
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Design Engineering

Study on the contribution of Aerospace Engineering to
achieve the United Nations Millennium Goals by Artificial

Intelligence

Master's Thesis

Master's Degree in Aeronautical Engineering

AUTHOR: Sánchez Roncero, Alejandro

Tutor: Hoyas Calvo, Sergio

ACADEMIC YEAR: 2021/2022

Study on the contribution of Aerospace Engineering to

achieve the United Nations Millennium Goals by

Artificial Intelligence

Author: Alejandro Sánchez Roncero

Supervisor: Sergio Hoyas

Final Master Thesis for the fulfilment of the Master’s Degree in Aeronautical Engineering

Universitat Politècnica de València

September 15, 2022

Acknowledgements

I would like to thank Sergio Hoyas (Project supervisor) for giving me the opportunity to learn and
develop my skills in such an interesting and emerging field as it is Artificial Intelligence. Having
so many applications, I was able to apply it for Aeronautical Engineering. Also, I would like to
thank to Jose Alberto Conejero and Ricardo Vinuesa for their help, insights and feedback during the
development of the project. I will also thank Óscar Garibo for the preliminary version of the code.
Finally, I will conclude by thanking them all for introducing me to the Sustainable Development Goals
and being aware of all the work currently in progress by the United Nations to make of the world a
better place to live in the future.

Abstract

Achieving the Millennium Goals of the United Nations (UN) is the primary goal of the 2030 Agenda.
A critical step towards that objective is identifying if the scientific production is going in this way.
Funders must do a manual recognition, impacting accuracy, scalability, and objectiveness. For this
reason, we propose in this work an AI-based model for the automatic identification of the Sustainable
Development Goals (SDGs) in scientific papers. This model is used to analyse more than eight
thousand Aerospace-related scientific papers, comparing the impact that scientific papers with high
and low citations have on the SDGs or whether this impact is positive or negative. The training
database consists of manually extracted texts from the UN page. After pre-processing these texts, we
train four different models: Non-Negative Matrix Factorization (NMF), Latent-Dirichlet Allocation
(LDA), Top2Vec and BERTopic. The results obtained individually by each model are combined in a
voting model. These models are validated with the database in Vinuesa et al. [15], obtaining a 97.2 %
of accuracy with the training set and a 67.5 % with the validation set. The Aerospace dataset consists
of ten thousand papers from 2017 to 2021 in Scopus, and it is shown that the major contribution to
SDG7, SDG9 and SDG11. The databases used for training, validation, and analysis as well as the
trained models are open source. The methodology, references, datasets, models and validation have
already been published (Sánchez et al. [13]).

Resumen

Lograr los Objetivos del Milenio de las Naciones Unidas (UN) es el objetivo principal de la Agenda
2030. Un paso cŕıtico hacia este objetivo es identificar si las publicaciones cient́ıficas se encuentran
encaminadas. Para ello, los autores deben realizar un reconocimiento manual, lo que tiene impacto
sobre la precisión, escalabilidad y objetividad de la evaluación. Por ello, proponemos en este trabajo
un modelo basado en Inteligencia Artificial (AI) para la identificación automática de los Objetivos
del Desarrollo Sostenible en publicaciones cient́ıficas. Este modelo se utiliza para analizar más de
ocho mil publicaciones relacionadas con Ingenieŕıa Aerospacial, comparando el impacto de aquellas
publicaciones con un alto y bajo numero de citas sobre los objetivos o si este impacto es positivo o
negativo. La base de datos de entrenamiento consiste en textos extráıdos manualmente de la página
de las Naciones Unidas. Tras el pre-procesamiento de los textos, entrenamos cuatro modelos difer-
entes: Non-Negative Matrix Factorization (NMF), Latent-Dirichlet Allocation (LDA), Top2Vec and
BERTopic. Los resultados obtenidos individualmente por cada modelo se combinan en una votación.
Estos son validados con la base de datos proporcionada en Vinuesa et al. [15], obteniendo un 97.2 %
de precisión con los textos de entrenamiento y un 67.5 % con los de validación. La base de datos con
los textos de ingenieŕıa aerospacial cuenta con diez mil publicaciones desde 2017 hasta 2021 (Scopus)
y se obtiene que estos contribuyen mayormente a los SDG7, SDG9 y SDG11. Las bases de datos uti-
lizadas para entrenamiento, validación y análisis además de los modelos entrenados son open-source.
La metodoloǵıa, referencias, bases de datos, modelos y validación ya han sido publicados (Sánchez et
al [13]).

Resum

Aconseguir els Objectius del Millenni de les Nacions Unides (UN) és l’objectiu principal de l’Agenda
2030. Un pas cŕıtic cap este objectiu és identificar si les publicacions cient́ıfiques es troben encami-
nades. Per a això, els autors han de realitzar un reconeixement manual, la qual cosa té impacte sobre la
precisió, escalabilidad i objectivitat de l’avaluació. Per això, proposem en este treball un model basat
en Intelligència Artificial (AI) per a la identificació automàtica dels Objectius del Desenrotllament
Sostenible en publicacions cient́ıfiques. Este model s’utilitza per a analitzar més de huit mil publica-
cions relacionades amb Enginyeria Aerospacial, comparant l’impacte d’aquelles publicacions amb un
alt i davall numere de cites sobre els objectius o si este impacte és positiu o negatiu. La base de dades
d’entrenament consistix en textos extrets manualment de la pàgina de les Nacions Unides. Després
del preprocessament dels textos, entrenem quatre models diferents: Non-Negative Matrix Factoriza-
tion (NMF) , Latent-Dirichlet Allocation (LDA) , Top2Vec and BERTopic. Els resultats obtinguts
individualment per cada model es combinen en una votació. Estos són validats amb la base de dades
proporcionada en Vinuesa t’al. [16], obtenint un 97.2 % de precisió amb els textos d’entrenament i un
67.5 % amb els de validació. La base de dades amb els textos d’enginyeria aerospacial compta amb
deu mil publicacions des de 2017 fins a 2021 (Scopues) i s’obté que estos contribüıxen majorment als
SDG7, SDG9 i SDG11. Les bases de dades utilitzades per a entrenament, validació i anàlisi a més dels
models entrenats són open-source. La metodologia, referències, bases de dades, models i validació ja
han sigut publicats (Sánchez et al [13]).

Contents

Acronyms 7

List of Figures . 9

List of Tables . 11

1 Introduction 13

1.1 Objectives . 16

1.2 Project description . 17

2 Related work & Datasets 18

3 Models 26

3.1 Non-Negative Matrix Factorization . 26

3.2 Latent-Dirichlet Allocation . 32

3.3 Top2Vec . 36

3.4 BERTopic . 42

4 Validation 46

4.1 NMF . 46

4.2 LDA . 47

4.3 Top2Vec . 48

4.4 BERTopic . 49

5 Voting mechanism 51

5

6 Results & Discussion 56

7 Conclusions & Future Work 64

8 Specifications 66

8.1 Office specifications . 66

8.2 Software & Hardware requirements . 68

9 Budget 70

9.1 Phases of the project . 70

9.2 Dedicated resources . 70

9.3 Costs breakdown . 71

A Codes 75

6

Acronyms

AI Artificial Intelligence. 16, 18, 20

BERT Bidirectional Encoder Representations from Transformers. 42

BOW Bag of Words. 64

GHG Green House Gas. 15

GPU Graphics Processing Unit. 68

GSDR Global Sustainable Development Report. 22

HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise. 37, 42

HLPF High Level Political Forum. 22

LDA Latent-Dirichlet Allocation. 2, 18, 19, 26, 32, 36

LSI Latent Semantic Index. 32

MDGs Millennium Development Goals. 13

ML Machine Learning. 23

NLP Natural Language Processing. 26, 64

NLTK Natural Language Toolkit. 27

NMF Non-Negative Matrix Factorization. 2, 18, 26, 36

pLSI probabilistic Latent Semantic Index. 32

S-BERT Sentence-Bert. 42

SDG Sustainable Development Goal. 9, 13, 14, 22, 24, 26

SDG1 No poverty. 14, 35, 56

SDG10 Reduced inequalities. 15, 47, 48

SDG11 Sustainable cities and communities. 15, 56, 61

SDG12 Responsible consumption and production. 15, 56

SDG13 Climate action. 15, 62

SDG14 Life below water. 15, 44

7

SDG15 Life on land. 15, 47, 48

SDG16 Peace, justice and strong institutions. 15

SDG17 Partnerships for the goals. 15

SDG2 Zero hunger. 14, 56

SDG3 Good health and well-being. 14, 31, 35, 44, 48, 61

SDG4 Quality education. 14, 35, 41, 47, 48

SDG5 Gender equality. 14, 55, 56

SDG6 Clean water and sanitation. 14, 31, 41, 56, 61

SDG7 Affordable and clean energy. 14, 31, 56, 61

SDG8 Decent work and economic growth. 14

SDG9 Industry, innovation and infrastructure. 14, 56

TF-IDF Term Frequency-Inverse Document Frequency. 26, 28

Top2Vec Topic to Vector. 36, 38

UMAP Uniform Manifold Approximation and Projection for Dimension Reduction. 38, 42

UN United Nations. 2, 13, 22, 24

8

List of Figures

1.1 Poster of the Sustainable Development Goals . 14

1.2 Visualisation of SDG interlinkages between the goals 15

2.1 Number of peer-reviewed AI publications from 2000 to 2019 [16] 19

2.2 Summary of the positive and negative impact of AI on the various SDGs. Documented
evidence of the potential of AI acting as (a) an enabler or (b) an inhibitor on each of
the SDGs. The numbers inside the coloured squares represent each of the SDGs. The
percentages on the top indicate the proportion of all targets potentially affected by AI
and the ones in the inner circle of the figure correspond to proportions within each
SDG. The results corresponding to the three main groups, namely Society, Economy,
and Environment, are also shown in the outer circle of the figure. The results obtained
when the type of evidence is taken into account are shown by the inner shaded area
and the values in brackets [15]. 20

2.3 Detailed assessment of the impact of AI on the SDGs within the Environment group.
Documented evidence of the positive or negative impact of AI on the achievement of
each of the targets from SDGs 13, 14, and 15 [15]. 21

2.4 Number of training texts per number of words-range 22

2.5 Information of the training files per SDG . 23

2.6 Information of the validation files . 24

2.7 Information of the aerospace files . 24

3.1 Graphical representation of an NMF model. 29

3.2 Graphical model representation of LDA [2].The outer plate represents documents, while
the inner plate represents the repeated choice of topics and words within a document. 33

3.3 An example of a semantic space. The purple points are documents and the green points
are words. Words are closest to documents they best represent and similar documents
are close together [1] . 38

3.4 The topic vector is the centroid of the dense area of documents identified by HDBSCAN,
which are the purple points. The outliers identified by HDBSCAN are not used to
calculate the centroid [1] . 39

9

4.1 NMF model validation comparing the identified SDGs with the previously labelled ones. 47

4.2 LDA model validation comparing the identified SDGs with the previously labelled ones. 48

4.3 Top2Vec model validation comparing the identified SDGs with the previously labelled
ones. 49

4.4 BERTopic model validation comparing the identified SDGs with the previously labelled
ones. 50

5.1 Validation of the NMF, LDA, BERTopic and Top2Vec models with the previously la-
belled dataset (only abstracts). Dark: correctly identified, Light: incorrectly identified.
. 52

5.2 Scheme explaining the different stages of the voting mechanism. 52

5.3 Validation of the voting mechanism with both the training and validation datasets. . . 53

5.4 Validation of the voting mechanism with the validation dataset in long format. 55

6.1 Total weight per SDG of the complete Aerospace dataset. The scores obtained individ-
ually (i.e. per text) are added together. 57

6.2 Evolution of the total weight of SDG7, SDG9, SDG11 and SDG13 from 2017 to 2021. 62

6.3 Comparison of the contribution to each SDG by those papers with citations lower and
higher than the median, being the median of 8. 63

10

List of Tables

3.1 Association matrix of the NMF model. Each row indicates the score of association ([0,
1]) that the corresponding topic has with each SDG. 30

3.2 Top 25 words per topics 1, 2 and 4 of the NMF model. 31

3.3 Association matrix of the LDA model. Each row indicates the SDGs to which the
corresponding topic is related. 34

3.4 Top 25 words associated with topics 7, 8, 13 and 15 of the LDA model. The score before
the word indicated the weight that word has on the corresponding topic. 35

3.5 Configuration and results of the Top2Vec model’s optimization. Sc.Ind and Gr are the
scores obtained for identifying correctly the individual and group SDGs respectively
in the validation dataset. Min.Rep and Max.Rep are the minimum and maximum
representation of the SDGs in the Association Matrix. 40

3.6 Association matrix of the Top2Vec model. Each row indicates the SDGs to which the
corresponding topic is related. 40

3.7 Top 25 words associated with SDG14, SDG4, SDG16 and SDG6 of the Top2Vec model.
The score before the word indicated the weight that word has on the corresponding topic. 41

3.8 List of words per SDG used as a seed list for the topics generation in the BERTopic
model. 44

3.9 Configuration and results of the BERTopic model’s optimization. embed: embed-
ding model, miniLM: all-MiniLM-L6-v2, mpnet: all-mpnet-base-v2, topW: top n words,
minS: min topic size list: seed topic list, nT: n topics. 44

3.10 Association matrix of the BERTopic model. Each row indicates the SDGs to which the
corresponding topic is related. 45

3.11 Top 10 words associated with SDG3, SDG7, SDG16 and SDG14 of the BERTopic model.
The score before the words indicates the weight that they have on the corresponding
topic. 45

6.1 Approximation of the top 15 words obtained by each model about the text #1. 58

6.2 Scores associated with each SDG obtained by the NMF, LDA, Top2Vec and BERTopic
model in the text #1 . 58

11

Final Master Thesis

6.3 Approximation of the top 15 words obtained by each model about the text #2. 59

6.4 Scores associated with each SDG obtained by the NMF, LDA, Top2Vec and BERTopic
model in the text #2. 59

6.5 Approximation of the top 15 words obtained by each model about the text #3. 60

6.6 Scores associated with each SDG obtained by the NMF, LDA, Top2Vec and BERTopic
model in the text #3. 60

9.1 Dedicated resources to the project separated into groups. 71

9.2 Number of hours that the human resources dedicate to each phase and the total cost. 71

9.3 Costs of the project associated with the equipment. 71

9.4 Summary of the costs associated with the project. 72

Page 12

Chapter 1

Introduction

In 2015 all the states members of the United Nations (UN) adopted the 2030 Agenda for Sustainable
Development, which intends to promote peace and prosperity for people and the planet with a vision for
the near future. In order to take that vision into a reality, the 2030 Agenda consists of 17 Sustainable
Development Goals (Figure 1.1). They represent the actions that countries from all over the world
(both developed and developing) should implement as global cooperation for the future of our planet.
They are the result of decades of work by the UN countries together with the UN Department of
Economic and Social Affairs1:

1. In June 1992 was adopted Agenda 21 for more than 178 countries. It defined a plan of action to
build a global partnership for sustainable development to improve human lives and protect the
environment.

2. In September 2000 at UN Headquarters in New York all the member states unanimously adopted
the Millennium Declaration, which consisted of eight Millennium Development Goals (MDGs)
focused on reducing extreme poverty by 2015.

3. At the World Summit on Sustainable Development (2002 in South Africa) it stated the Johan-
nesburg Declaration on Sustainable Development and the Plant of Implementation, reaffirmed
the global commitment to eradicate poverty.

4. In June 2012, Member states adopted the document “The Future We Want” which it was
launched a process to develop a set of SDGs to build upon the MDGs and to establish the UN
High-level Political Forum on Sustainable Development.

5. In 2013, the General Assembly set up a 30-member Open Working Group to develop a proposal
on the SDGs.

6. In 2015 the negotiations of the 2030 Agenda for Sustainable Development finished, being lately
adopted by the Member States in September.

7. Now, the annual High-level Political Forum on Sustainable Development serves as the central UN
platform for the follow-up and review of the SDGs. The Division for Sustainable Development
Goals (DSDG) in the United Nations Department of Economic and Social Affairs (UNDESA)
provides substantive support and capacity-building for the SDGs and their related thematic
issues, including water, energy, climate, oceans, urbanization, transport, science and technology,
the Global Sustainable Development Report (GSDR), partnerships and Small Island Developing
States. DSDG plays a key role in the evaluation of the UN system-wide implementation of the
2030 Agenda and advocacy and outreach activities relating to the SDGs. To make the 2030

1United Nations Web page

13

https://sdgs.un.org/goals

CHAPTER 1. INTRODUCTION Final Master Thesis

Agenda, a reality, broad ownership of the SDGs must translate into a strong commitment by all
stakeholders to implement the global goals. DSDG aims to help facilitate this engagement.

Figure 1.1: Poster of the Sustainable Development Goals

As depicted in Figure 1.1 the 17 SDGs are the following:

• No poverty (SDG1): end poverty in all its forms everywhere.

• Zero hunger (SDG2): end hunger, achieve food security and improved nutrition and promote
sustainable agriculture.

• Good health and well-being (SDG3): ensure healthy lives and promote well-being for all at all
ages.

• Quality education (SDG4): ensure inclusive and equitable quality education and promote lifelong
learning opportunities for all.

• Gender equality (SDG5): achieve gender equality and empower all women and girls.

• Clean water and sanitation (SDG6): ensure availability and sustainable management of water
and sanitation for all.

• Affordable and clean energy (SDG7): ensure access to affordable, reliable, sustainable and mod-
ern energy for all.

• Decent work and economic growth (SDG8): promote sustained, inclusive and sustainable eco-
nomic growth, full and productive employment and decent work for all.

• Industry, innovation and infrastructure (SDG9): build resilient infrastructure, promote inclusive
and sustainable industrialization and foster innovation.

Page 14

CHAPTER 1. INTRODUCTION Final Master Thesis

• Reduced inequalities (SDG10): reduce inequality within and among countries.

• Sustainable cities and communities (SDG11): make cities and human settlements inclusive, safe,
resilient and sustainable.

• Responsible consumption and production (SDG12): ensure sustainable consumption and pro-
duction patterns.

• Climate action (SDG13): take urgent action to combat climate change and its impacts.

• Life below water (SDG14): conserve and sustainably use the oceans, seas and marine resources
for sustainable development.

• Life on land (SDG15): protect, restore and promote sustainable use of terrestrial ecosystems,
sustainably manage forests, combat desertification, and halt and reverse land degradation and
halt biodiversity loss.

• Peace, justice and strong institutions (SDG16): promote peaceful and inclusive societies for
sustainable development, provide access to justice for all and build effective, accountable and
inclusive institutions at all levels.

• Partnerships for the goals (SDG17): strengthen the means of implementation and revitalize the
Global Partnership for Sustainable Development.

The Sustainable Development Goals represent a complex holistic challenge due to their internal
connection (i.e they are not independent). This is the key to understanding and unlocking their full
potential, otherwise, the efforts put into the development of some of them could be made at the
expense of others. In Kostetckaia et al. [7] it is studied the interlinkages as well as the trade-offs and
synergies that arise from their internal relationships. The Figures 1.2a and 1.2b show the positive
(synergies) and negative (trade-offs) interconnections among the SDGs respectively.

(a) Based on shares of positive correlations (b) Based on shares of negative correlations

Figure 1.2: Visualisation of SDG interlinkages between the goals

The synergies could be explained as follows: if more emphasis is put on clean and renewable
energy then the Green House Gas (GHG) emissions will be reduced and the cities and communities
will become more sustainable. In the same way, if the quality of the work is enhanced and the country
is experiencing economic growth then there will be less poverty and the industry infrastructure will

Page 15

CHAPTER 1. INTRODUCTION Final Master Thesis

also experiment benefits. On the contrary, they also exist trade-offs: if to increase the quality of the
work and experience economic growth the country uses vast amounts of resources and energy, then
there will be a trade-off between SDG7, SDG8 and SDG12. This is a vital point to understand since
the actions to implement should consider both the positive and negative impacts. Relation to the
current work also has a profound implication because all SDGs are interconnected. This means that
not all models will work properly when having to identify the SDGs in a text since some classification
algorithms assume internally to be associated with a unique topic.

In the past years, the interest and exploration in the field of Artificial Intelligence (AI) have
increased notoriously. It allows humans to solve problems that could not be solved with previous tools.
In the same manner, AI could be used to help the government and the world to achieve the SDGs
as it is the primary goal of the 2030 Agenda. A critical step towards that objective is identifying
if the scientific production is going in this way. When associating a specific work with the SDGs,
funders must do a manual recognition, which impacts its accuracy, scalability and objectiveness. For
this reason, it is proposed in this work an AI-based model for the automatic classification of scientific
papers based on their impacts on the SDGs. The objectives of the project are described in Section
1.1, however, a brief picture of the project is that the model receives as input a specific text (usually
abstracts or other types of short texts) and outputs the score of association that each text has with
each of the SDGs. In this work, it will be analysed whether the Aeronautical work having been carried
out in recent years may be in line and have a positive impact on achieving the 2030 Agenda or not.
For that purpose, publications related to aeronautical engineering from 2017 to 2020 are downloaded
from Scopus. This database together with those used for training the model and doing the validation
is described in Chapter 2. The structure of the project as well the description of the models used to
build it can be seen in Section 1.2 and Chapter 3 respectively.

1.1 Objectives

The main objectives of the current work are the following:

1. Implement a model able to identify the SDGs associated with a text. As mentioned before, there
are 17 SDGs in total, however, this work will not consider SDG17. The reason is that it is a
mixture of the other SDGs, so it will be left as future work.

2. Prepare and publish both training and validation datasets so that future work in this field is
enhanced.

3. Validate the trained model with a previously expert-classified dataset.

4. Analyse the impact that the length of the texts has on the model accuracy.

5. Analyse the impact that the Aeronautical Engineering field has on achieving the SDGs based
on publications made in recent years.

6. Compare the impact of publications with a low and high number of citations.

Under the main objectives and following the main idea of the work, they have also defined the
following requirements:

• The model should be able to identify the SDGs correctly even if the text is small (i.e. less than
200 words). Usually, they will be used in abstracts or other kinds of short texts so the model
should be prepared for that.

Page 16

https://www.scopus.com/home.uri

CHAPTER 1. INTRODUCTION Final Master Thesis

• The required computational power and energy used for training the model should be minimized.
In line with the SDGs, training the model and using it should use as few resources as possible.

• The model should be able to run fast (i.e. less than 5 seconds per text) and with low computa-
tional resources. The same rationale of the previous requirement applies here.

• The model should be robust.

• The model should be scalable for future improvements. The model should be able to incorporate
more models easily and without affecting its normal operation (i.e. that the model may be
improved not only training better the already trained models).

• The model and datasets should be easy to use and open-source.

1.2 Project description

All the models, datasets and results are obtained using the programming language Python. The
project is divided into the following directories:

• main directory: it contains the files for the configuration, data and tools that can be used by
the other files (conf.py, data.py and tools.py respectively).

• codes directory: it contains a file per model and for the votation mechanism.

• datasets directory: it contains the dataset in both CSV and JSON format.

• test directory: it contains the files used to test each model and the votation mechanism sepa-
rately. In this way, the models can be updated separately and tested without affecting the other
models.

• analysis directory: it contains the files used to analyse the datasets, the results obtained from
the models and the Aerospace dataset.

The code of the model can be seen in Appendix A. It is the same as the other models, so all of
them share the same interface. In the case of the other files, the codes are self-explaining too. There
are included the following examples:

• Main tools used for the project (A.1).

• File with the required methods for loading all the datasets (A.2).

• Models of the NMF, LDA, Top2Vec and BERTopic (A.3, A.4, A.5 and A.6 respectively).

• Test codes for the NMF model (A.7, being the same for the other models) and the votation
mechanism (A.8).

• Code for the analysis of the aerospace dataset (A.9).

All the datasets are stored in JSON format, which allows for the storage of all the required files
without any restriction on their length. The project is public to visit and download; GitHub project.

Page 17

https://www.python.org/
https://github.com/Alsanron/NLP-SDGs_Classificator

Chapter 2

Related work & Datasets

Nowadays, the Internet connects billions of people in the world and allows the exchange of information
in an unprecedented way. For example, people can express freely their opinions about certain topics.
In this way, a new problem arises: how could it be possible to understand what people are talking
about and their feelings without having to do a manual reading of all those texts? Traditionally this
problem could not be solved, since no technique allowed the computer to understand this internal and
complex human logic. To tackle this problem, it arose the concept of “Topic modelling”.

Topic modelling is an unsupervised learning technique that allows computer users to analyse,
discover and gain insight into a specific set of texts. This concept is very powerful since it allows
us to understand internal and hidden patterns in the data in an unsupervised manner (i.e. the user
doesn’t introduce any parameter). It extracts the main aspects of the texts and based on them they
are categorized. In resume, the steps they followed are the following:

• Collecting the texts. The set of texts is called “corpus”. In this work, how they were collected
and some information about them is given in Section 2. The corpus is unstructured (i.e. the
order of the texts is meaningless).

• Discovering the hidden semantic patterns in the texts, and the topics. Each topic is a collection
of words. If the model is good enough, then the topics will be able to represent the global
information of the corpus with much fewer resources.

In recent years, the amount of work and publications in Artificial Intelligence (AI) have seen an
exponential increase; Figure 2.1 shows an increase from 10000 in 2000 to more than 120000 in 2019.
Due to this popularity, each year new algorithms for topic modelling are discovered and published.
Some of the traditional techniques largely used and accepted for topic modelling are Non-Negative Ma-
trix Factorization (NMF) and Latent-Dirichlet Allocation (LDA) (probabilistic and non-probabilistic
respectively). Some use scenarios of these models are spam detection and search query. These models
rely entirely on the information that is passed to them, no previous training is required; they are
described in Sections 3.1 and 3.2 respectively. On the contrary, there are other more complex models
such as Top2Vec and BERTopic (Sections 3.3 and 3.4).

In Egger and You [3] it is conducted a comparison of the performance that NMF, LDA, Top2Vec
and BERTopic have for topic modelling, analysing a big dataset of unstructured and short texts from
Twitter posts. Due to their large differences, they compared NMF with LDA and Top2Vec with
BERTopic separately. The NMF model only detects some of the topics and issues in the dataset,
while LDA identifies almost all of them. However, LDA extracts more universal and irrelevant topics
than NMF. In both cases, the topic extracted does not allow for an in-depth understanding of the

18

CHAPTER 2. RELATED WORK & DATASETS Final Master Thesis

Figure 2.1: Number of peer-reviewed AI publications from 2000 to 2019 [16]

phenomenon. With Top2Vec and BERTopic they extract more accurate and meaningful topics, being
more informative. Both models output logic and coherent topics, which are easy to understand and
interpret. In conclusion, NMF and BERTopic are identified as better algorithms for topic modelling
in short and very unstructured texts.

One of the objectives listed in Section 1.1 is the comparison of the results obtained when using full
texts and only abstracts for topic modelling. In Nazemi et al. [12] they try to answer the following
question: do abstracts of scientific publications provide a similar analysis capability compared to their
corresponding full-texts from the Visual Analytics viewpoint? To answer it, the LSI and LDA methods
are used as topic modelling and their results are internally compared. It is also compared whether
lemmatizing 1 is positive or not. After analysing more than 2600 documents, they conclude that in
general the main technological aspects of a paper are included in the abstracts, so they illustrate the
main ambitions of the publication. Lemmatizing the vocabulary leads to a lower coherence value of the
models. It was argued that in some topics the words were very similar when skipping lemmatization
so it led to a higher coherence value. Statistically, there was no difference in the coherence of the
results with and without lemmatizing when using only abstracts. The maximum obtained coherence
was using full texts instead of abstracts.

In Marcelo La Fleur [9] they conduct a simplified version of this work, explaining a proof-of-
concept machine learning model to measure how similar a given publication is to each of the 17
SDGs. They compute the SDGs’ scores for some limited sections of DESA publications and provide
some analytics. They use the Latent-Dirichlet Allocation (LDA) model as the main topic modelling
technique, allowing them to analyse the texts at scale with objectivity and identify patterns across
publications. Proceeding in the same way that they do, this data-driven based model can help decision-
makers to identify how to maximize the impact of publications and how to improve the alignment
between DESA’s work and SDG implementation. The main advantage of using LDA is that it is
assuming that documents are a combination of all the topics in the corpus, which makes sense since
texts are rarely about a single subject. In this case, they use only 17 unique and balanced texts to
train the LDA algorithm with 18 topics (the extra topic acts as a filter to remove the common words).
To validate the model they follow two steps: first, each topic should be able to identify specifically
one of the SDGs. Secondly, the words associated with each of the topics should be coherent to the
SDG that they are linked. They analyse the association of the publications with each SDG and the

1Lemmatisation is the process in linguistics consisting of grouping together the inflected forms of words so they can
be analysed as a single item (the words’ lemma).

Page 19

CHAPTER 2. RELATED WORK & DATASETS Final Master Thesis

evolution that they experienced over the years.

In Hajikhani and Suominen [5] they compile the definitions of the SDGs to train a machine learning
model to automate the detection of SDGs in texts such as patents. The main idea was to identify the
extent to which SDGs were being addressed in patents as well as identify the SDGs’ interrelations.
Scientific publications from the last decade were downloaded. Then they were trained in several clas-
sification algorithms and their performance was evaluated. They compare the Naive Bayes Classifier,
Linear Support Vector Machine, Logistic Regression, Word2Vec, Doc2Vec and multi-layer perceptron.
For most of the SDGs, the models deliver an accuracy above 60 %, being the Word2vec model the
one with the highest overall accuracy. Only 11 out of the 17 SDGs were correctly identified, having
experienced issues with the other ones.

Finally, in Vinuesa et al. [15] they analyse the impact of the progress and evolution of Artificial
Intelligence (AI) on achieving the Sustainable Development Goals. To date no study has been con-
ducted on assessing the potential impacts of AI on the SDGs, however, it is expected to affect several
areas such as productivity, equality or environmental outcomes (both in the short and long term). For
this reason, it is discussed the implications of how AI can either enable or inhibit the delivery of the
17 goals and 169 targets, following a consensus-based expert elicitation process and based on previous
studies that map SDGs interlinkages.

In Figure 2.2 it can be seen a summary of the positive and negative impacts of AI on the various
SDGs. The study reveals that AI may act as an enabler on 134 targets (79 %) through technological
improvement while 59 targets (35 % across all SDGs) may experience a negative impact from the
development of AI. It should be remarked that in this study the SDGs are divided into three categories:
Society, Economy and Environment.

Figure 2.2: Summary of the positive and negative impact of AI on the various SDGs. Documented
evidence of the potential of AI acting as (a) an enabler or (b) an inhibitor on each of the SDGs.
The numbers inside the coloured squares represent each of the SDGs. The percentages on the top
indicate the proportion of all targets potentially affected by AI and the ones in the inner circle of
the figure correspond to proportions within each SDG. The results corresponding to the three main
groups, namely Society, Economy, and Environment, are also shown in the outer circle of the figure.
The results obtained when the type of evidence is taken into account are shown by the inner shaded
area and the values in brackets [15].

Page 20

CHAPTER 2. RELATED WORK & DATASETS Final Master Thesis

Regarding the societal outcomes, 67 targets (82 %) could benefit from the development of AI.
For example, it could support the provision of food, health, and energy or reduce carbon emissions
by promoting a better and more smart circular economy. In this case, a much lower 25% could be
impacted negatively, p.e., the progress of AI could require massive computational resources which
could increase the energy requirements and carbon footprint. AI can be used as a catalyst to achieve
the 2030 Agenda, however, it may also trigger inequalities among countries. Also, AI technology
could lead to hate towards minorities, biased elections, social control or nationalism since it is mostly
based on the needs and values of the nations in which it is being developed. Finally, AI is not evenly
distributed; AI-enhanced agricultural equipment may only be accessible to big farms so it could lead
to inequalities and gaps concerning small farms.

The progress of AI may also have a positive impact on the achievement of the SDGs in the
Economy group, being classified 42 targets (70%) as having a positive impact. It may also have a
negative impact (20 targets, 33%) since a large dependence on technological resources (required for
a data-driven economy) could introduce great inequalities and gaps between regions. Moreover, the
inequalities could increase even inside countries, since AI could be replacing old jobs with ones where
technology would disproportionately reward the educated people.

Finally, it is analysed the environment group is composed of SDGs 13, 14 and 15. In this case, the
impact of AI may be almost entirely positive, consisting of 25 positive impacts (93 %) and only 30%
as negative. Figure 2.3 it is shown a detailed assessment of the impact of AI on this group. Some
reasons for having such a positive impact are that AI will allow scientists to better understand climate
change, it will support low-carbon and high-efficiency energy systems or it will be able to combat
desertification and restore degraded land and soil.

Figure 2.3: Detailed assessment of the impact of AI on the SDGs within the Environment group.
Documented evidence of the positive or negative impact of AI on the achievement of each of the
targets from SDGs 13, 14, and 15 [15].

It is also outlined the current research gaps on the role and development of AI. For example, it can
be expected some bias in the AI research community and industry toward publishing positive results,
or some aspects of AI may require long-term studies (not conducted yet). All the data supporting
the findings of the study are available. Since this dataset has more than 100 related papers already
labelled with SDGs via a manual elicitation-based consensus it will be used as a validation dataset of
the trained models (Section 2).

Training dataset

The basic training texts are extracted from the United Nations web page. It is directly related to
objectives 1 and 2 (Section 1.1) which briefly consist in implementing a model able to identify the
SDGs in a text and prepare and publish a training dataset. All the texts are extracted manually from
the following sections:

Page 21

https://sdgs.un.org/goals

CHAPTER 2. RELATED WORK & DATASETS Final Master Thesis

• SDGs description: each SDG is described in the 2030 Agenda and Key topics section. These
texts are labelled according to their section. In general, they are associated with a unique SDG.
They describe each SDG, as well as its targets and indicators.

• Implementation progress: every year, the UN Secretary-General presents an annual SDG Progress
report, which is developed in cooperation with the UN System, and based on the global indicator
framework and data produced by national statistical systems and information collected at the
regional level. The reports range from 2016 to 2021. They also have clear distinct sections for
each SDG.

• Global Sustainable Development Report (GSDR): it is a United Nations publication aiming to
strengthen the science-policy interface at the High Level Political Forum (HLPF) on Sustainable
Development, which replaced the Commission on Sustainable Development after Rio+20 as
the main United Nations platform providing political leadership and guidance on sustainable
development issues at the international level. It also gives a role in the follow-up and review of
the new Agenda for each of the countries that adopted the 2030 Agenda. The GSDRs used were
published in 2015, 2016 and 2019.

• Publications and Acceleration actions: these are projects published by the United Nations that
are intimately related to the progress, development and implementation of the Sustainable Devel-
opment Goals. They have proved to be very useful because they replace the general vocabulary
provided by the others sections with one more specific and topic-related. Also, some of the
projects are related to more than 1 SDG, so it makes the SDGs-interconnection task easier for
the models.

Once all the information is downloaded, then it is split into homogeneous texts. As it is mentioned
in Section 1.1, the texts to analyse will generally be short (i.e. abstracts) so the training texts should
also be relatively small. Figure 2.4 shows the number of files classified by the range of words number
that they contain. As it may be observed, the large majority of the texts fall in the category of 100
to 200 words. There are only a few texts with 300-400 words and less than 100 words.

Figure 2.4: Number of training texts per number of words-range

The average number of words per SDG as well as the number of texts associated with each SDG
are homogenized. In Figure 2.5a it can be seen that the mean number of words is roughly the same
in all the SDGs (around 150 words). This is a very important restriction because some of the models
will learn based only on the training texts (without prior information) so if some of the SDGs have
more associated texts or the number of words is higher, then there will exist a bias towards them.
Also, Figure 2.5b shows the number of texts associated with each SDG. In general, the number of
training texts per SDG is 60, and all the SDGs have almost the same distribution. The only outlier is

Page 22

CHAPTER 2. RELATED WORK & DATASETS Final Master Thesis

SDG3. The reason is to show that some of the models (Top2Vec and BERTopic, which are explained
in Section 3) behave better and the results they obtain are improved when more information is present,
and do not necessarily follow a uniform distribution. In this case, some term-specific texts related
to health care are introduced. These texts are extracted from MeDAL. It is an open-source medical
dataset designed for Natural Language Understanding. In total, the training dataset contains 1000
individual texts.

(a) Mean number of words (b) Number of texts

Figure 2.5: Information of the training files per SDG

All the texts are stored and uploaded together in the file “dataset.json”. As an example, it is
included here a training text labelled with the SDG1: “ goal 1: end poverty in all its forms everywhere.
more than 700 million people, or 10 % of the world population, still live in extreme poverty and are
struggling to fulfil the most basic needs like health, education, and access to water and sanitation,
to name a few. the majority of people live on less than $1. 90 a day live in sub-Saharan Africa.
worldwide, the poverty rate in rural areas is 17. 2 per cent more than three times higher than in
urban areas. having a job does not guarantee a decent living. 8 per cent of employed workers and
their families worldwide lived in extreme poverty in 2018. poverty affects children disproportionately.
one out of five children live in extreme poverty. ensuring social protection for all children and other
vulnerable groups is critical to reducing poverty. ”.

Validation dataset

In Machine Learning (ML) applications, the training and validation datasets should be differentiated
(i.e. the texts used for training should never be used for any validation purposes). To validate the
results, as mentioned previously it is used the dataset in Vinuesa et al. [15]. In this publication, they
present and discuss the implications of how AI can either enable or inhibit the delivery of all 17 goals
and 169 targets recognized in the 2030 Agenda for Sustainable Development. For that purpose, they
use a consensus-based expert elicitation process to associate some publications with some targets of
the SDGs. Based on their dataset, the abstracts and full papers are manually downloaded. The reason
for the division is due to objective 4 presented in Section 1.1: it should be analysed the impact that
the length of the texts has on the model accuracy. It is also related to objectives 2 and 3 (prepare
and publish a validation and validate the model with an expect-classified dataset). In this case, it is
compared the differences (if exist) between using only the abstracts and using more information from
the other sections of the papers. Otherwise, more information should then be provided to evaluate
the association of the texts with the SDGs. In total, the datasets consist of 164 abstracts and 186
full papers. Since the main objective is to analyse the abstracts, it is shown in Figures 2.6a, 2.6b the
number of texts per words-range and the number of texts associated with each SDG respectively. It
can be seen that the data is less uniform than in the case of the training dataset since the texts can
not be modified. The greatest percentile of the texts has between 100 and 300 words, which is in line

Page 23

https://www.kaggle.com/datasets/xhlulu/medal-emnlp

CHAPTER 2. RELATED WORK & DATASETS Final Master Thesis

with the texts used for training. The SDG with the highest frequency is SDG3, and there are other
SDGs (p.e. SDG13) that are less representative.

(a) Number of texts per words range (b) Number of texts associated with each SDG

Figure 2.6: Information of the validation files

Analysing dataset

This section it is presented the dataset related to the final analysis of the current work. It consists
of publications related to aerospace engineering since objective 5 (Section 1.1) consists in analysing
the implication that this field is having about achieving the Sustainable Development Goals of the
United Nations (i.e. if current work is aligned with the 2030 Agenda). It is also related to objective 6
(compare the impact of publications with a low and high number of citations). For this purpose they
downloaded 2000 papers (per year) from 2017 to 2021 (both included) from Scopus2; in total, they
analysed 10000 papers. They are ordered based on the number of citations that they have.

In Figure 2.7a it is is shown the number of papers per range of several words. Most of the texts
have between 100 and 300 words, so again it aligns with the length of the texts used for training the
models. Only a few of them have less than 100 words or more than 400. Figure 2.7b shows the number
of citations per year (adding up the citations of all the papers in that year). As it is natural, the
number of citations decreases with the year, since the papers are more recent. In 2017 the number of
citations was almost 40 k, while in 2021 it is 7.5 k.

(a) Number of papers per number of words-range (b) Total number of citations per year

Figure 2.7: Information of the aerospace files

2Scopues is the largest abstract and citation database of peer-reviewed literature, is widely used to create datasets
for systematic reviews of research [5].

Page 24

CHAPTER 2. RELATED WORK & DATASETS Final Master Thesis

In total there are around 90 different countries represented in the dataset (although the number
of papers and citations is not equally distributed): Singapore, United States, Netherlands, China,
Belgium, United Kingdom, Iran, Germany, Romania, Australia, Italy, Canada, India, Poland, Ireland,
Thailand, Switzerland, France, South Korea, Japan, Hungary, Norway, Hong Kong, Pakistan, Spain,
Kazakhstan, Serbia, Lithuania, Brazil, Russian Federation, Sweden, Algeria, Austria, Argentina, Is-
rael, Portugal, Turkey, Denmark, Macau, Indonesia, Croatia, Greece, Taiwan, Egypt, Saudi Ara-
bia, New Zealand, Mexico, Finland, Malaysia, Estonia, Ethiopia, Czech Republic, PA, Viet Nam,
Iraq, South Africa, Malta, Chile, Slovenia, Lebanon, Bulgaria, Morocco, Tunisia, Sri Lanka, Azer-
baijan, Jordan, United Arab Emirates, Nepal, Luxembourg, Kuwait, Ukraine, Colombia, Uzbekistan,
Bangladesh, Oman, Cyprus, Botswana, Georgia, Qatar, Bosnia and Herzegovina, Uruguay, Ghana,
Ecuador, Inria, Nigeria, Libyan Arab Jamahiriya, Philippines, Latvia, Maroc, Venezuela.

Page 25

Chapter 3

Models

This chapter provides the basic rationale and mathematics behind each Natural Language Processing
model that is used for the Sustainable Development Goals identification. As mentioned in Section 1,
four different models are trained: Non-Negative Matrix Factorization (NMF) (Section 3.1), Latent-
Dirichlet Allocation (LDA) (Section 3.2), Top2Vec (Section 3.3) and BERTopic (Section 3.4). All of
them are built on top of the same base python class, so they share the same inputs/outputs methods
for the text analysis. Each section describes its respective properties and mathematics. However, the
output of all of them is the same: the coherence or probability of association that a text has with each
SDG. Due to their inherently different nature (it will be explained in Section 5), the information that
each model extracts from a text is different, in other words, their functionalities are complementary.
To take advantage of this fact, it is introduced a voting mechanism. It takes as inputs the scores
of each model for each text. Collecting all the information, then it decides which of those identified
SDGs have enough confidence to assume that the text relates to them.

3.1 Non-Negative Matrix Factorization

The Non-Negative Matrix Factorization model approximates a non-negative matrix by the product of
two low-rank non-negative matrices; it is a linear-algebraic optimization algorithm [14] for dimension
reduction and factor analysis method [8]. As it has been mentioned, the difference that this method
has with other low-rank approximations of matrices is that they only have non-negative elements. This
is important for the analysis of texts since this application will never have any negative value. This fact
will lead to physically natural interpretations of the results. NMF is an unsupervised technique since
there is no labelling of topics that the model will be trained on. The topics are then automatically
discovered by the algorithm. It gives semantically meaningful results (information clustering) that are
easily interpretable. For this reason, NMF has been widely used for the analysis of document data,
specifically for topic modelling.

The steps that the model takes to perform the computations and which will be explained in the
following sections are:

1. Pre-process the input text.

2. Transform the text into the Term Frequency-Inverse Document Frequency representation.

3. Ensemble the [document x words] matrix A.

4. Reduce the matrix dimensionality.

26

CHAPTER 3. MODELS Final Master Thesis

5. Identify the topics in the resulting matrices.

6. Ensemble the association matrix with the labelled SDGs.

7. Validate the model with the training and validation datasets.

Text Pre-Processing

The texts that are passed to the NMF model require some preprocessing. The model only reduces
the dimensionality of the information that is passed, and it does not rely on any other source. For
this reason, common words such as “when”, “for” or “much” should be eliminated, since they are not
meant for the study. The pre-processing stage comprehends the next steps:

1. Convert the text to lowercase. This applies to all the texts that are used.

2. Strip tags and punctuation characters ([“!”, “?”, “.”]).

3. Strip non-alphanumeric characters ([,̂]).

4. Strip multiple white spaces.

5. Remove words with a length lower than 2 characters.

6. Lemmatize the words. This is a common step in all the processes related to language analysis.
Briefly, it consists of the grouping of different forms of the same word. For example, the words
“leafs” and “leaves” would be converted into “leave”. It avoids the presence of multiple forms
of the same word in the topics since they do not give any extra information.

7. Remove stop words. This includes the dataset provided by gensim as well as a manually-made
dataset (stop words.txt, located in the ref/ folder).

The functions used for preprocessing belong to the gensim library while the Lemmatizer class does
to the Natural Language Toolkit one (NLTK). The output of these steps can be visualized in the
following example:

• Input text: “goal 1: end poverty in all its forms everywhere. more than 700 million people,
or 10% of the world population, still live in extreme poverty and are struggling to fulfil the
most basic needs like health, education, and access to water and sanitation, to name a few.
the majority of people live on less than $1. 90 a day live in sub-Saharan Africa. worldwide,
the poverty rate in rural areas is 17. 2 per cent more than three times higher than in urban
areas. having a job does not guarantee a decent living. 8 per cent of employed workers and their
families worldwide lived in extreme poverty in 2018. poverty affects children disproportionately.
one out of five children live in extreme poverty. ensuring social protection for all children and
other vulnerable groups is critical to reducing poverty. ”

• Output text: “goal end poverty world population live extreme poverty struggling to fulfil basic
need like health education access water sanitation majority living le live sub-Saharan Africa
worldwide poverty rate rural area time higher urban area having job doe guarantee decent living
fact employed worker family worldwide lived extreme poverty affect child live extreme poverty
ensuring social protection child vulnerable group critical reduce poverty”

As it may be deduced, the output is much clearer and has a higher focus on the topic that it is
talking about, having deleted those words with no value.

Page 27

https://radimrehurek.com/gensim/parsing/preprocessing.html
https://radimrehurek.com/gensim/parsing/preprocessing.html
https://www.nltk.org/_modules/nltk/stem/wordnet.html

CHAPTER 3. MODELS Final Master Thesis

Convert input text to TF-IDF representation

The Term Frequency-Inverse Document Frequency (TF-IDF) is a matrix that represents the impor-
tance that each word has to each document inside a corpus (collection of documents). This is one
of the most popular schemes used for term-weighting purposes. Its value increases linearly with the
frequency of the word and it is scaled with the total number of words, so it reduces the problems
with those documents with a large number of words. Also, it assumes that words that appear only
in a few documents will be more representative and have more information than more common. For
that reason, it is scaled with the logarithmic fraction between the total number of documents and the
document frequency of each term (i.e. the number of documents in which the term appears). In this
way, if the word appears in all documents, the term will have a tf-IDF value of 0 (p.e. this is useful
for stop-words filtering). The corresponding equation is shown in Equation 3.1.

tf(t, d) =
ft,d∑

t′∈d ft′,d
·
(
log

(
N

df(t)

)
+ 1

)
, (3.1)

where tf-IDF(t,d) is the term frequency-inverse document frequency of a term t, ft,d is the frequency
of a term t in document d,

∑
t′∈d ft′,d is the total number of terms inside a document d, N is the total

number of documents, and df(t) is the document frequency of the term t.

It is used the TfidfTransformer from scikit-learn. First, the CountVectorizer convert the corpus
of documents into a matrix of term counts (using a sparse matrix representation). The output is
then passed to the tfidf Transformer that converts the count matrix into its tf-idf representation. The
configuration that is used is the following:

• min df : 2. This means that the terms must appear at least in 2 documents to be consid-
ered. The list with those words that do not satisfy this condition can be found in the path
out/NMF/stopwords.csv.

• ngram range : (1,3). This means that they will be used bigrams and trigrams in the search
process. Bigrams and trigrams are expressions consisting of two and three words respectively that
are repeated across documents (p.e. “climate change” or “gender equality” could be considered
as bigrams).

The rest of the parameters are left with the default values.

Dimensionality reduction and topics extraction

As it was mentioned previously, the NMF process consists in finding two non-negative matrices (W,
H) whose product approximates the initial non-negative matrix (TF-IDF). In Figure 3.1 it may be
seen the graphical representation of the model. A brief insight inside each matrix is the following:

• Matrix A(TF-IDF), size: [terms x documents]. Represents the contribution of each term to each
document.

• Matrix W, size: [terms x topics].

• Matrix H, size: [topics x documents].

Page 28

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfTransformer.html#sklearn.feature_extraction.text.TfidfTransformer

CHAPTER 3. MODELS Final Master Thesis

Figure 3.1: Graphical representation of an NMF model.

The model internally tries to minimize the objective function provided in Equation 3.2. The other
terms are not so shown in the equation because they all are set to 0, so they do not have any effect
on the results.

L(W,H) = 0.5 · ∥A−WH∥2loss (3.2)

As it may be de deduced, despite being an unsupervised model (the topics are extracted auto-
matically), the number of the topics that shall be used must be introduced by the user. In this case,
it is set to 20 topics. The reason is that the model should be able to identify the 16 SDGs1 and as
described in Section 2, they have introduced some specific-information texts related to the SDG3, so it
is assumable to expect that it should appear in two topics. Nevertheless, this process has been iterated
from 15 to 21 topics, and then it is concluded that 20 was the best option based on the quality of the
topics extracted. The number of iterations is set to 2000. With these parameters, the Frobenius norm
of the matrix difference between the training data and the reconstructed data from the fitted model
is only 29.6, being 10305 the total sum of the matrix (low reconstruction error).

SDGs-Association Matrix

Once the model has been trained, and the topics extracted, then it is required to associate each of those
topics with at least 1 SDG. This process could be done manually, but it would be very demanding for
the user, and it would be a difficult task for those topics that are associated with more than 1 SDG
since the user would not know what percentage assign to each of them beforehand. For this reason,
the SDGs association is done automatically. The steps that automatically take are the following:

1. Each text has been labelled during the generation of the training dataset with at least 1 SDG.

2. A SDG-Association matrix is initialized. It has a size of (number topics x number SDGs) so in
this case, it would be (20 x 17). Each of the rows indicates the degree of association (in the
range [0, 1]) that the topic has with each SDG.

3. Once the model is trained, then each of those training texts is input into the model. The output
is the score of association that the text has with each of the topics (i.e. a vector between -1 and
1 with size [1 x number topics]).

1The 17th SDG is currently not considered since it is a mix of the other SDGs.

Page 29

CHAPTER 3. MODELS Final Master Thesis

4. A new vector is created per text, with 0’s in general and with 1’s in those positions corresponding
to the SDG that the text is associated with (p.e. if the text is associated with SDG3, then the
vector would be: [0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0]).

5. For each topic, it is added to the corresponding row in the matrix the result of the multiplication
of the topic score with the vector of 1’s and 0’s. Once all the texts have been processed, all the
rows are normalized if any of the values are greater than 0.1. Otherwise, an exception is raised
since that topic is not relevant to the study.

The final matrix of the NMF model is shown in Table 3.1. It can be seen that some topics are
associated with a unique SDG such as topics 1 and 2 with 9 and 6 respectively. The last row is the
sum of the total representation that each SDG has in the matrix. This value is important since a low
one would indicate that the SDG is not represented in the matrix, so it is expected that the model
would work poorly to identify that SDG. This is the main reason why they selected 20 topics because
in this case, the lowest value is 0.81 for the SDG1. If a lower number was selected, this value was
lower than 0.31, so it could not be accepted. Finally, it must be remarked that due to the greater
number of texts associated with SDG3, its representation in the matrix is also higher. In this case, it
does not mean that there will be a bias towards that SDG, but that more than 1 topic is associated
with that SDG.

Topic
SDG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0 0 0 0 0 0 0 0 0 0.51 0 0.49 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0.16 0 0 0.84 0 0 0 0 0 0 0 0 0 0 0

4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

9 0.81 0 0 0 0 0 0 0 0 0.19 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

11 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

14 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

18 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

19 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Total 0.81 1 2.16 1 1 1.84 1 1 1.51 1.19 1.49 2 1 1 1 1 0

Table 3.1: Association matrix of the NMF model. Each row indicates the score of association ([0, 1])
that the corresponding topic has with each SDG.

Table 3.2 shows the top 25 words of topics 1, 2 and 4. At the top, it can be seen the SDGs with
which they are associated, being the SDG7, 6 and 3 respectively. Each word has associated a score,
which indicates the importance of that word for each topic, the higher the score the more important
that the word will be. As it can be seen, the auto-generated topics with the NMF model are direct
to understand and guess what the topic is related to the topic1 related to the SDG7 has the words
energy, renewable, electricity, energy efficiency, fuel, emission, energy consumption which are related

Page 30

CHAPTER 3. MODELS Final Master Thesis

to the Affordable and clean energy. The same applies to topic2 with the Clean water and sanitation
(SDG6) and topic4 with Good health and well-being (SDG3). Also, it must be remarked how the use
of bigrams and trigrams greatly improves the results, and they have proved to be very useful. Some
of them are: “energy efficiency”, “clean energy”, “water scarcity”, or “mortality rate”.

Word Topic1 - 1.00*SDG7 Topic2 - 1.00*SDG6 Topic 4 - 1.00*SDG3

0 1.416:energy 1.374:water 0.305:africa

1 0.298:renewable 0.264:water resource 0.300:saharan

2 0.275:electricity 0.227:management 0.300:sub saharan

3 0.257:renewable energy 0.210:resource 0.299:sub

4 0.254:energy efficiency 0.174:water resource management 0.296:sub saharan africa

5 0.237:efficiency 0.167:resource management 0.296:saharan africa

6 0.214:fuel 0.163:scarcity 0.276:hiv

7 0.198:technology 0.149:supply 0.235:rate

8 0.193:clean 0.147:water scarcity 0.210:adolescent

9 0.161:emission 0.139:water related 0.200:asia

10 0.159:access 0.131:water quality 0.196:child

11 0.143:carbon 0.123:sector 0.189:death

12 0.114:global 0.121:transboundary 0.155:incidence

13 0.112:energy consumption 0.121:water supply 0.149:new

14 0.109:cooking 0.120:sanitation 0.146:infection

15 0.108:fossil 0.118:water efficiency 0.139:globally

16 0.107:power 0.114:integrated water 0.137:tuberculosis

17 0.106:sector 0.114:integrated water resource 0.136:death live

18 0.101:clean energy 0.109:efficiency 0.133:mortality

19 0.101:energy energy 0.105:water sector 0.131:southern asia

20 0.101:energy sector 0.104:fresh water 0.129:southern

21 0.098:access clean 0.102:country 0.125:region

22 0.097:fossil fuel 0.102:fresh 0.116:mortality rate

23 0.096:global energy 0.099:water policy 0.114:live

24 0.094:source 0.097:water supply sanitation 0.112:highest

25 0.094:fuel technology 0.097:supply sanitation 0.111:uninfected

Table 3.2: Top 25 words per topics 1, 2 and 4 of the NMF model.

Page 31

CHAPTER 3. MODELS Final Master Thesis

3.2 Latent-Dirichlet Allocation

In Section 3.1 it was introduced the reduction features of the TF-IDF method, which can perform a
basic identification of those sets of words that are discriminative for documents. However, it provides
only a small reduction in the size of the matrices. To address this issue, other methods appeared as
the Latent Semantic Index (LSI). It is a statistical method that used a singular value decomposition o
the original matrix to identify a linear subspace in the TF-IDF matrix, trying to capture most of the
variance in the collection. One step forward was the introduction of the probabilistic Latent Semantic
Index (pLSI) method. It uses a probabilistic method instead of Singular Value Decomposition. The
main idea is that it tries to find a probabilistic model with hidden variables (i.e. latent variables)
which can generate the data in the original document-term matrix.

To tackle the problems of both LSI and pLSI, it was introduced the Latent-Dirichlet Allocation
(LDA) model. It is a generative probabilistic model for collections of discrete data [2]. It is a three-level
hierarchical Bayesian model, where each item of a collection (i.e. a text) is modelled as a finite mixture
over an underlying set of topic probabilities; each topic is then modelled as an infinite mixture over an
underlying set of topic probabilities. In terms of text modelling, these topic probabilities provide an
explicit representation of a text. However, LDA does not only model text corpora and can apply to
other collections of data, such as data from collaborative filtering, content-based image retrieval and
bioinformatics.

LDA is a mixture model that captures the exchangeability of both words and documents. The
assumption of exchangeability for words in a document means that the order of words in a document
is not important, and likewise for the ordering of documents in a corpus. This does not imply that
they are fully independent, but they are conditionally independent based on an underlying probability
distribution [2]. This assumption has been also mentioned in the NMF model (Section 3.1). The
principal reason why it is used is that it leads with high computational efficiency, and is fast to run.

Based on the idea that each text can be represented as a random mixture over latent topics (i.e.
hidden topics that can not be modified externally) and each topic follows a distribution over words,
then to generate a text:

1. Randomly chooses a distribution over topics (θ, following a Dir(α))

2. For each word in a document:

• Randomly chooses a topic from the distribution over topics (z, following a Multinomial(θ)).

• Randomly chooses a word from the corresponding topic (w, given z and following a Multinomial(β)).

The dimensionality k of the Dirichlet distribution is assumed know and fixed. A k-dimensional
Dirichlet random variable θ can take values in the (k − 1) simplex (a k-vector θ lies in the (k −
1) simplex if θi >= 0,

∑k
i=1 θi = 1. Given the parameters α and β, the marginal distribution of a

document is:

p(d|α, β) =
∫

p(θ|α)

(
N∏

n=1

∑
zn

p(zn|θ)p(dn|zn, β)

)
dθ, (3.3)

where p(θ|α) is the probability of θ following a Dirichlet distribution over α, p(zn|θ) is the probability
of a topic following a multinomial distribution over θ and p(dn|zn, β) is the probability of a document
given a multinomial distribution over β and being conditioned by the topic zn.

Page 32

CHAPTER 3. MODELS Final Master Thesis

Figure 3.2 shows the representation of the LDA model as a probabilistic graphical model. As it
was mentioned previously, there exist three hierarchical levels:

1. The corpus level, with the parameters α and β and are sampled only once when generating the
corpus. These are the parameters that the model should learn.

2. The document level, with the parameter θ is sampled once per document.

3. The word level, with the variables zn and wn sampled once per document and word.

The great advantage that LDA has over other models is that each document can be associated
with multiple topics since the topic node is sampled repeatedly within each document.

Figure 3.2: Graphical model representation of LDA [2].The outer plate represents documents, while
the inner plate represents the repeated choice of topics and words within a document.

Optimization

In this case, several parameters are optimized to get the model to work properly:

• Bigrams and trigrams are allowed (two and three consecutive words that together have a special
meaning. To consider the bigrams and trigrams in the vocabulary, they should appear at least
5 times in the whole corpus.

• Only those words that appear at least two times in the corpus are allowed. Also, if the frequency
of the word appearing in the corpus is greater than 70 % then they are deleted (a word with a
high frequency does not give information to the model).

• All the texts extracted from the dataset (training, validation and analysis) are lemmatized.

Once it is defined the base configuration of the input to the model, is followed by an optimization
procedure to adjust the remaining parameters of the model:

• Number of topics: this is the same parameter as in the NMF model (Section 3.1). Since there
are 16 SDGs into consideration, this parameter is varied from 16 to 21.

• Passes: number of times that the optimization procedures pass over the whole corpus. Since the
corpus is small, this parameter is fixed to 1000.

Page 33

CHAPTER 3. MODELS Final Master Thesis

• Iterations: maximum number of iterations that the model can take to obtain the topic distribu-
tion in the corpus. This is varied from 10 to 400.

• Only positive: a boolean flag that if set to true, then only those scores of topics whose values
are greater than 0 are considered for the SDGs mapping. It is set to true.

• Random state: Seed used for reproducibility. It is set to 1.

The other parameters of the model are left to the default values. The best model resulting from
the optimization is selected based on the best association matrix (i.e. the best representation for all
the SDGs), the quality of the topics and the log-perplexity of the model. The perplexity is a intrinsic
evaluation metric widely used for model evaluation [6]. It tries to capture how surprised a model is
with new data that it has not seen before. Generally, it is calculated based on the held-out data (i.e.
the part of the dataset that is not used for training). Since in this case the complete dataset is used
for training, then it is used some texts from the analysis dataset to evaluate the performance of the
different configurations. The lower the perplexity, the better the model is since it can generalize better
(it is less surprising when new words are being used). After the optimization, the final configuration
is: 17 topics, 1000 passes, 10 iterations and only positive True. To choose the optimal configuration, it
is mainly taken into account the representativity that the model has with each SDG (i.e. all of them
should be present), the coherence of the topics and the log perplexity. In this case with 17 topics, it
is obtained the lower perplexity (-11.5).

SDGs-Association Matrix

The process of how the association matrix is obtained was described in Section 3.1; even if the models
are internally different both of them share the same interface. The Association matrix of this model
can be seen in Table 3.3. The lower contribution is for SDG2 (0.68), however, it is still acceptable. In
the other SDGs, it is very proximate to 1, being the case of SDG8 (1.48) the SDG most representative.

Top.
SDG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.77 0.00 0.23 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18 0.62 0.20 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.00 0.00 0.00 0.19

4 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.51 0.00 0.00 0.00 0.00 0.00 0.00 0.30 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.66 0.00 0.00 0.00 0.00

11 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.22 0.00 0.00 0.00 0.34 0.00 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

15 0.25 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

17 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.73 0.00 0.00 0.00

Tot. 1.15 0.68 1.00 0.75 1.00 1.00 1.22 1.48 0.84 1.00 1.11 1.29 1.30 1.00 1.00 1.19

Table 3.3: Association matrix of the LDA model. Each row indicates the SDGs to which the corre-
sponding topic is related.

Table 3.4 shows the top 25 words of topics 7, 8, 13 and 15. At the top, it can be seen the SDGs
with which they are associated. Each word has associated a score, which indicates the importance of

Page 34

CHAPTER 3. MODELS Final Master Thesis

that word for each topic, the higher the score the more important that the word will be. It can be
noticed that from the words of each topic it could be possible to guess the SDGs with which that topic
is associated, in other words, the generated topics are coherent and easy to understand. For example,
topic 8 contains the words: health, death, disease, mortality, child, communicable, maternal... so it
would be assumable to think that the topic is related to Good health and well-being (SDG3). Topic
15 contains words such as education, school, primary, and learning but also others such as extreme
or poverty, so it is also rational to think that it is associated with No poverty (SDG1) and Quality
education (SDG4).

Topic 7 Topic 8 Topic 13 Topic 15

1.00*SDG6 1.00*SDG3 1.00*SDG16 0.75*SDG4,0.25*SDG1

0.087:water 0.031:health 0.036:country 0.041:education

0.027:sanitation 0.026:death 0.022:right 0.029:child

0.016:country 0.024:disease 0.015:institution 0.025:school

0.015:access 0.014:rate 0.014:human 0.020:primary

0.013:drinking 0.013:mortality 0.013:violence 0.014:poverty

0.012:management 0.012:child 0.013:child 0.013:country

0.012:service 0.010:care 0.013:victim 0.010:learning

0.009:drinking water 0.009:global 0.012:law 0.009:africa

0.009:water sanitation 0.008:globally 0.012:human right 0.009:saharan

0.008:resource 0.008:africa 0.011:access 0.008:sub

0.008:asia 0.008:wa 0.010:justice 0.008:sub saharan

0.008:basic 0.008:country 0.008:national 0.008:secondary

0.007:lack 0.008:sub 0.007:sexual 0.008:teacher

0.006:facility 0.008:live 0.007:region 0.007:quality

0.006:safely 0.007:saharan 0.007:trafficking 0.007:rate

0.006:population 0.007:hiv 0.006:available 0.007:world

0.006:sector 0.007:sub saharan 0.006:level 0.007:student

0.006:supply 0.007:worldwide 0.006:access justice 0.007:access

0.006:level 0.007:maternal 0.006:africa 0.007:level

0.005:hygiene 0.007:risk 0.006:sub 0.006:skill

0.005:safe 0.007:communicable 0.006:proportion 0.006:extreme

0.004:transboundary 0.006:progress 0.006:conflict 0.006:training

0.004:global 0.006:estimated 0.006:public 0.006:population

0.004:health 0.006:new 0.006:population 0.005:primary secondary

Table 3.4: Top 25 words associated with topics 7, 8, 13 and 15 of the LDA model. The score before
the word indicated the weight that word has on the corresponding topic.

Page 35

CHAPTER 3. MODELS Final Master Thesis

3.3 Top2Vec

The Non-Negative Matrix Factorization (NMF) and Latent-Dirichlet Allocation (LDA) models de-
scribed in the Sections 3.1 and 3.2 have some major limitations:

• The user has to introduce the number of the internal topic to consider since they discretize
the continuous topic space into those topics. This is a major limitation since the user does
not know beforehand which could be an appropriate number of topics (especially for very large
or unfamiliar datasets), requiring for example some kind of measure to understand how well a
model fits the data.

• Both methods rely on the bag-of-words assumption, so intrinsically they are losing the informa-
tion about the semantics and order of the words. To overcome these limitations it is introduced
the Topic to Vector (Top2Vec) method.

• If stop-words are not filtered out from the texts or the words are not lemmatized, then some very
frequent words such as “the” or “and” will have the highest probabilities and the topics extracted
will lack meaning and coherence. This has the extra difficulty that sometimes the collection of
stop-words is not well known since apart from the global words are also problem-specific words
to remove and in most cases, it is done via manual recognition.

• LDA is a probabilistic generative model, which means that it fits the latent variables to minimize
the reconstruction error of the matrix (i.e. recreate the original document-word distributions).
The major limitation of this approach is that it can not differentiate informative from uninfor-
mative words

Topic to Vector (Top2Vec) is a method based on the distributed representation of both words
and documents, being able to capture the semantics of the words (and then, the documents) [1].
Some of the great advantages of this model are that it does not require stop-word lists, stemming or
lemmatization. This is a great advantage because words such as “big” and “large” would be recognized
as different since they do not share the same stem, but they are semantically recognized as similar
with this model. Also, it automatically finds the number of topics. The resulting topic vectors are
jointly embedded with the document and word vectors with the distance between them representing
semantic similarity. The topics are assumed to be continuous as a certain topic may be represented
by many combinations of weighted words. Each document is associated with a unique topic, being a
continuous combination of the topics discovered by the model. In this way, the topic of the document
is described as a set of weighted words and they should be able to represent a high-level summary of
its contents.

Distributed representation of words, topics and documents

A distributed representation implies that the learned concept (p.e. a word) is represented by many
neurons inside the network. The task is then to adjust the weights of the internal neurons, meaning that
they may participate in the representation of multiple concepts at the same time. The great advantage
of this distributed learning is that it automatically leads to the generalization of the learned concepts,
avoiding the problem known as “overfitting”. The vector representation of words also guarantees
the “distributional hypothesis”, which means that semantically similar words will be used in similar
contexts.

The first model that put this idea into practice was word2vec [11]. It is a neural network able
to capture both semantic and syntactic word relationships. It learns by trying to predict the words

Page 36

CHAPTER 3. MODELS Final Master Thesis

that should be adjacent to a specific word given its context (i.e. a sliding window over the whole
document). Then it satisfies the distributional semantics hypothesis since it learns word vectors from
those words used in similar contexts. It has been a very useful model, although current tendencies try
not to rely on neural networks (the cost of training and using them is higher).

Extending the idea and work developed in word2vec, it was introduced doc2vec [10]. This model
also learns the internal vectors of paragraphs. Now it not only used the context window of words to
predict a specific word but also the paragraph vector, acting them as a memory of the topic of the
document. In this way, it can learn vector representation of whole documents.

The semantic space is a mathematical space representation in which distance is directly related to
semantic similarity (i.e. two words that are close in the semantic space will be semantically similar).
Doc2vec can learn both vector representations of words and documents. In this way, those words
whose vectors are very close to the document vector will be more representative of the document’s
topic. The combination of both word and document embedding is known as “semantic embedding”.

The assumption used in top2vec is the following: the semantic embedding space is a continuous
representation of both words and documents. Then each point in the semantic space is a different
topic that is best represented by those words which are closer to it. In the same way, those documents
that are close to each other near the point will have a similar topic, they are semantically similar.
Based on this, top2vec looks for those areas in the semantic space that are denser than others, and
from those dense areas the topic is extracted (those will be the prominent topics). The topics vector
is extracted from the centroid of each area; its interpretation is an average document representative
of all the documents around that point. Also, another great improvement introduced with top2vec is
that the user can decide to hierarchical group those topics that are very close in the semantic space,
which is usually known as “topic reduction” (since the number of topics discovered is reduced).

Description of the model

In the previous section it has been described the Semantic Space as a mathematical space with the
following special properties:

• The distance between words and document vectors represented the semantic association that
they have.

• Documents that are semantically similar will be placed close together.

• Those words that surround a document should be able to describe the document well.

• To learn jointly embedded word and document vectors is used word2vec.

An example of semantic space can be visualized in Figure 3.3. The description of how the model
internally learns the corresponding matrices is out of the scope of the present work (it can be found
in [1]).

As it has been mentioned before, in the jointly embedded word and document space both words and
documents are represented as positions. Those documents that are semantically similar are placed
close to each other. In this way, those areas of the space with a high density of documents are
indicative of an underlying common topic that is shared among those documents. The topic point is
then calculated as the centroid of each of those areas, and the words closer to those centroids will be
the most representative. In order to find those areas, it is used the Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN).

Page 37

CHAPTER 3. MODELS Final Master Thesis

Figure 3.3: An example of a semantic space. The purple points are documents and the green points are
words. Words are closest to documents they best represent and similar documents are close together
[1]

Before finding the dense area of documents, it is required to perform a dimension reduction on
the vector space. This is due to the problem called as “curse of dimensionality”, where the document
vector embeddings are very space when the dimension of the vector is high enough, which makes it
difficult to find the areas of a high density of documents. The dimensionality reduction is done with
the Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) algorithm.

Once the clusters with high density have been discovered in the semantic space, then it is required
to calculate the topic vectors. Although there exist several algorithms for this purpose, in this case,
the topic vector is calculated as the centroid of those clusters. It then is calculated as the arithmetic
mean of all the document vectors associated with that cluster. Figure 3.4 is shown the topic vector
as the centroid of the dense area of documents identified by HDBSCAN.

Once the topics are found, then it is required to find the words associated with each topic (statis-
tically the words that are more representative of that topic). The distance of each word to the topic
indicates how similar is that word to the topic. Then, the words that are closer to the centroid of the
cluster (topic vector) can be used to summarize the contents of that topic and the documents close to
it. Those words that are common to all the documents will be equally distant from all the topics, and
thus will not be considered representative words of any of the clusters. This implies that stop-word
removal is not required when using Top2Vec.

Optimization

The optimization of Top2Vec is more complex than the optimizations followed in Sections 3.1 and 3.2
2. The studied parameters are the following:

• min count: minimum number of times that a word must appear in the corpus to be considered.
This is set to 2.

2Documentation about Top2Vec can be found in Top2Vec.

Page 38

https://top2vec.readthedocs.io/en/stable/api.html

CHAPTER 3. MODELS Final Master Thesis

Figure 3.4: The topic vector is the centroid of the dense area of documents identified by HDBSCAN,
which are the purple points. The outliers identified by HDBSCAN are not used to calculate the
centroid [1]

• ngram vocab: similar to using bigrams and trigrams. Based on the results obtained previously,
it is set to True.

• embedding model: the model used to generate the document and word embeddings. They used
the doc2vec embedder (it trains a model from scratch working well with large datasets), the
universal-sentence-encoder (faster model to train than the others since it has already been pre-
trained, and it’s suggested for small datasets) and the all-MiniLM-L6-v2 (it uses the SBERT
pre-trained sentence transformer.).

• speed: it determines the speed of learning when the doc2vec is used as the embedding model. It
can be fast-learn, learn and deep-learn. All of them are tested.

• split documents: if set to True then the documents are split before being used. This is set to
False.

• lemmatized: although theoretically it is not required to lemmatize and remove stop-words from
the texts (As explained in Section 3.3), both raw and lemmatized versions of the corpus are
tested.

• only positive: if set to true, then only those topics whose coherence is greater than 0 are used
for the SDGs mapping. This is set to true.

It should be remarked that even with the same configuration, the trained model may vary from
one training to the next one. For that reason, each configuration is run several times and then the
obtained results are averaged. The obtained results can be seen in Table 3.5. Based on them, the final
chosen configuration is the first one due to the following reasons:

• Using configuration 2 the obtained scores are worse than with the first one, it takes more time
to run and one of the SDGs only has a 0.11 score of representation in the Association Matrix,
which is too low to be considered valid.

• Using configuration 3 the number of topics obtained is reduced (only 14) so the matrix association
is mixed. Furthermore, when one topic is detected to be related to the text automatically it is
induced one tendency to other SDGs that may not be related to the contexts of that text.

Page 39

CHAPTER 3. MODELS Final Master Thesis

• Using the universalsentenceencoder the number of topics is ok, but the minimum representation
of the SDGs is 0.5, which is much worse than configuration 1 (in which the min one is 1).

• Using the first configuration with the dataset not being lemmatized it takes more time to train
and the obtained results are worse, so it is also discarded.

embedding model speed parsed nTopics Sc. Ind Sc. Gr Min. Rep Max. Rep

doc2vec learn True 17 57 50 1 1.44

doc2vec deep-learn True 15 26.22 25 0.11 1

all-MiniLM-L6-v2 learn True 14 33 30 0.4 1.7

universal-sentence-encoder learn True 16 37 32.15 0.5 1.4

doc2vec learn False 15 41.46 38 0.41 1.37

Table 3.5: Configuration and results of the Top2Vec model’s optimization. Sc.Ind and Gr are the
scores obtained for identifying correctly the individual and group SDGs respectively in the validation
dataset. Min.Rep and Max.Rep are the minimum and maximum representation of the SDGs in the
Association Matrix.

To summarize, the final chosen configuration is: doc2vec (embedding model), learn (speed) and
lemmatized.

SDGs-Association Matrix

The process of how the association matrix is obtained was described in Section 3.1; even if the models
are internally different both of them share the same interface. The Association matrix of this model
can be seen in Table 3.6. The are 17 topics in total. As can be seen, the minimum representation
of the SDGs is 1.00. The topic1 is the only topic that mixes SDGs, the others are associated with a
unique SDG. This is very positive at the time to analyse and identify the SDGs in the texts. The max
value is 1.45, so it is still close to 1.

Top.
SDG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.28 0.27 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

4 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

16 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

17 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tot. 1.00 1.00 1.00 1.00 1.00 1.00 1.45 1.00 1.00 1.00 1.28 1.27 1.00 1.00 1.00 1.00 0.00

Table 3.6: Association matrix of the Top2Vec model. Each row indicates the SDGs to which the
corresponding topic is related.

Table 3.7 shows the top 25 words of the SDG14, SDG4, SDG16 and SDG6. At the top, can be
seen the SDGs with which they are associated. Each word has associated a score, which indicates the

Page 40

CHAPTER 3. MODELS Final Master Thesis

importance of that word for each topic, the higher the score the more important that the word will be.
It can be noticed that from the words of each topic it could be possible to guess the SDGs with which
that topic is associated, in other words, the generated topics are coherent and easy to understand.
For example, the topic associated with the Quality education (SDG4) contains the words: secondary,
proficiency, reading, school, learning, enrolment, scholarship or teacher. Also, the topic associated
with the Clean water and sanitation (SDG6) contains words such as defecation, sanitation, drinking,
wastewater, toilet or handwashing.

1.00*SDG14 1.00*SDG4 1.00*SDG16 1.00*SDG6

0.865:overfishing 0.903:secondary 0.844:punishment 0.873:safely

0.855:acidification 0.888:proficiency 0.821:rule 0.858:defecation

0.837:destructive 0.879:reading 0.817:aggression 0.849:sanitation

0.835:coastal 0.850:school 0.815:underreporting 0.832:drinking

0.833:marine 0.848:learning 0.813:violation 0.797:soap

0.830:fish 0.837:completion 0.807:torture 0.787:wastewater

0.825:ocean 0.834:mathematics 0.807:discipline 0.786:toilet

0.821:anthropogenic 0.826:enrolment 0.790:childrens 0.784:practise

0.807:mile 0.803:developmentally 0.783:disturbing 0.753:latrine

0.806:acidity 0.802:education 0.777:psychological 0.752:hygiene

0.791:precious 0.793:numeracy 0.776:unsettling 0.750:lacked

0.787:oxygen 0.788:literacy 0.775:detention 0.737:water

0.785:nautical 0.786:scholarship 0.774:freedom 0.713:operational

0.779:conserve 0.779:write 0.774:journalist 0.711:discharged

0.774:biologically 0.778:finished 0.774:intercourse 0.711:lake

0.770:biodiverse 0.776:primary 0.773:upholding 0.709:river

0.767:eutrophication 0.768:acquire 0.766:physically 0.684:washing

0.763:portion 0.767:lifelong 0.766:violence 0.673:menstruation

0.762:jurisdiction 0.766:read 0.763:homicide 0.669:handwashing

0.755:yield 0.750:teacher 0.759:armed 0.667:treated

0.754:fishing 0.747:ofschool 0.758:unionist 0.663:unsafe

0.752:shortest 0.742:refocused 0.755:justice 0.661:responded

0.739:impairs 0.742:ready 0.754:untold 0.652:withdrawn

0.734:unreported 0.739:teaching 0.749:previous 0.651:lacking

0.733:ultimately 0.739:pedagogical 0.747:victim 0.645:scarcity

0.733:fishery 0.739:skill 0.747:feel 0.645:hand

Table 3.7: Top 25 words associated with SDG14, SDG4, SDG16 and SDG6 of the Top2Vec model.
The score before the word indicated the weight that word has on the corresponding topic.

Page 41

CHAPTER 3. MODELS Final Master Thesis

3.4 BERTopic

BERTopic is a topic modelling technique very similar to Top2Vec (Section 3.3) since both are clustering-
based techniques and unsupervised [4]. BERTopic extracts coherent topic representation via the im-
plementation of a class-based variation of TF-IDF. The steps it follows are3:

1. Generating the document embeddings with a pre-trained transformer-based language model,
Bidirectional Encoder Representations from Transformers (BERT). The embedded words which
are semantically similar will be placed close to each other in semantic space. In this way,
document-level information is extracted from the corpora. This embedding step is performed
using the Sentence-Bert (S-BERT) framework. It has the advantage that the transformer has
already been pre-trained on a large corpus, so it will work better when the dataset is small than
the other models.

2. The document embeddings are dimensionally reduced. This is because as data increases in
dimensionality, the distance to the closest point tends to approach the distance to the farthest
point. As a result, in high dimensional space, the concept of spatial locality becomes ill-defined
and distance measures differ little [4]. It uses Uniform Manifold Approximation and Projection
for Dimension Reduction (UMAP).

3. Following a density-based method clusters is created. This technique assumes that words closer
to the cluster’s centroid are most representative of that cluster. However, in practice, a cluster
will not always lie within a sphere around a cluster centroid which might conduce to the extrac-
tion of misleading topics. It used Hierarchical Density-Based Spatial Clustering of Applications
with Noise (HDBSCAN).

4. Topics vectors are extracted from the cluster. To overcome the limitation of the centroid-
based perspective, it is used a class-based version of TF-IDF. This has the advantage that the
clustering technique is separated from the topics generation, allowing to have more flexibility. It
is explained in the following section.

Topic representation and Dynamic Topic Modelling

The TF-IDF was explained Section 3.1. It measures how important a term is for a document (i.e. how
much information it provides). This technique is generalized by treating all documents in a cluster as
a single document. Once they are concatenated, the TF-IDF is used by translating the documents to
clusters using Equation 3.4.

Wt,c = tft,c · log(1 +
A

tft
), (3.4)

Wt,c represents the weight of the term in the cluster, tft,c is the frequency of the term in the cluster,
A is the average number of words per cluster and tft is the frequency of the term in all the clusters.
In this way, if the term is very common then the logarithmic will tend to 0 and the term will receive
no importance during the topic extraction.

BERTopic also differs from the others algorithm in the temporal nature of the generated topics.
Traditionally the topics generated are static, however, BERTopic uses dynamic modelling. It then
assumes that the temporal nature of topics should not influence the creation of global topics. To
achieve it, first, it is generated a global representation of topics before developing a local representation.

3The steps are have been summarized since they are detailed in Section 3.3

Page 42

CHAPTER 3. MODELS Final Master Thesis

In practice, firstly all the topics are generated following the procedures explained before. Then, local
copies of the topics are created by multiplying the term frequency of documents at that timestep with
the pre-calculated global values.

Optimization

The optimization of BERTopic is more complex than the optimizations followed in Sections 3.1 and
3.2 4. The studied parameters are the following:

• n gram range: the range of the n-grams that should be considered. Based on the results obtained
with the other models, it is set to (1,3) (i.e. bigrams and trigrams are allowed to be discovered).

• embedding model: model to generate the word and document vectors. Both “all-MiniLM-L6-v2”
and “all-mpnet-base-v” are tested.

• top n words: the number of words per topic to extract. The recommended is 10, so it is studied
from 5 to 15.

• min topic size: minimum size of the topic. It is studied from 5 to 15.

• nr topics: the number of topics to which the model will reduce (based on a hierarchical method)
the number of topics. It is set to None to avoid modifying the initial topics.

• seed topic list: a list of seed words per topic to converge around. It is studied with and without
this list. It is generated a list with 16 topics (1 per SDG), the respective words can be seen in
Table 3.8.

• lemmatized: whether to use lemmatized and filtered texts or in raw form. Both forms are
studied.

• calculate probabilities: whether to calculate the probabilities of all topics per document instead
of the probability of the assigned topic per document. It is set to True since the documents may
be a mix of several topics.

It should be remarked that even with the same configuration, the trained model may vary from
one training to the next one. For that reason, each configuration is run several times and then the
obtained results are averaged. The obtained results can be seen in Table 3.9. Based on them, the
final chosen configuration is: all-MiniLM-L6-v2 (embedding model), 10 top words, 10 topic sizes, no
seed list, and texts lemmatized. The decision is mainly taken based on the number of topics (they
should be around 16, so if they are less than 15 or greater than 19 they are discarded), the minimum
and maximum representation values of the SDGs should be 0.5 and 1.4 respectively to avoid having a
large variance.

SDGs-Association Matrix

The process of how the association matrix is obtained was described in Section 3.1; even if the models
are internally different both of them share the same interface. The Association matrix of this model
can be seen in Table 3.10. The are 17 topics in total. As can be seen, the minimum representation
of the SDGs is 1.00, so all of them are correctly represented when identifying texts. The maximum
value, in this case, is 1.45, so it is still close to 1. Also, almost all the topics are uniquely associated
with 1 SDG.

4Documentation about BERTopic can be found in BERTopic.

Page 43

https://maartengr.github.io/BERTopic/api/bertopic.html

CHAPTER 3. MODELS Final Master Thesis

SDG Words

1 poverty, social, disaster, poor, vulnerable

2 food, hunger, nutrition, food insecurity

3 health, disease, mortality, death

4 education, school, teacher, learn

5 gender, gender equality, sexual

6 water, clean water, sanitation, drinking

7 energy, renewable, electricity

8 decent work, economic growth, employment, productivity

9 industry, innovation, infrastructure, manufacturing

10 inequality, reduced inequality, developed country

11 city, community, sustainable, urban, public transport

12 consumption, production, material, footprint

13 climate, adaptation, global warming

14 marine, ocean, fish, marine ecosystem

15 forest, biodiversity, land

16 peace, justice, institution, human right

Table 3.8: List of words per SDG used as a seed list for the topics generation in the BERTopic model.

ngram embed topW minS list lem perc test perc train nT min max

(1,3) miniLM 5 10 False True 54.88 - 50.61 91.10 - 87.60 16 0.887 1.26

(1,3) miniLM 10 10 False True 43.90 - 40.85 53.10 - 50.80 8 0.37 0.94

(1,3) miniLM 15 10 False True 57.32 - 51.83 94.20 - 91.20 14 0.7 0.94

(1,3) miniLM 10 5 False True 51.83 - 47.56 83.90 - 81.20 16 0.4 1.2

(1,3) miniLM 10 10 False True 56.10 - 51.83 90.80 - 87.20 16 0.96 1.26

(1,3) miniLM 10 15 False True 48.17 - 43.90 54.70 - 52.40 11 0.28 0.98

(1,3) miniLM 10 10 0 True 56.10 - 51.22 91.70 - 88.40 17 1 1.3

(1,3) miniLM 10 10 0.5 True 54.27 - 49.39 87.50 - 84.50 13 0.5 1.3

(1,3) miniLM 10 10 1 True 48.17 - 43.90 53.40 - 51.50 11 0.54 1.2

(1,3) miniLM 10 10 False False 54.88 - 50.61 92.90 - 90.00 19 0.9 1.25

(1,3) mpnet 10 10 False True 55.49 - 50.61 89.90 - 86.90 13 0.38 1.05

Table 3.9: Configuration and results of the BERTopic model’s optimization. embed: embed-
ding model, miniLM: all-MiniLM-L6-v2, mpnet: all-mpnet-base-v2, topW: top n words, minS:
min topic size list: seed topic list, nT: n topics.

Table 3.11 shows the top 10 words of SDG3, SDG7, SDG16 and SDG14. At the top, it can be
seen the SDGs with which they are associated. Each word has associated a score, which indicates the
importance of that word for each topic, the higher the score the more important that the word will be.
It can be noticed that from the words of each topic it could be possible to guess the SDGs with which
that topic is associated, in other words, the generated topics are coherent and easy to understand.
For example, the topic associated with the Good health and well-being (SDG3) contains the words:
health, disease, mortality, care or HIV. Also, the topic associated with the Life below water (SDG14)
contains words such as ocean, marine or fishing.

Page 44

CHAPTER 3. MODELS Final Master Thesis

Topic
SDG

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

4 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

8 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00

11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

12 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

17 0.42 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00

Total 1.25 1.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.17 1.00 1.00 1.27 1.00 1.00 1.00 0.00

Table 3.10: Association matrix of the BERTopic model. Each row indicates the SDGs to which the
corresponding topic is related.

Topic0: SDG3 Topic1: SDG7 Topic2: SDG16 Topic5: SDG14

0.037:health 0.073:energy 0.023:institution 0.049:ocean

0.033:death 0.023:electricity 0.023:country 0.047:marine

0.031:disease 0.020:renewable 0.022:right 0.023:fishery

0.023:mortality 0.017:fuel 0.019:victim 0.019:coastal

0.017:rate 0.017:renewable energy 0.018:violence 0.018:sustainable

0.015:care 0.016:efficiency 0.017:justice 0.016:fishing

0.014:child 0.016:technology 0.016:child 0.016:ecosystem

0.013:maternal 0.015:energy efficiency 0.014:human right 0.014:stock

0.013:communicable 0.015:access 0.014:human 0.013:resource

0.013:hiv 0.014:carbon 0.014:law 0.013:fish

Table 3.11: Top 10 words associated with SDG3, SDG7, SDG16 and SDG14 of the BERTopic model.
The score before the words indicates the weight that they have on the corresponding topic.

Page 45

Chapter 4

Validation

This chapter presents the validation of all the models described in Chapter 3, using the training dataset
(for initial estimation) and then the validation dataset (for evaluating the model performance).

4.1 NMF

To validate the trained model the training dataset is the first step. Since the model has been trained
with those texts, it should be able to identify the labelled SDGs present in them with high accuracy.
To associate a text with some SDGs, the model takes the following steps:

1. The topics related to that text are queried. Each topic has a score.

2. It is 0-initialized a vector with size (1 x 17). For each topic, add to the vector the multiplication
of the topic score with the associated topic row in the association matrix (Section 3.1).

3. Those SDGs with a score lower than 0.05 are filtered out.

4. The obtained vector is scaled by a certain amount, which depends on the other models as well.
As an example, in this case, it is set to 4.0.

5. If the obtained score for an SDG is equal to or greater than 0.1, then the SDG is assumed to
have been identified. The threshold value is dependent on the model, and the main purpose is
to differentiate those situations in which the model obtains noise or false identifiers. It is set
manually based on results analysis. Finally, it must also be remarked that no normalization
takes place. The reason for that is that some texts may not be associated with any SDG, so the
model should be able to identify those situations too. If a normalization stage takes place, then
the noise values could be greatly incremented, resulting in erroneous output.

Using the training dataset, it is obtained a 96.6 % of accuracy for the SDGs set and 97.8 % for
individual SDGs. The former indicates how well are identified all the SDGs that a text is associated
with while the latter indicates how well SDGs are identified. For example, if a text is related to SDGs
[1, 4, 6], and the model outputs the SDGs [1, 4] then the individual score would be incremented by 2,
while the global would not, since the 3 present SDGs were not identified by the model.

The result obtained is positive, since it indicates that the model can identify correctly all the
associated-training texts, however, it is not sufficient because they are part of the training dataset,

46

CHAPTER 4. VALIDATION Final Master Thesis

so the model should be validated with a previously-unseen dataset. For that purpose it is used the
Dataset from Nature (Section 2). It has 153 texts in total. In this case, it is obtained a 58.54 % in
global and a 65.24 % in individual.

In Figure 4.1 is compared the identified SDGs by the NMF model with the labelled ones. It
can be seen that the model performs extremely well on the training dataset, which is a necessary
but not sufficient condition. It is to be remarked since they used more than 1000 documents for
training. In contrast, when using the model with the validation dataset the number of SDGs not
identified increases. The SDGs in which it best performs are Quality education (SDG4) and Life on
land (SDG15). Others never get identified, as is the case of the Reduced inequalities (SDG10). Note
however that these results are conservative since the threshold has been set to guarantee that the
SDGs identified by the model are related to the contents of the text.

(a) Training dataset (b) Validation dataset

Figure 4.1: NMF model validation comparing the identified SDGs with the previously labelled ones.

4.2 LDA

The procedure followed to validate the LDA model is the same as the one described with the NMF
model (Section 4.1). Firstly it is used the training dataset; the model was trained on this dataset, so
it should be able to identify the SDGs perfectly. The model outputs the probability or score of text
to be related to the SDGs. In this case, it is set as a threshold value of 0.2, so if the score is greater or
equal to 0.2 that SDG will be assumed to be identified. This is a very conservative value. The expand
factor, in this case, is 1.3.

Using the training dataset, it is obtained a 90 % of accuracy for the SDGs set and 92 % for
individual SDGs. The former indicates how well are identified all the SDGs that a text is associated
with, while the latter indicates how well SDGs are identified. The result obtained is positive, since
it indicates that the model can identify correctly all the associated-training texts. The procedure is
repeated with the validation dataset. In this case, it is obtained a 36 % in global and a 40 % in
individual.

In Figure 4.2 it is compared the identified SDGs by the LDA model with the labelled ones. It

Page 47

CHAPTER 4. VALIDATION Final Master Thesis

can be seen that the model performs extremely well on the training dataset, which is a necessary but
not sufficient condition. In contrast, when using the model with the validation dataset the number of
SDGs not identified increases. The SDGs in which it best performs are Good health and well-being
(SDG3), Quality education (SDG4) and Life on land (SDG15). Others never get identified, as is the
case of the Reduced inequalities (SDG10). Note however that these results are conservative since the
threshold has been set to guarantee that the SDGs identified by the model are related to the contents
of the text.

(a) Training dataset (b) Validation dataset

Figure 4.2: LDA model validation comparing the identified SDGs with the previously labelled ones.

4.3 Top2Vec

The procedure followed to validate the Top2Vec model is the same as the one described with the NMF
model (Section 4.1). Firstly it is used the training dataset; the model was trained on this dataset, so
it should be able to identify the SDGs perfectly. The model outputs the probability or score of text to
be related to the SDGs. In this case, it is set 0.2 as a threshold, so if the score is greater or equal to
0.2 that SDG will be assumed to be identified. This is a very conservative value. The expand factor,
in this case, is 1.0.

Using the training dataset, it is obtained a 64 % of accuracy for the SDGs set and 64 % for
individual SDGs. The former indicates how well are identified all the SDGs that a text is associated
with, while the latter indicates how well SDGs are identified. In this case, the obtained results are not
as good as those obtained with the NMF and LDA models. This is because those models learn only
from the training texts, without using previous information (they are not pre-trained). In contrast, the
Top2Vec uses pre-trained transformers so it not only focuses on the information provided. Repeating
the process with the validation dataset, it is obtained a 48 % in global and a 54 % in individual. As it
can be seen, even having a very conservative threshold to consider an SDG as identified the obtained
results are better than with the other models.

In Figure 4.2 it is compared the identified SDGs by the Top2Vec model with the labelled ones.
It can be seen how even if there is 36 % of the SDGs not being identified, the model can correctly
identify all the types of SDGs. When using the model with the validation dataset the same results are

Page 48

CHAPTER 4. VALIDATION Final Master Thesis

obtained. There are approximately 45 % of the texts whose SDGs are not being identified, however,
there is at least one identified for all the kinds of SDGs.

(a) Training dataset (b) Validation dataset

Figure 4.3: Top2Vec model validation comparing the identified SDGs with the previously labelled
ones.

4.4 BERTopic

The procedure followed to validate the BERTopic model is the same as the one described with the
NMF model (Section 4.1). Firstly it is used the training dataset; the model was trained on this
dataset, so it should be able to identify the SDGs perfectly. The model outputs the probability or
score of text to be related to the SDGs. In this case, it set 0.2 as a threshold value, so if the score is
greater or equal to 0.2 that SDG will be assumed to be identified. This is a very conservative value.
The expand factor, in this case, is 1.0.

Using the training dataset, it is obtained a 92.6 % of accuracy for the SDGs set and 89 % for
individual SDGs. The former indicates how well are identified all the SDGs that a text is associated
with, while the latter indicates how well SDGs are identified. Furthermore, the model can correctly
identify the SDGs in the training texts since there are more than 1000 texts. Repeating the process
with the validation dataset, it is obtained a 51 % in global and a 54.2 % in individual. As it can
be seen, even having a very conservative threshold to consider an SDG as identified the obtained
results are better than with the other models. Also, the SDGs in the identified texts are unequivocally
identified, that is, the model does not confuse SDGs or identify SDGs erroneously.

In Figure 4.4 it is compared the identified SDGs by the BERTopic model with the labelled ones.
In the case of the training files (Figure 4.4a) almost all the SDGs are very well-identified, being the
DSG the only exception (less than 50 %). In the case of the validation files (Figure 4.4) some SDGs
were not identified (e.g SDG7 or SDG10) but on the contrary, SDG15 was completely identified.

Page 49

CHAPTER 4. VALIDATION Final Master Thesis

(a) Training dataset (b) Validation dataset

Figure 4.4: BERTopic model validation comparing the identified SDGs with the previously labelled
ones.

Page 50

Chapter 5

Voting mechanism

In Sections 3.1, 3.2, 3.3 and 3.4 it has been described the NMF, LDA, Top2Vec and BERTopic models
respectively. These models have different mathematical backgrounds (i.e. hypothesis and theory) so in
practice, the results obtained from all of them should complement each other, they are not redundant.
To see if this holds, it is shown in Figure 5.3 the results obtained with the validation procedure for all
the models. From the figure, it is depicted that some SDGs that were not identified by some models
were correctly identified by others. For example in the SDG8 the NMF and Top2Vec models perform
relatively well, however, the LDA could only identify a few of them. Also, in the SDG15 the BERTopic
model obtains a 100 % score, while the LDA and Top2Vec only get around a 50 %. It is also to be
remarked that SDG10 was not identified by any of the models, so there should be more work on it.
In summary, it is reasonable to think that if the models are complementing each other, then it could
be designed a voting mechanism that makes use of all the information provided by each model, being
more precise and robust at the same time.

In Figure 5.2 it can be seen a scheme explaining the workflow of the voting mechanism, having the
following steps:

• First a text to analyse is extracted from the corpus.

• The model is passed to each model separately, and they output the score or probability that the
text has with each SDG.

• The score obtained from each model is multiplied by a parameter α.

• All the scores are added together, obtaining a final vector of 1x17.

• If an SDG score is equal to or greater than 0.12 and at least the score of two models (after being
scaled) is equal to or greater than 0.1 then the SDG is considered as identified.

From the voting mechanism, it should be remarked that the obtained scores are not normalized
in any step, they are always in absolute terms. The reason is to contemplate those cases in which
the text may not be associated with any SDG. In this way, the scaling parameters were introduced,
since the output of each model was in a different order of magnitude. Although not included in the
scheme, the scores are saturated to 0.0 and 0.5 (min and max limits respectively) before being added
together. The scaling parameters were adjusted as 1/β where β was the maximum score obtained
during the validation of the model with the training database. Since the models were being tested
with the training texts, they should contain the maximum value that the model can output

Once the voting mechanism is finished, then it is also validated with both the training and valida-
tion datasets. In the case of the training texts (Figure 5.3a), it obtained a 97.2 % of accuracy, so the

51

CHAPTER 5. VOTING MECHANISM Final Master Thesis

Figure 5.1: Validation of the NMF, LDA, BERTopic and Top2Vec models with the previously labelled
dataset (only abstracts). Dark: correctly identified, Light: incorrectly identified.

Figure 5.2: Scheme explaining the different stages of the voting mechanism.

Page 52

CHAPTER 5. VOTING MECHANISM Final Master Thesis

results are very promising. There are some SDGs with a 100 % such as the SDG4 or SDG6, however,
where the model does not perform well on the SDG10. With the validation texts (Figure 5.3b) it is
obtained a 67.5 % of accuracy. It can be seen how the result obtained here has improved from the
results obtained with each model separately. Also, the robustness of the model has increased, so it
identifies only a few SDGs (instead of being noisy) and those identified are related to the contents of
the passed texts. Some SDGs are perfectly identified as SDG15 or SDG3. The results obtained with
all the texts are annexed to this work, however, in the following paragraphs, they are shown some of
the validation texts with their respective labelled and identified SDGs.

(a) Training dataset (b) Validation dataset

Figure 5.3: Validation of the voting mechanism with both the training and validation datasets.

Text 1: “ this paper examines the use of remote sensing satellite data to predict food shortages
among different categories of households in famine-prone areas. normalized difference vegetation index
(ndvi) and rainfall estimate data, which can be derived from multi spectral satellite radiometer images,
have long been used to predict crop yields and hence famine. this gives an overall prediction of food
insecurity in an area, though in a heterogeneous population it does not directly predict which sectors
of society or households are most at risk. in this work we use the information on 3094 households
across uganda collected between 2004 2005. we describe a method for clustering households in such a
way that the cluster decision boundaries are both relevant for improved specificity famine prediction
and are easily communicated. we then give classification results for predicting food security status
at a household level given different combinations of satellite data, demographic data, and household
category indices found by our clustering method. the food security classification performance of this
model demonstrates the potential of this approach for making predictions of famine for specific areas
and demographic groups.”. Labelled SDGs: [2]. Identified SDGs: [0.39:2, 0.13:15].

Text 2: “ hypertensive disorders are the leading cause of deaths during pregnancy. risk preg-
nancy accompaniment is essential to reduce these complications. decision support systems (dss) are
important tools for patients accompaniment. these systems provide relevant information to health
experts about clinical condition of the patient anywhere and anytime. in this paper, a model that uses
the näıve bayesian classifier is introduced and its performance is evaluated in comparison with the
data mining (dm) classifier named j48 decision tree. this study includes the modeling, performance
evaluation, and comparison between models that could be used to assess pregnancy complications.
evaluation analysis of the results is performed through the use of confusion matrix indicators. the
founded results show that j48 decision tree classifier performs better for almost all the used indicators,

Page 53

CHAPTER 5. VOTING MECHANISM Final Master Thesis

confirming its promising accuracy for identifying hypertensive disorders on pregnancy. ”. Labelled
SDGs: [3]. Identified SDGs: [0.42:3, 0.15:13].

Text 3: “multiple studies have been conducted on project listen, an intelligent tutoring system (its)
used to analyze educational learning through case analysis of students interactions with its. studies
have defined the phenomenon by exploring what happens when/if questions and analyzing these in the
context of the specified phenomenon occurrence. while its often focus on student decisions regarding
when and how to use the systems resources, we suggest further analysis and monitoring are needed
to get the best results from these systems. in this study, we argue that boys interact differently with
its than girls. this finding is evident in results from both the bayesian knowledge tracing and learning
curve analysis models.”. Labelled SDGs: [4]. Identified SDGs: [0.43:4].

Text 4: “ produced by the artificial intelligence for ecosystem services (aries) platform (with ess
supply defined as carbon storage and flood regulation, and demand specified as recreation and water
use). these are then used for (iii) a joint spatial prioritisation of biodiversity and ess employing
marxan with zones, laying out the spatial representation of multiple management zones. given the
transboundary setting of the danube river basin, we also run comparative analyses including the
country level purchasing power parity (ppp)adjusted gross domestic product (gdp) and each countrys
percent cover of the total basin area as potential cost factors, illustrating a scheme for balancing
the share of establishing specific zones among countries. we demonstrate how emphasizing various
biodiversity or ess targets in an ebm model coupling framework can be used to cost effectively test
various spatially explicit management options across a multi national case study. we further discuss
possible limitations, future developments, and requirements for effectively managing a balance between
biodiversity and ess supply and demand in freshwater ecosystems.”. Labelled SDGs: [6]. Identified
SDGs: [0.32:6, 0.22:15, 0.18:14].

Text 5: “this paper presents the results of attempt to perform modeling of so 2 concentration in
urban area in vicinity of copper smelter in bor (serbia), using anfis methodological approach. the aim
of obtained model was to develop a prediction tool that will be used to calculate potential so 2 concen-
tration, above prescribed limitation, based on input parameters. as predictors, both technogenic and
meteorological input parameters were considered. accordingly, the dependence of so 2 concentration
was modeled as the function of wind speed, wind direction, air temperature, humidity and amount sul-
fur emitted from the pyrometallurgical process of sulfidic copper concentration treatment.”. Labelled
SDGs: [11]. Identified SDGs: [0.34:11, 0.23:7, 0.21:13].

Text 6: “in line with a long research tradition focused on the use of information and communication
technology for development ict4d we explore the role of artificial intelligence ai4d we start with a rather
technical review of four of the characteristic traits of deep learning technologies which leads to natural
metaphors for international development based on the empirical evidence of 24 case studies we derive
four characteristics of the use of ai4d that align with the four technological traits in isolation each
one of them presents a plethora of opportunities to contribute to international development especially
to the attainment of the sustainable development goals sdgs however in combination they create a
clear tension between a looming threat of a hegemonic intelligence indoctrination pushed by global
economies of scale and the potential promise to not only honor but to celebrate local diversity with
the help of flexible ai designs we conclude that the latter cannot be achieved without an active public
policy dialogue on the international level and a determined effort on the national levels especially in
developing countries the study provides terminology and concepts to identify and frame the arising
discussions”. Labelled SDGs: [5]. Identified SDGs: [0.30:9, 0.23:4, 0.13:14, 0.13:12].

As it can be seen from the examples (the score before the topic indicates its importance, going on
the scale from 0 to 0.5), in the first texts the labelled SDG was correctly identified (in general, with
the highest score) which means that the model is working properly, but also, that it is identifying
other SDGs in the texts with which they were not labelled (secondary topics). For example, text 4

Page 54

CHAPTER 5. VOTING MECHANISM Final Master Thesis

it is talking mainly about an efficient method to handle the waste and use of water, however, it also
includes some work related to biodiversity so SDGs 14 and 15 are also identified. In the case of text
6, it was labelled with the Gender equality (SDG5), however, it can be seen how this topic is not
explicitly included in the text. This is also the case in other texts from the validation database; for
this reason, it was assumed as completely valid with a global accuracy of 67.52 %, since there is not
enough information in the texts for the model to work properly.

Some of the texts are not correctly identified because they lack explicit words that refer to the
SDGs with which they were labelled. For this reason, it is checked whether including more information
is beneficial or not for SDGs identification. Apart from the Abstract, it is passed the keywords,
introduction, body and conclusion of the papers to the model. These parts are joined together. The
results are shown in Figure 5.4, noticing that they are not better than those obtained using only the
abstracts. The reason is that some SDGs that were not previously identified now are, but it also occurs
vice-versa. Since the models were trained on short texts, it is also checked whether segmentizing the
input texts to the model and averaging the scores obtained by the individual segments improve the
results or not; the obtained results are almost the same, so there is no advantage in doing that.

Figure 5.4: Validation of the voting mechanism with the validation dataset in long format.

Finally, it is to be remarked that the models, validation and votation mechanism have already
been published in Sánchez et al. [13].

Page 55

Chapter 6

Results & Discussion

Chapter 2 explained the different datasets that are used in the project. One for training, the other for
validation, and the last one for analysis. The last dataset contains abstracts of scientific publications
related to aerospace engineering, including extra information such as the title of the work, keywords
or year and country of publication. In this chapter, it is analysed this dataset (as part of the work
objectives, Section 1.1) obtaining results such as the total weight of each SDG in the corpus or the
evolution of the contribution to the SDGs over the years.

Figure 6.1 shows the total weight of each SDG, which is obtained by adding up the scores of
all the analysed texts in the corpus. Representing the total weight of each SDG is a more accurate
measure than just counting the times that an SDG is present, since then the score is not being
considered. It can be noticed how the Affordable and clean energy (SDG7) is the most prominent
one, which makes sense since a lot of the texts in the corpus talk about fuels, energy, combustion and
renewables. Then they come the Industry, innovation and infrastructure (SDG9), Sustainable cities
and communities (SDG11) and Responsible consumption and production (SDG12); it is also reasonable
to link the aerospace texts with these SDGs since generally it is being talked about innovation, the
infrastructure, how cities could be improved or about ways of using fewer resources and optimizing
the waste of materials. Other SDGs are less represented such as the No poverty (SDG1), Zero hunger
(SDG2) or Clean water and sanitation (SDG6). The least represented is the Gender equality (SDG5),
which again makes sense since generally all the abstracts are technical and they only focus on the
description of the study, without talking about these other topics. In the following paragraphs, it is
discussed the association of some texts of the dataset with each SDG based on the individual scores
of the models.

Text 1: “excess mortality (mort) in china due to exposure to ambient fine particulate matter
with aerodynamic diameter 2.5 m (pm2.5) was determined using an ensemble prediction of annual
average pm2.5 in 2013 by the community multiscale air quality (cmaq) model with four emission
inventories and observation data fusing. estimated mort values due to adult ischemic heart disease,
cerebrovascular disease, chronic obstructive pulmonary disease, and lung cancer are 0.30, 0.73, 0.14,
and 0.13 million in 2013, respectively, leading to a total mort of 1.3 million. source-oriented cmaq
modelling determined that industrial and residential sources were the two leading sources of mort,
contributing to 0.40 (30.5%) and 0.28 (21.7%) million deaths, respectively. additionally, secondary
ammonium ion from agriculture, secondary organic aerosol, and aerosols from power generation were
responsible for 0.16, 0.14, and 0.13 million deaths, respectively. a 30% mort reduction in china requires
an average of 50% reduction of pm2.5 throughout the country and a reduction by 62%, 50%, and 38%
for the beijing tianjin hebei, jiangsu zhejiang shanghai, and pearl river delta regions, respectively.
reducing pm2.5 to the caaqs grade ii standard of 35 g m 3 would only lead to a small reduction in
mortality, and a more stringent standard of lt;15 g m 3 would be needed for more remarkable reduction

56

CHAPTER 6. RESULTS & DISCUSSION Final Master Thesis

Figure 6.1: Total weight per SDG of the complete Aerospace dataset. The scores obtained individually
(i.e. per text) are added together.

of mort.”.

This abstract talks about the relation of the mortality rate with the exposure of the
population to fine particulate matter. To analyse the results obtained with each model, first, it is
calculated an approximation of the top words that each model would mainly associate with each text.
They are calculated based on the score that each word has inside the topic (determined during the
training) and the score that each text has with the topic. Once all the words are collected, then they
are sorted to obtain those words with a higher representation. For this reason, it should be remarked
that it is an approximation since it is not considered the original words inside each text that triggered
the associations. In Table 6.1 they are shown the top 15 words that each model associates with the
text. The NMF, LDA and Top2Vec share the same first two words, talking about health, disease
or dying, what is directly related to SDG3 and the contents of the text (mortality, heart disease,
lung cancer...). The NMF also identifies some words related to education, school or primary. They
are mainly related to SDG4, and one main reason is that the text contains the word “secondary”
repeated times. Since the NMF model can not identify polysemy, it assumes that secondary may be
part of secondary education, which does not hold in this case. The LDA contains other words such
as urban, country, population or city, which makes sense since the text contains some of these words
or words with related meanings. In the case of Top2Vec, it only identifies words related to SDG3.
BERTopic is not able to capture correctly the topic of the text, since it does not include any words
related to health. These results can also be seen in a different representation in Table 6.2. As could
be expected from the most important words, the NMF, LDA and Top2Vec identify the SDG3 as the

Page 57

CHAPTER 6. RESULTS & DISCUSSION Final Master Thesis

primary topic, including also the SDG4 (related to education). For this reason, the main SDG in the
votation mechanism is SDG3. As secondary topics, they are obtained SDG4 (discussed previously)
and SDG11. LDA and Top2Vec include some words related to SDG11 such as city or population, but
the main reason behind the confusion is that BERTopic is not working properly, since it identifies
SDG11 as the main topic. Finally, the identified SDGs with the votation mechanism are: [0.36:3,
0.20:4, 0.16:11, 0.12:12, 0.12:9].

NMF LDA Top2Vec BERTopic

0.0517:health 0.0075:death 0.1976:dying 0.0076:urban

0.0454:disease 0.0072:disease 0.1896:communicable 0.0064:city

0.0370:death 0.0070:health 0.1875:malaria 0.0036:transport

0.0290:mortality 0.0068:climate 0.1864:mortality 0.0035:disaster

0.0219:communicable 0.0067:water 0.1827:disease 0.0034:housing

0.0211:maternal 0.0055:change 0.1776:diabetes 0.0031:population

0.0203:waste 0.0053:urban 0.1774:infectious 0.0030:slum

0.0198:communicable disease 0.0044:country 0.1768:era 0.0028:climate

0.0178:education 0.0043:child 0.1764:skilled 0.0026:public

0.0177:care 0.0042:climate change 0.1762:tuberculosis 0.0022:urban population

0.0175:climate 0.0041:rate 0.1756:prevented 0.0021:climate change

0.0160:school 0.0041:city 0.1750:hepatitis 0.0020:change

0.0160:cancer 0.0039:mortality 0.1748:death 0.0020:air

0.0132:primary 0.0038:population 0.1740:infected 0.0019:policy

0.0130:mental 0.0036:country 0.1740:vaccination 0.0018:energy

Table 6.1: Approximation of the top 15 words obtained by each model about the text #1.

SDG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

NMF 0.00 0.00 0.50 0.15 0.00 0.00 0.06 0.00 0.11 0.00 0.00 0.13 0.12 0.00 0.00 0.00 0.00

LDA 0.00 0.23 0.50 0.25 0.00 0.10 0.07 0.09 0.25 0.00 0.13 0.00 0.08 0.00 0.00 0.06 0.00

Top2Vec 0.00 0.00 0.44 0.41 0.08 0.23 0.18 0.11 0.13 0.00 0.17 0.37 0.10 0.07 0.10 0.00 0.00

BERTopic 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 0.00 0.17 0.00 0.00 0.00 0.00

Mean 0.02 0.06 0.36 0.20 0.02 0.08 0.08 0.05 0.12 0.00 0.16 0.12 0.12 0.02 0.03 0.01 0.00

Table 6.2: Scores associated with each SDG obtained by the NMF, LDA, Top2Vec and BERTopic
model in the text #1 .

Text 2: “thanks to the continuous improvement of calculation resources, computational fluid
dynamics (cfd) is expected to provide in the next few years a cost-effective and accurate tool to
improve the understanding of the unsteady aerodynamics of darrieus wind turbines. this rotor type
is increasingly welcome by the wind energy community, especially in case of small size applications
and/or non conventional installation sites. in the present study, unique tow tank experimental data
on the performance curve and the near wake structure of a darrieus rotor were used as a benchmark
to validate the effectiveness of different cfd approaches. in particular, a dedicated analysis is provided
to assess the suitability, the effectiveness and the future prospects of simplified two dimensional (2d)
simulations. the correct definition of the computational domain, the selection of the turbulence models
and the correction of simulated data for the parasitic torque components are discussed in this study.
results clearly show that,(only) if properly set, two dimensional cfd simulations are able to provide
with a reasonable computational cost an accurate estimation of the turbine performance and also quite
reliably describe the attended flow field around the rotor and its wake”.

This abstract is talking about how the improvements and evolution of the computa-
tion resources will allow in the future to obtain better and more accurate results when
simulating the flow in darrieus wind turbines. First, it is shown in Table 6.3 the first 15 words
that each model has identified with the text. The first word present in NMF, LDA and BERTopic is
“energy”, since the text is mentioning several times the same word, and it also includes others such as
wind, which is associated with renewables too. In the case of the NMF, there are also other interesting

Page 58

CHAPTER 6. RESULTS & DISCUSSION Final Master Thesis

words such as innovation, development, renewable energy and energy efficiency, which in this case are
also totally related to the text and SDG7. The LDA identifies some words that are not related to
the text, such as woman, child or food. In the case of BERTopic, almost all the words are related to
SDG7, including also some of them related to SDG12 such as material, waste or consumption. The
global scores can be seen in Table 6.4, which reflects the same ideas that were previously mentioned. It
can be seen how the four models identify as the primary topic the SDG7 (being the main topic of the
texts), but also include other topics such as the SDG11 (whose relationship with the text is arguable)
or the SDG12. In this last case, it can make sense, since the text is arguing about the use of simplified
2D, which uses fewer computation resources and then, there exists a more responsible consumption.
In this case, the models are misled to identify the SDG14, since the texts include several times the
word fluids, wake or fluid dynamics. The models should be improved in this scenario. Finally, the
identified SDGs with the votation mechanism are: [0.31:7, 0.19:14, 0.17:12].

NMF LDA Top2Vec BERTopic

0.0616:energy 0.0080:energy 0.2391:paper 0.0139:energy

0.0325:policy 0.0062:country 0.2360:approach 0.0043:electricity

0.0184:chapter 0.0062:marine 0.2358:discus 0.0037:renewable

0.0165:paper 0.0059:ocean 0.2309:evaluation 0.0033:fuel

0.0158:waste 0.0059:country 0.2258:analysis 0.0032:renewable energy

0.0156:government 0.0044:woman 0.2256:policy 0.0030:efficiency

0.0154:oecd 0.0041:sustainable 0.2233:explores 0.0030:technology

0.0145:innovation 0.0038:including 0.2232:examines 0.0029:energy efficiency

0.0134:development 0.0037:global 0.2214:chapter 0.0028:access

0.0131:digital 0.0031:child 0.2210:strategic 0.0027:carbon

0.0130:renewable 0.0031:development 0.2185:effectiveness 0.0014:climate

0.0120:electricity 0.0031:manufacturing 0.2168:highlight 0.0014:disaster

0.0112:renewable energy 0.0029:sustainable 0.2167:summarises 0.0014:material

0.0110:energy efficiency 0.0028:food 0.2161:organisation 0.0014:waste

0.0107:support 0.0027:developing 0.2122:attractiveness 0.0011:consumption

Table 6.3: Approximation of the top 15 words obtained by each model about the text #2.

SDG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

NMF 0.00 0.00 0.00 0.00 0.00 0.06 0.25 0.00 0.08 0.00 0.08 0.11 0.00 0.07 0.00 0.00 0.00

LDA 0.00 0.17 0.05 0.25 0.00 0.00 0.16 0.09 0.19 0.17 0.00 0.10 0.08 0.32 0.11 0.14 0.00

Top2Vec 0.00 0.00 0.00 0.22 0.00 0.00 0.50 0.00 0.00 0.00 0.45 0.33 0.50 0.38 0.00 0.00 0.00

BERTopic 0.00 0.00 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00

Mean 0.00 0.04 0.01 0.12 0.00 0.02 0.31 0.02 0.07 0.04 0.13 0.17 0.15 0.19 0.03 0.04 0.00

Table 6.4: Scores associated with each SDG obtained by the NMF, LDA, Top2Vec and BERTopic
model in the text #2.

Text 3: “scramjet is found to be the efficient method for the space shuttle. in this paper, numerical
simulation is performed to investigate the fundamental flow physics of the interaction between an array
of fuel jets and multi air jets in a supersonic transverse flow. hydrogen as a fuel is released with a
global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a mach 4 crossflow.
the fuel and air are injected through streamwise aligned flush circular portholes. the hydrogen is
injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen
jets. the numerical simulation is performed by using the reynolds averaged navier stokes equations
with menters shear stress transport (sst) turbulence model. both the number of air jets and jet to
freestream total pressure ratio are varied in a parametric study. the interaction of the fuel and air jet
in the supersonic flow present extremely complex feature of fuel and air jet. the results present various
flow features depending upon the number and mass flow rate of micro air jets. these flow features
were found to have significant effects on the penetration of hydrogen jets. a variation of the number
of air jets, along with the jet to freestream total pressure ratio, induced a variety of flow structure in
the downstream of the fuel jets. ”.

Page 59

CHAPTER 6. RESULTS & DISCUSSION Final Master Thesis

This text is talking about the simulation of scramjet and the associated turbulence
with computational fluid dynamics. The global scores can be seen in Table 6.6. In the table
6.5 they are shown the main words, being in this case mostly related to energy and electricity. This
makes sense since the text contains words such as hydrogen, air, or fuel. Other included words are
climate, material and waste, which should be related to “efficient”. In Table 6.6 they are shown the
scores of each model. The main identified SDG is the 7 since the text is mainly talking about energy
and jet fuel. SDG11 is also identified, which does not correlate with the contents of the text, but it
does SDG9 since it talks about innovation and analysis of the flow structure. The identified SDGs
with the votation mechanism: [0.37:7, 0.23:11, 0.21:9, 0.19:12].

NMF LDA Top2Vec BERTopic

0.0571:water 0.0151:water 0.1535:slum 0.0051:energy

0.0273:energy 0.0114:energy 0.1490:urban 0.0016:electricity

0.0242:urban 0.0059:sanitation 0.1437:urbanization 0.0014:renewable

0.0199:policy 0.0058:country 0.1411:breathing 0.0014:climate

0.0195:city 0.0040:country 0.1356:city 0.0013:disaster

0.0113:chapter 0.0035:access 0.1343:settlement 0.0013:material

0.0110:water resource 0.0033:renewable 0.1318:unplanned 0.0013:waste

0.0101:paper 0.0032:consumption 0.1312:sprawl 0.0012:fuel

0.0098:slum 0.0030:drinking 0.1282:space 0.0012:renewable energy

0.0095:government 0.0029:climate 0.1259:ingenuity 0.0011:efficiency

0.0094:oecd 0.0029:marine 0.1256:distance 0.0011:technology

0.0094:management 0.0028:electricity 0.1243:particulate 0.0011:energy efficiency

0.0088:transport 0.0028:technology 0.1242:convenient 0.0010:access

0.0088:innovation 0.0028:fuel 0.1239:incubator 0.0010:carbon

0.0088:health 0.0028:ocean 0.1229:monthly 0.0010:consumption

Table 6.5: Approximation of the top 15 words obtained by each model about the text #3.

SDG 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

NMF 0.00 0.00 0.13 0.00 0.00 0.00 0.17 0.00 0.07 0.06 0.31 0.08 0.00 0.00 0.00 0.00 0.00

LDA 0.00 0.06 0.21 0.16 0.06 0.00 0.37 0.00 0.50 0.00 0.13 0.08 0.10 0.00 0.00 0.15 0.00

Top2Vec 0.00 0.00 0.11 0.00 0.00 0.06 0.50 0.00 0.28 0.00 0.50 0.50 0.30 0.15 0.06 0.00 0.00

BERTopic 0.00 0.00 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00

Mean 0.00 0.04 0.01 0.12 0.00 0.02 0.31 0.02 0.07 0.04 0.13 0.17 0.15 0.19 0.03 0.04 0.00

Table 6.6: Scores associated with each SDG obtained by the NMF, LDA, Top2Vec and BERTopic
model in the text #3.

Text 4: “recharge assessment is of critical importance for groundwater resources evaluation in
arid/semiarid areas, as these have typically limited surface water resources. there are several mod-
els for water balance evaluation. one of them is wetspass, which can simulate spatially distributed
recharge, surface runoff, and evapotranspiration for seasonally averaged conditions. this paper presents
a modified methodology and model, wetspass m, in which the seasonal resolution is downscaled to a
monthly scale. a generalized runoff coefficient was introduced, enabling runoff estimation for different
land use classes. wetspass m has been calibrated and validated with observed streamflow records from
black volta. base flow from simulated recharge was compared with base flow derived via a digital
filter applied to the observed streamflow and has shown to be in agreement. previous studies have
concluded that for this basin, small changes in rainfall could cause a large change in surface runoff,
and here a similar behavior is observed for recharge rates. an advantage of the new model is that it is
applicable to medium and large sized catchments. it is useful as an assessment tool for evaluating the
response of hydrological processes to the changes in associated hydrological variables. since monthly
data for streamflow and climatic variables are widely available, this new model has the potential to be
used in regions where data availability at high temporal resolution is an issue. the spatial temporal

Page 60

CHAPTER 6. RESULTS & DISCUSSION Final Master Thesis

characteristics of the model allow distributed quantification of water balance components by taking
advantage of remote sensing data.”. Identified SDGs: [0.34:6, 0.19:14, 0.13:13].

Text 5: “as a fast and efficient short distance transportation means, the subway line has been built
and expanded in an increasing number of cities. the pressure in the tunnel fluctuates significantly
while metro trains pass. this kind of pressure may damage the equipment and workers in the tunnel.
considering that, the metro train does not have airtightness, and that pressure can spread inside the
vehicle, passengers in the vehicle would be directly affected by the alternating aerodynamic pressure,
which causes discomfort to passengers. this phenomenon is exacerbated at high speeds. therefore, it is
important to estimate the aerodynamic alternating pressure generated by the metro train in the tunnel
before construction. in this study, the aerodynamic performance of a metro train running between two
adjacent platforms in a tunnel was simulated by using fluent. in this work, the effects of acceleration
and speed of the metro train, and of platform spacing, on the alternating pressure on the train and in
the tunnel are studied. in the analysis of the impact of train acceleration, the pressure change inside
a passenger train in a 1 s timespan was used to evaluate the comfort of passengers. maximum and
average p (pressure changes in amplitude) shows an exponential relationship with a (acceleration), vc
(constant speed) and lplatform (platform spacing), especially the p measured on tunnel surface. the
fluctuation of the train surface pressure is more intense than that of the tunnel. the pmin (minimum
pressure) on the train surface and in the tunnel is not affected by the acceleration of the train, but it
is mainly related to the highest train speed in the tunnel. when the platform spacing is higher than
1500 m, pmax, pmin, and p in the tunnel and on the train surface showed little change. these findings
contribute not only to the design of the metro train and tunnel system, but also to the guidance of
the metro train operation.”. Identified SDGs: [0.35:11, 0.14:14, 0.13:15].

Text 6: “spacecraft and satellite are susceptible to aerothermoelastic flutter instability, which may
jeopardize the mission of the spacecraft and satellite. this kind of instability may result from the
coupling of the thermal radiation from the sun and the elastic deformations of aeronautical com-
ponents. as a first endeavor, the aerothermoelastic flutter and buckling instabilities of functionally
graded carbon nanotube reinforced composite (fg cntrc) cylindrical shell under simultaneous actions
of aerodynamic loading and elevated temperature conditions are investigated. the formulations are
derived according to the first order shear deformation theory, donnell shell theory in conjunction with
von karman geometrical nonlinearity. thermomechanical properties are assumed to be temperature
dependent and modified rule of mixture is used to determine the equivalent material properties of the
fg cntrc cylindrical shell. the quasi steady krumhaars modified piston theory by taking into account
the effect of panel curvature, is used to determine the aerodynamic pressure. the nonlinear dynamic
equations are discretized in the circumferential and longitudinal directions using the trigonometric
expression and the harmonic differential quadrature method, respectively. effects of various influential
factors, including cnt volume fraction and distribution, boundary conditions, geometrical parameters,
thermal environments, freestream static pressure and mach number on the aerothermoelastic insta-
bilities of the fg cntrc cylindrical shell are studied in details. it is found that temperature rise has
a significant effect on the aerothermoelastic flutter characteristics of the fg cntrc cylindrical shell.
it is revealed that cylindrical shells with intermediate cnt volume fraction have intermediate critical
dynamic pressure, while do not have, necessarily, intermediate critical buckling temperature. it is
concluded that the critical circumferential mode number (mcr) corresponding to the minimum critical
dynamic pressure, depends not only on the radius to thickness ratio but also on the distribution of
the cnts.”. Identified SDGs: [0.29:13, 0.15:14, 0.14:11].

From the texts, it can be said that:

• Some SDGs are very well-identified and they are related to the texts. That is the case of the
Good health and well-being (SDG3) with the Text 1, Affordable and clean energy (SDG7) with
the Text 3, Clean water and sanitation (SDG6) with the Text 4 or the Sustainable cities and
communities (SDG11) with the Text 5.

Page 61

CHAPTER 6. RESULTS & DISCUSSION Final Master Thesis

• Generally, if the text is related to one SDG then the corresponding score will also be high. The
scale of the scores is from 0 to 0.5, so a score very close to 0.5 means that the text is very related
to that SDG. Then they also noticed some SDGs to which the texts are related, and they also
have some presence in the text but they are usually less related (i.e. less accurate).

• Some texts that are associated with some SDGs based on the text information, such as Text 6
with the Climate action (SDG13). The text is talking about aerothermoelastic instabilities of
spacecraft, so it mentions words such as carbon, thermal, temperature, and environment which
makes the model wrongly assume that the text is related to SDG13. To solve this issue, the
model should be trained on more specific and context-related texts, instead of being trained only
on generic and SDGs-related texts.

Figure 6.2 shows the evolution of the total weight of SDG7, SDG9, SDG11 and SDG13 from 2017
to 2021. They are only shown these SDGs because they are the most representative (Figure 6.1). The
differences between years are slight, and it does not show any tendency. For example, from 2017 to
2019 the contribution to the SDG11 increases, but then it decreases again until 2021. In the case of
SDG9, it is the same. It is interesting to see the same order of magnitude (contribution) among years
since each year has 2000 different texts.

Figure 6.2: Evolution of the total weight of SDG7, SDG9, SDG11 and SDG13 from 2017 to 2021.

Figure 6.3 shows the comparison of the contribution to each SDG by those papers with citations
lower and higher than the median. In this case, the median is 8. It can be seen that both parts
contribute approximately the same order of magnitude to the SDGs. Still, there exist some differences

Page 62

CHAPTER 6. RESULTS & DISCUSSION Final Master Thesis

for example those papers with lower citations contribute more to the SDG9 and SDG10, however,
those with higher have a significantly higher contribution to the SDG7 and SDG3.

Figure 6.3: Comparison of the contribution to each SDG by those papers with citations lower and
higher than the median, being the median of 8.

Page 63

Chapter 7

Conclusions & Future Work

In this work, it has been presented a complete AI-based model for the identification of those SDGs
related to a given text. Firstly, the datasets were introduced. It has been shown that they have a
different mathematical nature, so each one of them has indeed different strengths. For example, the
NMF model learns more incoherent topics than LDA, however, it identifies clearly the SDGs associated
with one text without introducing noise to the other SDGs. On the other side, LDA is able to create
more descriptive topics (i.e. topics easier to understand by humans), but LDA works worse than NMF
when the texts of the corpus are small, as is the case here.

Both NMF and LDA models rely on the Bag of Words (BOW) assumption, so they do not use se-
mantic information from the texts (the order is meaningless). On the contrary, Top2Vec and BERTopic
are Transformers-based models, so they transform the words and documents into a vector before clus-
tering them. For that reason, they perform better, since the texts used in the dataset are small
(contain little information) and they are able to understand more complex things such as polysemia.
However, they are not perfect either. The greatest weakness of both Top2Vec and BERTopic is that
they assume that each document is mainly related to a unique topic (during topic clusterization), so
it does not reflect the case since most of the texts are actually related to more than one SDG (i.e.
more than one topic).

The NMF and LDA models have been traditionally used for years since they were published more
than twenty years ago. They have shown very good results, being able to correctly identify the texts in
the training dataset, and partly the texts in the validation dataset. They perform well when the texts
are actually related to the SDGs and specific words are explicitly mentioned in them since they only
used the information from the training dataset (i.e. they are not pre-trained, models). This makes
the task more difficult since a lot of the texts in the aerospace datasets include words such as carbon,
fluids or energy that might mislead these models to identify those texts with SDGs such as SDG13,
SDG6 or SDG7. Nevertheless, they are simple models that can be trained and used very fast, so they
should always be considered as an option for gaining insight into the problem and the datasets.

The Top2Vec and BERTopic are more advanced models, and they perform better than NMF and
LDA. As explained before, they also have some weaknesses, and they are also more difficult (and
expensive) to understand the theory, optimize the parameters and train. The great advantage of these
models is that they are internally split into several stages, which allows them to keep up to date with
new releases and methods since they can be updated independently from each other. This is a great
asset since each year more and more models of Natural Language Processing (NLP) are published.
After training them, it was depicted a voting mechanism that was able to combine the information
from all of the individual models. It has proved to be extremely useful, potentiating both the accuracy
and robustness of the results. Also, it compared the use of full texts against using only abstracts, but

64

CHAPTER 7. CONCLUSIONS & FUTURE WORK Final Master Thesis

there were no improvements.

Finally, was analysed the Aerospace dataset. They obtained several insights such as that the
papers mostly contributed to the SDGs SDG7, SDG9, SDG11 and SDG13 or that the papers with
lower citations contributes in the same order of magnitude to the SDGs as the papers with higher
citations (with some exceptions, such as the SDG3 or SDG7). Generally, the model was able to identify
correctly the main topic of the texts (i.e. the topic with the highest score) but failed to identify the
secondary ones in most of the cases. For this reason, the following tentative lines of future work are
proposed:

• Improve the model accuracy and robustness by including a fifth model in the voting process.

• Improve the model accuracy by providing technical texts related to aerospace engineering.

• Increase the length of the Aerospace texts by including other sections such as keywords.

• Improve the training database by providing texts related to SDGs but from different technical
backgrounds.

• Increase the confidence levels used to identify the SDGs once the model gets more robust.

Page 65

Chapter 8

Specifications

In this chapter, they have defined the specifications or conditions that should be guaranteed in order
to proceed with the current work. Firstly, they have specified the conditions related to the health care
of the worker. They are mostly related to the ambient and office conditions that allow the worker
to work without assuming any risk. Then, they have defined the requirements of both software and
hardware that will allow the worker to complete the work.

8.1 Office specifications

According to Law 31/1995, the office space should comply with some specifications in order to guar-
antee the prevention of occupational hazards. Concretely, in the Real Decreto 488/1997, 14 april
they specified the minimum safety conditions when the worker is exposed to monitors. Moreover, in
the Real Decreto 486/1997, 14 april they specified the minimum safety conditions and health in the
workspaces.

Equipment

The general rule is that the usage of electronic equipment should never imply a risk to the health
of the worker. The different components of the equipment and their respective specifications are as
follows:

• Screen: the letters on the screen should be correctly defined and legible. The image should
be stable and eye-comforting. Based on the worker’s needs, it should be possible to adjust the
screen height and orientation.

• Keyboard: it should be independent of the screen in order to allow the worker to adopt a
comfortable configuration and avoid overloading the joints or other parts of the body. The
keyboard should have legible characters on it.

• Office desk: it should be large enough to allow having the screen, keyboard and other required
documents on it. Also, the worker should be able to lay the arms and hands on the desk when
using the keyboard.

• Office chair: it should be stable and with adjustable height and reclining

66

CHAPTER 8. SPECIFICATIONS Final Master Thesis

Environment

The work environment is crucial for the correct development of the tasks, as well as to guarantee the
health of the worker and prevent occupational hazards. The environment is subdivided in:

• Workspace: the workspace should be large enough and be conditioned such that it allows for
movements and posture adaptation.

• Illumination: both general illumination and office lamps should give enough levels of illumination
to avoid the visual fatigue of the worker. The disposition of the lights should avoid glaring.

• Glare: in case the sources of natural or artificial light generate glares on the worker screen, they
should be mitigated with an external device.

• Noise: the noise in the work environment should not perturb the attention of the worker and
the conversations. The equipment present in the environment should be designed to take into
consideration this aspect.

• Heat: the equipment in the environment should not generate enough heat to perturb the workers
in it.

• Emissions: the radiation emitted by the equipment in the environment (out of the visible spec-
trum) should be below the allowed limits.

• Humidity: it should be kept at acceptable levels.

Computer and worker interrelation

Before acquiring the required programmes and equipment, they should be considered the following
factors:

• The programme should be designed according to the assigned task.

• The programme should be able to adapt to the user’s knowledge.

• The programme should give insights about its development

• The programme should give the information according to the user’s speed and format.

Constructive conditions

The workspace should comply with some requirements related to its time of construction or reform:

• Design and constructive characteristics: they should be safe in case of a slip, drop, shock or
impact against an object and collapse or detachment of objects against the workers.

• Emergency situations control: it should have emergency exits correctly indicated in case of
emergency. It should also have all the required systems to guarantee the prevention, alert and
extinction in the event of a fire.

• Access: access to the space should always be available and in good condition, apart from having
walking lines, work spots and toilets adapted for disabled people.

Page 67

CHAPTER 8. SPECIFICATIONS Final Master Thesis

Arrangement, cleaning and maintenance

The entrances, exits and walking lanes should be designed to allow the correct evacuation of the
building. In this way, they should be free from obstacles and have the correct indications. The infras-
tructure that will be used during working hours should be cleaned periodically and the maintenance
tasks should be guaranteed when required (also, these tasks should not imply any risk). In the case of
using a ventilation system, it should be kept in good condition and should have an alert system that
indicates a fault condition in case of being a risk to the health of the workers.

Cleaning services and resting areas

The workspaces should provide the worker with the following services:

• Drinking water. The workspaces will provide the worker with enough drinking water and it
should be totally accessible. All possible causes of water contamination should be avoided.

• Showers, changing rooms and toilets. Showers and changing rooms are only strictly required in
those places where the worker needs to change clothes or do physical exercise.

• Resting areas. Based on the number of workers or type of work, it should be made available to
the workers in some resting areas. These spaces should have enough capacity for all the workers
and include the necessary amenities.

8.2 Software & Hardware requirements

This section contains all the information associated with the hardware and software required to perform
the training, validation and analysis parts of the project. From a hardware point of view, it is
not required a high computational performance computer. If possible, it could be used a Graphics
Processing Unit (GPU) to accelerate the training phase but it is not mandatory. One of the objectives
of the project (Section 1.1) was to develop models that could be trained and used fast, with low
computational resources. From the software perspective, it is only used Visual Studio Code (Free
software) to develop the algorithms, train the models and perform the validation and analysis. GitHub
is used as source control GitHub Desktop.

Hardware conditions

For hardware it has only been used a laptop (Vivobook 15 X513) with the following specifications:

• Processor: 11th Gen Intel(R) Core(TM) i7-1165G7. Quadcore 2.80 GHz and turbo up to 4.7
GHz.

• Graphics: Intel Iris X Graphics

• RAM: 16 GB DDR4.

• Storage: 512 GB M.2 NVMe PCIe 3.0 SSD.

Page 68

https://code.visualstudio.com/
https://desktop.github.com/

CHAPTER 8. SPECIFICATIONS Final Master Thesis

Software conditions

As mentioned before, it has only been used Visual Studio Code for all the phases of the project:
parsing and analysis of texts, algorithm development, models training, models validation and analysis
and plotting of the results. It is open-source. GitHub Desktop has been used as source control
(open-source).

Page 69

Chapter 9

Budget

This chapter describes the estimated budget associated with the work, had it been done in a private
company. For that purpose the work is divided into different stages, counting the number of hours
dedicated to each one, as well as the human and computational resources.

9.1 Phases of the project

The current project can be divided into the following phases:

• Phase 1: preparation of the training and validation dataset. All the texts are downloaded from
the UN page and they are parsed accordingly. The texts are checked manually and they are
uniform.

• Phase 2: bibliographic revision of the current state of the art and related works. Decide which
NLP models would fit most of the application, download them and perform the first test to
guarantee that everything goes perfect.

• Phase 3: implementation of the models. They are trained and optimized based on their private
configuration parameters.

• Phase 4: validation of the models. Analysis of results.

• Phase 5: preparation and analysis of the aerospace dataset. Results are extracted and conclusions
are drawn.

• Phase 6: writing of the thesis document and preparation of the presentation.

9.2 Dedicated resources

The resources that have been used during the project can be separated into three groups: human
resources, equipment and software. Table 9.1 shows the associated used resources for each group.

70

CHAPTER 9. BUDGET Final Master Thesis

Dedicated resources

Human Equipment Software

x1 engineer Laptop Visual Studio Code

x1 doctorate GitHub Desktop

Table 9.1: Dedicated resources to the project separated into groups.

9.3 Costs breakdown

This Section describes the costs associated with each of the groups of Section 9.2.

Human resources

In this project, they are involved both a junior engineer (the author) and a doctorate (the tutor).
The foremost is responsible for doing all the work associated with the project, while the last one is
responsible for the supervision and guidance of the engineer. The salary is estimated based on their
respective positions. The number of hours dedicated to each phase as well as the total cost per resource
can be seen in Table 9.2.

Phase

Human resource 1 2 3 4 5 6 Cost per hour[€/h] Cost [€]

Engineer 110 75 135 145 72 84 15 9315

Doctorate 7 7 4 5 3 4 30 900

Total Cost 10215

Table 9.2: Number of hours that the human resources dedicate to each phase and the total cost.

Equipment

The costs associated with the equipment can be divided into three groups: electronic equipment, office
material and place of work. In this case, the office material and the place of work have a cost of zero,
because it was not required to buy anything for the office and the place of work was the Universitat
Politècnica de Valencia. About the electronic equipment, as mentioned before, it has only been used
as a laptop. It was acquired in 2022 with a cost of 700 €, so the cost per year (assuming 5 years of
amortization) is 140 €. All the costs are shown in Table 9.3.

Resource Cost [€]

Place of work 0

Office material 0

Laptop 140

Total Cost 140

Table 9.3: Costs of the project associated with the equipment.

Software

The software programmes are specified in Section 8.2, being in this case Visual Studio Code and
GitHub Desktop. Both of them are free software, so they do not have associated costs.

Page 71

CHAPTER 9. BUDGET Final Master Thesis

Total cost

Table 9.4 shows the total cost of the project (net cost), considering an additional cost of 15 % and 6
% of the industrial benefit. It is also required to add the IVA (21 %) to the net cost.

Expense Cost [€]

Human resources 10215

Equipment 140

Software 0

Net cost 10355

Additional expenses Percentage [%] Cost [€]

Indirect cost 15 1553.25

Industrial benefit 6 621.3

Cost without IVA 12529.55

IVA 21% 2631.20

Total Cost 15160.76

Table 9.4: Summary of the costs associated with the project.

As shown in Table 9.4 the total budget required for the present project is THIRTEEN THOUSAND
FOUR HUNDRED NINETY-ONE EURO WITH SIXTY-EIGHT CENTS.

Page 72

Bibliography

[1] D. Angelov. Top2vec: Distributed representations of topics. arXiv preprint arXiv:2008.09470,
2020.

[2] D. Blei, A. Ng, and M. Jordan. Latent Dirichlet Allocation. volume 3, pages 601–608, 01 2001.

[3] R. Egger and J. Yu. A Topic Modeling Comparison Between LDA, NMF, Top2Vec, and BERTopic
to Demystify Twitter Posts. Frontiers in Sociology, 7, 2022.

[4] M. Grootendorst. Bertopic: Neural topic modeling with a class-based TF-IDF procedure. arXiv
preprint arXiv:2203.05794, 2022.

[5] A. Hajikhani and A. Suominen. The Interrelation of Sustainable Development Goals in Publica-
tions and Patents: A machine learning approach. 2021.

[6] S. Kapadia. Evaluate Topic Models: Latent Dirichlet Allocation (LDA). Towards Data Science,
2019.

[7] M. Kostetckaia and M. Hametner. How Sustainable Development Goals interlinkages influence
European Union countries’ progress towards the 2030 Agenda. Sustainable Development, 2022.

[8] D. Kuang, J. Choo, and H. Park. Nonnegative Matrix Factorization for Interactive Topic Modeling
and Document Clustering. pages 215–243, 10 2015.

[9] M. LaFleur. Art is long, life is short: An SDG Classification System for DESA Publications.
2019.

[10] Q. Le and T. Mikolov. Distributed Representations of Sentences and Documents. CoRR,
abs/1405.4053, 2014.

[11] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Representations in
Vector Space. arXiv preprint arXiv:1301.3781, 2013.

[12] K. Nazemi, M. Klepsch, D. Burkhardt, and L. Kaupp. Comparison of Full-text Articles and
Abstracts for Visual Trend Analytics through Natural Language Processing. In 2020 24th Inter-
national Conference Information Visualisation (IV), pages 360–367. IEEE, 2020.

[13] A. Sanchez, O. Garibo, J.A. Conejero, H. Eivazi, E. Rosenberg, J. Garcia, S. Hoyas, R. Vinuesa,
and F. Fuso. BLOOM — An AI-based framework for automatic classification of impact on the
SDGs. Proceedings of the 15th International Conference on Theory and Practice of Electronic
Governance (ICEGOV 2022). Accepted for publication., 2022.

[14] P. Suri and N. Roy. Comparison between LDA & NMF for event-detection from large text stream
data. In 2017 3rd International Conference on Computational Intelligence & Communication
Technology (CICT), pages 1–5. IEEE, 2017.

[15] R. Vinuesa, H. Azizpour, I. Leite, M. Balaam, V. Dignum, S. Domisch, A. Fellander, S.D. Lang-
hans, M. Tegmark, and F. Fuso. The role of artificial intelligence in achieving the Sustainable
Development Goals. Nature communications, 11(1):1–10, 2020.

73

BIBLIOGRAPHY Final Master Thesis

[16] D. Zhang, S. Mishra, E. Brynjolfsson, J. Etchemendy, D. Ganguli, B. Grosz, T. Lyons,
J. Manyika J.C. Niebles, M. Sellitto, et al. The AI Index 2021 Annual Report. arXiv preprint
arXiv:2103.06312, 2021.

Page 74

Appendix A

Codes

Listing A.1: tools.py

module that contains the required functions with specific functionalities such as converting texts from pdf
to txt or preprocessing input text
import os
from string import punctuation
import subprocess
from turtle import color
import difflib
from typing import List
from nltk.stem.wordnet import WordNetLemmatizer
from nltk.stem.porter import PorterStemmer
import gensim
from gensim.parsing.preprocessing import STOPWORDS
from gensim.models import Phrases
import pickle
import conf
import numpy as np
import matplotlib.pyplot as plt
from difflib import SequenceMatcher

def preprocess files (folderPath):
pdfs = [file for file in os. listdir (folderPath) if file .endswith(”.pdf”)]
for pdf in pdfs:

newPdf = standarize file name(pdf)
oldPath = folderPath + pdf
newPath = folderPath + newPdf
os.renames(oldPath, newPath)

Converts the pdfs to txt
pdfs2txt(folderPath)

def check dictionary valid (filesDict):
Checks if 2 files have a very close name. This generally avoids having to compare all texts
for file in filesDict .keys():

closestName = difflib .get close matches(file , filesDict .keys(),n=2,cutoff=0.8)
if len(closestName) > 1:

showStr = ”File with name: {} close to {}, should the process continue? (Y/N): ”.
format(file, closestName[1:])
userInput = input(showStr)
userInput = userInput.lower()
if userInput == ”y”:

continue
else:

raise Exception(”Process exited by user...”)

def standarize file name(file name , n iter=3):

75

APPENDIX A. CODES Final Master Thesis

removes the rare caracters from the file name
symbols = [”,”, ” ”,”:”,”;”]
newName = file name.lower()
for iteration in range(0, n iter):

for symbol in symbols:
newName = newName.replace(symbol, ” ”)

return newName

def pdfs2txt(pdfPath:str):
Converts all the PDFs located in the $pdfPath$ into txt format
@param pdfPath path where the pdfs should be located
os.environ[”COMSPEC”] = r”C:\WINDOWS\system32\WindowsPowerShell\v1.0\powershell.exe”
bashCommand = ”bash pdftotxt.sh {} {}”.format(pdfPath, pdfPath)
subprocess. call (bashCommand, shell=True)

def tokenize text(text :str, min word length:int=3, punctuation:bool=True, lemmatize:bool=True,
stem:bool=True, stopwords:bool=True, extended stopwords:bool=True):

Tokenizes the input text . First , it applies all the options.
@param text Input text to clear and tokenize
@param min word length Minimum length of the works to keep
@param punctuation Remove ASCII punctuation characters with spaces in s
@param lemmatize Wordnetlemmatizer
@param stem PorterStemmer
@param stopwords Remove the frequent stopwords
@param extended stopwords Use the list stop words.txt

lemmatizer = WordNetLemmatizer()
stemmer = PorterStemmer()

tokens = gensim.parsing.strip tags(text)
if punctuation: tokens = gensim.parsing.strip punctuation(tokens)
tokens = gensim.parsing.strip numeric(tokens)
tokens = gensim.parsing.strip non alphanum(tokens)
if stem: tokens = gensim.parsing.stem text(tokens)
tokens = gensim.parsing.strip multiple whitespaces(tokens)
tokens = gensim.utils.simple preprocess(tokens, deacc=punctuation, min len=min word length)
for token, tokenIndex in zip(tokens, range(len(tokens))):

newToken = token
if lemmatize: newToken = lemmatizer.lemmatize(newToken)
if stem: newToken = stemmer.stem(newToken)
tokens[tokenIndex] = newToken

if stopwords:
set = STOPWORDS
if extended stopwords:

paths = conf.get paths()
with open(paths[”ref”] + ”stop words.txt”, ’r ’) as f :

words = f.read(). split (’ ’)
f . close ()

own set = frozenset(words)
set = STOPWORDS.union(own set)
tokens = [token for token in tokens if not(token in set)]

tokens = [token for token in tokens if not token in set]

tokens = [token for token in tokens if len(token) > min word length]
return tokens

def standarize raw text(text :str):
Preprocess a raw text so that all have the same format.
@warning It does not tokenize or apply any process for cleaning the text
@param text
outText = text
outText = outText.lower()
outText = outText.replace(” ”, ” ”).replace(”−”, ” ”)
outText = gensim.parsing.strip multiple whitespaces(outText)

Page 76

APPENDIX A. CODES Final Master Thesis

return outText

def save obj(obj, path:str):
pickle .dump(obj, open(path, ’wb’))

def load obj(path:str):
obj = pickle.load(open(path, ’rb’))
return obj

def segmentize text(text:str, segment size):
text segments = [text]
textLength = len(text)
if textLength > segment size:

text segments = []; index = 0
while(1):

if index + segment size > textLength:
text segments.append(text[index:])
break

else:
if index + segment size + 200 > textLength:

text segments.append(text[index:])
break

else:
text segments.append(text[index:(index + segment size)])

index += segment size
return text segments

def parse sdgs ascii list (sdgs ascii : list , append always:bool=False):
Parses a list of SDGs from ascii to int
@param sdgs ascii List of sdgs in ascii −> ”[1,2,4]” = SDG1,2,4
return sdgs List of sdgs in int −> [1,2,4]
sdgs = []
for sdgAscii in sdgs ascii :

tmp = [int(sdg) for sdg in sdgAscii[1:−1]. split (’ , ’) if len(sdg) > 0]
if len(tmp) > 0 or append always: sdgs.append(tmp)

return sdgs

def save figure (fig : plt , path:str):
if os.path.exists (path):

os.remove(path) # otherwise, old figures are not overwritten
fig . savefig (path)

def analyze predict real sdgs (real sdgs , predic sdgs , path out=””, case name=”default”, show=True):
ok = np.zeros(17); wrong = np.zeros(17)
for real , predic in zip(real sdgs , predic sdgs):

for rr in real :
if rr in predic: ok[rr − 1] += 1
else: wrong[rr − 1] += 1

label ticks = range(1,18)
plt . figure (figsize =(8, 8))
plt .bar(label ticks , ok + wrong, color=”red”)
plt .bar(label ticks , ok, color=”green”)
plt . xlabel(’SDG’)
plt . ylabel(”Number of times identified”)
plt . xticks(label ticks)
save figure (plt , path out + case name + ”.png”)
if show: plt .show()

def count words(text:str):
return len(text.split(’ ’))

def count texts per sdg(sdgs: list [list [int]]):
Gets the count per sdg
@param sdgs List[List[int]]

Page 77

APPENDIX A. CODES Final Master Thesis

@return List[int(17)], Str (formatted)
countPerSdg = np.zeros(17)
for sdgG in sdgs:

for sdg in sdgG:
countPerSdg[int(sdg) − 1] += 1

countPerSdgStr = [”SDG{}:{}”.format(int(sdg), int(count)) for sdg, count in zip(range(1,18), countPerSdg)]
countPerSdgStr = ” | ”.join(countPerSdgStr)

return countPerSdg, countPerSdgStr

def count texts per score(sdgs identified , sdgs score):
countPerSdg = np.zeros(17)
for sdgG, scoreS in zip(sdgs identified , sdgs score):

for sdg, score in zip(sdgG, scoreS):
countPerSdg[int(sdg) − 1] += score

countPerSdgStr = [”SDG{}:{:.2f}”.format(int(sdg), weight) for sdg, weight in zip(range(1,18), countPerSdg)]
countPerSdgStr = ” | ”.join(countPerSdgStr)
return countPerSdg, countPerSdgStr

def count meanwords per sdg(texts:list[str], sdgs: list [list [int]]):
meanWords = np.zeros(17); count = np.zeros(17)
for text , sdgG in zip(texts, sdgs):

nWords = count words(text)
for sdg in sdgG:

meanWords[sdg − 1] += nWords
count[sdg − 1] += 1

for ii in range(17):
if count[ii] > 0: meanWords[ii] /= count[ii] # the mean
else: meanWords[ii] = 0

meanWordsStr = [”SDG{}:{}”.format(sdg, int(count)) for sdg, count in zip(range(1,18), meanWords)]
meanWordsStr = ” | ”.join(meanWordsStr)

return meanWords, meanWordsStr

def search for repeated texts (texts : list [str], ratio :float=0.8):
textsOut = texts.copy(); textsIn = texts.copy(); it=0
for text1 in textsOut:

it += 1
print(”# Checked: {} out of {}”.format(it, len(textsOut)))

for text2, index in zip(textsIn, range(len(textsIn))):
similarityRatio = SequenceMatcher(text1, text2).ratio()
if similarityRatio > ratio:

print(”# Similarity {:.2f} between: \r\n Text1: {} \r\n Text2{}”.
format(similarityRatio, text1, text2))

textsIn .pop(0) # the first text can be removed...

def get ok nok SDGsidentified(sdgs labelled: list [list [int]], sdgs identified : list [list [int]]):
ok = np.zeros(17); nok = np.zeros(17)
for ii in range(len(sdgs labelled)):

for sdg in sdgs labelled [ii]:
if sdg in sdgs identified [ii]: ok[sdg − 1] += 1
else: nok[sdg − 1] += 1

return ok, nok

def plot ok vs nok SDGsidentified(sdgs labelled : list [list [int]], sdgs identified : list [list [int]],
path out:str=””, show:bool=False):

ok, nok = get ok nok SDGsidentified(sdgs labelled, sdgs identified)

xlabel = [ii for ii in range(1, 18)]

plt . figure (figsize =(8, 8))
for xx in xlabel :

plt .bar(xx, ok[xx − 1] + nok[xx − 1], width=0.3, alpha=0.5, color=’green’,)
plt .bar(xx, ok[xx − 1] , width=0.3, alpha=1.0, color=’green’)

Page 78

APPENDIX A. CODES Final Master Thesis

plt . xticks(xlabel)
plt . xlabel(’SDG’)
plt . ylabel(”Number of texts”)
plt.ylim(top=0.5)
plt. title (’SDGs to identify: {}’. format(labeledSDGs[textIndex]))
plt .legend([’Not identified ’ , ’ Identified ’])
if len(path out) > 4: plt . savefig (path out)
if show: plt .show()

def plot SDGsidentified(sdgs identified : list [list [int]], sdgs scores : list [list [float]],
path out:str=””, with score:bool=False, show:bool=False, fontsize:int=14):

xlabel = [ii for ii in range(1, 18)]
if with score:

counts, countstr = count texts per score(sdgs identified , sdgs scores)
else:

counts, countstr = count texts per sdg(sdgs identified)

plt . figure (figsize =(8, 8))
plt .bar(xlabel , counts, width=0.3, alpha=1.0, color=’green’)
plt . xticks(xlabel)
plt . xlabel(’SDG’, fontsize=fontsize)
if with score:

plt . ylabel(”Total weight (sum of individual score)”, fontsize=fontsize)
else:

plt . ylabel(”Number of times identified”, fontsize=fontsize)
plt.ylim(top=0.5)
plt. title (’SDGs to identify: {}’. format(labeledSDGs[textIndex]))
plt .tick params(axis=’x’, labelsize =fontsize)
plt .tick params(axis=’y’, labelsize =fontsize)
if len(path out) > 4:

if os.path.exists (path out):
os.remove(path out) # otherwise, old figures are not overwritten

plt . savefig (path out)
if show: plt .show()

Listing A.2: data.py

File that contains the functions for accesing the required data: training and validation

from cmath import isnan
from curses import raw
import os
from typing import Dict
from numpy import empty
import pandas as pd
import json
import conf
import tools

def get sdg titles (refPath):
returns the title of each SDG as a dictionary, with key: SDGx, value = title.
for example: ”SDG1”:”No poverty”
f = open(refPath + ”SDG titles.json”)
sdgs title = json.load(f)
f . close ()
return sdgs title

def get sdgs seed list (refPath):
with open(refPath + ”seed list sdgs.json”, ’ r ’) as f :

text = f.read()
f . close ()
dict = json.loads(text)

return list(dict.values())

Page 79

APPENDIX A. CODES Final Master Thesis

DATASET: the role of artificial intelligence in achieving the sustainable development goals. NATURE PAPER.
The user can select independently: abstract , keywords, introduction , body or conclusions.
def get nature files (abstract=True, kw=False, intro=False, body=False, concl=False):

paths = conf.get paths()
with open(paths[”ref”] + ”cleaned database.json”, ”r”) as f :

json dump = f.read()
f . close ()

database = json.loads(json dump)

corpus = []; associatedSDGs = []; indexes = []
for file , index in zip(database, range(len(database))):

text = ””
sdgs = database[file][”SDG”]
if 17 in sdgs:

continue
if abstract:

if len(database[file][”abstract”]) > 50:
text += ” ” + database[file][”abstract”]

if kw:
text += ” ” + database[file][”keywords”]

if intro :
text += ” ” + database[file][”introduction”]

if body:
text += ” ” + database[file][”body”]

if concl :
text += ” ” + database[file][”conclusions”]

corpus.append(text)
associatedSDGs.append(sdgs)
indexes.append(index)

print(”# {} nature files were found”.format(len(corpus)))
return [corpus, associatedSDGs, indexes]

def get nature abstracts ():
paths = conf.get paths()
with open(paths[”ref”] + ”cleaned database.json”, ”r”) as f :

json dump = f.read()
f . close ()

database = json.loads(json dump)

corpus = []; associatedSDGs = []; indexes = []
for (file , index) in zip(database, range(len(database))):

sdgs = database[file][”SDG”]
if 17 in sdgs:

continue
if len(database[file][”abstract”]. split (’ ’)) > 50:

corpus.append(database[file][”abstract”])
associatedSDGs.append(sdgs)
indexes.append(index)

print(”# {} nature abstracts were found”.format(len(corpus)))
return [corpus, associatedSDGs, indexes]

def get nature abstracts filtered ():
paths = conf.get paths()
excel = pd.read excel(paths[”ref”] + ”test2set thresholds .xlsx”)
texts = list(excel [”text”]); sdgsAscii = list(excel [”sdgs”])
sdgs = tools. parse sdgs ascii list (sdgsAscii)
return [texts, sdgs]

DATASET: https://sdgs.un.org/
− Goals definition
− Goals progress − evolution section
def get sdgs org files (refPath, sdg query=−1):

Returns an array where each elements consist of an array with the fields :
[0] abstract or text related to a SDG, [1]: array with the associated SDGs.
path = refPath + ”sdg texts.xlsx”

Page 80

APPENDIX A. CODES Final Master Thesis

df = pd.read excel(path)
texts = list(df [”text”]); sdgs = tools. parse sdgs ascii list (list (df [”sdg”]))

corpus = []; associatedSDGs = []
for text , sdg in zip(texts , sdgs):

if sdg[0] == 17: continue # not included
if sdg query > 0:

if sdg query == sdg[0]:
corpus.append(text)
associatedSDGs.append(sdg)

else:
corpus.append(text)
associatedSDGs.append(sdg)

nFiles = len(corpus)
print(”# {} sdgs files were found”.format(nFiles))
return [corpus, associatedSDGs]

DATASET: https://www.kaggle.com/datasets/xhlulu/medal−emnlp
def get health care files (refPath):

sdgsPath = [refPath + ”Extra files/SDG3/”]
corpus = []; associatedSDGs = []
for path in sdgsPath:

for file in os. listdir (path):
f = open(path + file, ’r’)
text = f.read()
f . close ()
fileSDG = [3]
corpus.append(text)
associatedSDGs.append(fileSDG)

nFiles = len(corpus)
print(”− {} health care files (SDG3) were found”.format(nFiles))
return [corpus, associatedSDGs]

DATASET: files from scopus classified as related to a sdg previously by the algorithm
def get previous classified abstracts (refPath):

returns files that were previously classifies by the algorithm as valid
absPath = refPath + ”Abstracts/”
abstracts = []
for file in os. listdir (absPath):

if file .endswith(”.txt”):
f = open(absPath + file, ’r’, encoding=”utf−8”)
text = f.read()
f . close ()
abstracts .append(text)

DATASET: https://sdg−pathfinder.org/ files related to each SDG
def get sdgs pathfinder(refPath, min words=150):

csv = pd.read csv(refPath + ”ds sdg path finder.csv”)
corpus = []; sdgs = []
for text , sdgsAscii in zip(csv[”text”], csv[”SDGs”]):

sdgsInt = [int(sdg) for sdg in (sdgsAscii . replace(”[”,””). replace(”]”,””)). split (”,”)]
if 17 in sdgsInt:

continue
if len(text. split (’ ’)) > min words:

corpus.append(text)
sdgs.append(sdgsInt)

print(”− {} texts in the pathfinder dataset”.format(len(corpus)))
return [corpus, sdgs]

MANUAL SELECTED files
def get extra manual files (refPath, sdg query=[], verbose=True):

Returns an array where each elements consist of an array with the fields :
[0] abstract or text related to a SDG, [1]: array with the associated SDGs.
sdgsPaths = [refPath + ”Manual selected/”]
corpus = []; associatedSDGs = []

Page 81

APPENDIX A. CODES Final Master Thesis

for path in sdgsPaths:
for file in os. listdir (path):

filePath = path + file
if not os.path. isfile (filePath): continue
f = open(filePath, ’r’ , encoding=’utf8’)
text = f.read()
f . close ()
fileSDG = []
for sdg in file . split (” ”):

if sdg. isdigit ():
if int(sdg) == 17: continue
fileSDG.append(int(sdg))

ok = 0
if len(sdg query) > 0:

for sdg in fileSDG:
if sdg in sdg query: ok += 1

else: ok = 1

if ok > 0:
corpus.append(text)
associatedSDGs.append(fileSDG)

nFiles = len(corpus)
if verbose: print(”# {} manual files were found”.format(nFiles))
return [corpus, associatedSDGs]

def get iGEM files(ref path, verbose=True):
path = ref path + ”iGEM 2004 2021/”
fieldsSeparator = ” ::: ”
with open(path + ”00Header.txt”, ’r’) as hd:

text = hd.read()[:−1]; hd.close ()
fields = text. split (fieldsSeparator)

abstracts = []; extInformation = []; not valid = []
for folder in os. listdir (path=path):

if folder . startswith(”iGEM”):
for file in os. listdir (path=(path + folder)):

if file . startswith(”0”): continue # it is not a valid file
try:

fp = open(path + folder + ”/” + file, ’r ’ , encoding=’utf8’)
text = fp.read ()[:−1]; fp. close ()
fieldsValue = text. split (fieldsSeparator)
data = dict()
for fieldValue , fieldName in zip(fieldsValue , fields):

data[fieldName] = fieldValue

append the data to the lists if OK
if data[’Application’] == ’Accepted’ and len(data[’Abstract’].split(’ ’)) > 10:

data[”Abstract”] = data[”Abstract”].encode(”ascii”, ”ignore”)
abstracts .append(data[”Abstract”])
extInformation.append(data)

except:
not valid .append(path + folder + ”/” + file)

if verbose:
print(’## {} accepted texts with abstract were found’.format(len(abstracts)))
for file in not valid :

print(’# Revise: ’ + file)

return [abstracts, extInformation]

def get aero files (ref path :str, verbose:bool=True) −> pd.DataFrame:
path = ref path + ”Aero/”

authors = []; titles = []; years = []; citations = []; links = []
countries = []; abstracts = []; keywords = []

Page 82

APPENDIX A. CODES Final Master Thesis

for csv name in os. listdir (path):
csv = pd.read csv(path + csv name)
authors += list(csv[”Authors”])
titles += list(csv[”Title”])
years += list(csv[”Year”])
citations += list(csv[”Cited by”])
links += list(csv[”Link”])

def extract country(affiliation :str) −> str:
if not isinstance(affiliation , str): return ”” # to protect
ind = affiliation . find(”;”)
if not ind == −1: affiliation = affiliation [0: ind]
country = affiliation . split (’ , ’)[−1]

if verbose: print(’ Affiliation : {} −> Country: {}’.format(affiliation, country))
return country

for affiliation in list (csv[” Affiliations ”]):
country = extract country(affiliation)
countries .append(country)

abstracts += list(csv[”Abstract”])
keywords += list(csv[”Index Keywords”])

df = pd.DataFrame()
df [”authors”] = authors; df[” titles ”] = titles ; df [”years”] = years; df [” citations”] = citations
df [”links”] = links; df [”countries”] = countries; df [”abstracts”] = abstracts; df [”keywords”] = keywords
return df

def update datasets():
Updates the datasets that can be used for training , validation or analysis
print(”# Updating datasets...”)

paths = conf.get paths()
raw orgFiles, sdgs orgFiles = get sdgs org files (paths[”SDGs inf”])
raw extraFiles , sdgs extra = get extra manual files(paths[”ref”],

sdg query=[] # queries all the sdgs, not filter
)

raw natureShort, sdgs nature, index abstracts = get nature abstracts()
raw natureExt, sdgs natureAll, index full = get nature files (abstract=True, kw=True, intro=True,

body=True, concl=True)

df aero = get aero files (ref path=paths[”test”], verbose=False)
raw aero = list(df aero [”abstracts”])

1. Clears all the texts , standarizing them
print(”# 1. Clearing texts...”)
corpus = raw orgFiles + raw extraFiles + raw natureShort + raw natureExt
nFiles = len(corpus); nFilesAero = len(raw aero)
corpus += raw aero
sdgs = sdgs orgFiles + sdgs extra + sdgs nature + sdgs natureAll + [[] for ii in range(nFilesAero)]
identifiers = [”org” for ii in range(len(raw orgFiles))] \

+ [”manual extra” for ii in range(len(raw extraFiles))] \
+ [”nature abstract” for ii in range(len(raw natureShort))] \
+ [”nature all” for ii in range(len(raw natureExt))] \
+ [”aero” for ii in range(nFilesAero)]

years = [−1 for ii in range(nFiles)] + list(df aero [”years”])
citations = [−1 for ii in range(nFiles)] + list(df aero [” citations”])
countries = [”” for ii in range(nFiles)] + list(df aero [”countries”])
keywords = [”” for ii in range(nFiles)] + list(df aero [”keywords”])
print(”# Total number of texts in datasets: ”, len(identifiers))

2. Generates stem and lem datasets
print(”# 2. Creating datasets...”)
stand texts = []; lem texts = []; lem stem texts = []
for text in corpus:

Page 83

APPENDIX A. CODES Final Master Thesis

standarized = tools.standarize raw text(text) # all the texts should be based on the standarized version

stand texts .append(standarized)
lem texts.append(” ”.join(tools. tokenize text(standarized, min word length=3, punctuation=True,

lemmatize=True, stem=False, stopwords=True, extended stopwords=True)))
lem stem texts.append(” ”.join(tools. tokenize text(standarized, min word length=3, punctuation=True,

lemmatize=True, stem=True, stopwords=True, extended stopwords=True)))

3. Stores the datasets
outPath = ”datasets/”
print(”# 3. Storing datasets in ” + outPath + ”...”)
df = pd.DataFrame()
df [”standard”] = stand texts
df [”lem”] = lem texts
df [”lem stem”] = lem stem texts
df [”sdgs”] = sdgs
df [” identifier ”] = identifiers
df [”years”] = years
df [” citations”] = citations
df [”countries”] = countries
df [”keywords”] = keywords

df . to csv(outPath + ”dataset.csv”)

dc = dict()
dc[”standard”] = stand texts
dc[”lem”] = lem texts
dc[”lem stem”] = lem stem texts
dc[”sdgs”] = sdgs
dc[” identifier ”] = identifiers
dc[”years”] = years
dc[” citations”] = citations
dc[”countries”] = countries
dc[”keywords”] = keywords

with open(outPath + ’dataset.json’, ’w’) as outfile :
json.dump(dc, outfile)

def get dataset(requires update:bool=False, filter: list =[]):
Gets the dataset where all the texts are stored
@return Dictionary with all the data:
”standard” −> raw texts
”lem” −> lemmatized texts
”lem stem” −> lemmatized + stemmed texts
”sdgs” −> associates sdgs to each text
”identifier” −> source of each text. ”org”, ”manual extra”, ”nature abstract”, ”nature all”
if requires update: update datasets()

datasetPath = ”datasets/dataset.json”
print(”# Opening ” + datasetPath)
with open(datasetPath, ”r”) as f:

json dump = f.read()
f . close ()

dataset = json.loads(json dump)

if len(filter) > 0:
newDataset = dict(); keys = dataset.keys()
for key in keys: newDataset[key] = [] # empty initializations

for id, index in zip(dataset[” identifier ”], range(len(dataset[”identifier”]))):
if id in filter :

for key in keys: newDataset[key].append(dataset[key][index])
dataset = newDataset

return dataset

Page 84

APPENDIX A. CODES Final Master Thesis

update datasets()
db = get dataset()

Listing A.3: model nmf.py

from cmath import isnan
from signal import valid signals
import tools
import pandas as pd
import numpy as np
from sklearn.decomposition import NMF
from sklearn.preprocessing import normalize
from sklearn.feature extraction .text import TfidfVectorizer
import warnings
warnings. filterwarnings (’ ignore’)

Class associated to the Non−Negative Matrix classifier.
class NMF classifier:

paths=[]
model=[]
vectorizer=[]
topics association =[]
train data=[]
verbose=False

def init (self , paths, verbose=False):
self .paths = paths
self .verbose = verbose

def train(self , train data , n topics , ngram, min df=1, max iter=2000, l1=0.0, alpha w=0.0, alpha h=0.0):
self . train data = train data
the corpus should be preprocessed before
self . vectorizer = TfidfVectorizer(min df=min df, encoding=’utf−8’, ngram range=ngram)
vectorized data = self . vectorizer . fit transform (train data [0])
self .model = NMF(n components=n topics, random state=5, verbose=False, max iter=max iter,

alpha W=alpha w, alpha H=alpha h, l1 ratio=l1)
self .model.fit (vectorized data)
a=2

def print stopwords(self , path csv=””):
stopwords = list(self . vectorizer .stop words)
df = pd.DataFrame()
df [”stopwords”] = stopwords
if len(path csv) > 4:

df . to csv(path csv)

def test model(self , corpus, associated SDGs, score threshold=0.2, segmentize=−1, filter low=False,
path to plot=””, path to excel=””, normalize=True, expand factor=1.0):
rawSDG = []; rawSDGseg = []; pred sdgs = []
predictedSDGs = []; realSDGs = []
valids = []; validsAny = []
texts = []
statsGlobal = []
countPerSDG = np.zeros(17)
countWellPredictionsPerSDG = np.zeros(17)
maxSDG = 0.0
for text , labeled sdgs in zip(corpus, associated SDGs):

if segmentize > 0:
then the documents are divided
text segments = tools.segmentize text(text , segment size=segmentize)
raw sdgs = np.zeros(17)
for segment in text segments:

raw sdgs += self.map text to sdgs(segment, filter low=filter low ,

Page 85

APPENDIX A. CODES Final Master Thesis

normalize=normalize, expand factor=expand factor)
raw sdgs /= len(text segments)
raw sdgs seg = raw sdgs

else:
raw sdgs seg = np.zeros(17)
raw sdgs = self .map text to sdgs(text, filter low =filter low , normalize=normalize,

expand factor=expand factor)

predic sdgs = [list (raw sdgs).index(sdgScore) + 1 for sdgScore in raw sdgs if sdgScore > score threshold]
validSingle = False; ii = 0
for sdg in labeled sdgs :

countPerSDG[sdg − 1] += 1
if sdg in predic sdgs :

validSingle = True
ii += 1
countWellPredictionsPerSDG[sdg − 1] += 1

valid = False
if ii == len(labeled sdgs):

valid = True
maxLocal = max(raw sdgs)
if maxLocal > maxSDG: maxSDG = maxLocal

raw sdgsAscii = [”x{}: {:.2 f}”.format(xx, topic) for topic, xx in zip(raw sdgs, range(1,18))]
raw sdgsAscii = ”|”.join(raw sdgsAscii)

raw sdgsAsciiseg = [”x{}: {:.2 f}”.format(xx, topic) for topic, xx in zip(raw sdgs seg, range(1,18))]
raw sdgsAsciiseg = ”|”.join(raw sdgsAsciiseg)

stats = [min(raw sdgs), np.mean(raw sdgs), max(raw sdgs)]
statsAscii = ”[{:.2 f}, {:.2 f}, {:.2 f}]”.format(stats[0], stats [1], stats [2])

rawSDG.append(raw sdgsAscii)
rawSDGseg.append(raw sdgsAsciiseg)
statsGlobal.append(statsAscii)
predictedSDGs.append(predic sdgs)
realSDGs.append(labeled sdgs)
texts .append(text)
valids .append(valid)
validsAny.append(validSingle)
pred sdgs.append(predic sdgs)

oks = [ok for ok in valids if ok == True]
oksSingle = [ok for ok in validsAny if ok == True]
perc valid global = len(oks) / len(valids) ∗ 100; perc valid any = len(oksSingle) / len(valids) ∗ 100
print(”− {:.2f} % valid global, {:.2 f} % valid any, of {} files ”.format(perc valid global,

perc valid any , len(valids)))
print(’Max found: {:.3f}’.format(maxSDG))

if len(path to excel) > 0:
df = pd.DataFrame()
df [”text”] = texts
df [”labeled sdgs”] = realSDGs
df[”sdgs association”] = rawSDG
df[”sdgs segmentated”] = rawSDGseg
df [”stats”] = statsGlobal
df [”predict sdgs”] = predictedSDGs
df[” all valid ”] = valids
df [”any valid”] = validsAny
df. to excel (path to excel)

return [rawSDG, perc valid global, perc valid any, maxSDG, pred sdgs]

def map model topics to sdgs(self, n top words, normalize=True, path csv=””):
Maps each new topic of the general NMF model to an specific SDG obtained from training 17 models
nTopics = self .model.n components

Page 86

APPENDIX A. CODES Final Master Thesis

self . topics association = np.zeros((nTopics, 17))
for text , labeled sdgs in zip(self . train data [0], self . train data [1]):

topicScores = self . infer text (text)
for topicIndex, score in zip(range(nTopics), topicScores):

for sdg in labeled sdgs :
tmp = np.zeros(17)
tmp[sdg − 1] = 1
self . topics association [topicIndex] += score ∗ tmp

sum per topic = np.zeros(17)
for ii in range(nTopics):

if normalize:
norm topics = self . topics association [ii] / sum(self. topics association [ii])
topics to delete = norm topics < 0.1
for nn, delete , index in zip(norm topics, topics to delete , range(len(norm topics))):

if delete :
norm topics[index] = 0.0

ss = sum(norm topics)
if ss > 0: norm topics = norm topics / ss
self . topics association [ii] = norm topics

sum per topic += self. topics association [ii]
if self .verbose:

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18),
self . topics association [ii])]

print(’Topic{:2d}: ’ .format(ii), ’ | ’ . join(listAscii))
listAscii = [”x{}:{:.2 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18), sum per topic)]
if self .verbose:

print(’GLOBAL: ’ + ’|’.join(listAscii))

if len(path csv) > 4:
Then the mapping result is stored in a csv
dfMap = pd.DataFrame()
for ii in range(nTopics):

listAscii = [”{:.2 f}”.format(sdg) for sdg in self. topics association [ii]]
dfMap[”topic{}”.format(ii)] = listAscii

dfMap = dfMap.transpose()
dfMap.columns = [”SDG{}”.format(ii) for ii in range(1,18)]
dfMap.to csv(self .paths[”out”] + ”NMF/” + ”association matrix.csv”)

df = pd.DataFrame()
topic words ascii = []
for ii in range(nTopics):

terms, scores = self . get topic terms(ii , topn=n top words)
scoreTerm = [”{:.3f}:{}”.format(sc, tm) for sc, tm in zip(scores, terms)]
topic words ascii .append(scoreTerm)

all the top SDGs with an score > 0.1 are considered for that topic
for topicIndex in range(nTopics):

topSDGs = sorted(self.topics association[topicIndex], reverse=True)
title = []
for sdg in topSDGs:

if sdg < 0.1: break
sdgIndex = list(self . topics association [topicIndex]). index(sdg)
ass sdg = self . topics association [topicIndex][sdgIndex]
title .append(”{:.2f}∗SDG{}”.format(ass sdg, sdgIndex + 1))

title = ”,”.join(title)
df [title] = topic words ascii [topicIndex]

df . to csv(path csv)

def map text to sdgs(self , text , filter low =True, normalize=True, expand factor=1.0):
query words vect = self. vectorizer .transform([text])
topicFeats = self .model.transform(query words vect)[0]

sdgs score = np.zeros(17)
for topicScore, topicIndex in zip(topicFeats, range(len(topicFeats))):

Page 87

APPENDIX A. CODES Final Master Thesis

sdgs score += topicScore ∗ self . topics association [topicIndex]
sdgs score ∗= expand factor

if filter low :
raw sdgs filt = sdgs score < 0.05
for prob, index, filt in zip(sdgs score , range(len(sdgs score)), raw sdgs filt):

if filt :
prob = sdgs score[index]
sdgs score [index] = 0.0
sdgs score += prob ∗ sdgs score / sum(sdgs score)

if normalize:
sdgs score = sdgs score / sum(sdgs score)

return sdgs score

def map text to topwords(self, text , top n):
query words vect = self. vectorizer .transform([text])
topicFeats = self .model.transform(query words vect)[0]

words collection = []
for topicScore, topicIndex in zip(topicFeats, range(len(topicFeats))):

words, scores = self . get topic terms(topicIndex, top n)
for word, score in zip(words, scores):

words collection .append((word, score ∗ topicScore))

def sort method(elem):
return elem[1]

words collection . sort(key=sort method, reverse=True)
return words collection[:top n]

def infer text (self , text):
query words vect = self. vectorizer .transform([text])
topicScores = self .model.transform(query words vect)[0]
return topicScores

def get topic terms(self , topic , topn):
Returns the n top words for each of the n topics for the topic that is queried
feat names = self . vectorizer .get feature names out()
words ids = self .model.components [topic].argsort()[:−topn − 1:−1]
words = [feat names[key] for key in words ids]
scores = [self .model.components [topic][key] for key in words ids]
return words, scores

Listing A.4: model lda.py

from signal import valid signals
import tools
import pandas as pd
import numpy as np
from gensim.models import LdaModel
from sklearn.preprocessing import normalize
import tools
import warnings
warnings. filterwarnings (’ ignore’)

Class associated to the Latent−Dirichlet Allocation model
class LDA classifier(LdaModel):

paths=[]
topics association =[]
dict=[]
verbose=False
train data=[]

Page 88

APPENDIX A. CODES Final Master Thesis

def set conf(self , paths, dict, verbose=False):
self .paths = paths
self .dict = dict
self .verbose = verbose

def test model(self , corpus, sdgs, path to plot=””, path to excel=””, only bad=False, score threshold=3.0,
only positive=False, segmentize=−1, filter low=False, expand factor=1.0, normalize=True):
rawSDG = []; rawSDGseg = []
predictedSDGs = []
realSDGs = []
valids = []
validsAny = []
texts = []
statsGlobal = []
pred = []
countPerSDG = np.zeros(17)
countWellPredictionsPerSDG = np.zeros(17)
maxSDG = 0.0
for text , labeled sdgs in zip(corpus, sdgs):

if segmentize > 0:
then the documents are divided
text segments = tools.segmentize text(text , segment size=segmentize)
raw sdgs = np.zeros(17)
for segment in text segments:

raw sdgs += self.map text to sdgs(segment, only positive=only positive,
filter low =filter low , normalize=normalize, expand factor=expand factor)

raw sdgs /= len(text segments)
raw sdgs seg = raw sdgs

else:
raw sdgs seg = np.zeros(17)
raw sdgs = self .map text to sdgs(text, only positive=only positive, filter low =filter low ,
normalize=normalize, expand factor=expand factor)

raw sdgs ∗= expand factor

maxLocal = max(raw sdgs)
if maxLocal > maxSDG: maxSDG = maxLocal

predic sdgs = [list (raw sdgs).index(sdgScore) + 1 for sdgScore in raw sdgs if sdgScore > score threshold]
validSingle = False; ii = 0
for sdg in labeled sdgs :

countPerSDG[sdg − 1] += 1
if sdg in predic sdgs :

validSingle = True
ii += 1
countWellPredictionsPerSDG[sdg − 1] += 1

valid = False
if ii == len(labeled sdgs):

valid = True

if (only bad and not(valid)) or not(only bad):
raw sdgsAscii = [”x{}: {:.2 f}”.format(xx, topic) for topic, xx in zip(raw sdgs, range(1,18))]
raw sdgsAscii = ”|”.join(raw sdgsAscii)

raw sdgsAsciiseg = [”x{}: {:.2 f}”.format(xx, topic) for topic, xx in zip(raw sdgs seg, range(1,18))]
raw sdgsAsciiseg = ”|”.join(raw sdgsAsciiseg)

stats = [min(raw sdgs), np.mean(raw sdgs), max(raw sdgs)]
statsAscii = ”[{:.2 f}, {:.2 f}, {:.2 f}]”.format(stats[0], stats [1], stats [2])

rawSDG.append(raw sdgsAscii)
rawSDGseg.append(raw sdgsAsciiseg)
statsGlobal.append(statsAscii)
predictedSDGs.append(predic sdgs)
realSDGs.append(labeled sdgs)
texts .append(text)

Page 89

APPENDIX A. CODES Final Master Thesis

pred.append(predic sdgs)
valids .append(valid)
validsAny.append(validSingle)

oks = [ok for ok in valids if ok == True]
oksSingle = [ok for ok in validsAny if ok == True]
perc valid global = len(oks) / len(valids) ∗ 100; perc valid any = len(oksSingle) / len(valids) ∗ 100
print(”− {:.2f} % valid global, {:.2 f} % valid any, of {} files ”.format(perc valid global,

perc valid any , len(valids)))
print(’Max found: {:.3f}’.format(maxSDG))

if len(path to excel) > 0:
df = pd.DataFrame()
df [”text”] = texts
df [”labeled sdgs”] = realSDGs
df[”sdgs association”] = rawSDG
df[”sdgs segmentated”] = rawSDGseg
df [”stats”] = statsGlobal
df [”predict sdgs”] = predictedSDGs
df[” all valid ”] = valids
df [”any valid”] = validsAny
df. to excel (path to excel)

return [rawSDG, perc valid global, perc valid any, maxSDG, pred]

def print summary(self, top words, path csv=””):
nTopics = len(self. get topics ())
topicsWords = [[] for ii in range(nTopics)]
dfTopics = pd.DataFrame()
words prob = self.show topics(num topics=nTopics, num words=top words, log=False, formatted=False)
for topicIndex in range(nTopics):

distribution = words prob[topicIndex]
for elem in distribution [1]:

topicsWords[topicIndex].append(”{:.3f}:{}”.format(elem[1], elem[0]))
topicName = ”Topic{}”.format(topicIndex)
dfTopics[topicName] = topicsWords[topicIndex]

topic = 0
maxTopicsPerLine = 7
while(1):

if topic + maxTopicsPerLine > nTopics:
print(dfTopics. iloc [:, topic :])
break

else:
print(dfTopics. iloc [:, topic :(topic + maxTopicsPerLine)])

topic += maxTopicsPerLine

if len(path csv) > 0:
try:

dfTopics.to csv(path csv)
except:

print(’CSV IS OPENED... ABORTING TOPICS EXPORT’)

def map model topics to sdgs(self, train data , top n words=30, path csv=””, normalize=False, verbose=False):
maps each internal topic with the SDGs. A complete text associated to each specific SDG is fetched.
Then each topic is compared with each text and the text−associated sdg with the maximum score is selected
as the SDG.
self . train data = train data
nTopics = len(self. get topics ())
self . topics association = np.zeros((nTopics, 17))
for text , labeled sdgs in zip(train data [0], train data [1]):

topics , probs = self . infer text (text)
for (topicIndex, score) in zip(topics , probs):

if subScore < meanSub: continue
tmp = np.zeros(17)

Page 90

APPENDIX A. CODES Final Master Thesis

for sdg in labeled sdgs :
tmp[sdg − 1] = 1

self . topics association [topicIndex] += score ∗ tmp
sum per topic = np.zeros(17)
for ii in range(nTopics):

if normalize:
norm topics = self . topics association [ii] / sum(self. topics association [ii])
for nn in norm topics:

if nn < 0.1:
norm topics[list (norm topics).index(nn)] = 0.0

norm topics = norm topics / sum(norm topics)
self . topics association [ii] = norm topics

sum per topic += self. topics association [ii]
if verbose:

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18),
self . topics association [ii])]

print(’Topic{:2d}: ’ .format(ii), ’ | ’ . join(listAscii))
listAscii = [”x{}:{:.2 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18), sum per topic)]
if verbose:

print(’GLOBAL: ’ + ’|’.join(listAscii))

listSDGsOut = ’| ’ . join(listAscii)
if len(path csv) > 4:

dfMap = pd.DataFrame()
rows = []
sum per sdg = np.zeros(17)
for ii in range(nTopics):

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18), self . topics association [ii])]
sum per sdg += self.topics association [ii]
rows.append(’|’ . join(listAscii))

sum ascii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18), sum per sdg)]
rows.append(’|’ . join(sum ascii))
dfMap[”topics association map”] = rows
dfMap.to excel(self .paths[”out”] + ”LDA/” + ”topics map.xlsx”)

np.savetxt(self .paths[”out”] + ”LDA/” + ”topics map.csv”, self.topics association, delimiter=”,”)

Then the mapping result is stored in a csv
df = pd.DataFrame()
topics words = []
for ii in range(nTopics):

topics words.append(self.get topic terms(ii , topn=top n words))
topic words ascii = [[] for ii in range(nTopics)]
for words in topics words:

topicIndex = topics words.index(words)
for word in words:

topic words ascii [topicIndex].append(”{:.3f}:{}”.format(word[1], self .dict.id2token[word [0]]))

all the top SDGs with an score > 0.1 are considered for that topic
for topicIndex in range(nTopics):

topSDGs = sorted(self.topics association[topicIndex], reverse=True)
title = []
for sdg in topSDGs:

if sdg < 0.1: break
sdgIndex = list(self . topics association [topicIndex]). index(sdg)
ass sdg = self . topics association [topicIndex][sdgIndex]
title .append(”{:.2f}∗SDG{}”.format(ass sdg, sdgIndex + 1))

title = ”,”.join(title)
df [title] = topic words ascii [topicIndex]

df . to csv(path csv)

return [sum per topic, listSDGsOut]

def map text to sdgs(self , text , min threshold=0, only positive=True, filter low=True, normalize=True,

Page 91

APPENDIX A. CODES Final Master Thesis

expand factor=1.0):
text = self . convert text(text)

topics , probs = self . infer text (text)
sdgs = np.zeros(17)
for topic , prob in zip(topics , probs):

if (prob < min threshold) or (prob < 0 and only positive): continue
sdgs += prob ∗ self. topics association [topic]

sdgs ∗= expand factor
if filter low :

raw sdgs filt = sdgs < 0.05
for prob, index, filt in zip(sdgs, range(len(sdgs)), raw sdgs filt):

if filt :
prob = sdgs[index]
sdgs[index] = 0.0
sdgs += prob ∗ sdgs / sum(sdgs)

if normalize:
sdgs = sdgs / sum(sdgs)

return sdgs

def map text to topwords(self, text , top n):
if isinstance(text, str): text = text. split (’ ’)
elif isinstance(text, list): text = text
else: raise ValueError(’Text type is not valid’)

words collection = []
topics , probs = self . infer text (text)
for topic , prob in zip(topics , probs):

words = self. get topic terms(topic)
for pair in words:

wrd = self.dict.id2token[pair [0]]
score = pair[1]
words collection .append((wrd, score ∗ prob))

def sort method(elem):
return elem[1]

words collection . sort(key=sort method, reverse=True)
return words collection[:top n]

def infer text (self , text):
bow = self.dict.doc2bow(text)
result = self .get document topics(bow, minimum probability=None, minimum phi value=None)
topics = [elem[0] for elem in result]
probs = [elem[1] for elem in result]
return [topics, probs]

def convert text(text):
if isinstance(text, str): text = text. split (’ ’)
elif isinstance(text, list): text = text
else: raise ValueError(’Text type is not valid’)
return text

Listing A.5: model top2vec.py

from signal import valid signals
import pandas as pd
import numpy as np
from sklearn.preprocessing import normalize
import tools
import warnings
from top2vec import Top2Vec
warnings. filterwarnings (’ ignore’)

Page 92

APPENDIX A. CODES Final Master Thesis

Class associated to the Top2Vec model
class Top2Vec classifier :

paths=[]
model=[]
train data=[]
topics association =[]
verbose=False

def init (self , paths, verbose=False):
self .paths = paths
self .verbose = verbose

def set conf(self , paths, dict, verbose=False):
self .paths = paths
self .dict = dict
self .verbose = verbose

def train(self , train data , embedding model=”doc2vec”, ngram=True, method=”learn”, workers=8,
min count=2, tokenizer=False):
trains the model based on the training files
@param train files corpus of documents as a list of strings
@param method ”fast−learn”, ”learn” or ”deep−learn”
@param workes number of parallel workers
@param min count minimum number of documents where a word must be to be valid
self . train data = train data
corpus = train data[0]

self .model = Top2Vec(documents=corpus, embedding model=embedding model, min count=min count,
ngram vocab=ngram, speed=method, workers=workers, document chunker=”sequential”,
use embedding model tokenizer=tokenizer)

self .print model summary()

def test model(self , corpus, associated SDGs, path to plot=””, path to excel=””, only bad=False,
score threshold=3.0, only positive=False, filter low =False, expand factor=1.0,
version=1, normalize=True, normalize threshold=0.25):

rawSDG = []; rawSDGseg = []
predictedSDGs = []
realSDGs = []
scoresSDGs = []
valids = []
validsAny = []
texts = []
statsGlobal = []
countPerSDG = np.zeros(17)
countWellPredictionsPerSDG = np.zeros(17)
probs per sdg = [[] for ii in range(1,18)]
maxSDG = 0.0

numTopics = self.model.get num topics()
stat topics = numTopics
for text , sdgs in zip(corpus, associated SDGs):

raw sdgs, predic, score , raw topicsScores = self .map text to sdgs(text, score threshold=score threshold,
only positive=only positive, version=version, expand factor=expand factor, filter low=filter low ,
normalize=normalize, normalize threshold=normalize threshold)

maxLocal = max(raw sdgs)
if maxLocal > maxSDG: maxSDG = maxLocal

validSingle = False; ii = 0
for sdg in sdgs:

countPerSDG[sdg − 1] += 1
probs per sdg[sdg − 1].append(raw sdgs[sdg − 1])
if sdg in predic:

validSingle = True
ii += 1

Page 93

APPENDIX A. CODES Final Master Thesis

countWellPredictionsPerSDG[sdg − 1] += 1
valid = False
if ii == len(sdgs):

valid = True

if (only bad and not(valid)) or not(only bad):

raw sdgsAscii = [”x{}: {:.3 f}”.format(xx, topic) for topic, xx in zip(raw sdgs, range(1,18))]
raw sdgsAscii = ”|”.join(raw sdgsAscii)
rawSDG.append(raw sdgsAscii)

stats = [min(raw sdgs), np.mean(raw sdgs), max(raw sdgs)]
statsAscii = ”[{:.2 f}, {:.2 f}, {:.2 f}]”.format(stats[0], stats [1], stats [2])
statsGlobal.append(statsAscii)
predictedSDGs.append(predic)
realSDGs.append(sdgs)
scoresSDGs.append(score)
texts .append(text)

valids .append(valid)
validsAny.append(validSingle)

oks = [ok for ok in valids if ok == True]
oksSingle = [ok for ok in validsAny if ok == True]
perc global = len(oks) / len(valids) ∗ 100
perc single = len(oksSingle) / len(valids) ∗ 100
print(”− {:.2f} % valid global, {:.3 f} % valid any, of {} files ”.format(perc global, perc single ,

len(valids)))
print(’Max found: {:.3f}’.format(maxSDG))

for probs, index in zip(probs per sdg, range(len(probs per sdg))):
probs per sdg[index] = np.mean(probs per sdg[index])

if len(path to excel) > 0:
df = pd.DataFrame()
df [”text”] = texts
df [”real”] = realSDGs
df[”sdgs association”] = rawSDG
df[”stats”] = statsGlobal
df [”prediction”] = predictedSDGs
df[”scores”] = scoresSDGs
df[” all valid ”] = valids
df [”any valid”] = validsAny
df. to excel (path to excel)

return [perc global, perc single , probs per sdg, maxSDG, predictedSDGs]

def map model topics to sdgs(self, path csv=””, normalize=False, version=1):
maps each internal topic with the SDGs. A complete text associated to each specific SDG is fetched.
Then each topic is compared with each text and the text−associated sdg with the maximum score is selected
as the SDG.
if version == 1:

nTopics = self .model.get num topics()
topic sizes , topics num = self.model. get topic sizes ()
self . topics association = np.zeros((nTopics, 17))
for text , labeled sdgs in zip(self . train data [0], self . train data [1]):

topics , probs = self . infer text (text)
for topicIndex, score in zip(topics , probs):

if subScore < meanSub: continue
if score < 0.0: continue
for sdg in labeled sdgs :

tmp = np.zeros(17)
tmp[sdg − 1] = 1
self . topics association [topicIndex] += score ∗ tmp

sum per topic = np.zeros(17)
for ii in range(nTopics):

Page 94

APPENDIX A. CODES Final Master Thesis

if normalize:
norm topics = self . topics association [ii] / sum(self. topics association [ii])
for nn in norm topics:

if nn < 0.1:
norm topics[list (norm topics).index(nn)] = 0.0

norm topics = norm topics / sum(norm topics)
self . topics association [ii] = norm topics

sum per topic += self. topics association [ii]
if self .verbose:

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18),
self . topics association [ii])]

print(’Topic{:2d}: ’ .format(ii), ’ | ’ . join(listAscii))
if self .verbose:

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18), sum per topic)]
final sum = ’Sum total: ’ + ’| ’ . join(listAscii)
print(final sum)

else:
sum per topic = np.zeros(17)
nTopics = self .model.get num topics()
topic sizes , topics num = self.model. get topic sizes ()
self . topics association = np.zeros((nTopics, 17))
for topicIndex in range(nTopics):

numDocs = topic sizes[topicIndex] # all the associated documents to that topic
documents, document scores, document ids = self.model.search documents by topic(topic num=topicIndex,

num docs=numDocs)
if normalize:

document scores = document scores / sum(document scores)

sdgs = np.zeros(17)
for docId, score in zip(document ids, document scores):

labeled sdgs = self . train data [1][docId]
for sdg in labeled sdgs :

sdgs[sdg − 1] += score ∗ 1

if normalize:
norm topics = sdgs / sum(sdgs)
for nn in norm topics:

if nn < 0.1:
norm topics[list (norm topics).index(nn)] = 0.0

norm topics = norm topics / sum(norm topics)
sdgs = norm topics

self . topics association [topicIndex] = sdgs
sum per topic += sdgs
if self .verbose:

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18),
self . topics association [topicIndex])]

print(’Topic{:2d}: ’ .format(topicIndex), ’|’ . join(listAscii))
if self .verbose:

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18), sum per topic)]
final sum = ’Sum total: ’ + ’| ’ . join(listAscii)
print(final sum)

if len(path csv) > 4:
dfMap = pd.DataFrame()
rows = []
sum per sdg = np.zeros(17)
for ii in range(nTopics):

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18),
self . topics association [ii])]

sum per sdg += self.topics association [ii]
rows.append(’|’ . join(listAscii))

sum ascii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18), sum per sdg)]
rows.append(’|’ . join(sum ascii))
dfMap[”topics association map”] = rows

Page 95

APPENDIX A. CODES Final Master Thesis

dfMap.to excel(self .paths[”out”] + ”Top2vec/” + ”topics map.xlsx”)

#np.savetxt(path csv, self . topics association , delimiter=”,”)

Then the mapping result is stored in a csv
topic words, word scores, topic nums = self.model.get topics()
df = pd.DataFrame()

topic words ascii = [[] for ii in range(nTopics)]
for words, scores , topicIndex in zip(topic words, word scores, range(nTopics)):

for word, score in zip(words, scores):
topic words ascii [topicIndex].append(”{:.3f}:{}”.format(score, word))

all the top SDGs with an score > 0.1 are considered for that topic
for topicIndex in range(nTopics):

topSDGs = sorted(self.topics association[topicIndex], reverse=True)
title = []
for sdg in topSDGs:

if sdg < 0.1: break
sdgIndex = list(self . topics association [topicIndex]). index(sdg)
ass sdg = self . topics association [topicIndex][sdgIndex]
title .append(”{:.2f}∗SDG{}”.format(ass sdg, sdgIndex + 1))

title = ”,”.join(title)
df [title] = topic words ascii [topicIndex]

df . to csv(path csv)

return [sum per topic, final sum]

def map text to sdgs(self , text , score threshold , only positive=False, version=1, expand factor=3,
filter low =True, normalize=True, normalize threshold=0.25):
if version == 1: # then map with topics

numTopics = self.model.get num topics()
topics words, word scores, probabilities , topic nums = self.model.query topics(text,

num topics=numTopics)
predictSDGs = np.zeros(17)
for topicIndex, topicScore in zip(topic nums, probabilities):

if only positive and (topicScore < 0): break
predictSDGs += topicScore ∗ self.topics association [topicIndex]

elif version == 2: # then map with documents
maxDocs = len(self.train data[0]) # number of texts with which it was trained
documents , probabilities , doc ids = self .model.query documents(text, num docs=maxDocs)
predictSDGs = np.zeros(17)
for docIndex, docScore in zip(doc ids, probabilities):

if only positive and (docScore < 0): break
sdgs = np.zeros(17)
labeled sdgs = self . train data [1][docIndex]
for sdg in labeled sdgs :

sdgs[sdg − 1] = 1
predictSDGs += docScore ∗ sdgs

POST−PROCESSING OF THE MEASURES
predictSDGs ∗= expand factor

if filter low :
raw sdgs filt = predictSDGs < 0.05
for prob, index, filt in zip(predictSDGs, range(len(predictSDGs)), raw sdgs filt):

if filt :
prob = predictSDGs[index]
predictSDGs[index] = 0.0
predictSDGs += prob ∗ predictSDGs / sum(predictSDGs)

if normalize:
raw sdgs filt = predictSDGs < normalize threshold
for index, filt in zip(range(len(predictSDGs)), raw sdgs filt):
if filt :
predictSDGs[index] = 0.0
predictSDGs = predictSDGs / sum(predictSDGs)

Page 96

APPENDIX A. CODES Final Master Thesis

top = sorted(predictSDGs, reverse=True)
sdgs = []; scores = []
for ii in range(len(top)):

if top[ii] >= score threshold:
sdgs.append(list(predictSDGs).index(top[ii]) + 1)
scores .append(top[ii])

return [predictSDGs, sdgs, scores, probabilities]

def map text to topwords(self, text , top n):
topics words, word scores, topic nums = self.model.get topics()

words collection = []
topics , probs = self . infer text (text)
for topic , prob in zip(topics , probs):

for word, score in zip(topics words[topic], word scores[topic]):
words collection .append((word, score ∗ prob))

def sort method(elem):
return elem[1]

words collection . sort(key=sort method, reverse=True)
return words collection[:top n]

def infer text (self , text):
nTopics = self .model.get num topics()
t1, t2, topic scores , topic nums = self.model.query topics(text, nTopics)
return [topic nums, topic scores]

def print model summary(self):
print(’####### Model summary:’)
print(’ − Number of topics: ’, self .model.get num topics())

def get topics from model(self , model, n top words):
Returns the n top words for each of the n topics with which a model has been trained
word dict = dict()
topicsRaw = model.show topics(num topics=model.num topics, num words=n top words)
topicsParsed = []
for topic in topicsRaw:

topicStr = topic[1]
words = []
for comb in topicStr. split (’ + ’):

coef , word = comb.split(’∗’)
coef = float(coef)
word = word.replace(’”’, ’ ’)
words.append([coef, word])

topicsParsed.append(words)
return topicsParsed

Listing A.6: model bertopic.py

from signal import valid signals
import tools
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import tools
import warnings
from bertopic import BERTopic
warnings. filterwarnings (’ ignore’)

class BERTopic classifier :

Page 97

APPENDIX A. CODES Final Master Thesis

paths=[]
model=[]
nTopics=[]
topics association =[]
verbose=False
trainData=[]

def init (self , paths):
self .paths = paths

def set conf(self , paths, dict, verbose=False):
self .paths = paths
self .dict = dict
self .verbose = verbose

def train model(self , train data ,
embedding model=”all−MiniLM−L6−v2”, # Others: all−MiniLM−L6−v2, all−MiniLM−L12−v2,
all−mpnet−base−v2
n gram range=(1,3), # the default parameter is (1,1)
top n words=10, min topic size=10, # default parameters
nr topics=None, # reduce the number of topics to this number
diversity=None, # value can be used between 0, 1
calculate probabilities =True,
seed topic list =None,
verbose=True
):

trains the model based on the training files
@param train files corpus of documents as a list of strings
@param method ”fast−learn”, ”learn” or ”deep−learn”
@param workes number of parallel workers
@param min count minimum number of documents where a word must be to be valid
self .trainData = train data
corpus = train data [0]; associated sdgs = train data[1]

self .model = BERTopic(language=”english”,
embedding model=embedding model,
top n words=top n words,
min topic size=min topic size,
n gram range=n gram range,
nr topics=nr topics,
calculate probabilities = calculate probabilities ,
seed topic list = seed topic list ,
verbose=verbose)

topics , probs = self .model.fit transform(corpus,
embeddings=None, # use the sentence−transformer model
y=None # target class for semisupervised. not applicable
)

self .nTopics = len(self.model.get topics())
if topics .count(−1) > 0: self .nTopics −= 1 # there is 1 outlier topic
counts per topic = [”T{}: ”.format(ii) + str(topics.count(ii)) for ii in range(0, self .nTopics)]
print(’## nDocs per topic: ’ + ” | ”.join(counts per topic))

self .map model topics to sdgs(associated sdgs, topics , probs, normalize=True, verbose=True)

def test model(self , corpus, associated SDGs, stat topics =−1, path to plot=””, path to excel=””,
only bad=False, score threshold=3.0, only positive=True, filter low=True,
expand factor=1.0, normalize=False):

rawSDG = []; rawSDGseg = []
predictedSDGs = []; realSDGs = []
scoresSDGs = []
valids = []; validsAny = []
texts = []
statsGlobal = []
countPerSDG = np.zeros(17)
countWellPredictionsPerSDG = np.zeros(17)

Page 98

APPENDIX A. CODES Final Master Thesis

probs per sdg = [[] for ii in range(1,18)]
maxSDG = 0.0

topics , probs = self .model.transform(corpus) # transforms the entire corpus

for text , sdgs, prob in zip(corpus, associated SDGs, probs):
raw sdgs, predic, score = self .map text to sdgs with probs(prob, score threshold=score threshold,

only positive=only positive, expand factor=expand factor, filter low=filter low ,
normalize=normalize)

maxLocal = max(raw sdgs)
if maxLocal > maxSDG: maxSDG = maxLocal

validSingle = False; ii = 0
for sdg in sdgs:

countPerSDG[sdg − 1] += 1
probs per sdg[sdg − 1].append(raw sdgs[sdg − 1])
if sdg in predic:

validSingle = True
ii += 1
countWellPredictionsPerSDG[sdg − 1] += 1

valid = False
if ii == len(sdgs):

valid = True

if (only bad and not(valid)) or not(only bad):
raw sdgsAscii = [”x{}: {:.3 f}”.format(xx, topic) for topic, xx in zip(raw sdgs, range(1,18))]
raw sdgsAscii = ”|”.join(raw sdgsAscii)
rawSDG.append(raw sdgsAscii)

stats = [min(raw sdgs), np.mean(raw sdgs), max(raw sdgs)]
statsAscii = ”[{:.2 f}, {:.2 f}, {:.2 f}]”.format(stats[0], stats [1], stats [2])
statsGlobal.append(statsAscii)
predictedSDGs.append(predic)
realSDGs.append(sdgs)
scoresSDGs.append(score)
texts .append(text)

valids .append(valid)
validsAny.append(validSingle)

oks = [ok for ok in valids if ok == True]
oksSingle = [ok for ok in validsAny if ok == True]
perc global = len(oks) / len(valids) ∗ 100
perc single = len(oksSingle) / len(valids) ∗ 100
print(”− {:.2f} % valid global, {:.3 f} % valid any, of {} files ”.format(perc global,

perc single , len(valids)))
print(’Max found: {:.3f}’.format(maxSDG))

for probs, index in zip(probs per sdg, range(len(probs per sdg))):
probs per sdg[index] = np.mean(probs per sdg[index])

if len(path to excel) > 0:
df = pd.DataFrame()
df [”text”] = texts
df [”real”] = realSDGs
df[”sdgs association”] = rawSDG
df[”stats”] = statsGlobal
df [”prediction”] = predictedSDGs
df[”scores”] = scoresSDGs
df[” all valid ”] = valids
df [”any valid”] = validsAny
df. to excel (path to excel)

return predictedSDGs, maxSDG, perc global, perc single

def map model topics to sdgs(self, associated sdgs , topics , probs, path csv=””, normalize=True, verbose=True):

Page 99

APPENDIX A. CODES Final Master Thesis

maps each internal topic with the SDGs. A complete text associated to each specific SDG is fetched.
Then each topic is compared with each text and the text−associated sdg with the maximum score is selected
as the SDG.
self . topics association = np.zeros((self .nTopics, 17))
for sdgs, main topic, prob in zip(associated sdgs, topics , probs):

if main topic < 0:
continue # outlier topic is discarded

tmp = np.zeros(17)
for sdg in sdgs:

tmp[sdg − 1] = 1
for topic index, prob topic in zip(range(self.nTopics), prob):

self . topics association [topic index, :] += tmp ∗ prob topic

sum per topic = np.zeros(17)
for topic index in range(self.nTopics):

if normalize:
tmp = self. topics association [topic index, :]
norm topics = tmp / sum(tmp)

for nn in norm topics:
if nn < 0.1:

norm topics[list (norm topics).index(nn)] = 0.0
norm topics = norm topics / sum(norm topics)

self . topics association [topic index, :] = norm topics

sum per topic += self. topics association [topic index, :]
if verbose:

listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18),
self . topics association [topic index, :])]

print(’Topic{:2d}: ’ .format(topic index), ’| ’ . join(listAscii))

if verbose:
listAscii = [”x{}:{:.3 f}”.format(xx, sdg) for xx, sdg in zip(range(1,18), sum per topic)]
final sum = ’Sum total: ’ + ’| ’ . join(listAscii)
print(final sum)

if len(path csv) > 4:
all topics = topic model.get topics()

raise ValueError(’Association map to csv not supported’)

def map text to sdgs(self , text , score threshold , only positive=False,
expand factor=3, filter low=True, normalize=False):

topics , probs = self .model.transform(text)
[predictSDGs, sdgs, scores] = self .map text to sdgs with probs(probs, score threshold=score threshold,

only positive=only positive, expand factor=expand factor, filter low=filter low , normalize=normalize)

return [predictSDGs, sdgs, scores]

def map text to topwords(self, text , top n):
topics inf = self .model.get topics()
words collection = []
topics , probs = self .model.transform(text)
topics = range(len(probs[0]))
for topic , prob in zip(topics , probs [0]):

for pair in topics inf [topic]:
wrd = pair[0]; score = pair[1]
words collection .append((wrd, score ∗ prob))

def sort method(elem):
return elem[1]

words collection . sort(key=sort method, reverse=True)
return words collection[:top n]

Page 100

APPENDIX A. CODES Final Master Thesis

def map text to sdgs with probs(self , probs, score threshold , only positive=False,
expand factor=3, filter low=True, normalize=False):

predictSDGs = np.zeros(17)
for topicIndex, topicScore in zip(range(self.nTopics), probs):

if only positive and topicScore < 0: continue
predictSDGs += topicScore ∗ self.topics association [topicIndex]

predictSDGs ∗= expand factor

if filter low :
raw sdgs filt = predictSDGs < 0.05
for prob, index, filt in zip(predictSDGs, range(len(predictSDGs)), raw sdgs filt):

if filt :
prob = predictSDGs[index]
predictSDGs[index] = 0.0
predictSDGs += prob ∗ predictSDGs / sum(predictSDGs)

if normalize: predictSDGs = predictSDGs / sum(predictSDGs)

top = sorted(predictSDGs, reverse=True)
sdgs = []; scores = []
for ii in range(len(top)):

if top[ii] >= score threshold:
sdgs.append(list(predictSDGs).index(top[ii]) + 1)
scores .append(top[ii])

return [predictSDGs, sdgs, scores]

def print summary(self, path csv=””):
topic words scores = [[] for ii in range(self.nTopics)]
dfTopics = pd.DataFrame()
all topics = self .model.get topics()
for topic index in range(self.nTopics):

topic words = all topics [topic index]
for topic tuple in topic words:

word = topic tuple [0]; score = topic tuple [1]
word str = ”{:.3f}:{}”.format(score, word)
topic words scores [topic index]. append(word str)

topicName = ”Topic{}”.format(topic index)
dfTopics[topicName] = topic words scores[topic index]

if len(path csv) > 0:
dfTopics.to csv(path csv)

Listing A.7: test nmf.py

Configures the project paths: they can be launched from any code
import sys, os
sys.path.append(os.path.realpath(’. ’))
import conf
conf.import paths()

CONFIGURATION FLAGS
flag optimize = 0

Real imports required by the file for work properly
import model nmf
from logging import error
import data
import conf
import pandas as pd
import numpy as np
import tools

Loads all the datasets

Page 101

APPENDIX A. CODES Final Master Thesis

paths = conf.get paths()
ds train = data.get dataset(requires update=False, filter=[”org”, ”manual extra”])
ds valid short = data.get dataset(requires update=False, filter=[”nature abstract”])
ds valid long = data.get dataset(requires update=False, filter=[”nature all”])

path out = ”out/NMF/”

if flag optimize :
optimData = pd.read excel(paths[”ref”] + ”optimization nmf.xlsx”)
nTopics = optimData[”num topics”]
nIterations = optimData[”iterations”]
nature = optimData[”nature”]
stemming = optimData[”stemming”]
score threshold = optimData[”score threshold”]
l1 = optimData[”l1”]
alpha w = optimData[”alpha w”]
alpha h = optimData[”alpha h”]

res any = []; res all = []

for ii in range(len(nTopics)):
print(”# Optimizing case: {}, nTopic: {}, nIterations: {}, nature: {}, Stemming: {},
L1: {:.2 f}, Alphaw: :{:.2f}, AlphaH: :{:.2f}”.format(ii, nTopics[ii], nIterations [ii],
nature[ii], stemming[ii], l1 [ii], alpha w[ii], alpha h[ii]))

if stemming[ii]: type texts = ”lem stem”
else: type texts = ”lem”

all text should have been processed in the same way
orgFiles = ds train[type texts]; sdgs org = ds train[”sdgs”]
natureShort = ds valid short[type texts]; sdgs natureShort = ds valid short[”sdgs”]
natureLong = ds valid long[type texts]; sdgs natureLong = ds valid long[”sdgs”]

if nature[ii]: trainData = [orgFiles + natureShort, sdgs org + sdgs natureShort]
else: trainData = [orgFiles, sdgs org]

try:
print(’# Training model...’)
nmf = model nmf.NMF classifier(paths, verbose=True)

nmf.train(train data=trainData, n topics=nTopics[ii], ngram=(1,3), min df=2,
max iter=nIterations[ii],

l1=l1[ii], alpha w=alpha w[ii], alpha h=alpha h[ii])
nmf.map model topics to sdgs(n top words=50, normalize=True, path csv=path out +

”topics map{}.csv”.format(ii))

tools .save obj(nmf, paths[”model”] + ”nmf{}.pickle”.format(ii))

print(’# Testing model...’)
filter = True; normalize = False

[rawSDG, perc valid global, perc valid any, maxSDG, pred sdgs] = nmf.test model(corpus=trainData[0],
associated SDGs=trainData[1], score threshold=score threshold[ii], segmentize=−1,
filter low =filter, normalize=normalize,

path to excel=(path out + ”test nmf training{}.xlsx”.format(ii)))
tools .plot ok vs nok SDGsidentified(trainData[1], pred sdgs, path out + ”sdgs train{}.png”.format(ii))

expandFactor = 4
[rawSDG, perc valid global, perc valid any, maxSDG, pred sdgs] = nmf.test model(corpus=natureShort,
associated SDGs=sdgs natureShort, score threshold=score threshold[ii],

segmentize=−1, path to excel=(path out + ”test nmf natureS{}.xlsx”.format(ii)),
normalize=normalize, filter low=filter, expand factor=expandFactor)

tools .plot ok vs nok SDGsidentified(sdgs natureShort, pred sdgs, path out +
”sdgs test{}.png”.format(ii))

except:

Page 102

APPENDIX A. CODES Final Master Thesis

print(’# Aborting execution of iteration{}’.format(ii))
perc valid any = −1; perc valid global = −1

res any.append(perc valid any); res all .append(perc valid global)

outData = optimData
outData[”any”] = res any
outData[”all”] = res all
outData.to excel(path out + ”optimization{}.xlsx”.format(ii))

else:
print(’# Using default−user configuration...’)

type texts = ”lem”
nTopics = 20; maxIter = 1000; l1 = 0.0; alpha w = 0.0; alpha h = 0.0
score = 0.1

orgFiles = ds train[type texts]; sdgs org = ds train[”sdgs”]
natureShort = ds valid short[type texts]; sdgs natureShort = ds valid short[”sdgs”]
natureLong = ds valid long[type texts]; sdgs natureLong = ds valid long[”sdgs”]

trainData = [orgFiles, sdgs org]

print(’# Training model...’)
nmf = model nmf.NMF classifier(paths, verbose=True)

nmf.train(train data=trainData, n topics=nTopics, ngram=(1,3), min df=2, max iter=maxIter,
l1=l1, alpha w=alpha w, alpha h=alpha h)

nmf.print stopwords(path out + ”stopwords.csv”)
nmf.map model topics to sdgs(n top words=50, normalize=True, path csv=path out + ”topics map.csv”)

tools .save obj(nmf, paths[”model”] + ”nmf.pickle”)

print(’# Testing model...’)
filter = True; normalize = False; expandFactor = 4.0

[rawSDG, perc valid global, perc valid any, maxSDG, pred sdgs] = nmf.test model(corpus=trainData[0],
associated SDGs=trainData[1], score threshold=score, segmentize=−1, filter low=filter, normalize=normalize,

path to excel=(path out + ”test nmf training.xlsx”), expand factor=expandFactor)
tools .plot ok vs nok SDGsidentified(trainData[1], pred sdgs, path out + ”sdgs train.png”)

[rawSDG, perc valid global, perc valid any, maxSDG, pred sdgs] = nmf.test model(corpus=natureShort,
associated SDGs=sdgs natureShort, score threshold=score,

segmentize=−1, path to excel=(path out + ”test nmf natureS.xlsx”),
normalize=normalize, filter low=filter, expand factor=expandFactor)

tools .plot ok vs nok SDGsidentified(sdgs natureShort, pred sdgs, path out + ”sdgs test.png”)

pred sdgs = pd.DataFrame(pred sdgs)
pred sdgs.to csv(paths[”out”] + ”ALL/Individual/pred test nmf.csv”)

Listing A.8: test all.py

Configures the project paths: they can be launched from any code
from pkgutil import iter importers
import sys, os
sys.path.append(os.path.realpath(’. ’))
import conf
conf.import paths()

Real imports required by the file for work properly
from logging import error
import data
import conf
import pandas as pd
import model global

Page 103

APPENDIX A. CODES Final Master Thesis

import numpy as np
import tools

Loads all the datasets
print(’# Loading datasets...’)
paths = conf.get paths()
ds train = data.get dataset(requires update=False, filter=[”org”, ”manual extra”])
ds valid short = data.get dataset(requires update=False, filter=[”nature abstract”])
ds valid long = data.get dataset(requires update=False, filter=[”nature all”])

raw orgFiles = ds train[”standard”]
raw natureShort = ds valid short[”standard”]
raw natureExt = ds valid long[”standard”]

orgFiles = ds train[”lem”]; sdgs org = ds train[”sdgs”]
natureShort = ds valid short[”lem”]; sdgs natureShort = ds valid short[”sdgs”]
natureLong = ds valid long[”lem”]; sdgs natureLong = ds valid long[”sdgs”]

filters those long texts which are not the same of the abstracts . They are required to be the same
in order to do the comparisons
xx, yy, index abstracts = data.get nature abstracts()
xx, yy, index full = data. get nature files (abstract=True, kw=False, intro=True,

body=True, concl=True)
flags filter = []

for index in index abstracts :
flags filter .append(index full.index(index))

raw natureExt = [raw natureExt[index] for index in flags filter]
natureLong = [natureLong[index] for index in flags filter]
sdgs natureLong = [sdgs natureLong[index] for index in flags filter]

print(’# Loading models...’)
model = model global.Global Classifier(paths=paths, verbose=True)
model.load models()

print(’# Testing train dataset... ’)
predic, scores , predicStr = model.test model(raw corpus=raw orgFiles, corpus=orgFiles,

associated SDGs=sdgs org,
path to plot=””,
path to excel=paths[”out”] + ”All/test training.xlsx”,
only bad=False, score threshold=−1, only positive=True, filter low=True)

tools .plot ok vs nok SDGsidentified(sdgs org, predic, paths[”out”] + ”All/” + ”sdgs train.png”)

print(’# Testing validation dataset (short)... ’)
predic, scores , predicStr = model.test model(raw corpus=raw natureShort, corpus=natureShort,

associated SDGs=sdgs natureShort,
path to plot=””,
path to excel=paths[”out”] + ”All/test nature short.xlsx”,
only bad=False, score threshold=−1, only positive=True, filter low=True)

tools .plot ok vs nok SDGsidentified(sdgs natureShort, predic, paths[”out”] + ”All/” + ”sdgs test short.png”)

print(’# Testing validation dataset (long)... ’)
predic, scores , predicStr = model.test model(raw corpus=raw natureExt, corpus=natureLong,

associated SDGs=sdgs natureLong,
path to plot=””,
path to excel=paths[”out”] + ”All/test nature long.xlsx”,
only bad=False, score threshold=−1, only positive=True, filter low=True)

tools .plot ok vs nok SDGsidentified(sdgs natureLong, predic, paths[”out”] + ”All/” + ”sdgs test long.png”)

Listing A.9: aero analysis.py

Analysis of the results obtained with the Aero database

Page 104

APPENDIX A. CODES Final Master Thesis

Configures the project paths: they can be launched from any code
from cProfile import label
from pkgutil import iter importers
import sys, os
sys.path.append(os.path.realpath(’. ’))
import conf
conf.import paths()

Configuration flags
identify sdgs = False # true: all the texts are identified , false : it used previous stored data

Imports required to work properly
from logging import error
import data
import conf
import pandas as pd
import model global
import numpy as np
import tools
import matplotlib.pyplot as plt
import warnings
import os

print(’# Loading aero dataset...’)
paths = conf.get paths()
ds aero = data.get dataset(requires update=False, filter=[”aero”])
raw files = ds aero[”standard”]; files = ds aero[”lem”]

print(’# Loading models...’)
model = model global.Global Classifier(paths=paths, verbose=True)
model.load models()

if identify sdgs :
print(’# Identifying SDGs in texts...’)
predic, scores , predicStr = model.test model(raw corpus=raw files, corpus=files, associated SDGs=[],

path to plot=””, path to excel=paths[”out”] + ”All/test aero.xlsx”,
only bad=False, score threshold=−1, only positive=True, filter low=True)

ds aero[”id sdgs”] = predicStr
pd.DataFrame(ds aero).to excel(paths[”out”] + ”All/df test aero.xlsx”)
print(’# Results were updated’)

def get sdgs scores (row sdgs:str):
try:

elems = row sdgs.split(’ , ’)
scores = []; sdgs=[]
for elem in elems:

scores .append(float(elem.split(’ : ’)[0]))
sdgs.append(float(elem.split(’ : ’)[1]))

except:
print(’# Input: ’)
scores = []; sdgs=[]

return scores, sdgs

def parse list (sdgs list):
scores = []; sdgs = []
for sdg in sdgs list :

sc , sd = get sdgs scores(sdg)
scores .append(sc); sdgs.append(sd)

return scores, sdgs

ds = pd.read excel(paths[”out”] + ”All/df test aero .xlsx”)
list scores , list sdgs = parse list (list (ds[”id sdgs”]))

print(’# Obtaining total number of SDGs identified’)
tools .plot SDGsidentified(list sdgs , list scores , with score=True, fontsize=14,

Page 105

APPENDIX A. CODES Final Master Thesis

path out=paths[”out”] + ”All/total weight sdgs.png”)
tools .plot SDGsidentified(list sdgs , list scores , with score=False, fontsize=14,

path out=paths[”out”] + ”All/sdgs identified.png”)

print(’# Obtaining the evolution of the SDGs with the years’)
def plot evolution with years (fontsize :int=14):

plt . figure (figsize =(8, 8))
positions = [−0.15, −0.05, 0.05, 0.15]
labels = [”SDG7”, ”SDG9”, ”SDG11”, ”SDG13”]
colors = [”yellow”, ”blue”, ”red”, ”green”]
years = range(2017, 2022)
sdgsPerYear = [[], [], [], []]

for year in years:
df = ds.loc[ds[’years’] == year]
list scores , list sdgs = parse list (list (df [”id sdgs”]))
counts, countstr = tools. count texts per score (list sdgs , list scores)

sdgsPerYear[0].append(counts[6]); sdgsPerYear[1].append(counts[8])
sdgsPerYear[2].append(counts[10]); sdgsPerYear[3].append(counts[12])

for ii in range(4):
xx = 2017
plt .bar(xx + positions[ii], sdgsPerYear[ii][0], width=0.1, alpha=1, color=colors[ii],

label=labels[ii])

for ii in range(4):
for jj in range(2018, 2022):

plt .bar(jj + positions[ii], sdgsPerYear[ii][years.index(jj)], width=0.1, alpha=1,
color=colors[ii])

plt . xticks(years)
plt . xlabel(’Year’, fontsize=fontsize)
plt . ylabel(”Total weight (sum of individual score)”, fontsize=fontsize)
plt .tick params(axis=’x’, labelsize =fontsize)
plt .tick params(axis=’y’, labelsize =fontsize)
plt .legend()
plt . savefig (paths[”out”] + ”All/evolution sdgs year.png”)

plot evolution with years (fontsize=14)

print(’# Plotting the contribution of the papers < median and above’)
citations = list(ds[” citations”])
dfOrdered = ds.sort values(by=[’citations ’])
median index = len(list scores) // 2
print(’# The median is: {}’.format(list(dfOrdered[”citations”])[median index]))
list scores , list sdgs = parse list (list (dfOrdered[”id sdgs”]))

print([len(list scores), median index])

def compare lower higher citations(fontsize=14):
xlabel = [ii for ii in range(1, 18)]
countsLow, countstr = tools.count texts per score(list sdgs [:median index],

list scores [: median index])
countsHigh, countstr = tools. count texts per score (list sdgs [median index:],

list scores [median index:])

plt . figure (figsize =(8, 8))
plt .bar(np.array(xlabel [0]) − 0.1, countsLow[0], width=0.2, alpha=1.0, color=’green’,

label=”Lower than the median”)
plt .bar(np.array(xlabel) − 0.1, countsLow, width=0.2, alpha=1.0, color=’green’)

plt .bar(np.array(xlabel [1]) + 0.1, countsHigh[0], width=0.2, alpha=1.0, color=’red’,
label=”Higher than the median”)

plt .bar(np.array(xlabel) + 0.1, countsHigh, width=0.2, alpha=1.0, color=’red’)
plt . xticks(xlabel)

Page 106

APPENDIX A. CODES Final Master Thesis

plt . xlabel(’SDG’, fontsize=fontsize)
plt . ylabel(”Total weight (sum of individual score)”, fontsize=fontsize)
plt .tick params(axis=’x’, labelsize =fontsize)
plt .tick params(axis=’y’, labelsize =fontsize)
path out = paths[”out”] + ”All/lower higher citations.png”
plt .legend()
if os.path.exists (path out):

os.remove(path out) # otherwise, old figures are not overwritten
plt . savefig (path out)

compare lower higher citations(fontsize=14)

print(’# Plotting pie charts’)
countries = list(ds[”countries”])
list countries = []; count countries = []
for country in countries :

if not country in list countries :
list countries .append(country)
count countries .append(1)

else:
count countries [list countries .index(country)] += 1

listC = [[country, count] for country, count in zip(list countries , count countries)]

def order second(elem):
return elem[1]

listC . sort(key=order second, reverse=True)
a=2
import matplotlib.pyplot as plt

Pie chart, where the slices will be ordered and plotted counter−clockwise:
labels = ’Frogs’, ’Hogs’, ’Dogs’, ’Logs’
sizes = [15, 30, 45, 10]
explode = (0, 0.1, 0, 0) # only ”explode” the 2nd slice (i .e. ’Hogs’)

fig1, ax1 = plt. subplots ()
ax1.pie(sizes , explode=explode, labels =labels , autopct=’%1.1f%%’,
shadow=True, startangle=90)
ax1.axis(’equal ’) # Equal aspect ratio ensures that pie is drawn as a circle .

plt.show()

Page 107

	Acronyms
	List of Figures
	List of Tables

	Introduction
	Objectives
	Project description

	Related work & Datasets
	Models
	Non-Negative Matrix Factorization
	Latent-Dirichlet Allocation
	Top2Vec
	BERTopic

	Validation
	NMF
	LDA
	Top2Vec
	BERTopic

	Voting mechanism
	Results & Discussion
	Conclusions & Future Work
	Specifications
	Office specifications
	Software & Hardware requirements

	Budget
	Phases of the project
	Dedicated resources
	Costs breakdown

	Codes

