1(A(λ )) = D`1,+(λ ) ↪→ X0
+(λ ) ↪→ X+(λ ) ↪→ Dc0,+(λ ) = c0(A(λ )) . (25)

This implies that, in this case, σX(λ )(D) ≤ σa(D) for every D ∈ D(λ ). In view of this, and since for
every D ∈D(λ ) we have the well know inequalities σc(D)≤ σb(D)≤ σu(D)≤ σa(D), one may wonder
if σc(D)≤ σX(λ )(D) for every λ -admissible Banach space X(λ ) and D ∈D(λ ). But this is false – take
D = ∑

1
n1/2 n−s, then σc(D) = 1/2, but σH2,+(D) = 0.

4.3 Bases

Proposition 4.6. Let X(λ ) be a λ -admissible space. Then the following are equivalent:

(i) The sequence of monomials e−λns forms a basis of X+(λ ),

(ii) X(λ ) = X0(λ ),

(iii) σX(λ )(D) = σX0(λ )(D) for all D ∈D(λ ).

In particular, if the monomials {e−λns}n are a basis of X(λ ), then they also form a basis of X+(λ ).
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Proof. Assume that (i) holds and take ∑ane−λns ∈ X(λ ) ⊂ X+(λ ). Since the monomials form a basis
of the latter, the partial sums converge to the series for every seminorm ‖ r‖X(λ ),k. That is to say that the
partial sums of ∑ane−λn/ke−λns converge (in X(λ )) to the series. This shows (ii). Clearly (ii) implies (iii).
To finish the proof suppose that (iii) holds, and let us show (i). Take ∑ane−λns ∈ X+(λ ). By assumption
σX0(λ )(D) = σX(λ )(D)≤ 0 and therefore, given any k ∈ N, we have

∑ane−λn/ke−λns ∈ X(λ ) ,

and
(

∑
N
n=1 ane−λn/k+σ e−λns

)
N

converges for every σ > 0 (and, by (AS2) it has to do it to the series
itself). Since this holds for every k we immediately have that

lim
N

N

∑
n=1

ane−λn/ke−λns = ∑ane−λn/ke−λns

in X(λ ), which by (19) implies

lim
N

N

∑
n=1

ane−λns = ∑ane−λns

in Xk(λ ) for every k. This yields the conclusion.

4.4 Nuclearity

We finish this section by figuring out when our spaces are nuclear (recall the definition in Section 2.2).
The Grothendieck-Pietsch theorem [21, Theorem 28.15] is here our main tool: a Fréchet space E with a
basis {en} and an increasing system of seminorms ‖ r‖k is nuclear if and only if for every k ∈ N there is
m ∈ N such that

∞

∑
n=1
‖en‖k‖en‖−1

m < ∞ . (26)

For the monomials (AS1) gives
∥∥e−λns‖X(λ ),k = e−

λn
k , and then (26) can be very conveniently reformu-

lated.

Lemma 4.7. Let λ be any frequency. Then L(λ ) = 0 if and only if for every k ∈ N there exists m > k so
that

∞

∑
n=1

e−λn(
1
k−

1
m ) < ∞ . (27)

Proof. Let us assume first that L(λ ) = 0. Given any k ∈N just pick some m > k and define ε = 1
2(

1
k −

1
m).

Since L(λ ) = 0 we can find nε so that logn
λn

< ε for every n≥ nε . Then

∑
n≥nε

e−λn(
1
k−

1
m ) = ∑

n≥nε

e−2λnε ≤ ∑
n≥nε

1
n2 ,

which clearly yields (27). Conversely, given any k take m > k so that (27) holds. This implies

L(λ ) = σc
(
∑e−λns)≤ 1

k
− 1

m
<

1
k
.

Since k was arbitrary, this gives L(λ ) = 0 and completes the proof.

With this we can now say quite a bit about when are the spaces nuclear.
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Proposition 4.8. Let λ be any frequency. Then the following are equivalent.

(i) L(λ ) = 0

(ii) There is a λ -admissible normed space X(λ ) such that X+(λ ) is a nuclear Fréchet space and the
monomials {e−λns}n are a basis.

(iii) For every λ -admissible Banach space X(λ ) we have that X+(λ ) is a nuclear Fréchet space and
the monomials {e−λns}n are a basis.

Moreover, in this case all Fréchet spaces X+(λ ) for all possible λ -admissible Banach spaces X(λ )
coincide, and so in particular X+(λ ) = `p(A(λ )) = c0(A(λ )) for every 1 ≤ p < ∞, where A(λ ) is the
Köthe matrix defined in (21).

Proof. As a straightforward consequence of the Grothedieck-Pietsch theorem (26) and Lemma 4.7 we
have that (ii) implies (i). Suppose now that L(λ ) = 0 and choose any λ -admissible Banach space X(λ ).
From (25) we have

`1(A(λ )) = D`1,+(λ ) ↪→ X0
+(λ ) ↪→ X+(λ ) ↪→ c0(A(λ )) .

Then Lemma 4.7 and [21, Theorem 28.16] (a consequence of the Grothendieck-Pietsch that characterises
nuclearity in Köthe spaces) imply that `1(A(λ )) = c0(A(λ )), the canonical vectors en = (δn, j) j are a basis
and the spaces are nuclear. But, then,

`1(A(λ )) = X+(λ ) = c0(A(λ )) ,

and the conclusion follows. Since the remaining implication is obvious, the proof is completed.

5 Fréchet space protagonists

We now apply the abstract approach devised in the previous section to some concrete spaces of general
Dirichlet series. This yields our main results.

5.1 Bounded Dirichlet series

In the introduction we already defined D∞,+(λ ) as the space of all λ -Dirichlet series ∑ane−λns that
on [Re > 0] converge to (a necessarily holomorphic) function which is bounded on all smaller planes
[Re > σ ]. Looking at (14), this is precisely the pre-Fréchet space generated by the λ -admissible space
D∞(λ ). Obviously D∞(λ ) is a linear subspace of D∞,+(λ ). To see that that both spaces in general are
different, note that the ordinary Dirichlet series ∑

1
n n−s = ζ (1+s) (where ζ is the Riemann zeta-function)

belongs to D∞,+((logn)), but not to D∞((logn)). This is also the case for ∑(−1)nn−s = (1−2−s)ζ (s).
Note first that by (12) for every k we have supn |ane−

λn
k | ≤

∥∥∑ane−λns
∥∥

k. This in particular shows that
the coordinate functionals ∑ane−λns 7→ aN are equicontinuous on D∞,+(λ ). Let us note that in this case
the space defined in (16) is exactly

D∞,k(λ ) :=
{
∑ane−λns ∈D(λ ) : ∑ane−

λn
k e−λns ∈D∞(λ )

}
,

endowed with the norm ∥∥∑ane−λns
∥∥

D∞(λ ),k
:=
∥∥∑ane−

λn
k e−λns

∥∥
D∞(λ )

.

Proposition 4.4 provides us with two different representations of the space D∞,+(λ ) as a projective limit
(recall the definitions in (17) and (18)).
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Proposition 5.1. Let λ be a frequency. Then D∞,+(λ ) is a pre-Fréchet Schwartz space which admits the
following representations as projective limit

D∞,+(λ ) = proj(D∞,k(λ ), ik) = proj(D∞(λ ),τk) .

Proof. The projective descriptions are immediate from Proposition 4.4. In order to see that D∞,+(λ ) is
Schwartz let us note that, by Corollary 3.6, the mappings τk : H∞(λ )→H∞(λ ) are compact for every k.
Since by Theorem 3.1 and [26, Corollary 3.9] we know that D∞(λ ) is an isometric subspace of H∞(λ ),
we immediately deduce all mappings τk : D∞(λ )→ D∞(λ ) are compact and, then, proj(D∞(λ ),τk) is
Schwartz.

We illustrate all this with an interesting example. Let λ be a Q-linearly independent frequency, and
consider the Köthe matrix A(λ ) defined in (21). From [26, Theorem 4.7] we know that

D∞,k(λ )→ `1
(
(e−

λn
k )n
)

given by ∑ann−s 7→ (an)

is an isometric isomorphism for every k. This immediately gives (see (3)) that by making the identifica-
tion ∑ann−s 7→ (an) we have

D∞,+(λ ) = `1(A(λ ))

as Fréchet spaces.

Our aim in the following sections is to study the structure of D∞,+(λ ), which in the end will yield
a sort of analogue of Theorem 3.8 (the ’equivalence theorem’) for Fréchet spaces of general Dirichlet
series.

5.1.1 Completeness

Let us recall that the proof of Theorem 3.8 (see [14, Lemma 5.2]) requires an application of the uniform
boundedness principle. Barrelled spaces is the biggest class of spaces on which the uniform boundedness
principle holds. So, when moving to the framework of locally convex spaces, barrelledness appears as a
natural property in our setting. Our next result shows that this is indeed the case, and that it gives another
equivalent reformulation of Bohr’s theorem for λ . Note that this property is in some sense hidden in the
Banach case, since a normed space is barreled if and only if it is complete.

Theorem 5.2. For every frequency λ the following statements are equivalent

(i) Bohr’s theorem holds for λ .

(ii) D∞,+(λ ) is a Fréchet space.

(iii) D∞,+(λ ) is barreled.

Remark 5.3. Before we proceed to the proof of the theorem let us point out that, if for every σ > 0 there
is a constant C =C(σ) such that for every choice of finitely many a1, . . . ,aM ∈ C, we have∥∥∥ N

∑
n=1

ane−σλne−λns
∥∥∥

D∞(λ )
≤C

∥∥∥ M

∑
n=1

ane−λns
∥∥∥

D∞(λ )
, (28)

for all N ≤M, then (following the argument in [8, Theorem 4.12]) Bohr’s theorem holds for λ . Indeed,
if (28) holds, we may take D = ∑ane−λns ∈Dext

∞ (λ ) and fix N. Then (see e.g. [26, Proposition 3.4])∥∥∥ N

∑
n=1

an(1−
λn

x
)e−σλne−λns

∥∥∥
D∞(λ )

≤C‖Rλ
x (D)‖∞ ≤C1

∥∥∑ane−λns
∥∥

D∞(λ )
,
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for every x > N. Now, letting x→ ∞ we get∥∥∥ N

∑
n=1

ane−σλne−λns
∥∥∥

D∞(λ )
≤C1(σ)

∥∥∑ane−λns
∥∥

D∞(λ )
,

which implies σu(D)≤ 0 (use Proposition 4.3 with e.g. X(λ ) = D∞(λ ), see also Example 4.2–(d)); i.e.
Bohr’s theorem holds for λ .

Proof of Theorem 5.2.
(i) ⇒ (ii) By Proposition 5.1 we know that D∞,+(λ ) = proj(D∞(λ ),τk) as pre-Fréchet spaces. From

Theorem 3.8 we know that D∞(λ ) is complete, so that the latter projective limit is complete. The con-
clusion then follows.

(ii)⇒ (iii) This follows from the general fact that every Fréchet space is barreled.

(iii)⇒ (i) As we have already shown, ir suffices to check that (28) holds. To do that, for each fixed k
we consider the family of operators TN : D∞,+(λ )→ C given by

∑ane−λns 7→
N

∑
n=1

ane−
λn
k

for N ∈ N. Then {TN}N is a bounded set in the topological dual of D∞,+(λ ), which (since the space is
barrelled) is then equicontinuous. In other terms, there is a constant C = C(k) > 0 and ` > k such that
for all ∑ane−λns ∈D∞,+(λ ) we have

sup
N

∣∣∣ N

∑
k=1

ane−
λn
k

∣∣∣≤C
∥∥∑ane−λns

∥∥
D∞(λ ),`

.

Finally, given a1, . . . ,aM ∈ C and Rez > 0, we apply this to the series ∑
M
n=1 ane−λnze−λns, to have

sup
Rez>0

sup
N≤M

∣∣∣ N

∑
n=1

ane−λnze−
λn
k

∣∣∣≤C sup
Rez>0

∣∣∣ M

∑
n=1

ane−
λn
` e−λnz

∣∣∣ ,
and this gives (28).

5.1.2 Montel

The appearance of Montel’s theorem for D∞(λ ) in Theorem 3.8 leads to another well known class of
locally convex spaces: Montel spaces.

Theorem 5.4. For every frequency λ the following statements are equivalent

(i) Bohr’s theorem holds for λ .

(ii) D∞,+(λ ) is a Montel space.

Proof. If (i) holds, then D∞,+(λ ) by Proposition 5.1 and Theorem 5.2 is a Fréchet-Schwartz space,
and these are always Montel spaces. Conversely, since Montel spaces by their definition are barreled,
Theorem 5.2 also proves that (ii) implies (i).
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5.1.3 Bases

We know that the sequence of monomials {e−λns}n forms a basis of D∞,+((logn)) (see [7, Theorem 2.2])
and for D∞,+((n)) (in this case e−ns corresponds to the monomial zn, and the result is classical). The
following equivalence extends these.

Theorem 5.5. For every frequency λ the following statements are equivalent:

(i) Bohr’s theorem holds for λ .

(ii) For every k there are ` > k and C > 0 such that for each ∑ane−λns ∈D∞,+(λ ) we have

sup
N

∥∥∥ N

∑
n=1

ane−λns
∥∥∥

D∞(λ ),k
≤C

∥∥∑ane−λns
∥∥

D∞(λ ),`
.

Moreover, in this case the monomials {e−λns}n form a basis of D∞,+(λ ).

Provided D∞,+(λ ) is complete (or by Theorem 5.2 equivalently Bohr’s theorem holds for λ ), observe
that statement (ii) is an immediate consequence of (1), whenever {e−λns} forms a basis (compare also
with [19, Theorem 14.3.6] or [21, Lemma 28.10]). Unfortunately, in general having a basis for a pre-
Fréchet space does not necessarily imply the corresponding inequality (1), so that it would be interesting
to find a concrete frequency λ not satisfying Bohr’s theorem for which t the sequence of monomials
{e−λns} forms a basis for D∞,+(λ ) (recall that, by Proposition 4.6 this happens if and only if D∞(λ ) =
D0

∞(λ )).

Proof. Suppose that Bohr’s theorem holds for λ and, for each N consider the operator TN : D∞,+(λ )→
D∞,k(λ ) given by

∑ane−λns 7→
N

∑
n=1

ane−λns .

Each of these is bounded, and, since Bohr’s theorem holds, the pointwise limit exists. Now, D∞,+(λ ) is
barreled (recall Theorem 5.2) and this gives that the family (TN)N is equicontinuous. This implies (ii).
Conversely, if (ii) holds, this clearly implies (28) which, as we have seen, gives that Bohr’s theorem holds
for λ .
Finally note that if λ satisfies Bohr’s theorem, then D0

∞(λ ) = D∞(λ ), and by Proposition 4.6 the mono-
mials form a basis of D∞,+(λ ).

Section 2.1 provides us with new examples of frequencies for which the monomials are a basis of
D∞,+(λ ). For instance, λn = (logn)α with α > 0, which satisfies Landau’s condition, and so Bohr’s
theorem. So far we do not know what happens for the frequency λn = log logn.

5.1.4 Nuclearity

We face now the last property we are interested in: nuclearity. Let us recall that by [7], the space
D∞((logn)) is not nuclear, whereas D∞((n)) equals the space H(D), which is well known to be nuclear
(see e.g. [19, Corollary 8, page 499]). So the question arises naturally: for which frequencies are our
spaces nuclear? Proposition 4.8 gives us the answer.

Theorem 5.6. Let λ be any frequency. Then D∞,+(λ ) is a nuclear Fréchet space if and only if L(λ ) = 0.
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Proof. If D∞,+(λ ) is a Fréchet space, then by Theorems 5.2 and 5.5 the monomials are a basis. So,
if the space is also nuclear, Proposition 4.8 gives that L(λ ) = 0. Conversely, if L(λ ) = 0, then Bohr’s
theorem holds for λ and D∞(λ ) is by Theorem 3.8 a λ -admissible Banach space. Again Proposition 4.8
completes the proof.

Example 5.7.

(a) D∞,+((n)) = H(D) is nuclear, since L((n)) = 0. This is a classic (see e.g. [21]).

(b) D∞,+((logn)) and D∞,+((log pn)) are both nonnuclear, since in both cases L(λ )= 1. As mentioned
before, the first example is due to Bonet [7].

(c) D∞,+((logn)α) is nuclear for α > 1 (since L(λ ) = 0) and not nuclear for 0 < α < 1 (since
L(λ ) = ∞).

5.2 Hardy spaces of Dirichlet series

With the same spirit as in Section 5.1 we apply now the abstract programme described in Section 4 to the
scale Hp(λ ) of Hardy spaces of general Dirichlet series for 1≤ p≤ ∞ (see [15] for the case of ordinary
series). Let us briefly observe that in this case the abscissa defined in (13) now reads as

σHp(λ )(D) = inf
{

σ ∈ R : ∑ane−λnσ e−λns ∈Hp(λ )
}
. (29)

With this, following (14), we consider the pre-Fréchet space

Hp,+(λ ) =
{

D = ∑ane−λns : σHp(λ )(D)≤ 0
}
,

endowed with the locally convex metrizable topology generated by the sequence of norms∥∥∑ane−λns
∥∥

Hp(λ ),k
:=
∥∥∥∑ane−λn

1
k e−λns

∥∥∥
Hp

,

for k ∈ N. As in (15), for each k ∈ N we consider the canonically normed space defined by

Hp,k(λ ) =
{
∑ane−λns ∈D(λ ) : ∑ane−

λn
k e−λns ∈Hp(λ )

}
,

which (see (17) and (18)) leads to the two countable projective spectra

proj(Hp,k(λ ), ik)k∈N and proj(Hp(λ ),τk)k∈N . (30)

We turn now to the study of the structure of the spaces Hp,+(λ ).

5.2.1 Fréchet-Schwartz

Proposition 5.8. Let λ be a frequency and 1≤ p≤∞. Then Hp,+(λ ) is a Fréchet Schwartz space which
admits the following representations as projective limit

Hp,+(λ ) = proj(Hp,k(λ ), ik) = proj(Hp(λ ),τk) .

Proof. Proposition 4.4 and (30) give the two representations of the pre-Fréchet space Hp,+(λ ) as pro-
jective limits. Since each Hp(λ ) is complete, the projective spectra in (30) consist of Banach spaces
and, then, Hp,+(λ ) is Fréchet. By Theorem 3.2 all translation operators τk are compact operators; then
Remark 2.2 gives that the space is also Schwartz.

Example 5.9. Let λ be a Q-linearly independent frequency. From [11, Corollary 3.36] combined with
Khinchin’s inequality we deduce that Hp(λ ) = `2 (where each λ -Dirichlet series is identified with the
sequence of its coefficients). As a consequence Hp,+(λ ) = `2(A(λ )) for every 1≤ p < ∞.
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5.2.2 Coincidence

Since D∞(λ ) ⊂H∞(λ ), and D∞,+(λ ) = projD∞,k(λ ) as well as H∞,+(λ ) = projH∞,k(λ ), from Re-
mark 2.1 we obtain that there is a continuous embedding

D∞,+(λ ) ↪→ H∞,+(λ ) ,

that preserves Dirichlet and Fourier coefficients.

Theorem 5.10. D∞,+(λ ) = H∞,+(λ ) if and only if Bohr’s theorem holds for λ .

Proof. If Bohr’s theorem holds for λ , then we know from Theorem 3.8 that D∞,k(λ ) = H∞,k(λ ) for
every k. Hence the claim follows by Remark 2.1. Conversely, if D∞,+(λ ) = H∞,+(λ ), then D∞,+(λ ) is
complete, and so we deduce from Theorem 5.2 that Bohr’s theorem holds for λ .

5.2.3 Bases

Proposition 5.11. Let λ = (λn) be a frequency and 1 ≤ p ≤ ∞. Then the monomials {e−λns}n form a
basis

(i) for Hp,+(λ ), whenever 1 < p < ∞.

(ii) for H1,+(λ ), whenever λ satisfies Bohr’s theorem.

(iii) for H∞,+(λ ) if and only if λ satisfies Bohr’s theorem.

We structure the proof with the following lemma.

Lemma 5.12. For every frequency λ and 1 < p < ∞ we have Hp(λ ) =H 0
p (λ ), and for p = 1 this holds

true whenever λ satisfies Bohr’s theorem.

Proof. As we have already mentioned, by [11, Theorem 4.16] the monomials form a basis in Hp(λ ).
This settles the case 1 < p < ∞. In order to tackle the case p = 1, let us recall first that, by definition,
H 0

1 (λ ) ⊆H1(λ ). We have to see that the reverse inequality holds if λ satisfies Bohr’s theorem. We
go for a moment into the theory of vector valued general Dirichlet series. The basic definitions needed
here are just straightforward translations of the scalar valued ones. The reader is referred to [8] for a
complete account on the theory. In [12, Lemma 4.9] we have that, for any frequency λ , the mapping
H1(λ ) ↪→D∞(λ ,H1(λ )) given by

∑ane−λns 7→∑(ane−λnz)e−λns (31)

defines an isometry. Once we have this, note that, given a Banach space X and ε > 0, there exists c > 0
so that

sup
N∈N

sup
t∈R

∥∥∥ N

∑
n=1

ane−λn(ε+it)
∥∥∥

X
≤ c
∥∥∥∑ane−λns

∥∥∥
D∞(λ ,X)

for every X-valued Dirichlet series in D∞(λ ,X) (here we need that Bohr’s theorem holds for λ , see [8,
Proof of Theorem 4.12]). On the other hand, an argument with the Hahn-Banach theorem after [26,
Comment after Proposition 2.4] shows that

sup
t∈R

∥∥∥ N

∑
n=1

ane−λn(ε+it)
∥∥∥

X
= sup

Res>ε

∥∥∥ N

∑
n=1

ane−λns
∥∥∥

X
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for every X-valued Dirichlet polynomial. With this and (31), given ∑ane−λns ∈H1(λ ) and ε > 0 we
have∥∥∥ N

∑
n=1

ane−ελne−λns
∥∥∥

H1(λ )
=
∥∥∥ N

∑
n=1

(
ane−ελne−λns)e−λnz

∥∥∥
D∞(λ ,H1(λ ))

= sup
Rez>0

∥∥∥ N

∑
n=1

(
ane−λns)e−ελne−λnz

∥∥∥
H1(λ )

≤ c
∥∥∥∑

(
ane−λns)e−λnz

∥∥∥
D∞(λ ,H1(λ ))

= c
∥∥∥∑ane−λns

∥∥∥
H1(λ )

.

Then Proposition 4.3 gives σH 0
1 (λ )(D)≤ 0 and this implies that

(
∑

N
n=1 ane−λnσ e−λns

)
N is convergent for

every σ > 0. Since the series is in H1(λ ) we finally obtain ∑ane−λns ∈H 0
1 (λ ).

Proof of Proposition 5.11. Both statements (i) and (ii) are immediate consequences of Proposition 4.6
and Lemma 5.12. If the monomials {e−λns} form a basis for H∞,+(λ ), then they form a basis for its
subspace D∞,+(λ ), and so the claim follows from Theorem 3.1 and Theorem 5.10.

We finish this section by making a short comment on the abscissas that we have defined in (29). For
ordinary Dirichlet series (i.e. λ = (logn)) we know from [9, Theorem 12.4] that the abscissa for any
1≤ p≤ ∞ can be reformulated as

σHp(D) = inf
{

σ > 0:
( N

∑
n=1

an

nσ
n−s)

N converges in Hp((logn))
}
.

With the notation from Section 4.1 this means that 1 ≤ p ≤ ∞ and any ordinary Dirichlet series D we
have

σHp((logn))(D) = σH 0
p ((logn))(D) .

Then Lemma 5.12 shows that this holds for 1 < p < ∞ and any frequency λ , and for p = 1 and any
frequency λ satisfying Bohr’s theorem. Finally, we note that under Bohr’s theorem for λ we by definition
and Theorem 3.8 also have that

σH∞(λ )(D) = σD∞(λ )(D) = σD0
∞(λ )

(D) = σH 0
∞ (λ )(D) .

5.2.4 Nuclearity

In Section 5.1.4 we settled the question of when D∞,+(λ ) is nuclear. We face now the same question for
the Fréchet spaces Hp,+(λ ). Again, the answer comes from Proposition 4.8.

Proposition 5.13. Let λ be a frequency. Then

(i) for 1 < p < ∞ the Fréchet space Hp,+(λ ) is nuclear if and only if L(λ ) = 0.

(ii) for p = 1 and p = ∞ the Fréchet space Hp,+(λ ) is nuclear and λ satisfies Bohr’s theorem if and
only if L(λ ) = 0.

Proof. We already know from Proposition 5.8 that Hp,+(λ ) is a Fréchet space for every 1≤ p≤ ∞. Let
us prove (i) first. For 1 < p < ∞, by Proposition 5.11 the monomials form a basis of Hp,+(λ ). This and
Proposition 4.8 give the equivalence of nuclearity and L(λ ) = 0.
In the case of p = 1 or p = ∞ (this is (ii)), let us suppose first that Hp,+(λ ) is nuclear and λ satisfies
Bohr’s theorem. Then Proposition 5.11 gives that the monomials form a basis for Hp,+(λ ), and Propo-
sition 4.8 yields L(λ ) = 0. Let us conversely assume L(λ ) = 0. Then λ by [26, Remark 4.8] satisfies
Bohr’s theorem. On the other hand, again Proposition 4.8 gives that Hp,+(λ ) is nuclear.

As we already pointed out in Section 4.4, if L(λ ) = 0, then all Hp,+(λ ) coincide for 1≤ p≤ ∞.
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5.2.5 Translation

An important fact within the theory of Hardy spaces of ordinary Dirichlet series is that the translation
operator τσ , defined for each σ > 0 as

τσ

(
∑ann−s

)
= ∑

an

nσ
n−s ,

for every 1≤ p < q < ∞ is bounded as an operator from Hp =Hp((logn)) into Hq =Hq((logn)). This
has as an immediate consequence that σHp(D) = σHq(D) for every 1 ≤ p,q < ∞ and D ∈ D((logn))
(see [9, Chapter 12] for more details). Then we obtain as an immediate consequence that Hp,+ = Hq,+

for every 1≤ p,q,< ∞, and, there is only one such space, denoted H+, which can be taken as H2,+ (see
[15]).

We address now an analogous question for general Dirichlet series. For σ ∈R we define the transla-
tion operator as

τσ

(
∑ane−λns

)
= ∑ane−λnσ e−λns .

Then we say that the frequency λ is hypercontractive (for the translation operator) if, for every σ > 0,
the operator τσ : Hp(λ )→Hq(λ ) is bounded for every 1≤ p≤ q < ∞.

Remark 5.14. It is obvious that a given frequency λ is hypercontractive if and only if σHp(λ )(D) =
σHq(λ )(D) for every D ∈D(λ ) and 1≤ p < q < ∞, if and only if Hp,+(λ ) = Hq,+(λ ) for every choice
of 1≤ p,q < ∞.

In [3] it is shown that there exist nonhypercontractive frequencies. More precisely, there is a fre-
quency λ satisfying Bohr’s condition so that τσ : H1(λ )→H2(λ ) is not bounded for every σ > 0. In
particular, H2,+(λ )& H1,+(λ ).

Our aim now is to find conditions that imply that the frequency is hypercontractive for the translation
operator.

Remark 5.15. If L(λ ) = 0 or λ is Q-linearly indedependent, then λ is hypercontractive. Indeed, in
both cases we by Proposition 4.8 and Example 5.9 know that all Fréchet spaces Hp,+(λ ) coincide (as
sequence spaces).

We recall that for each 0< η < 1 and 1≤ p≤ q<∞ there is a bounded operator Tη : Hp(T)→Hq(T)
such that

Tη

( n

∑
k=0

ckzk
)
=

n

∑
k=0

ck(ηz)k

Furthermore, ‖Tη‖ ≤ 1 for every η <
√

p/q (see e.g. [9, Proposition 8.11]). For N ∈ N∪{∞} we know
from [9, Theorem 12.10] that, if η = (ηk)1≤k≤N ⊆ (0,1) is such that supn ∏

n
k=1 ‖Tηk‖< ∞ (note that this

is trivially satisfied if N is finite), then there exists an operator

Tη : Hp(TN)→ Hq(TN) (32)

so that
Tη

(
∑
α∈F

Ffinite

cαzα

)
= ∑

α∈F
Ffinite

cα(ηz)α , (33)

and ‖Tη‖ ≤ supn ∏
n
k=1 ‖Tηk‖. If Λ⊆ NN

0 (if N = ∞ this should be understood as N(N)
0 ) we consider

HΛ
p (TN) = { f ∈ Hp(TN) : f̂ (α) 6= 0⇒ α ∈ Λ} ,
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which as a closed subspace of Hp(TN) is again a Banach space. A straightforward argument using (33)
and the density in HΛ

p (TN) of the trigonometric polynomials with coefficients indexed on Λ (see [12,
Theorem 3.14]) gives

Tη

(
HΛ

p (TN)
)
⊆ HΛ

q (TN) (34)

and
‖Tη : HΛ

p (TN)→ HΛ
q (TN)‖ ≤ ‖Tη : Hp(TN)→ Hq(TN)‖ .

Let us recall from Section 3.3 (see the comments preceding Corollary 3.7) that, given a frequency
λ = (λn)n∈N, there is a decomposition λ = (R,B), where B = (b j)1≤ j≤N (for N ∈ N or N = ∞) is the
basis and R = (rn

j )
n
1≤ j≤N the Bohr matrix of λ . A frequency λ is said to be of natural type if each entry

of R is in N0, and in this case each row α of R (we write α ∈ R) may be considered as a finite sequence
in N(N)

0 (so R⊂ N(N)
0 ).

Given a frequency λ of natural type, the Bohr transform B defines an isometric isomorphism between
Hp(λ ) and HR

p (TN). More precisely, there is a unique onto isometry

B : Hp(λ )→ HR
p (TN)

such for each α ∈ R and n ∈N with λn = ∑α jb j we have that f̂ (α) = an for all D = ∑ane−λns ∈Hp(λ )
and f ∈ HR

p (TN) with f =B(D) (see [12, Theorem 3.31]).

Theorem 5.16. Let λ be a frequency with a decomposition (B,R) of natural type so that b j > 0 for every
j and (if B is infinite) lim j b j = ∞. Then, λ is hypercontractive.

Proof. Fix some 1 ≤ p ≤ q < ∞ and σ > 0 and let us define η j = e−b jσ for each 1 ≤ j ≤ N. Since all
b j are positive, we have 0 < η j < 1 for every j. If B is finite and has length N, then by (32) and (34) we
have a continuous operator

Tη : HR
p (TN)→ HR

q (TN) .

If B is infinite, the fact that lim j b j = ∞ implies that we find some j0 so that η j <
√

p/q for every j≥ j0.
Then supn ∏

n
j=1 ‖Tη j‖ ≤∏

j0
j=1 ‖Tη j‖ and we have a bounded operator Tη : Hp(T∞)→ Hq(T∞). This and

(34) again gives
Tη : HR

p (T∞)→ HR
q (T∞) .

We now consider the bounded operator τσ = B−1 ◦Tη ◦B : Hp(λ )→Hq(λ ). Let us see that this is
exactly the translation operator that we are looking for. To do this we look first at Dirichlet polynomials.
Given ∑

k
n=1 ane−λns we write cα = an if ∑ j α jb j = λn and have

B
( k

∑
n=1

ane−λns
)
= ∑

α∈R
λ1≤∑ j α jb j≤λk

cαzα .

The latter is a finite sum, and (33) gives

B−1 ◦Tη

(
∑
α∈R

λ1≤∑ j α jb j≤λk

cαzα

)
=B−1

(
∑
α∈R

λ1≤∑ j α jb j≤λk

cα(ηz)α

)

=B−1
(

∑
α∈R

λ1≤∑ j α jb j≤λk

cαe−∑ j b jα jσ zα

)
=

k

∑
n=1

ane−λnσ e−λns .

This yields our claim for Dirichlet polynomials, but these are dense in Hp(λ ) (see [12, Theorem 3.26]).
A standard argument using the density and the fact that convergence in Hp(λ ) implies convergence (in
C) of the coefficients completes the proof.
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Remark 5.17. The frequencies (logn) and (n) trivially satisfy the conditions in Theorem 5.16. Also, if
the frequency λ is Q-linearly independent (as, for example (log pn), being (pn) the sequence of prime
numbers), then one can just take B = λ and R given by rn

j = δ j,n to see that it satisfies the conditions in
Theorem 5.16. As a straightforward consequence (see Remark 5.14), for each of these frequencies all
the spaces Hp,+(λ ) (with 1≤ p < ∞) are all isomorphic to each other as Fréchet spaces.

5.3 Almost periodic functions

As we already pointed out in Section 2.2, general Dirichlet series and uniformly almost periodic functions
are closely related. More precisely, we know from [13, Theorem 2.16] (see also Theorem 3.1) that there
is an isomorphism preserving Bohr and Dirichlet coefficients so that Hλ

∞ [Re > 0] = H∞(λ ). Our aim
now is to find an analogous description for H∞,+(λ ). The first step is to find the proper space of almost
periodic functions, and to endow it with a convenient locally convex topology. We denote by

Hλ
∞,+[Re > 0]

the space of all holomorphic functions f : [Re > 0]→ C which are uniformly almost periodic on each
abscissa [Re = σ ] and such that the xth Bohr coefficients of f (recall (4)) vanishes, whenever x /∈ {λn |
n ∈ N}. Each such function is then bounded on every half plane [Re > ε] (see [4, Chapter III, § 3]), and
hence we may endow Hλ

∞,+[Re > 0] with the Fréchet topology given by the family of norms

‖ f‖∞,k = sup
Res> 1

k

| f (s)| . (35)

5.3.1 Projective description

Again it is convenient to find proper projective descriptions of Hλ
∞,+[Re > 0]. Consider first for each k

the Banach space

Hλ
∞ [Re > 1/k] =

{
f : [Re > 1/k]→ C holomorphic : f ( r+ 1

k ) ∈ Hλ
∞ [Re > 0]

}
endowed with the norm defined in (35). Then we get the projective spectrum(

Hλ
∞ [Re > 1/k], ik

)
k∈N ,

where the linking maps are the restrictions

ik : Hλ
∞ [Re > 1/(k+1)] ↪→ Hλ

∞ [Re > 1/k] given by f 7→ f |[Re>1/k] .

Given f ∈ Hλ
∞ [Re > 1/k] the Bohr coefficients of f (recall once again (4)) are

aλn( f ) = lim
T→∞

1
2T

∫ T

−T
f (σ + it)e(σ+it)λndt ,

where σ > 1/k is arbitrary (and the definition is independent of the chosen σ ). Observe that with this
definition the Bohr coefficients of f ∈ Hλ

∞ [Re > 1/(k+1)] and ik( f ) ∈ Hλ
∞ [Re > 1/k] coincide.

As in Section 4.2 we have a second possible projective spectrum that serves our purposes. To begin
with, note that for each k, the mapping

ϕk : Hλ
∞ [Re > 1/k]→ Hλ

∞ [Re > 0] defind by f 7→ f
( r+1/k

)
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is an isometric bijection, where the inverse is given by ϕ
−1
k ( f ) = f

( r−1/k
)
. Then we can consider the

projective spectrum (
Hλ

∞ [Re > 0],τk
)

k∈N ,

where τk : Hλ
∞ [Re > 0]→ Hλ

∞ [Re > 0] is defined by

f 7→ f
( r+1/k−1/(k+1)

)
.

Proposition 5.18. Let λ be a frequency. Then Hλ
∞ [Re > 0] is a Fréchet-Schwartz space. Also, the

mappings
Hλ

∞,+[Re > 0] = proj
(
Hλ

∞ [Re > 1/k], ik
)

given by f 7→ ( f |[Re>1/k])
∞
k=1

and
Hλ

∞,+[Re > 0] = proj
(
Hλ

∞ [Re > 0],τk
)

given by f 7→
(

f ( r+1/k)
)∞

k=1

are isomorphisms of Fréchet spaces.

Proof. Both projective descriptions follow exactly as in the proof of Proposition 4.4. In particular, look-
ing at the second one and taking into account that all spaces Hλ

∞ [Re > 0] are Banach, we deduce from
Theorem 3.5 that τk is compact for every k and therefore Hλ

∞,+[Re > 0] is a Fréchet-Schwartz space.

5.3.2 Coincidence

We are now ready to show that an isomorphism as in Theorem 3.1 identifying coefficients also exists
between Hλ

∞,+[Re > 0] and H∞,+(λ ).

Theorem 5.19. The identification

Hλ
∞,+[Re > 0] = H∞,+(λ ) given by f 7→∑aλn( f )e−λns,

is a coefficient preserving isomorphism of Fréchet spaces.

Proof. We begin by seeing that for each fixed k the mapping

Sk : Hλ
∞ [Re > 1/k]→H∞,k(λ )

defined by
f 7→∑aλn( f )e−λns

is an isometric bijection. Take any f ∈ Hλ
∞ [Re > 1/k] and observe that the function g := f ( r+ 1/k)

belongs to Hλ
∞ [Re > 0] and has Bohr coefficients

aλn(g) = aλn( f )e−
λn
k ,

for n ∈ N. Hence by Theorem 3.1 the Dirichlet series ∑aλn( f )e−
λn
k e−λns = ∑aλn(g)e

−λns belongs to
H∞(λ ), and so ∑aλn( f )e−λns ∈H∞,k(λ ) with∥∥∑aλn( f )e−λns

∥∥
H∞(λ ),k

=
∥∥aλn( f )e−

λn
k e−λns

∥∥
H∞(λ )

= ‖g‖∞ = ‖ f‖∞,k .

This shows that Sk is a well defined isometry. Conversely, if ∑ane−λns ∈H∞,k(λ ), then by definition
and again Theorem 3.1 we can find some g ∈ Hλ

∞ [Re > 0] such that aλn(g) = ane−
λn
k for all n. Now the

function f := g( r−1/k) belongs to Hλ
∞ [Re > 1/k] and has Bohr coefficients

aλn( f ) = e
λn
k aλn(g) = an,
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for n ∈ N. This shows that Sk is surjective and, hence, an isometric bijection. Now Remark 2.1 implies
that the mapping

S : proj
(
Hλ

∞ [Re > 1/k], ik
)
→ proj(H∞,k

(
λ ), ik

)
given by ( fk) 7→ (Sk( fk))

is a Fréchet isomorphism. Moreover, if ρm and πm denote the canonical projections of the respective
projective spectra into Hλ

∞ [Re > 1/m] and H∞,m(λ ), we have

πm ◦S = Sm ◦ρm .

Using the projective descriptions of the spaces given in Proposition 5.1 and 5.18, this immediately gives
that for each f ∈ Hλ

∞,+[Re > 0], the nth Dirichlet coefficient of S( f ) equals aλn( f ).

By Propositions 5.11 and 5.13 we get the following corollary.

Corollary 5.20.

(i) The monomials {e−λns}n form a basis in Hλ
∞,+[Re > 0] if and only if λ satisfies Bohr’s theorem.

(ii) Hλ
∞,+[Re > 0] is nuclear and λ satisfies Bohr’s theorem if and only if L(λ ) = 0.
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