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Resumen

La quinta generación de comunicaciones móviles cambia el paradigma de la arquitectura de red
hacia el uso de funciones virtualizadas, no sólo a nivel de transporte (núcleo de red o core net-
work), sino también a nivel de la red de acceso radio RAN (Radio Access Network), permitiendo
el empleo de distintos softwares sobre un hardware genérico para facilitar las actualizaciones y
la introducción de nuevas funcionalidades de manera ágil. Así mismo, existen nuevas corrientes
que proponen la transcripción del concepto de código abierto a las interfaces y arquitecturas RAN,
permitiendo el desarrollo de componentes a terceros y facilitando la interoperabilidad para ganar
flexibilidad y eficiencia en los despliegues radio 5G.

La apertura de los protocolos e interfaces de la RAN ha resultado en el concepto de una nueva
arquitectura de red denominada Open RAN (O-RAN), que además busca introducir técnicas de
IA/ML para el análisis de datos y la toma de decisiones a través de nuevos componentes como el
RIC (Radio Intelligent Controller), ejecutándose on-premise, en el edge o en el cloud según las
necesidades de latencia y requisitos del caso de uso concreto.

En este trabajo se busca desplegar la RAN de una red 5G basada en el estándar O-RAN, emple-
ando la implementación software de código abierto de OpenAirInterface (OAI) y dispositivos de
radio definida por software USRPs, haciendo hincapié en el uso y analizando las posibilidades del
novedoso controlador radio RIC introducido en la arquitectura O-RAN.

Resum

La cinquena generació de comunicacions mòbils canvia el paradigma de l’arquitectura de xarxa
cap a l’ús de funcions virtualitzades, no només a nivell de transport (nucli de xarxa o core net-
work), sinó també a nivell de la xarxa d’accés ràdio RAN (Radio Access Network), permetent
l’ús de diferents softwares sobre un hardware genèric per facilitar les actualitzacions i la introduc-
ció de noves funcionalitats de manera àgil. Així mateix, existeixen nous corrents que proposen
la transcripció del concepte de codi obert a les interfícies i arquitectures RAN, permetent el de-
senvolupament de components a tercers i facilitant la interoperabilitat per guanyar flexibilitat i
eficiència en els desplegaments ràdio 5G.

L’obertura dels protocols i les interfícies de la RAN ha resultat en el concepte d’una nova arquitec-
tura de xarxa anomenada Open RAN (O-RAN), que a més busca introduir tècniques d’IA/ML per
a l’anàlisi de dades i la presa de decisions mitjançant nous components com el RIC (Radio Intel-
ligent Controller), executant-se on-premise, a l’edge o al cloud segons les necessitats de latència i
requisits del cas d’ús.

En aquest treball es busca desplegar la RAN d’una xarxa 5G basada en l’estandard O-RAN, em-
prant la implementació software de codi obert d’OpenAirInterface (OAI) i dispositius de ràdio
definida per software USRPs, posant èmfasi en l’ús i analitzant les possibilitats del nou contro-
lador ràdio RIC introduït a la arquitectura O-RAN.



Abstract

The fifth generation of mobile communications changes the paradigm of network architecture to-
wards the use of virtualized functions, not only at the transport level (core network), but also at the
radio access network (RAN) level, allowing the use of multiple software over a generic hardware,
to facilitate upgrades and the introduction of new functionalities in an agile manner. There are
also new trends that propose the transcription of the open source concept to RAN interfaces and
architectures, allowing the development of third-party components and facilitating interoperability
to gain flexibility and efficiency in 5G radio deployments.

The opening of RAN protocols and interfaces has resulted in the concept of a new network ar-
chitecture called Open RAN (O-RAN), which also seeks to introduce AI/ML techniques for data
analysis and decision making through new components such as the RIC (Radio Intelligent Con-
troller), running on-premise, on the edge or in the cloud depending on latency needs and use case
requirements.

In this work we seek to deploy the RAN of a 5G network based on the O-RAN standard, employing
the OpenAirInterface (OAI) open source software implementation and USRPs software defined
radio devices, emphasizing the use and analyzing the possibilities of the novel RIC radio controller
introduced in the O-RAN architecture.
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Chapter 1

Introduction

1.1 Context

Communication is an inherent part of humankind; in fact we are the only known species to de-
velop formal languages to share and store information. Therefore, all over the history, there has
always been an interest in revolutionizing the way we communicate, from the invention of writ-
ten languages, the Gutenberg printing press, radio and TV broadcasts, and more recently, digital
communication in its many shapes and forms.

The Third Industrial Revolution -also known as Digital Revolution- came as technology shifted
from analog to digital electronic computing, proliferating not only the individual machines but
also the networks they communicate with, as the Internet and the World Wide Web rose. The mass
production and widespread of microprocessors, smartphones, computers and its interconnectivity
evolved into the new technologies, industries and societal patterns that define the Fourth Industrial
Revolution -or Industry 4.0- that we are experiencing today.

It is well known thatmobile communications technologies are being designed tomeet each decade’s
needs, starting with the first generation of wireless telephone technology in the 80s, which was ca-
pable of voice-only analog communication. Then came the first digital technology in the 90s,
standardized in Europe as GSM, that could also send and receive SMS text messages. As Internet
and data transmission became more relevant in the new millennium, there was the need for a new
global standard and so 3GPP was established in 1998 to work on the following generations. The
3G technologies allowed for data and voice communication over the same network using circuit-
switching.

In the 10s decade, smartphones and mass-consumer electronics became widespread and more con-
nected to the Internet, so 4G technology switched to an IP-packet based routing that integrated fixed
and mobile broadband networks and increased data transmission rates. It is the first generation to
have a single world-side standard: Long Term Evolution (LTE).

Entering the 2020s decade, new services called for a fifth generation that fulfilled its requirements
for high data rates, reduced latency and increased system capacity. Mobile gaming, mass media
streaming platforms, video calls, Internet-of-Things and autonomous vehicles are some applica-
tions for which 5G is designed.

It is important to understand that 5G implies much more than a generational upgrade in bandwidth
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CHAPTER 1. INTRODUCTION

as it involves the transformation of the access network to make it more like a modern cloud. Some
technology trends such as software-defined networking and open-source software will lead to an
innovative and flexible RAN. The new demands that 5G has foreseen include more traffic volume,
many more concurrent devices with diverse service requirements, better quality of user experience
(QoE) and better affordability by reducing costs. [1]

1.2 Motivation

Technology and connectivity is growing its presence in many sectors where it used to be more
niche. Industry 4.0 is making use of ubiquity of microprocessors and it is introducing sensors,
communication and intelligence to every step or process of its chain of value. On the other hand,
consumers demand higher streaming rates for mobile real-time gaming and media.

This is creating new demands for the Radio Access Network which did not evolve as much as the
core in the past. Private 5G networks, new ways of covering areas depending of its use and the
need for higher bandwidths and spectrum increases the radio complexity.

In the past, even though mobile technology has been publicly standardized, radio hardware used to
be vendor specific, closed and privative; “black boxes” that made up the network. This obscurity
made it very inefficient to combine modules from different sellers. Thus, it did not allow for
interoperability between vendors or flexibility in its deployment.

Recently, the open-source code concept has migrated towards the hardware components of com-
puters and machines. A good example of it is the RISC-V instruction set architecture, a global
initiative for open-source CPU chips that the EU commission is playing close attention to and fi-
nancing. The introduction of this new paradigm to the telecommunications field is evolving the
traditional RAN towards a open, flexible and virtualized network known as Open RAN. This con-
cept aims to allow for a multi vendor deployment to use interchangeable hardware and software
with open interfaces.

The main project in this direction towards openness and intelligence is the O-RAN standard, that
defines the new E2 Interface and RAN Intelligent Controller (RIC). This standard is open to third
party applications (xApps) for added features. A recent implementation of this standard is FlexRIC.
To deploy a network like this, the OpenAirInterface (OAI) software is frequently used, together
with USRP prototyping RF radio boards.

1.3 Objectives

The aim of this BSc. thesis is to deploy a 5G RAN using Open Air Interface open-source code,
with the Open RAN implementation by Eurecom. This work is done inside the Valencia Campus
5G initiative at Mobile Communications Group (MCG), in the Institute of Telecommunications
and Multimedia Applications (iTEAM), of the Polytechnic University of Valencia (UPV).

In order to achieve the main goal, the next specific objectives are determined:

• Study the 5G NR network architecture, particularly the radio access network’s architecture,
as well as how O-RAN modifies the RAN.

2



1.4. OUTLINE

• Configure and deploy a OAI 5G RAN, with FlexRIC, using USRPs as the radio heads.

• Measure the OAI 5G RAN performance.

• Analyse how O-RAN E2 protocol works and the analytics that FlexRIC provides.

• Inspect the available FlexRIC xApps and examine the information they provide.

• Understand how xApps are built and design a new xApp that provides different information.

1.4 Outline

This section provides an overview of this project’s structure, exposing the contents of each chapter,
to guide the reader through the document.

Chapter 2. Framework. This chapter gives a general reference of all the concepts relevant for
this work, from theoretical explanations of 5G NR and the O-RAN standard to a description of the
software and hardware utilized.

Chapter 3. Deployment’s Setup. In this chapter, the setup employed for the RAN deployment
is explained, highlighting the hardware’s configuration and software’s install.

Chapter 4. Methodology. This chapter provides an in-depth description of the OpenAirInter-
face and FlexRIC software implementation’s options, features and tools, along with third-party
applications and hardware devices used for the development and execution of this project.

Chapter 5. Results and Discussion. This chapter exposes the OAI RAN and FlexRIC deploy-
ment results, along with the different tests performed, and discusses the information obtained.

Chapter 6. Conclusions and Future Work. In this chapter the conclusions for this project will
be exposed, indicating the limitations encountered and providing references for future work in this
field.
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Chapter 2

Framework

This chapter will first give an overview of 5G NR, showcasing the different use scenarios and
key capabilities that define this technology. It is followed by an introduction to its architecture
and an in-depth explanation of the RAN. Next, the Open RAN concept and O-RAN Standard are
discussed, focusing on the E2 Interface. Finally, a description of the main software, OAI and
FlexRIC, and hardware elements, USRPs, is given.

2.1 3GPP 5G New Radio

Back when 3G was being envisioned, there was the need for an association that united different
telecommunications organizations around the globe to develop a single mobile communications
technology to be deployed by network operators. The result of this vision was the 3rd Generation
Partnership Project (3GPP), created in 1998. The 3GPP’s aim is to produce Technical Specifica-
tions and Technical Reports that form amobile technology Standard. 3GPP standards are structured
as Releases.

Releases 15, staged roll-out in late-2017 and early-2018; Release 16, completed by 2020; and the
recently published Release 17 in September 2022, make up the 3GPP 5th Generation (5G), also
referred to as NewRadio (NR). The fifth generation ofmobile networks is the result of the increased
demand for wireless communications form many different targets and applications, scenarios. It
evolves from LTE with a broader scope (point of view) to fulfill the many needs that industries and
consumers plan for the near future.

In 2015, the ITU-R issued the requirements for 5G networks, devices and services in the IMT-2020
recommendation M.2083 (09/2015) for 2020 and beyond [1]. Back then, some of the perceived
user and application trends were:

• Supporting very low latency and high reliability for human and machine-to-machine com-
munication.

• Supporting high user density by the increase of users and devices.

• Maintaining high quality at high mobility.

• Enhanced multimedia services in areas beyond entertainment.
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• Internet of Things

Therefore, for the first time in a mobile communications technology, three usage scenarios where
envisaged:

• EnhancedMobile Broadband (eMBB): human-centric use cases for access to multi-media
content, services and data. This scenario tackles data rate requirements for hot-spot and
wide-area coverage depending on user density and mobility situations.

• Ultra-reliable and low latency communications (URLLC): remote real-time high-precision
control such as remote surgery, industrial manufacturing robots… This use case has strict
demands on throughput, latency and availability.

• Massive machine type communications (mMTC): huge numbers of IoT connected devices
transmitting low volume of not real-time data, using low cost and low power hardware.

This use cases are usually represented in a triangle shape like that of Fig. 2.1, where each applica-
tion is represented as more or less demanding on each case.

Figure 2.1: Usage scenarios of IMT for 2020 and beyond. [1]

Therefore, to achieve these goals IMT-2020 establishes eight key capabilities that this generation
should reach, which are represented in Fig. 2.2.
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Figure 2.2: Enhancement of key capabilities from IMT-Advanced to IMT-2020. [1]

In this octagon representation, each use case benefits of different key capabilities and some are es-
sential for it to work properly. The Fig. 2.3 illustrates each usage scenario parameter’s importance.

Figure 2.3: The importance of key capabilities in different usage scenarios. [1]
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2.1.1 5G Network Architecture

At the high level, the network architecture of a mobile communications system is comprised of a
mobile device or User Equipment (UE) that connects via a radio link to a Base Station (BS). This
BS handles the radio spectrum to signal the UE to attach, transmit, receive whatever information
is needed, either control or data. These elements conform the Radio Access Network. Several
BSs are connected to a Core Network (CN) that provides Internet connectivity, ensuring it meets
Quality of Service (QoS) requirements, it tracks users in motion to provide uninterrupted service
by switching BS, and controls users access and subscribers usage for billing.

Figure 2.4: High level architecture of the 5G system. [2]

This architecture is then standardized for each Generation to introduce updates and new features.
For example, in 4G LTE the BS are called evolved Node-B (eNB) and the CN is called Evolved
Packet Core (EPC), and in 5G NR they are called Next Generation Node-B (gNB) and the Next
Generation Core (NG-Core).

As an evolving technology and due to time constrictions to release some part of this new standard,
5G is envisioned with two operating modes to allow for a slow transition from LTE to NR. Initially,
with theN5G Core still not ready, the Non-Standalone was released. This option consists of a 4G
and 5G RAN over 4G’s EPC, which meant that a faster deployment could be done. In this mode,
control plane traffic between the UE and Core goes through the 4G eNB and the 5G gNB is there
to provide a data-rate and capacity boost. Later, the Standalone mode consisting of a 5G RAN and
5G’s NG-Core routes both control and user plane traffic exclusively over a New Radio network,
making it independent of 4G.

2.1.2 Radio Access Network

The main elements that comprise a 5G RAN or NextGeneration-RAN are Next Generation NodeB
(gNB) and 5G-capable User Equipment (UE). To describe the RAN we must understand the role
that a gNB plays in it. First, each gNB establishes a RF channel for when a UE is active. Second, it
establishes a control plane connection between the UE and the CN, and routes traffic between them
to enable authentication, registration and mobility tracking. Third, the gNB creates a user plane
connection between each active UE and the CN and forwards control and data packets. While a
UE is connected it can physically move, loosing connection with one gNB, that will handle the
handover to another gNB. The process by which a UE detects a gNB, establishes a channel and
registrates with the CN is called Registration (Attachment in LTE terminology).
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2.1.2.1 RAN Layers

Just as in many other telecommunications fields, the RAN is organized on a protocol stack where
each entity is designed for a specific task and communicates with its upper and lower layers. This
allows for specific information to be sent and receive between the same layers at the gNB and UE.
There’s one protocol stack for the user plane and another for the control plane, although both share
many similarities.

The lower entity of the stack is 5G Layer 1 or Physical layer. Then there is 5G Layer 2 which
comprises the MAC, RLC and PDCP sub-layers. Finally, the control plane includes 5G Layer 3 or
RRC layer.

(a) User plane (b) Control plane

Figure 2.5: 5G RAN protocol stacks. [3]

Each layer’s tasks is similar to LTE and it’s described in [3]. The following is an explanation of
each layer’s most relevant features.

PHY Sitting at the bottom of the stack, closer to the analog RF equipment, the Physical layer
performs the coding and modulation of the transport channels into physical channels that are used
to carry data over the radio interface, as well as error correction.

Physical channels include PDSCH, PDCCH and PBCH for the downlink; and PRACH, PUSCH
and PUCCH for the uplink.

• Physical Downlink Shared Channel, carries a variety of data such as user data, UE-specific
higher layer control messages, system information blocks and paging. It uses adaptive mod-
ulation and flexible coding scheme dependent upon the link conditions.

• Physical Downlink Control Channel’s primary function is scheduling the downlink and up-
link transmissions on the PDSCH and PUSCH, using a fixed QPSK modulation.

• Physical Broadcast Channel provides periodically with the Master Information Block and
helps with synchronization.

• Physical Random Access Channel that handles the first message from the UE to the gNB
and the attachment procedure.

• Physical Uplink Shared Channel is used to carry data as its counterpart the PDSCH. It also
has a flexible format.
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• Physical uplink control channel carries the uplink control data.

Some of the main features of this layer in comparison to LTE include a wide frequency spectrum
from the MHz to mmWave bands, OFDM waveforms, scalable numerology with flexible sub-
carrier spacing (SCS) from 15kHz to 120kHz, and LDPC advanced channel coding.

One of the main procedures of the PHY layer includes Cell Search: UE receives the Primary
and Secondary Synchronization Signal (PSS and SSS) together with the PBCH in what is known
as the Synchronization Signal Block (SSB). This allows the UE to acquire time and frequency
synchronization for a cell and detect the Master Information Block (MIB). The MIB includes the
parameters required to decode the System Information Block Type 1 (SIB1) transmitted over the
PDSCH from the RRC, that provides all necessary details to access the network.

MAC TheMediumAccess Control sub-layer is responsible for all real-time scheduling decisions
about what frames are transmitted when, and it does the mapping between logical and transport
channels, deciding how such information should be carried. This is called data transfer and radio
resource allocation and it’s the job of MAC, so that upper layers do not need to worry about when
and how data is sent over the air interface. Therefore, it multiplexes and de-multiplexes Service
Data Units (SDU) onto Transport Blocks (TB).

An important MAC Procedure to mention is Random Access (RA), that handles the initial UE
signal to the gNB when it is powered on. Its main purpose is to achieve UL synchronization
between UE and gNB, be assigned a Radio Network Temporary Identifier (RNTI) and granted
UL resources, and to establish a Radio Resource Control (RRC) Connection to make possible to
communicate between UE and base station.

RLC The Radio Link Control’s job is to transfer upper layer Protocol Data Units (PDU) onto
logical channels, and it can be configured in one of three transmission modes:

• Transparent Mode (TM): It’s the simplest of all as it does not add any header or segment
SDUs, making the RLC layer ’transparent’.

• Unacknowledged Mode (UM): It segments SDUs into PDUs and adds a header to them.
In reception, it reassembles the segments to deliver complete SDUs to upper layers. When
receiving, it may reorder or discard segments based on sequence number.

• AcknowledgedMode (AM): This mode has the important feature of error correction through
ARQ on top of the UM mode. In reception it sends feedback on STATUS PDUs to tell the
transmitting entity to re-transmit PDUs.

So, the main services and functions depend on the transmission mode, here are some of them:

• Sequence numbering (UM and AM)

• Error correction through ARQ (AM)

• Segmentation (AM and UM) and re-segmentation (AM) of RLC SDUs

• Duplicate detection (AM)

• RLC SDU discard (AM and UM)
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PDCP It stands for Packet Data Convergence Protocol and provides the upper layers with ser-
vices to transfer user and control plane data, IP-packet header compression/decompression, ci-
phering/deciphering and integrity protection. Apart from that, it also has functions for duplicate
discarding, out-of-order delivery, reordering and in-order delivery, and maintaining sequence num-
bers [4].

2.1.2.2 Radio Frame Structure

A key aspect of 5G that has given it the New Radio designation is how the radio resources are
allocated and structured in the time domain and frequency spectrum.

A crucial element of 4G and 5G standards is the use of Orthogonal Frequency-Division Multi-
plexing (OFDM) as the digital modulation technique, extended for multi-user channel access with
Orthogonal Frequency-Division Multiple Access (OFDMA). The physical radio resources of an
OFDMA scheme are divided in time, into symbols, and in frequency, organized into sub-carriers
following the OFDM modulation.

Figure 2.6: Frequency-time domain representation of an OFDM signal. [5]

The smallest unit of resource is one sub-carrier for one symbol duration, called Resource Element
(RE). Twelve sub-carriers consecutive in frequency, twelve RE, define a Physical Resource Block
(PRB). The 5G signal bandwidth is measured in PRBs of a specific Sub-Carrier Spacing (SCS) so,
for example, in Eq. 2.1 106 PRBs with 30kHz SCS take up 38.16MHz of bandwidth.

12 [subcarriers] ∗ 30kHz [SCS] ∗ 106 [PRB] = 38.16MHz (2.1)

5G NR can use Frequency (FDD) or Time Division Duplexing (TDD) to create the UL and DL
channels. In this work, TDD is used. With TDD, the time domain symbols are grouped into slots
(usually 14 symbols per slot). The different SCS available are called numerology (µ), which is
introduced in 5G to allow for different spacing at different frequency bands for more flexibility, and
also affects the OFDM symbol duration. The Radio Frame structure depends on the numerology,
but its length is always 10ms. As the slots have a fixed length of 14 symbols, each numerology
allows for a different number of slots in it.
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The numerology used in this project is µ = 1 or 30kHz SCS, which defines an OFDM symbol
duration (with cyclic prefix) of 35.68 micro-seconds. The 14 symbols in a slot means that the
slot’s duration is 0.5 mili-seconds. Then, in one 10 mili-seconds radio frame we can fit 20 slots.

With TDD, each slot is configured for DL, UL or in a flexible way, assigning some symbols as DL
and others as UL, or serving as a gap. Each type of slot is represented as D, U or F. A periodic
pattern of DL and UL slots is defined, the period’s duration of which is a sub-multiple of a radio
frame, for example 5ms. In those 5ms, 10 slots can be allocated as D, U or F slots to create the
pattern, for example DDDDDDDFUU (7D, 1F, 2U). The radio frame will be filled with this pattern
in a periodic way, so in this example the frame would be DDDDDDDFUU DDDDDDDFUU (two
10 slot periods adding to 20 slots).

2.1.2.3 UE Attachment Procedure

A 5G SA architecture includes a 5G UE, gNB and NG-Core. For a UE to register to the network a
Registration/Attach message flow must occur between itself, the gNB and the 5G Core Access and
Mobility Management Function (AMF). In this project the RAN will be deployed without a Core
so I will mainly detail the flow for Over-The-Air (OTA) messages (between the UE and gNB).

In broad terms, the 5G SA Attachment fill first attains DL sync via the Synchronization Signal
Block (SSB) by detecting the Primary and Secondary Synchronization Signal which are periodi-
cally broadcasted over the PBCH. In the SSB is located the Master Information Block (MIB) that
includes the parameters required to decode System Information Block 1 (SIB1). The SIB1 is trans-
mitted over the PDSCH and includes many of the key parameters of the gNB and radio channel
such as the TDD slot configuration, bandwidth, cell identification...

Once the UE has decoded the information above, it starts the RandomAccess (RACH) procedure to
achieveUL sync and start communicationwith the RRC by sending RACHMessage 1. The RRC in
the gNB sends an RA response indicating a temporary Radio Network Temporary Identifier (RNTI)
and the Message 3 allocation. The UE then sends the scheduled RRC Setup Request Message 3
with this RNTI with a UE-identity random number to deal with contention resolution. The gNB
answers with a RRC message with said random number and the MasterCellGroup Information.

The UE then sends a RRC Setup Complete message and a Registration Request for the AMF at
the core. Finally, the UE and AMF start registering over several messages until a PDU Session is
established.
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Figure 2.7: 5G attachment procedure message sequence. [6]
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2.1.2.4 Split RAN

The dominant deployment has traditionally been to run the entire RAN protocol stack shown in
Fig. 2.5 in the physical base station. Going forward to 5G NR, the 3GPP standard Release 15 has
been updated to allow it to partition between several physical elements, making use of Network
Function Virtualization and Software Defined Network.

This “split” is done across centralized and distributed locations into three logical nodes: the Central
Unit (CU), the Distributed Unit (DU) and the Remote Radio Unit (RRU). Release 15 allows for
multiple split-points, but Split 7-2, displayed in Fig. 2.8, is a common partition. [7]

Figure 2.8: 3GPP RAN split 7.2 architecture. [8]

This results in a RAN configuration where a single CU running in the cloud can serve several DUs
(in an edge cloud environment), and each of them serving multiple RRUs. This way a gNB is
delocalized both in physical and virtualized entities allowing for a cost-efficient, scalable, flexible
RAN. Because of this split, latency critical services like real-time scheduling decisions by theMAC
layer, in the DU, need to be near (within 1ms) to its RRUs; while near real-time decision making
by the RRC, in the CU, can be further away.

Figure 2.9: Split-RAN hierarchy, with one CU serving multiple DUs, each of which serves mul-
tiple RUs. [7]

Although it is common to physically locate the DU and RU in the same cell tower, small cell
configurations such as those that come with mmWave in 5G will benefit of a single DU serving
multiple RRUs.
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2.2 Open RAN

Although 3GPP’s open specifications describe all the elements that implement the RAN and Core
for everyone to see, mobile network operators usually buy proprietary implementations of all the
systems from the same vendor. This is because the different entities that form a network are sold
as “black boxes” and mixing and matching between sellers results in an inefficient system with
lower performance.

This opaqueness helps equipment vendors to protect their valuable algorithms, considered a busi-
ness’ intellectual property, but it enforces a vendor lock-in that lacks transparency and efficiency.
Therefore there is significant opportunity in an open-source implementation that would benefit
from the interoperability and flexibility to choose different vendors for a network deployment.

By striving to address these issues, the Open RAN concept is created as an open-source RAN
alternative to deal with the increase in data traffic, mobile networks and users in a flexible way;
putting its focus on virtualized, intelligent, energy efficient SDR solutions.

2.2.1 O-RAN

To develop this concept, in 2018 the industry lead O-RAN Alliance community of operators, ven-
dors and academic institutions was founded. O-RAN Alliance’s mission is “to re-shape the RAN
industry towards more intelligent, open, virtualized and fully inter-operable mobile networks.” [9]

O-RAN is commonly referred to as non-3GPP, which simply means that a technology has not been
standardized by the 3G Partnership Project, and another institution is the one defining the standard.
Awell-known example of a non-3GPP technology isWIFI, based on the 802.11 family of standards
by the IEEE.

The O-RAN project is based on two main pillars: Openness and Intelligence. The former pursues
service agility and cloud scale economics in the RAN by creating open interfaces to allow small
vendors and operators to introduce services and custom features to the network. This will enable
interoperability in the deployments and faster hardware and software development. The latter
predicts that, as networks become more complex, dense and demanding, less human intervention
is going to be possible. Instead, networks should be automated for self-deployment, optimization
and operation to reduce expenses. Therefore, AI/ML techniques have to be embedded in the RAN
architecture to provide intelligence. [10]

In line with its principles, O-RAN will focus on software defined, AI enabled RAN Intelligent
Controller, RAN virtualization, open interfaces, white box hardware and open-source software.

2.2.1.1 O-RAN Architecture

The O-RAN architecture found in Fig. 2.10, is built around the 3GPP 7.2 RAN split with is focus
on intelligence and openness to become the reference for next generation RAN, by designing the
virtualized RAN on open-source hardware, with AI controllers. To achieve it, O-RAN defines a
series of functional modules such as networkmanagement and orchestration, RAN split layers (CU,
DU, RRU) and internal open interfaces. The main features of the reference architecture include
the RAN Intelligent Controller that the specifications divide by latency demands in non-Real Time

15



CHAPTER 2. FRAMEWORK

(RT) RIC for >1s control and in near-RT RIC for less than 1s functions.

Figure 2.10: O-RAN Architecture. [10]

In the highest layer of this architecture lays the Service & Management Orchestration platform,
where the non-RT RIC is located. It includes functions for service and policy management, RAN
analytics and ML models training to be distributed to the near-RT RIC for runtime execution.
The A1 interface connects it to the gNB (gray dotted box) where the near-RT RIC is found. This
interface allows for the network management applications to receive data from the gNB and to act
with the AI models sent to the near-RT RIC.

In between the A1 interface and the gNB lower layers is located the near-RT RIC, a logical module
that controls and optimizes radio resources with very low latency requirements. It can host 3er
party apps called xApps to introduce new functionality to the controller. The E2 interface allows
the exchange of data between the xApps and the gNB.

In the lowest layers of this architecture, the split gNB layers are found. The interfaces are mainly
provided by 3GPP but enhanced to support interoperability.

2.2.1.2 O-RAN E2 Interface

The O-RAN Alliance effort to create standardized RAN controller interfaces has resulted in the E2
interface that FlexRIC adopts in order to remain compatible. This interface is the responsible for
interconnecting RAN elements (called “E2 nodes”) like a gNB, and a near-RT RIC.

The E2 interfaces’ objectives are (i) exposure of selected E2 Node data such as statistics or config-
urations and (ii) enabling the Near-RT RIC to control selected functions of the RAN like triggering
procedures or installing policies. [11]
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ANear-RTRIC (henceforth just RIC) provides a terminating point for the E2 interface and controller-
internal applications (iApps). It can host external applications (xApps) and additional services in-
cluding database functionality. A E2 Node is composed of a E2 Agent and several RAN functions,
controllable functionalities of the RAN to manage handovers for example. A single RIC is de-
signed to allow for multiple E2 Nodes to be managed through the E2 interface, connecting xApps
to RAN functions, as seen in Fig. 2.11

Figure 2.11: The E2 interface allows RIC xApps to control RAN functions. [11]

The E2 interface handles two planes of interaction. One between the RIC and E2 nodes through
the E2 application protocol (E2AP) and another between the xApps and RAN functions enabled
by E2 service models (E2SM).

E2AP The Application Protocol for E2 management and SM encapsulation divides in two mes-
sage classes:

• E2 Global Procedures. Messages to manage the connection. (e.g. E2 Setup Request)

• E2 Functional Procedures. Messages with destination to the RAN functions that can be
divided into:

– Subscription. xApps can subscribe to event triggers in RAN functions for them to
perform an action when this happens. (e.g. RIC Subscription Request)

– Indication. AllowRAN functions to send information to the RIC (e.g. RIC Indication)
– Control. For xApps to execute a procedure at a RAN function.

E2SM E2 Service Models (E2SM) expose the information of a specific RAN function towards
the RIC over the E2 interface, embedded within a E2AP message as raw bytes. The E2AP is
composed of four services which, combined in different ways, implement an E2SM:

• Reports: A form of data container with pre-defined information sent from RAN functions
to xApps on pre-defined trigger events. An xApp would first subscribe (E2AP subscription)
to receive reports when an event is triggered, and once the RAN function detects the event,
the report (E2SM report) is sent over a E2AP indication message.
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• Inserts: Messages to inform the xApp that an event that it has subscribed to has been trig-
gered. These messages are transported over a E2AP indication message.

• Control: Messages used by the xApps to order the RAN functions to execute an operation,
transported through a E2AP control message.

• Policies: used by the xApp to notify the RAN function to perform predefined operations
upon a trigger event. These policies are informed with E2AP subscription messages.

The O-RAN Alliance Work Group 3 has defined three service models [12]:

• E2SM KPM: designed to report key performance metrics from the RAN. During the E2
setup, the gNB specifies the metrics it can report so that an xApp can subscribe to the KPM
it is interested in. The gNB will send E2 Indication messages making use of the report
service.

• E2SM NI: it allows to manage network interfaces by forwarding messages received from
the gNB on a specific interface and reporting them to the RIC via the E2 interface.

• E2SM RC: its goal is to control the RAN for radio resource management optimization in the
gNB.

2.3 Open Air Interface

Open Air Interface is an open-source software platform to develop software defined mobile com-
munications networks, based on the 3GPP standards. It is managed by Eurecom, a French telecom-
munications research institute. The OpenAirInterface is divided in two software development
projects: Openair-cn, for the core network; and openairinterface5g, for the RAN. It has imple-
mented solutions for 4G LTE and 5G NR standards. This software-based networks reduce im-
plementation and deployment cost, increase the flexibility to update a deployment and allow fast-
prototyping to test its solutions in a lab environment.

2.3.1 FlexRIC

The main Open RAN design is a non-3GPP standard defined by the O-RAN Alliance, who also
has a public open-source implementation of their standard under the O-RAN Software Community
(OSC) association. Other companies and groups have also showed interest in implementing their
own Open RAN compatible modules. One of these organizations is the OpenAirInterface Software
Alliance, whose founding member is Eurecom, and who develops the OAI 5G RAN and 5G CN.

Through their project group MOSAIC5G, they aim to transform the RAN and CN into agile and
open network-service delivery platforms. This group is providing their Open RAN implementa-
tions of the O-RAN E2 protocol named E2 Agent and a flexible RAN Intelligent Controller named
FlexRIC [13]. As this is the software implementation Open RAN by the same organization who
also develops the OAI 5G RAN software, it is of high interest to study how it works.

The first public release of MOSAIC5G’s FlexRIC and E2 Agent was announced at the “Fall 2021
OpenAirInterface Workshop: Hands-On with the OAI Architects” event in December 2021 [14].
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At the workshop, MOSAIC5G introduced their implementation and showcased it through some
demos, as well as proposing several challenges regarding SM and xApps.

The first public release of the code was in late-January 2022 through Eurecom’s Gitlab project
FlexRIC, as the master branch [15]. FlexRIC can be described as a flexible RAN intelligent
controller that is composed of a RAN agent and a real-time controller, compliant with O-RAN
E2AP specification.

MOSAIC5G’s project group workflow has not been to publicly develop FlexRIC through open
commits in Gitlab, but to work privately and develop different Proofs-of-Concept and later release
it all at once deciding which PoC to keep and cleaning the code. Therefore, there have been very
seldom commits since early 2022 until late-July / early-August when the dev version has been
updated.

In Fig. 2.12 a simplified architecture of the FlexRIC SDK is provided to indicate how the E2
Interface Agent and Server libraries are used to communicate the E2 Node with the RIC. Inside
the controller are located the iApps that manage the controller’s own services and SMs. iApps
can communicate externally to xApps through what FlexRIC designers have called the E42AP
Interface. This interface transmits the xApp’s requests and subscriptions to RAN Functions, and
the SM reports.

Figure 2.12: FlexRIC Architecture.

In its first version, FlexRIC provides MAC, RLC, and PDCP statistics monitoring service models
based on the O-RAN E2SM KPM. This SMs allows the RIC to subscribe and receive relevant
statistics from the gNB about the mentioned layers. The full list of FlexRIC’s master branch
E2AP supported stats indicators are available in the Appendix B.

19



CHAPTER 2. FRAMEWORK

2.4 Universal Software Radio Peripherals

In the recent years a new trend has been established for radio communications networks: Soft-
ware Defined Radio (SDR), which replaces analog RF hardware components with software pro-
grammable components for the radio heads. This SDR devices make use of digital signal proces-
sors, general purpose processing and field programmable gate arrays to implement the RF functions
needed to transform the digital signals to analog. It allows the radio devices to be re-configurable
and lower the time and cost for prototyping network architectures.
The SDRs can be programmed to comply with different technologies; different standards; and
vary the carrier, bandwidth, MIMO… configurations. It allows users to transmit and receive many
different waveforms at various frequencies and settings on a common hardware platform.

A widespread product family of SDR are Universal Software Radio Peripherals (USRP) by Ettus
Research and its parent company National Instruments. These peripherals connect to a host PC
through a serial bus or network connection, and are able to perform the instructions or functions
programmed in the host PC via the USRP Hardware Driver (UHD).
The USRP family embraces the open-source philosophy both in hardware and software, making
it a common product for research, prototyping and deploying radio communications systems in
industry labs and universities.

Ettus Research designs the following product series:

• Bus series (B): Connection through USB 3.0. Most common device is the B210.

• Networked series (N): Connection through Ethernet. Popular devices include the N310 and
N320.

• High Performance series (X): Connection can be Ethernet or a x4 PCIe.

• Embedded series (E): Can run in stand-alone mode -without a host computer- with an inte-
grated OS.

The interface to communicate with and control the USRP from a GPP host computer is the UHD
library. It is an open-source firmware written in C/C++ that provides the necessary control to trans-
port user waveform samples to and from the USRP as well as control various hardware parameters
such as sampling rate, frequency, gains, etc.

This driver includes some utilities and commands such as benchmark_rate, a benchmark to test
the network link at different bandwidths; uhd_find_devices, a command to check the USRPs
available in the network; and uhd_usrp_probe, a command to list a USRP’s parameters.
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Deployment’s Setup

In this chapter, the lab setup utilized for the RAN deployment is discussed. It first focuses on the
PC and USRP hardware and its configuration, followed by the FlexRIC and OAI software install.

3.1 Host PCs

OAI is designed to be run in a machine and, as the plan is to use two USRPs for UE and gNB,
on PC will be used for each. The new 5G implementations in OAI are very resource-intensive
mainly because of the LDPC encoding and decoding. If we also add the USRP’s processing, then
the result is that very powerful machines need to be used.

The gNB has been deployed on a PC with an Intel i7-4790 CPU @ 3.60GHz and 16GB of RAM
memory. The UE has been deployed on a PC with an Intel i5-4460 CPU@ 3.20GHz and 16GB of
RAM memory. Both systems have Ubuntu 18.04 LTS OS installed.

Apart from using relatively powerful machines, some configuration parameters need to be tweaked
to get the most out of them.

3.1.1 Low latency Kernel

As the computations that need to be performed are in real-time with very low tolerance to delays,
a Linux low-latency Kernel needs to be installed in the following way:

$ sudo ap t − g e t i n s t a l l l i n ux −image − l ow l a t e n c y l i nux −heade r s − l ow l a t e n c y
− Reboot and s e l e c t t h e low l a t e n c y k e r n e l i n t h e GRUB menu , unde r

Advanced o p t i o n s f o r Ubuntu . −
$ uname − r − Once booted , check t h e k e r n e l . You shou l d exp e c t

some th ing s i m i l a r t o 4.15.0 −109 − l ow l a t e n c y −
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3.1.2 CPU power management

The CPUs previously mentioned have 4 cores and 8 threads. When using Hyper-Threading, the
Operating System (OS) shows each thread as a core and, although it enables more overall power,
each core is less powerful itself. Then working in multi-threading environments this is helpful but
OAI does not employ much threads and thus it is more important to have fewer, more powerful
ones. To do so, in the BIOS settings we must disable Hyper-Threading to only have the 4 true
cores.

In the BIOS settings we should also disable any power management functions such as the C-states
(Sleep states) and CPU frequency scaling (Intel SpeedStep). This configuration has to be checked
and updated in Linux as well.

$ watch g rep \ ” cpu MHz\ ” / p roc / c p u i n f o − To make s u r e t h e CPU
f r e qu en cy i s a lways a t i t s maximum −

$ sudo nano / e t c / d e f a u l t / g rub
− Change RUB_CMDLINE_LINUX_DEFAULT=” q u i e t i n t e l _ p s t a t e = d i s a b l e

p r o c e s s o r . max_c s t a t e =1 i n t e l _ i d l e . max_c s t a t e =0 i d l e = p o l l ” −
$ sudo upda te −grub

$ sudo nano / e t c / modprobe . d / b l a c k l i s t . con f
− P a s t e b l a c k l i s t i n t e l _ powe r c l amp −

$ sudo i 7 z − To check t h a t t h e C− s t a t e 0 i s t h e on ly one wi th 100%
and a l l o t h e r s a r e a t 0% −

3.1.3 CPU governor

Wemust ensure that the CPU governor is set to performance to set the CPU frequency to its highest
within the borders of its scaling limits.

$ sudo ap t − g e t i n s t a l l c p u f r e q u t i l s
$ sudo v i / e t c / d e f a u l t / c p u f r e q u t i l s − Add GOVERNOR=” pe r fo rmance ” −

$ sudo upda te − r c . d ondemand d i s a b l e − To make t h i s change permanen t
−

$ sudo / e t c / i n i t . d / c p u f r e q u t i l s r e s t a r t
$ cpu f r eq − i n f o − Al l CPU co r e s shou l d be i n pe r fo rmance mode −

3.1.4 KPTI Protections

Linux’s systems provide KPTI protections against Spectre andMeltdown hardware vulnerabilities.
This protections can decrease performance by up to 15%. For systems that require the maximum
performance and after understanding the ramification that this modification can have from a secu-
rity standpoint, KPTI protections can be disabled [16].
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$ sudo nano / e t c / d e f a u l t / g rub
− Add GRUB_CMDLINE_LINUX_DEFAULT=” p t i = o f f s p e c t r e _ v 2 = o f f l 1 t f = o f f

n o s p e c _ s t o r e _ b y p a s s _ d i s a b l e n o _ s t f _ b a r r i e r ” −
$ sudo upda te −grub

3.2 USRP N310

In the iTEAM’s MCG there have been several works on the use of USRP B210 and recently N310s
were acquired, as it is a newer and more capable product. There hasn’t been much research work
done in the group on networked USRPs and they present some specific challenges, especially when
using large bandwidths.

This project is deployed on two N310 USRPs with the following key features: [17]

• 4 RX, 4 TX channels

• 10 MHz – 6 GHz extended frequency range

• Up to 100 MHz of instantaneous bandwidth per channel

• Two SFP+ ports (1 GbE, 10 GbE, Aurora)

• One RJ45 (1GbE)

Figure 3.1: USRP N310 front and back panels. [17]

Both PCs are connected to two Ettus USRP N310 as the radio heads. The link between the PCs
and the USRPs is a SPF+ to SPF+ 10Gbps cable that connects a 10Gbps capable SFP+ port on the
USRP (port 1) to a 10Gigabit Ethernet PCIe Card on the PC. The SFP+ cable from Ettus has part
number 783344-01 and the PCIe card has part number 783345-01.

3.2.1 Sampling rate

The USRP N310 supports three Master Clock Rates: 122.88Mhz, 125MHz and 153.6 MHz. Only
strict integer decimation and interpolation are used within USRP hardware to achieve the desired
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sample rate, and OAI is only compatible with some ratios based on a 122.88MHz Master Clock
Rate. [18]

Master Clock Rate Decimation / Interpolation Rate
Host Sample Rate [Samples per second]

1 2 4 6 8 10
122.88e6 61.44e6 30.72e6 20.48e6 15.36e6 12.288e6
125e6 62.5e6 31.25e6 20.833e6 15.625e6 12.5e6
153.6e6 76.8e6 38.4e6 25.6e6 19.2e6 15.36e6

Table 3.1: USRP N310 common sampling rates. [18]

Also, OAI’s standard 5G-NR configuration is on frequency band 78 and 106 Physical Resource
Blocks (PRB). The bandwidth is then calculated with 12 subcarriers spaced 30Khz in each of the
106 PRBs which results in 38.16 Mhz, commonly referred to as a 40Mhz bandwidth.

Moreover, as the signal processing is done in band base, the sample rate must be at least the same
as the bandwidth to comply with Nyquist Theorem.

Therefore, the lowest sample rate that meets these requirements is 61.44MSps in both ways for Full
Duplex mode, or 122.88MSps total over the link. As the maximum sample rate over a 1 Gigabit
link is 25MSps and 200MSps for a 10 Gigabit link, we concluded that a 10Gbps link is required
between the PCs and USRPs for this bandwidth.

3.2.2 Network configuration

As stated previously, the link between the PCs and USRPs is a 10Gigabit SFP+ connection. By
default, with the HG FPGA image loaded, only SFP Port 1 will support 10Gb speeds and it is
assigned IP address 192.168.20.2. The SFP Port 0 and the RJ45 Management Port are 1Gb and the
former has IP address 192.168.10.2 while the latter is configured for DHCP.

It is possible to view and change the USRP network settings by accessing it via SSH through the
RJ45 Management Port, SFP Ports or using the serial connection and changing the configuration
stored in /data/network/[eth0 - sfp0 - sfp1].network.

eth0 (DHCP):

[Match]
Name=eth0

[Network]
DHCP=ipv4

[DHCP]
UseHostname=false

sfp0 (static):

[Match]
Name=sfp0

[Network]
Address=192.168.10.2/24

[Link]
MTUBytes=1500

sfp1 (static):

[Match]
Name=sfp1

[Network]
Address=192.168.20.2/24

[Link]
MTUBytes=9000

Ettus’ documentation on the N310 USRPs states that MTU should be 9000 for 10Gb streaming
speeds and 1500 for 1Gb [18]. For some unknown reason, the USRPs came with MTU 8000
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which had to be changed to 9000. On the Host PC, the network interface settings must be changed
accordingly:

IP Address: 192.168.20.1
Subnet Mask: 255.255.255.0
Gateway: 0.0.0.0
MTU: 9000

The communication through this link uses UDP as the transport protocol. On Linux, the maximum
buffer sizes must be changed depending on the streaming speed to prevent dropping packets due
to lack of CPU computation power, which generates D (dropped frames) errors. These errors can
be quite frequent, appearing at random intervals and usually in single events, and are catastrophic
when using OAI. It can be quite difficult to get rid of this error and, although Ettus recommends
some possible tuning guidelines, there are other that can be useful to [19].

Linux’s kernel distinguishes between TCP buffers and all protocol (core) buffer, so to increase the
UDP buffer we must change the core read and write maximum memory values. The receive buffer
cannot overflow because the peer is not allowed to send data beyond the buffer size window. This
means that datagrams will be discarded if they do not fit in the socket receive buffer. 62.5MB is
the minimum required by UHD at this speed, and it displays a warning if it is lower, but increasing
it might be helpful to decrease the frequency of D errors in systems that lack CPU power. If the
CPU cannot keep up with the data stream, errors will be inevitable, although a large buffer makes
it possible to have longer runs without dropping frames. To change the maximum buffer sizes, you
run:

$ sudo sysctl -w net.core.rmem_max=62500000
$ sudo sysctl -w net.core.wmem_max=62500000
- or permanently change the buffer value -

$ echo 'net.core.wmem_max=62500000' >> /etc/sysctl.conf
$ echo 'net.core.rmem_max=62500000' >> /etc/sysctl.conf

You can also change the Network Interface Card’s (NIC) RX and TX ring buffer queues . First you
can check the current and maximum settings and then change them to the Pre-set maximums
values by running:

$ ethtool -g <interface >
$ sudo ethtool -G <interface > tx <N> rx <N>

In this case, the NICs allowed to change from 512 to 4096 bytes. Be aware that changing the ring
buffers can affect the latency by delaying the delivery of datagrams to the UHD.

Finally, if each CPU core is not powerful enough by itself to handle the streaming rate, it is possible
to change the Interrupt Request’s (IRQ) smp_affinity so that, even if only one core can process
incoming packets at a time, any interruption causing delay on the incumbent core can be solved
by allowing another core to keep up with the stream. You can check the number of interrupts per
CPU core and I/O device in real-time while streaming data to/from the USRP with the command:
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$ watch -n 0.1 cat /proc/interrupts

Then check the smp_affinity of an IRQ process number. And finally changing the default value
to prevent overwhelming a single CPU core, mainly number 1 as this is the one that carries more
application workload.

$ cat /proc/irq/32/smp_affinity
1 - IRQ 32 is assigned CPU core 1 -

$ echo 3 >/proc/irq/32/smp_affinity

After configuring the USRP and host PC, it is possible to benchmark the system using the UHD
utility benchmark_rate. To test the link requirements, we use the following command, which
will generate a full-duplex stream of 2Gbps to and from the USRP for 60 seconds.

$ sudo ./usr/local/lib/uhd/examples/benchmark_rate \
--args "addr=192.168.10.2,master_clock_rate=122.88e6" \
--duration 60 --rx_rate 61.44e6 --tx_rate 61.44e6

3.2.3 Link between the USRPs

To take any over-the-air problems out of the equation, it is recommended to first try running OAI
without the air channel so the USRPs will be connected directly by cable in loopback mode.

As we are using daughterboard 0, channel 0 by default, there must be one SMA to SMA cable
running from the TX/RX_RF0 port on one USRP to the RX2_RF0 port on the other with a mini-
mum attenuation of 30dB between them. In this case, two 20dB attenuators have been added to
each cable for a total of 40dB. The maximum input power is +15dBm to prevent damaging the
daughterboards, and it can be checked using an RF Spectrum power meter.

3.2.4 Time and clock synchronization

Although OAI does not explicitly require to synchronize the RF boards, 5G base stations usually
contain GPSmodules to sync and establish a common time scale. To improve the OAI performance
and reduce the possibility of divergences, I have opted to sync both USRPs. USRP N310 have an
internal Pulse Per Second (PPS) time and 10Mhz clock reference that is used by default. The PPS
signal is shown in PPS LED in the back panel. It is obvious that without external synchronization
the PPS LED of each USRP will pulse at different times. The clock reference is also expected to
diverge between them, and although there is an option in OAI to compensate for this frequency
offset (–ue-fo-compensation), it is best to sync them in hardware.

As external time and clock reference two options are available: a GPS Disciplined Oscilator
(GPSDO) or an external input. The Lab where the USRP testbench is located is an indoor enviro-
ment where GPS signal is very weak, so an external reference in the form of an Ettus’ OctoClock-G
CDA-2990 will be used. [20]
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Figure 3.2: OctoClock-G CDA-2990 front panel. [20]

The OctoClock can distribute a 10Mhz and PPS signal across 8 devices trough SMA cable con-
nections, without the need for a GPS signal (although it can be used with it). Its set up consists of
connecting the 10Mhz outputs to the REF IN input and the PPS outputs to the PPS/TRIG IN input
of the USRPs, and powering on the OctoClock. Then indicating the UHD to select the external
reference with the --args option, which will reboot the daughterboards to change the reference.
Now the PPS LED of the USRPs and OctoClock will blink in sync.

--args "addr=192.168.10.2, master_clock_rate=122.88e6, time_source
=1, clock_source=1"
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Finally, the Lab setup is as shown on the diagram in Fig. 3.3 and on the photo in Fig. 3.4.

Figure 3.3: Deployment setup diagram.

Figure 3.4: Deployment setup in the Lab.
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3.3 FlexRIC & OAI Deployment

FlexRIC’s master branch, released early 2022, provides a E2 Agent and near-RIC. The E2 Agent
can be integrated with a single Radio Access Technology (RAT), OAI 5G RAN, so that the gNB
can communicate with the E2 node at the near-RIC. This integration is done with a git patch which
modifies some OAI files to create the E2 agent and E2AP messages at the gNB.

Thismaster branch is integratedwithOAI commit b04731d7565cd91b538eb7cc80f874b4730d54ad
(integration_2021_wk51_a), that defines the tag 2021.w51_a from December 2021.

3.3.1 FlexRIC install

The FlexRIC’s Gitlab repository indicates the following instructions to build and install the master
branch on the machine where we plan to run the gNB from. As we plan to run the E2 Agent and
the Near-RIC on the same machine, we will only have to install it once. It is possible to run them
in different machines changing the Near-RIC IP address at /usr/lib/FlexRIC/FlexRIC.conf.

To build the repository on Ubuntu, they recommend installing CMake through a Personal Package
Archive (PPA) such as Kitware APT Repository. To do so, Kitware provides a shell script.

$ vim kitware-archive.sh - Create the file -
- Paste the script and save with :wq -

$ chmod +x kitware-archive.sh - Make the file executable -
$ sudo ./kitware-archive.sh - Run the script -
$ sudo apt-get install cmake - Install CMake -

- Install the required dependencies -
$ sudo apt install libsctp-dev poppler-utils python3.8 libreoffice

The asn1c package available in apt is v0.9.28 but the v0.9.29 is needed, so it must be installed
from source from its github repository. Asn1c requires some dependences (automake-1.15, libtool,
bison=2.x (2.7.1), and flex) that must be installed as well with its correct version.

- Install dependencies -
$ sudo apt-get install automake libtool flex
$ wget http://launchpadlibrarian.net/140087283/libbison -dev_2.7.1.dfsg

-1_amd64.deb
$ wget http://launchpadlibrarian.net/140087282/bison_2.7.1.dfsg-1_amd64

.deb
$ sudo dpkg -i libbison -dev_2.7.1.dfsg-1_amd64.deb
$ sudo dpkg -i bison_2.7.1.dfsg-1_amd64.deb
$ sudo apt-mark hold libbison -dev sudo apt-mark hold bison

- Install asn1c from source -
$ git clone https://github.com/vlm/asn1c
$ test -f configure || autoreconf -iv
$ ./configure
$ make
$ sudo make install
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The xApp communication is done with Next Generation of Nanomessages (nng), that must be
installed from its repository.

$ git clone https://github.com/nanomsg/nng
$ cd nng - && mkdir build && cd build -

- Install ninja to build the files as recommended -
$ sudo apt-get install ninja-build

$ cmake -G Ninja ..
$ ninja
$ ninja test
$ sudo ninja install

Now we can clone the FlexRIC repository into a folder named FlexRIC inside our working direc-
tory.

$ git clone https://gitlab.eurecom.fr/MOSAIC5g/FlexRIC.git
$ cd FlexRIC

The E2AP messages defined by O-RAN must be acquired directly from [21] after signing the O-
RAN ADOPTER LICENSE AGREEMENT. The E2AP messages definitions can be found at the
O-RAN.WG3.E2AP-v01.01.pdf file.

The MOSAIC5G team provides a python script to convert the ASN.1 module files into C structs.
This script takes the O-RAN E2AP definitions file in .docx or .pdf format as an input, converts
it to pdf, then extracts only the messages definitions to a text file (e2ap-v01.01.asn1) and runs
the asn1c command. There is a known problem during this step that generates errors due to the
wrong conversion of the pdf to text, as there are some doble spaces characters that asn1c doesn’t
recognize. To fix this, the txt must be edited by hand to remove the doble spaces and then run the
asn1c command from the console.

- The script can be found here: -
$ cd src/lib/ap/ie/asn
$ python3 gen_asn.py path/to/O-RAN.WG3.E2AP-v01.01.docx or .pdf

- The asn1c command inside the script is: -
$ asn1c -gen-PER -no-gen-OER -fcompound -names -no-gen-example -

findirect -choice -fno-include-deps e2ap-v01.01.asn1

Once the C structs are created at the src/lib/ap/ie/asn path, we can go back and compile the
project.

$ cd ../../../../../ && mkdir build && cd build && cmake ..
$ make -j
$ sudo make install
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To check if the project has been correctly installed, we can run a E2-Agent Near-RIC test that will
simulate MAC, RLC and PDCP communication through the E2 interface and store it in a log.txt
file.

$ sudo ./FlexRIC/build/test/test_near_ric

The Standalone Near-RIC is started by running near_ric_sa, and stopped by pressing CTRL+C.

$ sudo ./FlexRIC/build/test/near_ric_sa

3.3.2 OAI install and integration

For the E2-Agent to be included inside the OAI gNB, a patch must be applied to the OAI reposi-
tory [22], in a process that’s beeing called integration.

First we clone the repository and select the commit that corresponds to the tag 2021.w51_a. Then
the git-am command applies a series of patches from a mailbox. Git might ask for a username and
email to sign the changes to the repository, indicating the commands to follow.

$ git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git oai
$ cd oai && git checkout b04731d7565cd91b538eb7cc80f874b4730d54ad
$ git am ../FlexRIC/oai/FlexRIC_oai.patch - Applying the patch -

Once the patch is applied, we can proceed buildingOAI as usual with the ./build_oai executable.
At the gNB machine the –gNB option will build the ./nr-softmodem executable, while option -w
USRP indicates to build the libraries to work with UHD. Option -I installs the requirements. To
guarantee that UHD version is the same as the USRP image (v3.15), we have to indicate it.

$ export BUILD_UHD_FROM_SOURCE=True
$ export UHD_VERSION=3.15.0.0
$ cd cmake_targets && ./build_oai -c -C -I -w USRP –gNB

At the UE machine there is no need to install FlexRIC (as the UE is agnostic to the O-RAN ar-
chitecture) and only OAI has to be installed, indicating we want to build the ./nr-uesoftmodem
executable with option --nrUE.

$ git clone https://gitlab.eurecom.fr/oai/openairinterface5g.git oai
$ cd oai && git checkout b04731d7565cd91b538eb7cc80f874b4730d54ad
$ export BUILD_UHD_FROM_SOURCE=True
$ export UHD_VERSION=3.15.0.0
$ cd cmake_targets && ./build_oai -c -C -I -w USRP –nrUE

This would conclude the installation, with OAI ready to be executed as the next chapter explains.
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Chapter 4

Methodology

In the development of this project, I make use of different OAI modes of operation and options,
which are described in this chapter, along with the software and hardware tools utilized, in order
to analyze the deployment and debug the errors encountered. A brief description of FlexRIC and
its xApps and how to execute them is also explained. Finally, the FlexRIC xApp challenge is
introduced. This explanation will help understand how the results are accomplished.

4.1 OAI RAN

OpenAirInterfece has available several modes in which to run its softmodems. By default it oper-
ates in Non Stand-Alone mode, but it is possible to change it to Standalone with the –sa option.
As the scope of this project is to analyze the MOSAIC5G implementation of the OpenRAN archi-
tecture, no Core Network has been deployed, only the OAI 5G RAN. As a result of this, the UE
cannot establish a PDU Session with the AMF and, although it can decode the PBCH and SIB1, it
cannot attach fully to the gNB

Nonetheless, the SA mode has been tested to inspect the available random access procedure and
confirm that no attachment is possible.

4.1.1 phy-test & noS1

For cases where only the RAN is deployed, OAI has introduced the phy-test mode to connect a
OAI UE to a OAI gNB without the support of a CN. In this mode the gNB will do the following:

• It reads the RRC configuration from the config file.

• It encodes the RRCConfiguration and the RBconfig message and stores them in the binary
files rbconfig.raw and reconfig.raw.

• The MAC layer uses a pre-configured allocation of PDSCH and PUSCH with randomly
generated payload and schedules continuous transmission even without a UE.

At the UE this mode will:
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• Read the binary files rbconfig.raw and reconfig.raw and process them.

• Decode the SIB1 message from the rbconfig.raw file.

• Use a pre-configured schedule to transmit to the gNB.

Summarizing, in this mode the gNB’s RRC configuration is not obtained via the usual attachment
procedure but by reading some files, and randomUL andDL traffic is generated at every scheduling
opportunity. For the phy-test mode to work, the rbconfig.raw and reconfig.raw files generated
by the gNB with the desired configuration file has to be copied to the UE machine at the same
directory.

The phy-test mode allows for some options to configure the scheduler on the command line:

• -m Set the downlink MCS for PHYTEST mode.

• -t Set the uplink MCS for PHYTEST mode.

• -l Set the downlink nrOfLayers for PHYTEST mode.

• -L Set the uplink nrOfLayers for PHYTEST mode.

• -M Set the number of PRBs used for DLSCH in PHYTEST mode.

• -T Set the number of PRBs used for ULSCH in PHYTEST mode.

• -D Bitmap for DLSCH slots (slot 0 starts at LSB).

• -U Bitmap for ULSCH slots (slot 0 starts at LSB).

In this mode, instead of randomly generated payload, we can also transmit and receive user-plane
traffic over a Linux TUN interface with the noS1 mode. The S1 interface in LTE is used to com-
municate the RAN nodes and EPC. Although it doesn’t exist in 5G NR (except in NSA mode to
connect to the EPC) and it is replaced with the NG interface, this mode has kept its original name
from when it was designed in LTE.

TUN interfaces are virtual network devices to create a tunnel to carry IP packets in OSI layer
3 (Network layer). It is used as a network access to route application layer data through the OAI
RAN link. This way we can use tools like Ping or Iperf to obtain useful statistics about the network
performance.

4.1.2 gNB config file

In OAI, to establish the gNB parameters such as frequency, duplexing mode, bandwidth,... a con-
figuration file is used. OAI provides many for many different scenarios, one of which has been
modified to be used with FlexRIC and can be found at Appendix A.

At the gNB we need to pass the config file with option -O. At the UE we must indicate the USRP
parameters with option –usrp-args (equivalent to the sdr_addr field in the gNB config file) as
well as the Tx and Rx gains to set the USRP to with options –ue-txgain and –ue-rxgain. With
all of this in mind, the commands used to run the gNB and nrUE are:
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\textit{~/gNB/MOSAIC5G/oai/cmake_targets/ran_build/build} $ sudo ./nr-
softmodem -O ../../../../FlexRIC/oai /gnb.band78.sa.fr1.106PRB.
usrpn310.conf –phy-test --noS1

\textit{~/UE/MOSAIC5G/oai/cmake_targets/ran_build/build} $ sudo ./nr-
uesoftmodem --usrp-args “addr”=192.168.10.2 --ue-txgain 50 --ue-
rxgain 40 --ue-fo-compensation – phy-test --noS1 --nokrnmod -O
../../../targets/PROJECTS/GENERIC-NR-5GC/CONF/ue.conf --time-
source –clock-source

4.1.3 RF Simulator

RF boards such as USRPs and resource-intensive LDPC algorithms require high performance PC
hardware to run, limiting the RAN transmission capabilities and making the system more prone to
errors. Instead, OpenAirInterface offers an RF simulator to replace the actual RF boards. The RF
Simulator (RFSIM) mimics the RF encoding and decoding as much as possible, but not in real-
time. It can run faster or slower than real-time depending on the CPU available resources, making
it CPU-bound instead of real-time RF sampling-bound. It can be run in noS1 and/or phy-test
modes.

To build this RFSIM as an OAI device, we can build it from scratch with the gNB or UE running
the ./build_oai executable using the option -w SIMU, or build it after a regular build by running
the following on both machines:

$ cd /oai/cmake_targets/ran_build/build
$ make rfsimulator

To use the RF simulator, both softmodems have to be run adding the –rfsim option to the command
line. And to indicate where each machine is located so that they can communicate with each other,
the env variable RFSIMULATOR can be used to set the gNB node as the simulator server and to tell
the UE what IP does the gNB node have. By default it uses port 4043.

~gNB $ sudo RFSIMULATOR=server ./nr-softmodem [...] --rfsim
~UE $ sudo RFSIMULATOR=172.6.30.115 ./nr-uesoftmodem [...] –rfsim

When using the RF Simulator it is possible to simulate custom channel conditions with the option
chanmod. The channel models can be configured in a separate channelmod_rfsimu.conf file
linked to the main config file using @include “channelmod_rfsimu.conf”. In this file the
channel parameters are defined. Some of these parameters can be modified in execution time
through the telnet server.
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4.1.4 Scope

As part of the debugging tools that OAI has to offer there is a physical layer oscilloscope emulator
called Scope, which consists of a graphical interface to display transport channels for both gNB
and nrUE. To build the shared libs you only need to run make nrscope. Then, with option -d on
command line we can run the scope on the gNB and/or the UE. The NR DL Scope (UE) and NR
UL Scope (gNB) show the following information.

(a) NR DL Scope

(b) NR UL Scope

Figure 4.1: OAI Scopes explained
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Asmany of the tools in OAI, the scopewas developed for LTE and some of the graphs have not been
updated toNR such as PUCCH Energy, PUSCH Throughput, PUCCH I/Q or PDSCH Throughput.
Some of the window names have not been updated either as seen in LTE UL SCOPE gNB. This is
a common trend all over the OAI code and documentation.

4.1.5 T-tracer & Wireshark

Another debugging tool in OAI is the T-Tracer, a frame decoder and analyzer GUI. To build it,
we just need to go to the /oai/common/T/tracer directory and do make. It can be run by the
different executables available at the same directory: ./enb, ./ue or./gnb. To enable it at the
softmodem we must add the option –T_stdout 0 to disable output on the terminal and only use
the T tracer.

$ sudo ./nr-softmodem -O gnb.band78.sa.fr1.106PRB.usrpn310.conf --phy-
test --noS1 –T_stdout 0

$ sudo ./gnb -d ../T_messages.txt

As many of the tools in OAI, T-tracer was developed for LTE and it has not been updated to NR,
therefore it doesn’t log almost any message. Nonetheless, it is possible to use Wireshark [23] to
analyseMAC PDUs for UEs, MIBs, SIBs and random accesses seen by the gNodeBwith a T-tracer
tool called macpdu2wireshark. This executable will send some UDP packets to through the local
interface for Wireshark to capture. With it we can see live traffic or record and replay traces.

To live capture:

$ ./macpdu2wireshark -d ../T_messages.txt -live

To record and replay:

$ ./record -d ../T_messages.txt -o /tmp/record.raw -on WIRESHARK
$ ./extract_config -i /tmp/record.raw > extracted_T_messages.txt

- Open Wireshark and listen to the local interface -
$ ./macpdu2wireshark -d extracted_T_messages.txt -i /tmp/record.raw

For Wireshark to dissect the packets, we need to configure it first using a recent version (v3.6.5 in
our case) following the instructions provided in OAI’s wiki.

4.1.6 Spectrum analyser

The iTEAM’s MCG’s Lab has a Rohde & Schwarz FSW Signal & Spectrum Analyser paired along
with the R&S FSW-K144 measurement application for 5G-NR downlink [24]. With it we are able
to visualize the RF signal transmitted from a gNB in downlink. To configure the 5G NR app, the
frequency and bandwidth must be selected. As the SSB period defined in the config file is 20ms,
the FSW signal capture buffer must be changed from the 20ms default to 40ms to find sync. In
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the Signal Configuration window the appropriate Test Model can be selected to match the TDD,
40MHz BW, 30kHz SCS, FR1 parameters. The Synchronization, Bandwidth Parts and Cell ID are
selected for Auto configuration.

(a) Signal configuration

(b) Signal capture

Figure 4.2: R&S FSW configuration.

The FSW can also be externally sync with the OctoClock via a 10MHz signal on its REF INPUT
connector to reduce frequency deviations. To activate the external reference frequency, it can be
done in Setup > Reference > External Reference 10MHz.
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4.1.7 ROMES

Rohde & Schwarz also makes ROMES, a software program that, paired with an adequate hard-
ware decoder and antenna, can scan the spectrum for available networks and provide coverage
measurements and key BS parameters [25].

The main difference between a spectrum analyzer and this software is that ROMES can automat-
ically scan and decode any available networks for several mobile technologies, providing more
in-depth statistics. It can decode the PBCH and obtain the information included in the MIB and
SIB1 messages broadcasted by the gNBs. It can also differentiate different cells and beams.

In it we select 5G NR as the technology to decode, the frequency band and start recording. Then
in its different windows we select the Automatic Channel Detection (ADC) status, 5G NR Scanner
and 5G NR BCH View to view the relevant information.

Figure 4.3: R&S ROMES in use.

4.1.8 Ping & Iperf

In phy-testmode, the noS1 option allows to inject user traffic over the network link at the PDCP
level. This makes possible the use of ping and Iperf [26] applications to test the RAN without
the need for a CN. When using the noS1 option, TUN interfaces are created at both gNB and nrUE
named oaitun_enb1 and oaitun_ue1 with IPs 10.0.1.1 and 10.0.1.2, respectively. They
show up running the command ip a, similar to ifconfig but newer and more powerful.

Using the ping command we can send ICMP echo request and receive over this interfaces. By
setting the flag -I we select the outbound interface and then we indicate the IP address of the
device we are pinging. It is important to note that using this method we can assure that the packets
are taking the correct route and are sent and receive with OAI because we force the use of the TUN
interfaces which are internally tunnelled to the OAI nodes and we ping an IP address that is only
used by these interfaces. SomeMCG colleagues have had troubles in the past with sending packets
between machines through the main (Internet network) gateway interface instead than through the
OAI connection.
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gNB machine: $ ping -I oaitun_enb1 10.0.1.2
UE machine: $ ping -I oaitun_ue1 10.0.1.1

In addition to the ping command, we can measure the link performance using the Iperf tool. Iperf
is designed in a client-server scheme with flags -s and -c. By default it’s run over TCP but it can
be changed to UDP with flag -u. The -i flag sets the interval time in seconds between periodic
bandwidth, jitter and loss reports. The -B flag binds the network interface for outbound traffic at
the client and for incoming traffic at the server. The -b flag sets the target bandwidth in bits/s. We
can change the print bandwidth format with -f flag.

Server UE machine: $ Iperf -s -i 1 -u -B 10.0.1.2 - Downlink test
-

Client gNB machine: $ Iperf -c 10.0.1.2 -u -b 100M -B 10.0.1.1

Server gNB machine: $ Iperf -s -i 1 -u -B 10.0.1.1 - Uplink test -
Client UE machine: $ Iperf -c 10.0.1.1 -u -b 100M -B 10.0.1.2

We must note that when using the RF Simulator the measured throughput is not the real-time one,
as RFSIM can speed up or delay the transmission. Users must be warned against comparing this
value with a theoretical one or to state it without a clarification as this might be misleading.

4.1.8.1 Throughput benchmark

A key parameter to measure a network is the achieved throughput. Until recently, the most im-
portant transmission direction has been Downlink as the users usually demanded much more data
than uploaded. This is still relevant although new trends suggest that the Uplink is going to be-
comemore important with the upcoming technologies and uses. In this study, only the DL has been
benchmarked as the TDD configuration used prioritizes this direction with more slots. A similar
study can be performed for the UL.

For a performance benchmark to be relevant it has to be referred to some scale for comparison.
Here, a maximum theoretical throughput has been calculated for reference. In a 5G network
the throughput is determined by many parameters including the Modulation and Coding Scheme
(MCS), number of sub-carriers and resource blocks used, number of symbols occupied by the
DMRS, and frame duration. The standard offers the equation in Fig. 4.4 for the maximum sup-
ported data rate for DL or UL, but it does not take into consideration the number of slots scheduled
in a radio frame. In the phy-test mode this is a relevant parameter that we can modify. There-
fore, in this work I will use another frequent throughput estimator based on Transport Block Size
(TBS) [27]. The TBS is the size of the payload at the PHY layer, so it includes the users’ data
and all the previous layers’ headers but it does not include the coding and error correcting scheme.
These theoretical throughputs are only estimations since in real operation there might be more
overhead due to the headers and other fields added to the original data packet.
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Figure 4.4: 5G NR Throughput data rate equation in the DL and the UL. [28]

The TBS follows a complex determination algorithm described in [29] which is comprised of
several if conditional statements to encompass all possible sizes. This process is shown in Fig.
4.5. For the most common sizes, including the ones used here, this conditional statements always
give the same result. For this reason, I do not take into consideration all possibilities but only the
ones used.

Figure 4.5: Transport Block Size determination algorithm. [29] [30]

To ease the TBS computing process, a MATLAB function has been written to take the same inputs
as in Fig. 4.5 and output the TBS and throughput for a specified number of slots. As constant input
parameters there is the number of frames per second, sub-carriers per symbol, number of symbols
scheduled per PRB (in this OAI version is 13), PRB overhead, number of DMRS symbols (which
for this Type and Position is 6) and number of layers. For each benchmark case we need to update
the number of PRBs, modulation order, target code rate and number of slots per frame.

function main
NumSlots = 1 % Number of slots per frame
FrameDuration = 0.010 % 10ms frames
FramesPerSecond = 1/FrameDuration
NumSubCarriers = 12 % Number of sub-carriers per symbol
NumSymbols = 13 % Number of symbols per PRB
OH = 0 % PRB overhead
NumPRB = 50 % Number of PRBs
Qm = 6 % Modulation Order. This is for MCS 28
R = 948 % Target code rate. This is for MCS 28
R = R/1024;
v = 1 % Number of Layers
NumDMRSperPRB = 6
NumREprime = NumSubCarriers * NumSymbols - NumDMRSperPRB - OH
NumRE = min(156, NumREprime) * NumPRB
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NumInfo = NumRE * R * Qm * v
if (NumInfo > 3824)

n = floor(log2(NumInfo - 24)) - 5
NumInfoprime = max(3840, 2^n * round( (NumInfo - 24)/(2^n) ))
if (R > 0.25)

if (NumInfoprime > 8424)
C = ceil( (NumInfoprime + 24)/8424 )
TBS_bits = 8 * C * ceil( (NumInfoprime + 24)/(8*C) ) -

24
end

end
end
Throughput_Mbps = TBS_bits * NumSlots * FramesPerSecond / 1000000

end

The MCS indexes used have been selected for being the most efficient for a given modulation
order. There are three MCS tables described in the standard but the one most commonly used
and implemented in OAI is Table 1 (5.1.3.1 - 1) of the standard [29] and it encompasses three
modulation orders: 2, 4 and 6. A selection of table 1 for the MCS indexes chosen is available in
Table 4.1.

MCS Index Modulation Order Qm Target code Rate R x[1024] Spectral efficiency
9 2 (4QAM) 679 1.3262
16 4 (16QAM) 658 2.5703
28 6 (64QAM) 948 5.5547

Table 4.1: MCS index table 1 for PDSCH (Selection). [29]

4.2 FlexRIC

FlexRIC implementation of the O-RAN standard is quite new a therefore an analysis has been
performed. First, the Near-RT RIC and E2 Agent at the gNB have been executed and checked
the information provided by their logs. The E2 Interface between them can be inspected with
Wireshark and analyzed in-depth to compare it to the standard. Wireshark’s newer versions have
the E2AP protocol implemented, which needs to have the port changed from 37464 to 36421. This
port is the one configured by FlexRIC to send and receive E2AP messages.

4.2.1 xApps

FlexRIC was originally introduced by the MOSAIC5G project group at the Fall 2021 OpenAirIn-
terface Workshop, where there was a dedicated Lab for xApps. The source code of the xApps was
published only for the workshop and not in the GitLab repository [14]. The xApps provided by
FlexRIC are related to the SM it implements, which have to do with MAC, RLC and PDCP stats.

• helloworld.py It connects to the RIC for some time and then disconnects.
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• monitoring.py It subscribes to all three SMs and counts how many reports arrive. Peri-
odically asks the API for some stats to print.

• [mac/rlc/pdcp]_cb.py Each one subscribes to a different SM and prints some reports
received.

• no_cb.py It subscribes to all three SMs ignoring the reports. Makes use of the API to get
information about connected UEs.

The xApps’ SDK uses three different connections for the E42AP interface to the RIC: port 9990
for the initial E42Setup and pings, port 9991 for E42ReportRequests, and finally port 9992 for
the E42Indication messages containing the stats. These connections are done via the WebSocket
protocol. To make it work on the same machine as the RIC, the IP address has to be changed to
the local interface address in file /src/sdk/sdk_conf.py.

address\_ping = "ws://127.0.0.1:9990"
address\_msg = "ws://127.0.0.1:9991"
pubsub\_address = "ws://127.0.0.1:9992"

Tu run the xApp’s SDKover FlexRIC a Python virtual environment is created inside the SDK folder
and the appropriate requirements installed. To run the xApps each time, the same commands are
run except for the requirement’s installation.

$ python3.8 -m venv ./mosaic5g
$ source ./mosaic5g/bin/activate
$ pip3 install -r requirements.txt

$ python3.8 ./xapps/helloworld.py

4.2.2 xApp Challenge

During the Fall 2021 Workshop [14], the MOSAIC5G team proposed several challenges regarding
SMs and xApps, as part of their O-RAN implementation’s showcase. I have focused on the xApps
challenge as it is an interesting object of study for its novelty and great future possibilities as it
aims to do near real-time decision making with the use of AI/ML algorithms.

There has not been any public work on these challenges and very little information has been pub-
lished after the workshop, making it quite hard to even find the code as it is not included in the
GitLab repository. As part of the FlexRIC analysis, studying and designing an xApp was pursued.

There are three xApp challenges proposed, each with a 500 euro prize [14]:

• PDCP: Compute the throughput and loss rate per UE and per Base Station for TX and RX ,
and visualize it over time (e.g. matplotlib).

• RLC: Compute the RLC throughput and ARQ retransmission statistics in last 1 second in
terms of median, avg, deviation for TX, and visualize the m over time (e.g. matplotlib).
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• MAC: Compute the aggregated throughput rate per UE/RNTI for TX and RX, and visualize
it over time (e.g. matplotlib).

The OAI RLC mode is UM, so no re-transmission is done and therefore, the statistics provided by
the RLC SM regarding this are zero-ed. Moreover, as this deployment is going to be performed
with RFSIM, the PDCP stats for discarded packets that would be used to calculate the loss rate are
also zero.

Finally, as all challenges mention throughput as an objective, I have decided to design an xApp to
visualize the real-time Rx and Tx throughput of each layer.

4.2.3 O-RAN RIC connection

FlexRIC’s implementation not only includes a near-RT RIC but also an E2 Agent that integrates
withOAI’s gNB to communicate over the E2Interface complyingwith theO-RAN standard. There-
fore, the E2 Agent can speak to FlexRIC or to the O-RAN RIC implementation.

FlexRIC uses port 36421 as the E2AP server at the RIC, versus port 36422 that O-RAN standard
uses. This means that the gNB E2Agent tries to connect to a RIC at that port. To change the default
port address, we can modify the source code file FlexRIC/src/agent/e2ap_agent_api.c (line
71) where the constant e2ap_server_port is defined. Then we rebuild FlexRIC. Wireshark’s
E2AP protocol port has to be changed also to view these messages.

The RIC’s IP address can also be modified in case the gNB and near-RT RIC are not in the same
machine. To do so, simply change the value in FlexRIC/FlexRIC.conf, without the need to
rebuild.

The O-RAN RIC had been already deployed at the iTEAM Lab on Kubernetes. On this configura-
tion, the RIC cluster does not publicly expose the e2term SCTP endpoint, and so a workaround is
to create a socat to route from one location to another. This can be done with the following script:

# ! / b i n / bash

i f [ $# −ne 1 ] ; t h en
echo ” need one p a r ame t e r ”
e x i t
f i

k i l l a l l s o c a t
s e t −x
i p =10 . 9 7 . 1 94 . 5 3 − Kube rne t e s e2term ’ s IP a d d r e s s −

f o r ( ( c =0; c<$1 ; c++ ) ) ; do
l e t p o r t =36421+ $c
nohup s o c a t SCTP4−LISTEN : $ po r t SCTP4 : $ i p :36422 &
done

n e t s t a t − t u l p nS

When a E2Agent is connected to the e2term node at the RIC, the e2mgr nodewill show the E2Setup
procedure and some information about the connected gNB’s can be retrieved via an API request.

45





Chapter 5

Results and Discussion

In this chapter, the results obtained using the setup and tools described in chapters 3 and 4 are ex-
posed and discussed. It begins with the OAI RAN deployment and execution, explaining different
modes and why a RF simulator had to be used instead of the USRPs, and conducting a throughput
benchmark. Next comes the FlexRIC analysis and an explanation of the xApp designed. Finally,
a newer OAI RAN version is tested with USRPs, also measuring is throughput.

5.1 OAI RAN

The aim of OAI RAN is to create a wireless communication link between to machines to allow data
to be transmitted. During the deployment of the OAI RAN, some problems where encountered and
so different modes and radio heads are used, all of which is described below.

5.1.1 Stand-Alone mode

When executing in SA mode, the UE follows the random access procedure by decoding the MIB
and SIB1 and sending the RRC Setup Request to arrive to UE State NR_RRC_CONNECTED. But as
no Core has been linked in this RAN deployment, the gNB cannot connect with the AMF and so it
cannot proceed with the UE attachment. Thus, this mode of operation is not suitable for this RAN
study, as expected. Nonetheless, some valuable information can still be extracted from the SA
analysis from the gNB’s Broadcast Channel (BCH) and the incomplete UE attachment procedure.

It must be noted that this test in SA mode is performed using USRPs and they are able to success-
fully communicate over-the-air (OTA), this will be important later.

The gNB and UE logs show the message exchange for the attachment procedure, indicating that it
is not possible to successfully finish it because no AMF is present. The process goes as follows:
First, the UE detects sync, decodes the MIB, SIB1 and sends RA message 1. Next, the gNB sends
message 2 with the preamble index the UE is expecting. The UE finds this value and transmits
message 3. Then the gNB sends message 4 with the RNTI to conclude the RA procedure and
changes to state NR_RRC_CONNECTED. Finally, the UE sends a RRCSetupComplete message to
arrive at the Core, but the gNB informs that it cannot arrive as no AMF is associated.
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− UE log −

[PHY] [SCHED] [UE] Check a b s o l u t e f r e qu en cy DL 3319680000 .000000 , UL 3319680000.000000 (RF ca rd 0 , o a i _ e x i t 0 ,
c h anne l 0 , rx_num_channe l s 1 )

[PHY] S t a r t i n g sync d e t e c t i o n
[PHY] [UE t h r e a d Synch ] Running I n i t i a l Synch (mode 6)
[PHY] [UE] n r _ s ynch r o_ t ime : Sync s ou r c e = 0 , Peak found a t pos 4668 , v a l = 1225231225 (90 dB ) avg 63 dB , f f o

0 .000000
PSS e x e c u t i o n d u r a t i o n 336673 mic ro s econds
[PHY] [UE0] I n i t i a l sync : E s t ima t e d PSS p o s i t i o n 4668 , Nid2 0
[PHY] sync_pos 4668 s s b _ o f f s e t 4524
[PHY] C a l l i n g s s s d e t e c t i o n ( normal CP)
[PHY] [UE0] I n i t i a l sync : s t a r t i n g PBCH d e t e c t i o n ( r x _ o f f s e t 0 )
[NR_RRC] Con f i g u r i n g MAC f o r f i r s t MIB r e c e p t i o n
[PHY] [UE0] I n i t i a l sync : pbch decoded s u c e s s f u l l y
[PHY] TDD Normal p r e f i x : C e l l I d 0 me t r i c 18590 , phase 3 , pbch 0
[PHY] [UE0] In synch , r x _ o f f s e t 108 samples
[PHY] [UE 0] RRC Measurements => r s s i − i n f dBm ( d ig − i n f dB , g a i n 40) , N0 0 dBm, r s r p − i n f dBm/RE , r s r q − i n f dB
[PHY] [UE 0] Measured C a r r i e r Frequency 3319680000 Hz ( o f f s e t 0 Hz )

[NR_RRC] SIB1 decoded
[NR_MAC] NR band dup l ex s p a c i n g i s 0 KHz ( n r _ b a n d t a b l e [ 3 7 ] . band = 78)
[NR_MAC] NR band 78 , dup l ex mode TDD, dup l ex s p a c i n g = 0 KHz
[MAC] S e t t i n g TDD c o n f i g u r a t i o n p e r i o d t o 6
[PHY] TDD has been p r o p e r l y c o n f i g u r a t e d
[MAC] I n i t i a l i z i n g u l _ c o n f i g _ r e q u e s t . n um_s l o t s _u l = 3
[NR_RRC] [UE 0] : Log i c a l Channel UL−CCCH (SRB0 ) , Gen e r a t i n g RRCSetupRequest ( b y t e s 6 , gNB 0)
[PHY] Re synch r on i z i n g RX by 108 samples (mode = 6)
[MAC] I n i t i a l i z a t i o n o f 4− s t e p c o n t e n t i o n −based random a c c e s s p r o c edu r e
[PHY] PRACH [UE 0] i n s l o t 19 , p l a c i n g PRACH in p o s i t i o n 2828 , msg1 f r e qu en cy s t a r t 0 ( k1 0) , p r e amb l e _ o f f s e t 1 ,

f i r s t _ n o n z e r o _ r o o t _ i d x 0

[NR_MAC] [UE 0 ] [RAPROC] Got BI RAR subPDU 5 ms
[NR_MAC] [UE 0 ] [RAPROC] Got RAPID RAR subPDU
[NR_MAC] [UE 0 ] [RAPROC] [ 9 1 4 . 7 ] Found RAR wi th t h e i n t e n d e d RAPID 8
[NR_MAC] [RAPROC] [ 9 1 4 . 1 7 ] RA−Msg3 t r a n sm i t t e d

[MAC] [UE 0 ] [RAPROC] Frame 916 : r e c e i v e d c o n t e n t i o n r e s o l u t i o n i d e n t i t y : 0 x1cd7c1e54726 Te rm in a t i n g RA p ro c edu r e
[MAC] [UE 0 ] [ 9 1 6 . 1 ] [RAPROC] RA p ro c edu r e succeeded . CB−RA: Con t e n t i o n R e s o l u t i o n i s s u c c e s s f u l .
<DL−CCCH−Message ></DL−CCCH−Message >
[NR_RRC] [UE0 ] [RAPROC] Frame 916 : Log i c a l Channel DL−CCCH (SRB0 ) , Rece ived NR_RRCSetup RNTI e40a
[RRC] Rece ived mac_Cel lGroupConf ig from gNB
[MAC] Apply ing Ce l lGroupConf ig from gNodeB
[NR_RRC] [UE 0 ] , CONFIG_SRB1 1 co r r e s p o n d i n g t o gNB_index 0
[NR_RRC] [FRAME 00916 ] [RRC_UE] [MOD 00][] [ − − − MAC_CONFIG_REQ (SRB1 gNB 0) −−−>][MAC_UE] [MOD 0 0 ] [ ]
[NR_RRC] [UE 0] S t a t e = NR_RRC_CONNECTED (gNB 0)
[CONFIG] u i c c0 : 9 / 9 p a r ame t e r s s u c c e s s f u l l y s e t
[ SIM] UICC s imu l a t i o n : IMSI =2089900007487 , Ki= fec86ba6eb707ed08905757b1bb44b8f , OPc=c42449363bbad02b66d16bc975d77cc1
[NR_RRC] [UE 0 ] [RAPROC] Frame 916 : Log i c a l Channel UL−DCCH (SRB1 ) , Gen e r a t i n g RRCSetupComplete ( by te s41 , gNB 0)
[NR_MAC] [ 9 2 4 . 1 ] Rece ived TA_COMMAND 32 TAGID 1 CC_id 0

− gNB log −

[NR_PHY] [gNB 0 ] [RAPROC] Frame 913 , s l o t 19 I n i t i a t i n g RA p ro c edu r e wi th p reamble 8 , ene rgy 54 .0 dB ( I0 82 , t h r e s
120) , d e l a y 13 s t a r t symbol 0 f r e q i ndex 0

[NR_MAC] [gNB 0 ] [RAPROC] CC_id 0 Frame 914 , s l o t P 7 : Gene r a t i n g RA−Msg2 DCI , r n t i 0x010b , s t a t e 1 , CoreSetType 2
[NR_MAC] [gNB] Gene r a t e RAR MAC PDU frame 914 s l o t 7 p reamble i ndex 8 TA command 13
[NR_MAC] [gNB 0] Adding UE wi th r n t i 0 xe40a ( num_UEs 0)
[NR_MAC] [gNB 0 ] [RAPROC] PUSCH wi th TC_RNTI 0 xe40a r e c e i v e d c o r r e c t l y , add ing UE MAC Con t ex t UE_id 0 /RNTI 0 xe40a
[NR_MAC] [RAPROC] RA−Msg3 r e c e i v e d ( sdu_ l enP 8)
[NR_RRC] [FRAME 00914 ] [gNB ] [MOD 00 ] [ RNTI e40a ] [RAPROC] Log i c a l Channel DL−CCCH, Gene r a t i n g RRCSetup ( b y t e s 106)
[NR_MAC] Schedu l i ng RA−Msg4 f o r TC_RNTI 0 xe40a ( s t a t e 4 , f rame 916 , s l o t 1 )
[NR_MAC] [gNB 0] [RAPROC] CC_id 0 Frame 916 , s l o t P 1 : Gene r a t i n g RA−Msg4 DCI , s t a t e 4
[NR_MAC] ( ue 0 , r n t i 0 xe40a ) Rece ived Ack of RA−Msg4 . CBRA p ro c edu r e succeeded !
[NR_RRC] Rece ived message NR_RRC_DCCH_DATA_IND
[NR_RRC] Rece ived r r cSe tupComp le t e , 5g_s_TMSI : 0x123456789ABC , am f_ s e t _ i d : 0x48 ( 7 2 ) , am f_po i n t e r : 0x34 ( 5 2 ) , 5g TMSI :

0x56789ABC
[NR_RRC] [FRAME 00000 ] [gNB ] [MOD 00 ] [ RNTI e40a ] [RAPROC] Log i c a l Channel UL−DCCH, p r o c e s s i n g NR_RRCSetupComplete from

UE (SRB1 Ac t i v e )
[NR_RRC] [FRAME 00000 ] [gNB ] [MOD 00 ] [ RNTI e40a ] UE S t a t e = NR_RRC_CONNECTED
[NGAP] No AMF i s a s s o c i a t e d t o t h e gNB
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5.1.1.1 ROMES

For the UE to initiate the attachment procedure it has to first sync and decode the MIB and SIB1
that the gNB is broadcasting. To check the gNB’s BCH, R&S ROMES 4 is available. In it we can
see all 5G Base Stations (BS) broadcasting in a desired spectrum. Where iTEAM is located, there
are several mobile network operators with 5G BS that show up on ROMES. In Fig. 5.1, we can
locate our gNB on the left with MCC 208 (France) and MNC 99, and Orange and Vodafone to the
right. They both have Spanish MCC 214. In the middle there is another carrier with MNC 09 that
belongs to Orange although ROMES does not recognise it.

Figure 5.1: R&S ROMES 4 showing the 5G NR spectrum.

Operators assign a different Physical Cell Identifier (PCI) to differentiate their BS when more than
one are received simultaneously. Although our BS is composed of only one beam, it is common
for operators to set up several at a single BS and differentiate them by the SSB Index. ROMES’s
scanner displays several physical parameters for each beam in a BS in the form SSB Idx@PCI.
This information is shown in Fig. 5.2, where our beam 0@0 has the highest Reference Signal
Received Power (RSRP) of all, at -78.9dBm. It is not shown as the preferred beam (most to the
left in the right diagram) because it has a lower Signal-to-Interference-plus-Noise Ratio (SINR)
than 0@131 at 26dBm.

Figure 5.2: R&S ROMES 4 showing the 5G NR scanner.
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The big difference between ROMES and a spectrum analyzer is that the former can decode the
BCH’s information. Fig. 5.3 shows the parameters broadcasted by the gNB. First, the gNB info is
a summary provided by the program with information from the MIB and SIB1. It shows the PCI,
the providers’ MCC and MNC, the SCS, band, bandwidth, carrier frequency, TDD configuration
and SA support. The TDD configuration highlighted is very use full as it shows Downlink, Flexible
and Uplink slots in a frame. Our frames are 5ms long and contain 10 slots, and this format is a
very comprehensive way to understand it.

The MIB info is serves to help the UE locate the SIB1 and are not main parameters of the gNB.
Please note that the intra-Frequency Reselection (i.e. handover) is not allowed while the operators’
BS do allow it.

The full SIB1 information is available in Fig. 5.4 where MCC and MNC are specified, along with
the band, SCS and bandwidth for DL and UL. It also indicates the TDD configuration with its
periodicity, DL and UL slot allocation, and DL and UL symbols in the mixed slot.

(a) gNB info (b)MIB info

Figure 5.3: R&S ROMES 4 showing the SA BCH info.
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Figure 5.4: R&S ROMES 4 showing the SA SIB1 info.
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5.1.2 Phy-Test mode

Since the scope of this project does not include deploying a Core Network, the OAI option to go
to would be the phy-test. In this mode the UE attachment is simulated and the MIB, SIB1 and
RRC communication is replaced with two files from which this information is read.

The gNB log shows the UE RNTI 1234 that the phy-testmode auto-schedules and some param-
eters as the number of ulsch rounds and errors or the ulsch total bytes received.

[NR_PHY] Number o f bad PUCCH r e c e i v e d : 460
[NR_MAC] Frame . S l o t 512 .0
UE ID 0 RNTI 1234 ( 1 / 1 ) PH 0 dB PCMAX 0 dBm, ave r ag e RSRP −88 (8 meas )
UE 0 : d l s c h _ r o und s 1189 / 116 / 115 / 115 , d l s c h _ e r r o r s 115 , pucch0_DTX 460 , BLER 0.0000 MCS 0
UE 0 : d l s c h _ t o t a l _ b y t e s 1485061
UE 0 : u l s c h _ r o und s 387 / 385 / 382 / 381 , ulsch_DTX 1529 , u l s c h _ e r r o r s 381
UE 0 : u l s c h _ t o t a l _ b y t e s _ s c h e d u l e d 483363 , u l s c h _ t o t a l _ b y t e s _ r e c e i v e d 6245
UE 0 : LCID 4 : 675 by t e s TX

When running in this mode with USRPs, the UL channel is able to send some bytes to be re-
ceived by the gNB, but suddenly freezes and stops increasing just as the gNB scope shows stops
updating the PUSCH constellation. The number of bytes received by the gNB are logged as
ulsch_total_bytes_received and are a different number in each run and always very few.
In the UE Scope, we can see as the PDSCH and PDCCH constellations freezes after a few trans-
missions although the PBCH constellation keeps updating. After this moment, the ulsch_errors
increase continuously.

(a) gNB Scope (b) UE Scope

Figure 5.5: Execution with phy-test mode over USRPs
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5.1.2.1 Spectrum Analyzer

To aid debugging this situation, the spectrum analyzer is used to check for an adequate DL physical
transmission. The R&S FSW ’s screenshot in Fig. 5.6 shows that the analyzer is able to sync with
the gNB and show its PBCH 4QAM constellation diagram.

Figure 5.6: R&S FSW spectrum analyzer showing the gNB DL capture.

When asked to the developers they suggested increasing the pusch target SNR value in the config
file in case it is a power control issue but it does not solve the problem. Adjusting the gains also
does not result in substantial changes. This behaviour prevents communication using USRPs in
this version, and forces the use of a radio head alternative, to which OAI offers the RF Simulator.
Newer OAI versions do allow for USRP usage so we can conclude there is some kind of bug in
the current version.
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5.1.3 RF Simulator

Thus, the RF Simulator has to be used instead of the USRPs. In this version other users have
experimented issues when using radio heads and it could be due to an OAI bug, as it is mainly
tested with RFSIM during development.

Using the phy-test, rfsimulator and noS1 option, we are able to ping between the UE and
gNB.

5.1.3.1 Wireshark packet sniffing

Having finally established an adequate communication, we can analyse the messages transmitted
over the link using OAI’s T-tracer and Wireshark.

First, in Fig. 5.7 a general view of the default phy-test scheduling can be seen. In it the MIB
inside the SSB is periodically transmitted every 20ms, and in between are two 10ms frames. In
each frame up to 20 slots can be scheduled but in the default configuration only the first for DL
and UL is used. If more slots are configured using a bitmap and option -D or -U then more UL
and DL messages will lay between each MIB. In this Fig. several layer’s protocols are shown:
RRC for MIB, MAC and RLC. MAC messages indicate the transport channel used : ULSCH or
DLSCH. RLC messages indicate the direction and AM mode, as well as the control-plane and
ACK information.

Figure 5.7: Wireshark OAI Tracer’s capture showing a phy-test idle sequence.

In Fig. 5.8 we focus on the MIB message’s details where the different protocol’s headers are de-
coded. Some relevant information shown is the duplex mode TDD, direction, frame number and
slot number, together with the actual MIB information.
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Figure 5.8: Wireshark’s OAI Tracer capture showing a MIB message.

Fig. 5.9 details two MAC messages in both directions. We can highlight the default RNTI used by
the phy-test as well as the slot numbers. These two MAC messages and the previous MIB are
part of frame number 626. The MIB and DL MAC messages utilize the first two DL slots (0 and
1) and the UL MAC message utilizes the first UL slot (8). Based on the TDD configuration used,
the 10 slots TDD pattern repeats every 5ms and two repetitions fill up a frame. For this reason, 20
slots can be scheduled in each frame. Here only the first TDD repetition is used but later, when
performing the throughput benchmarks, up to 12 slots will be used in each frame.

(a) Down-link MAC message (b) Up-link MAC message

Figure 5.9: Wireshark’s OAI Tracer capture showing two MAC messages’ details.
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Apart from the continuously scheduled MAC messages in phy-test mode, a higher layer ping
message can be seen in Fig. 5.10. In it all three layer’s headers are shown, indicating that it is
an UL message, the RLC mode is AM containing data and it is user-plane information. Finally,
the data payload shows an incremental 2-bytes blocks that form the ping packet. Instead of being
random data it is sequential and some 16bit blocks can be decoded as ASCII text.

Figure 5.10: Wireshark OAI Tracer’s capture showing a UL ping message.
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5.1.3.2 Throughput benchmark

The Iperf performance tests done for this benchmark with the RF Simulator do not reflect the true
real-time throughput as would be with USRPs but it is still interesting and has been performed
in [27]. These benchmarks are performed with Iperf for different MCSs, PRBs and number of
slots.

The Iperf benchmarks have been performed over UDP with the server located at the UE and the
client at the gNB, for 60 seconds at a target bandwidth of 100Mbps. The UE server log’s results
are available in Table 5.1 along with the theoretical throughput in the format: [real/theoretical].
The measured jitter, or latency variation, for each test has also been recorded.

DL throughput in Mbps
50 PRBs 106 PRBs

# of slots 1 6 12 1 6 12
MCS 9 0.46 / 1.00 2.78 / 6.00 4.98 / 11.99 0.98 / 2.10 5.81 /12.60 9.15 / 25.20
MCS 16 0.91 /1.95 5.39 / 11.68 8.51 / 23.36 1.91 / 4.10 10.3 / 24.59 14.4 / 49.17
MCS 28 1.93 / 4.20 11.7 / 25.21 18.0 / 50.42 4.11 / 8.81 21.0 / 52.84 28.4 / 105.68

DL jitter in ms
50 PRBs 106 PRBs

# of slots 1 6 12 1 6 12
MCS 9 25.395 4.381 2.247 11.916 1.835 1.154
MCS 16 16.120 2.477 1.313 6.666 1.453 0.948
MCS 28 6.338 0.783 0.974 3.533 1.236 0.564

Table 5.1: RF Simulator UDP throughput benchmark

Together with the Iperf throughput benchmark, ping tests have been performed to measure latency
for a 56 bytes packet (84 bytes with headers). The latency is similar for every configuration at
around 25 mili-seconds round trip. This constant nature is due to the small size of the packet that
fits in a single slot in every run and thus it does not benefit from the increased TBS. If we would
have done this test with a higher packet size, it would have splitted into several slots in some
configurations and would not offer a more accurate latency estimation as it would be more like a
throughput estimation.

In Fig. 5.11 a comparison between the measured throughput and the theoretical throughput is dis-
played. The diagonal line represents a measured throughput equal to the theoretical one and so, if
the points are closer to it, it means there is less difference between them. In this case, as the RF
Simulator is not processing in real-time, the measured throughput is significantly lower than the
theoretical one and diverges more as more computing power is needed for more complex config-
urations.
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Figure 5.11: RF Simulator theoretical throughput vs. measured throughput
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5.2 FlexRIC

5.2.1 Near-RT RIC

The near_ric_sa executable is FlexRIC’s implementation of the Near-RT RIC, and when ex-
ecuted it waits for an incoming E2AP setup request. When the gNB is started, it automatically
sets up the E2AP interface with the RIC. The RIC in turn subscribes to the SM RAN Functions to
receive periodic reports.

− gNB −
[ E2 NODE] : mcc = 208 mnc = 99 mnc_d i g i t = 2 nd_ id = 3584
[ E2 AGENT] : RIC IP Address = 1 2 7 . 0 . 0 . 1
[ E2 AGENT] : I n i t i a l i z i n g . . .
[ E2 AGENT] : Opening p l u g i n from pa t h = / u s r / l i b / FlexRIC / l ibmac_sm . so
[ E2 AGENT] : Opening p l u g i n from pa t h = / u s r / l i b / FlexRIC / l i b s l i c e _ sm . so
[ E2 AGENT] : Opening p l u g i n from pa t h = / u s r / l i b / FlexRIC / l ibpdcp_sm . so
[ E2 AGENT] : Opening p l u g i n from pa t h = / u s r / l i b / FlexRIC / l i b r l c _ sm . so
[E2AP] Sending s e t u p r e q u e s t

− RIC −
[NEAR RIC ] : RIC IP Address = 1 2 7 . 0 . 0 . 1
[NEAR−RIC ] : I n i t i a l i z i n g
[NEAR−RIC ] : Loading SM ID = 142 wi th de f = MAC_STATS_V0
[NEAR−RIC ] : Loading SM ID = 145 wi th de f = SLICE_STATS_V0
[NEAR−RIC ] : Loading SM ID = 144 wi th de f = PDCP_STATS_V0
[NEAR−RIC ] : Loading SM ID = 143 wi th de f = RLC_STATS_V0
[E2AP] Rece ived SETUP−REQUEST from PLMN 208 .92 Node ID 42
[NEAR−RIC ] : Accep t i ng RAN f u n c t i o n ID 142 wi th de f = MAC_STATS_V0
[NEAR−RIC ] : Accep t i ng RAN f u n c t i o n ID 143 wi th de f = RLC_STATS_V0
[NEAR−RIC ] : Accep t i ng RAN f u n c t i o n ID 144 wi th de f = PDCP_STATS_V0
[NEAR−RIC ] : Accep t i ng RAN f u n c t i o n ID 145 wi th de f = SLICE_STATS_V0

− gNB −
[E2−AGENT] : SETUP−RESPONSE r e c e i v e d

− RIC −
[E2AP] SUBSCRIPTION REQUEST g e n e r a t e d
[E2AP] SUBSCRIPTION RESPONSE r e c e i v e d
[ iApp ] : S e r v e r p ing s t a r t e d
[ iApp ] : S e r v e r Reques t / Reply s t a r t e d

The RIC saves a log file log.txt with the received stats from the RIC Indication reports. Even
if the data could be retrieved from this file to be analyze, the preferred way is through the xApps.
The reported data is stored as shown below:

mac_ s t a t s : t s t amp =1660813571933961 , d l _ a g g r _ t b s =2346 , u l _ a g g r _ t b s =1853 , . . .
r l c _ s t a t s : t s t amp =1660813571934203 , t x pdu_pk t s =2346 , t x pdu_by t e s =1853 , . . .
p d c p _ s t a t s : t s t amp =1660813571934430 , t x pdu_pk t s =83 , t x pdu_by t e s =194 , . . .
s l i c e _ s t a t s : t s t amp =1660813571934635

It has to be noted that this log is only saved on the first attachment of the gNB to the RIC, so the
RIC must be stopped and re-executed each time the gNB runs. This also happens with the xApps
as, even though the RIC accepts multiple gNB setups, only the first one can communicate with the
xApps.
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5.2.1.1 Wireshark packet sniffing

The E2 Interface messages can be captured using Wireshark on the loopback interface of the ma-
chine (127.0.0.1) , as both the gNB and RIC are running on it. The E2 Agent in the gNB open a
random SCTP port to stablish communication with the RIC at the fixed port 36421. The E2AP
setup, the following RIC subscriptions sequence, and the RIC indication messages captured by
Wireshark can be seen in Fig. 5.12.

Figure 5.12: E2AP Setup and RIC subscription sequence

The exchange of packets, as defined by the standard, is reproduced in the following sequence
diagram:

E2 Agent (gNB) Near-RT RIC

SCTP INIT
SCTP INIT ACK

E2AP E2SetupRequest
E2AP E2SetupResponse

E2AP RICSubscriptionRequest
E2AP RICSubscriptionResponse

E2AP RICIndication
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E2SetupRequest The packet informs the RIC about which type of E2 Node it is (gNB), the plmn
(2f899) and ID (e000), as well as indicating a list of RAN Functions IDs (142), names and E2SM.
This packet is shown in Wireshark as Malformed although it is properly decoded by the E2 Node,
and the raw data shows the 4 RAN Function names.

E2SetupResponse The setup response informs about the plmn, RIC ID and the list of RAN
Functions accepted, which in this case are all four requested: MAC_STATS_V0, RLC_STATS_V0,
PDCP_STATS_V0 and SLICE_STATS_V0. It must be noted that the Slice SM is not implemented
in this version.

(a) E2SetupRequest (b) E2SetupResponse

Figure 5.13: E2AP Setup packet details
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RICSubscriptionRequest The subscription packet must inform the ID of the RIC who sends it,
a Requestor ID,the RAN Function it wants to subscribe to, the Event Trigger definition and the
type of action that the E2 Node should perform when triggered. In this case, RIC 0 is subscribing
to RAN Function 142 (MAC_STATS_V0) to receive a periodic (event trigger: 0) report (action type:
0). The subscription request is done for each RAN function the RIC wants to get reports from.

RICSubscriptionResponse The subscription response communicates the admitted RIC actions
for the RAN function requested. After this response, the E2 Node will start with its procedure of
waiting for an event trigger and sending a RICIndication message with the pre-defined report
to the RIC.

(a) RICSubscription Request (b) RICSubscription Response

Figure 5.14: RIC Subscription packet details
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RICIndication The indication messages report to the RIC the information pre-defined by the
SM. It indicates the RIC ID and unique Requestor ID for each subscription, the RAN Function ID,
the indication type, the indication header and the data message.

Figure 5.15: RIC Indication packet details
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SM iApp Indication Focusing on the FlexRIC SDK structure shown in Fig. 2.12, we can ap-
preciate the distinction between the Server library and the iApps. On the former one lays the E2
Server where the RICIndication messages are received. On the latter, are located the SM iApps
that handle the information provided by these indications. The connection from the E2 Server to
the SM iApps goes through the loopback interface towards the iApp influx UDP port 8094. For
each RICIndication message there is an iApp message carrying the decoded text information in
raw byte formatting.

Figure 5.16: RIC and iApp Indication sequence

The UDP packet contains the stats in text form as the data contents. The ICMP packet is quite
strange as it informs the port 8094 that itself is unreachable. It also contains the raw text stats.

(a) iApp UDP Indication (b) iApp ICMP Destination Unreachable

Figure 5.17: iApp Indication packets details
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5.2.2 Available xApps

The xApps provided by MOSAIC5G at the workshop have a very simple functionality. They
simply subscribe to the RAN functions and then either display the incoming reports or use the API
function get_attr() to inquire some specific attributes. Nonetheless it is interesting to monitor
these statistics in real-time while performing Ping or Iperf tests to see how the values change.

The monitoring.py xApp makes use of the API to retrieve information as the number and RNTI of
connected UEs and the layer’s stats. As you can see, the stats show three different values because
the API request ask for a window of 3 reports to be shown.

The other three have a similar functionality by just displaying 1 every N incoming reports, and
some parameters require more explanation. In the rlc.py and pdcp.py stats there are many 0 values
corresponding to stats not yet implemented, stats that have to do with RLC AM mode and PDCP
out of order or dropped packets that with RFSIM do not occur. Besides, the RLC mode is set to
1 (Unacknowledged mode UM) contradicting the RLC mode shown in Fig. 5.10. Furthermore, it
shows a PDCP mode that the standard does not describe. I suppose it is an error caused by copying
the variables from the RLC layer.

− mon i t o r i n g . py −
COMM : INFO : CONNECTED TO RIC
XAPP : INFO : No ue connec t ed
XAPP : INFO : Number o f connec t ed UEs : 1
XAPP : INFO : RNTI of connec t ed UEs : [ 4660 ]
XAPP : INFO : Number o f s t o r e d pdcp msg r e c e i v e d from t h e 1 s t UE: 1000
XAPP : INFO : Number o f s t o r e d r l c msg r e c e i v e d from t h e 1 s t UE: 1000
XAPP : INFO : Number o f s t o r e d mac msg r e c e i v e d from t h e 1 s t UE: 1000
XAPP : INFO : pdcp : [ [ { ’ pdcp . r n t i ’ : [ 4660 , 4660 , 4660 ] , ’ pdcp . t s t amp ’ :

[1661427633155597 , 1661427633150598 , 1661427633145598] , ’ pdcp . t xpdu_by t e s ’ : [528538 ,
528538 , 528538] , ’ pdcp . rxpdu_by t e s ’ : [528488 , 528488 , 528488 ] } ] ]

XAPP : INFO : r l c : [ [ { ’ r l c . r n t i ’ : [ 4660 , 4660 , 4660 ] , ’ r l c . t s t amp ’ : [1661427633155613 ,
1661427633150620 , 1661427633145614] , ’ r l c . t xpdu_by t e s ’ : [749104 , 749104 , 749104] , ’
r l c . t x p d u_ r e t x _ pk t s ’ : [ 0 , 0 , 0 ] } ] ]

XAPP : INFO : mac : [ [ { ’ mac . r n t i ’ : [ 4660 , 4660 , 4660 ] , ’mac . t s t amp ’ : [1661427633155546 ,
1661427633150547 , 1661427633145547] , ’mac . d l _ a gg r _ t b s ’ : [12734804 , 12734804 ,
12734804] , ’mac . u l _ a gg r _ t b s ’ : [12727310 , 12727310 , 12727310 ]} ] ]

XAPP : INFO : Number o f Mac msg r e c e i v e d r e cv so f a r : 2000
XAPP : INFO : Number o f RLC msg r e c e i v e d r e cv so f a r : 2000
XAPP : INFO : Number o f PDCP msg r e c e i v e d r e cv so f a r : 2000

− mac_cb . py −
XAPP : INFO {

” d l _ a g g r _ b y t e s _ s d u s ” : 0 ,
” d l _ a gg r _p r b ” : 306050 ,
” d l _ a g g r _ r e t x _ p r b ” : 0 ,
” d l _ a gg r _ s du s ” : 6121 ,
” d l _ a g g r _ t b s ” : 7645129 ,
” dl_mcs1 ” : 9 ,
” dl_mcs2 ” : 0 ,
” phr ” : 0 ,
” pucch_sn r ” : 62 ,
” pu s ch_ sn r ” : 51 ,
” r n t i ” : 4660 ,
” t s t amp ” : 1661427547920547 ,
” u l _ a g g r _ b y t e s _ s d u s ” : 0 ,
” u l _ a gg r _p r b ” : 306100 ,
” u l _ a gg r _ s du s ” : 4 ,
” u l _ a g g r _ t b s ” : 7637635 ,
” ul_mcs1 ” : 0 ,
” ul_mcs2 ” : 0 ,
” wb_cqi ” : 0
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− r l c _ c b . py −
XAPP : INFO {

”mode ” : 1 ,
” r b i d ” : 1 ,
” r n t i ” : 4660 ,
” r x bu f _ o c c _by t e s ” : 0 ,
” r x b u f _ o c c _pk t s ” : 0 ,
” r xpdu_by t e s ” : 3028613 ,
” rxpdu_dd_by t e s ” : 0 ,
” rxpdu_dd_pk t s ” : 0 ,
” rxpdu_dup_by t e s ” : 0 ,
” rxpdu_dup_pk t s ” : 0 ,
” rxpdu_ow_bytes ” : 0 ,
” rxpdu_ow_pkts ” : 0 ,
” r xpdu_pk t s ” : 5180 ,
” r x p d u _ s t a t u s _ b y t e s ” : 0 ,
” r x p d u _ s t a t u s _ p k t s ” : 0 ,
” r x s d u _by t e s ” : 807081932 ,
” r x s du_dd_by t e s ” : 697897500 ,
” r x s du_dd_pk t s ” : 465265 ,
” r x s d u_pk t s ” : 538069 ,
” t s t amp ” : 1661427864265616 ,
” t x b u f _ o c c _ b y t e s ” : 0 ,
” t x b u f _ o c c _ p k t s ” : 0 ,
” t x pdu_by t e s ” : 13577390 ,
” t xpdu_dd_by t e s ” : 0 ,
” t xpdu_dd_pk t s ” : 0 ,
” t x pdu_pk t s ” : 14086 ,
” t x p d u _ r e t x _ b y t e s ” : 0 ,
” t x p d u _ r e t x _ p k t s ” : 0 ,
” txpdu_segmen ted ” : 15384 ,
” t x p d u _ s t a t u s _ b y t e s ” : 0 ,
” t x p d u _ s t a t u s _ p k t s ” : 0 ,
” txpdu_wt_ms ” : 0 ,
” t x s d u _ b y t e s ” : 3014370 ,
” t x s d u _ p k t s ” : 2819

}
− pdcp_cb . py −

XAPP : INFO {
”mode ” : 0 ,
” r b i d ” : 1 ,
” r n t i ” : 4660 ,
” r xpdu_by t e s ” : 3014370 ,
” rxpdu_dd_by t e s ” : 0 ,
” rxpdu_dd_pk t s ” : 0 ,
” r xpdu_oo_by t e s ” : 0 ,
” rxpdu_oo_pk t s ” : 0 ,
” r xpdu_pk t s ” : 2819 ,
” r xpdu_ ro_coun t ” : 0 ,
” rxpdu_sn ” : 2819 ,
” r x s d u _by t e s ” : 405274316 ,
” r x s d u_pk t s ” : 270558 ,
” t s t amp ” : 1661427791040599 ,
” t x pdu_by t e s ” : 405815432 ,
” t x pdu_pk t s ” : 270558 ,
” txpdu_sn ” : 221 ,
” t x s d u _ b y t e s ” : 3008684 ,
” t x s d u _ p k t s ” : 2818

}
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5.2.2.1 Wireshark packet sniffing

The FlexRIC’s E42AP interface can be inspected with Wireshark as seen in Fig. 5.18, to view the
xApp’s communication.

Figure 5.18: xApp communication over the E42AP interface
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The Wireshark capture of the iApp ↔ xApp (monitoring.py) communication over the E42AP
interface begins with the TCP establishment handshake and HTTP protocol INIT to switch to the
WebSocket protocol with which E42AP is implemented.
Then, the iApp ping address port 9990 is used by the xApp to initiate the communication and ping
the iApp indicating its ID. Over the iApp message address port 9991, the xApp requests the type
of report and reporting interval indicating the ID previously told for each SM (RAN Function) it
is interested in subscribing to.
Finally, once the E2 Node sends the RICIndication message and it is forwarded to the SM iApp, the
iApp uses its pub/sub address port 9992 to report the requested stats. For some unknown reason,
the reports are sent after the INIT and PING even if the xApp does not subscribe to them. This
happens in several runs.

All of this packet exchange over E42AP is logged by the RIC as well. The following log shows
three consecutive xApps connecting to the RIC.

[E2AP] SUBSCRIPTION RESPONSE r e c e i v e d
[E2AP] SUBSCRIPTION RESPONSE r e c e i v e d
[ iApp ] : S e r v e r p ing s t a r t e d
[ iApp ] : S e r v e r Reques t / Reply s t a r t e d
[E2AP] SUBSCRIPTION RESPONSE r e c e i v e d
Value o f t h e b u f f e r i n pa r s e_xapp = INIT
NODE0: RECEIVED INIT
Befo re g e n e r a t e i d
g e n e r a t e i d c a l l e d
A f t e r g e n e r a t e i d
NODE0: SENDING REQUEST_ID 1
Value o f t h e b u f f e r i n pa r s e_xapp = ID=1;PING
NODE0: RECEIVED PING
Value o f t h e b u f f e r i n pa r s e_xapp = ID=1;PING
NODE0: RECEIVED PING
[ iApp ] : D i s connec t ed xApps = 1
[ iApp ] : De l e t e d xApp i d = 1
Value o f t h e b u f f e r i n pa r s e_xapp = INIT
NODE0: RECEIVED INIT
Befo re g e n e r a t e i d
g e n e r a t e i d c a l l e d
A f t e r g e n e r a t e i d
NODE0: SENDING REQUEST_ID 2
Value o f t h e b u f f e r i n pa r s e_xapp = ID=2;PING
NODE0: RECEIVED PING
Value o f t h e b u f f e r i n pa r s e_xapp = ID=2;PING
NODE0: RECEIVED PING
[ iApp ] : D i s connec t ed xApps = 1
[ iApp ] : De l e t e d xApp i d = 2
Value o f t h e b u f f e r i n pa r s e_xapp = INIT
NODE0: RECEIVED INIT
Befo re g e n e r a t e i d
g e n e r a t e i d c a l l e d
A f t e r g e n e r a t e i d
NODE0: SENDING REQUEST_ID 3
Value o f t h e b u f f e r i n pa r s e_xapp = ID=3;PING
NODE0: RECEIVED PING
Value o f t h e b u f f e r i n pa r s e_xapp = ID=3;REQUEST;REPORT=MAC; INTERVAL=10;
NODE0: RECEIVED REQUEST
Value o f t h e b u f f e r i n pa r s e_xapp = ID=3;REQUEST;REPORT=RLC; INTERVAL=10;
NODE0: RECEIVED REQUEST
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5.2.3 Throughput xApp

The matplotlib library suggested to visualize the data is not best suited for this use case for sev-
eral reasons. On the one side it lacks multi threading environment support, as it is not thread-safe,
and most GUI backends require being run from the main thread which, with this implementation
of xApps, was not feasible. [31] On the other side, while having a GUI to show the data is a nice
feature to have, it is unsuitable for remote command console access over ssh, which is a common
use case. In fact, the UHD includes a utility to check the correct USRP function by showing the
radio spectrum and, as it is meant to be run in a console environment and over ssh, it uses text
characters to graph the spectrum.

Following this idea, I propose another library to graph with text in the console: Plotille. This open-
source library allows “to visualize plots, scatter plots, histograms and heatmaps in the terminal
using braille dots, and foreground and background colors - with (almost) no dependencies.” [32]
It is designed around the Figure class, used to indicate the plot type and modify the plot’s visual
appearance before printing it to the console as any other print to terminal.

The throughput xApp is based on the get_attr function of the xApp SDK’s API, in a similar
way to the monitoring xApp. This function returns a list of attributes that can be filtered by UE,
attribute and amount of past messages.

Even though the challenges’ objective is to compute throughput per UE or Base Station, with
the current setup with phy-test mode only one gNB and UE can be connected and so, even if
the implementation would allow to distinguish, we would not be able to see it. Therefore, this
throughput xApp design computes total throughput for the gNB and UE.

Regarding the throughput calculation, it is done by computing the difference in data bytes over a
timestamp delta increment, for each pre-defined period in the variable period_to_run_logic.
The data unit used for each layer are the following stats: mac.dl_aggr_tbs, mac.ul_aggr_tbs,
rlc.txpdu_bytes, rlc.rxpdu_bytes, pdcp.txpdu_bytes and pdcp.rxpdu_bytes.

As this API request and throughput calculation needs to be done periodically, the logic must be de-
fined inside the run_periodic function and the Xapp class object’s variable trigger_periodic_func
set to True.

For the xApp to be able to call the API function it must subscribe to the report of the SMs, although
no message handler is needed as it does not rely in the periodic reports to get the stats. Another
logic could be designed to do so, instead of using the API function.

In order to hold the requested and calculated data, several variables have to be declared. For each
incoming timestamp and data stat a list is created. The data lists are appended an initial value of 0 to
allow the computing logic to work for the first period. The calculated time deltas and throughputs
the deque variable type (Doubly Ended Queue from the collectionsmodule) is used so that the
graph can show the last a fixed number of periods without shrinking over long runs. Finally, a flag
to mark the first time the logic is executed is set to 1.

For the terminal console graph itself, the Plotille Figure object is created and labeled. For
aesthetics purposes, the y axis’ lower limit is zero-ed. The x axis limits cannot be set because
for long runs only a set amount of periods will be shown and will not start in 0 but in a different
time delta each period. Furthermore, the graph’s height and width are adjusted to fit the terminal
window size and the axis ticks formatted to three decimal places.
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Regarding the logic itself, it is repeated equally for each layer and transmission direction. It starts
with the API attributes request and appended to the variables by selecting the appropriate list values
returned by the get_attr function. Then the time deltas are computed as the difference of the
actual and prior values in the timestamp list. The first period will return a delta of 0 as only one
element is in the list and it is subtracted from itself. The timestamps provided by the RIC are
microsecond based (16-digit) so the deltas are converted to seconds.

The first time the logic is executed the throughput cannot be computed as only one absolute bytes
stat is provided and the change from 0 to a high absolute value results in a spike in throughput. To
solve this, the first period appends the bytes stat to the The following times the throughput can be
computed as the difference of the last two bytes stats over the time delta increment and have the
figure plot printed.

The throughput xApp python code can be found at Appendix C.

Thanks to this xApp there is now a much clearer and graphical way to view the data flow within
each layer. With it is possible to analyze each layer’s throughput when idle in phy-test mode
and when performing a ping or Iperf benchmark.

Figure 5.19: All layers’ throughput xApp showing different Iperf runs.

As mentioned previously, in phy-test mode random UL and DL traffic is generated at every
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scheduling opportunity by both gNB and UE. This scheduling is done by the MAC layer. For this
reason, the MAC throughput is constant when idling (i.e. not sending traffic over higher layers).
The MAC constant throughput value depends on the amount of PRBs, MCS, number of layers and
slot allocation for both UL and DL configurable with the phy-test option. In Fig. 5.19 these
parameters are set differently for UL and DL as an example.

The RLC and PDCP layers show no throughput when idle, and an increase when performing ping
or Iperf tests.

When performing an Iperf benchmark over UDP with high bandwidth (-b option) as in Fig. 5.20,
the Tx PDCP layer shows an overly high DL throughput that does not totally flow to the RLC
layer. This is because it is an unacknowledged mode, and so Iperf doesn’t wait and sends all
packets during 10s. The RLC layer then buffers all the incoming stream and sends it a the rate it
can until the buffer empties

Figure 5.20: Throughput xApp showing three DL UDP iperf test with 1M, 10M and 50M of
bandwidth.
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When performing the test over TCP as in Fig. 5.21, the PDCP layer’s throughput is limited and
doesn’t cause the RLC layer to buffer. Therefore, the RLC and PDCP layers show traffic during
the 10 seconds that the test lasts for.

Figure 5.21: Throughput xApp showing three DL TCP iperf test with 1M, 10M and 50M of
bandwidth.
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In reception, the RLC and PDCP throughput is limited to the MAC’s throughput. It is interesting
to see in Fig. 5.22 how in TCP the TX throughput show the ACKs while in UDP it does not.

Figure 5.22: Throughput xApp showing a UL TCP iperf test.
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5.2.4 O-RAN RIC connection

Having changed the RIC’s IP address and port to match O-RAN’s and having FlexRIC and OAI
rebuild, the gNB can be executed. Its E2 Agent will now connect to O-RAN’s RIC.

At this moment, the e2mgr’s log at the E2Setup procedure shows the incoming E2 data from the
gNB indicating its plmn-id and available RAN Functions, as well as the connectivity status, among
other messages.

{” c r i t ” : ” INFO” , ” t s ” :1659089494033 ,” i d ” : ” E2Manager ” , ”msg ” : ” # Rn ibDa t aSe r v i c e . SaveNodeb
nodeb In fo : ran_name : \ ” gnb_208_099_0000e000 \ ” g l o b a l _ n b _ i d : { plmn_id : \ ” 0 2 F899 \ ” nb_ id
: \ ”0000000000000000111000000000 \”} node_ type :GNB gnb : { r a n _ f u n c t i o n s : { r a n _ f u n c t i o n _ i d
:142 r a n _ f u n c t i o n _ d e f i n i t i o n : \ ” 4 D41435F53544154535F5630 \ ” } r a n _ f u n c t i o n s : {
r a n _ f u n c t i o n _ i d :143 r a n _ f u n c t i o n _ d e f i n i t i o n : \ ” 5 2 4 C435F53544154535F5630 \ ” }
r a n _ f u n c t i o n s : { r a n _ f u n c t i o n _ i d :144 r a n _ f u n c t i o n _ d e f i n i t i o n : \ ”504443505
F53544154535F5630 \ ” } r a n _ f u n c t i o n s : { r a n _ f u n c t i o n _ i d :145 r a n _ f u n c t i o n _ d e f i n i t i o n
: \ ” 5 3 4 C4943455F53544154535F5630 \ ” } gnb_ type :GNB} a s s o c i a t e d _ e 2 t _ i n s t a n c e _ a d d r e s s
: \ ” 1 0 . 1 0 4 . 2 3 2 . 6 4 : 3 8 0 0 0 \ ” s e t up_ f rom_ne two rk : t r u e ” , ”mdc ” : { ” t ime ”:”2022 −07 −29
10 : 1 1 : 3 4 . 0 33 ” } }

{” c r i t ” : ” INFO” , ” t s ” :1659089494072 ,” i d ” : ” E2Manager ” , ”msg ” : ” # RanConnec tS ta tusChangeManager
. ChangeS t a t u s RAN name : gnb_208_099_0000e000 , u pd a t i n g RanLis tManager . . . s t a t u s :
CONNECTED” , ”mdc ” : { ” t ime ”:”2022 −07 −29 10 : 1 1 : 3 4 . 0 72 ” } }

The connection status and identification for the E2 Agent can also be inquired via an cURL API
request to the e2mgr.

$ c u r l −X GET h t t p : / / 1 0 . 1 0 3 . 6 6 . 1 8 1 : 3 8 0 0 / v1 / nodeb / s t a t e s | j q . − e2mgr −
% To t a l % Rece ived % Xferd Average Speed Time Time Time Cu r r e n t

Dload Upload To t a l Spen t L e f t Speed
100 439 100 439 0 0 428k 0 −−:−−:−− −−:−−:−− −−:−−:−− 428k
[
{

” inventoryName ” : ” gnb_010_015_000002a0 ” ,
” g l oba lNb Id ” : {

” plmnId ” : ”10 F051 ” ,
” nbId ” : ”0000000000000000000000101010”

} ,
” c o n n e c t i o n S t a t u s ” : ”DISCONNECTED” − P r e v i o u s gNB conn e c t i o n −

} ,
{

” inventoryName ” : ” gnb_208_099_0000e000 ” ,
” g l oba lNb Id ” : {

” plmnId ” : ”02 F899 ” ,
” nbId ” : ”0000000000000000111000000000”

} ,
” c o n n e c t i o n S t a t u s ” : ”CONNECTED” − Ac tua l gNB conn e c t i o n −

}

The communication between the E2 Agent and O-RAN RIC over the E2 Interface can be also seen
in Wireshark. It is not shown because it is very similar to that of Fig. 5.12
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5.3 OAI RAN New Version

FlexRIC’s first version under master branch integrateswithOAI tag integration_2021_wk51_a
from December 2021, while FlexRIC’s most recent version underdev branch integrates with the
actively updated branch nr-mac-rlc-pdcp-stats. At explore the possibilities of using true ra-
dio heads in the deployment, this new OAI version was installed, although FlexRIC’s dev version
was not ready yet and could not be checked out.

This new version solves the issue with the USRPs that the OAI’s older version had, and so it can be
run without the RF Simulator, still in phy-testmode. The config file used for the execution is the
one provided in /ci-scripts/conf_files/gnb.band78.sa.fr1.106PRB.usrp310.conf.

In this version and using USRPs the gNB and UE logs in Fig. 5.23 show as it can send and receive
bytes to LCID 4, the ulscg_total_bytes_received counter increases and the ulsch_errors
and remain constant.

(a) gNB log (b) UE log

Figure 5.23: OAI RAN newer version’s logs

The Scopes in Fig. 5.24 show a correct transmission over every channel. The gNB’s PUSCH
reception is correct, showing a proper log-likelihood ratio for a 4QAM constellation. The UE’s
PDSCH 64QAM constellation does update and shows a log-likelihood adequate for an over-the-air
(OTA) channel. In general, in comparison with the previous version tested, the scope shows a good
transmission and updates in real-time.
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(a) gNB scope (b) UE scope

Figure 5.24: OAI RAN newer version’s scopes

5.3.1 Throughput Benchmark

Having finally accomplished OTA transmission with the USRPs as radio heads, it is key to also
benchmark the throughput available. These results will differ from the ones performed with the RF
Simulator as it is now possible to run at real-time processing speeds, instead than at CPU capable
speeds. As a result of this, there are some configurations in which the CPU will lack processing
power, making the UE unstable and dropping USRP incoming frames, so no benchmark could be
performed in those situations. Furthermore, real-time speed means that the RLC layer buffer can
overflow if too much incoming data stream is injected. In these cases, the gNB will output many
warnings as the following, indicating that the SDU buffer is full and the incoming SDU is rejected.

[RLC] / home / campus5g / Mosaic5G / oa i −FlexRIC −dev / o p e n a i r 2 /LAYER2/ n r _ r l c /
n r _ r l c _ e n t i t y _ um . c : 5 8 0 : n r _ r l c _ e n t i t y _ um_ r e c v _ s d u : warn ing : SDU r e j e c t e d ,
SDU b u f f e r f u l l

This warning indicates that the RLC entity used corresponds to the UM mode, matching what the
xApps showed in section 5.2.2 and contradicting the Wireshark packets in Fig. 5.10. Although this
is a new OAI version, I do not thing the default RLC mode has changed and so, after not finding
any code mismatch, I suspect the correct RLC mode is UM.

In other cases, as the RLC layer is in UM mode, if some packet is lost in transmission there is no
way to fix this and the UE outputs the following warnings:

[RLC] op en a r i 2 / l a y e r 2 / n r _ r l c / n r _ r l c _ e n t i t y _ um . c :352 n r _ r l c _ e n t i t y _ um_ r e c v _ pdu :
warn ing : d i s c a r d PDU, SN (1792 ) < r x _n e x t _ r e a s s emb l y (1796 )
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− or −
[PDCP] d i s c a r d NR PDU rcvd_coun t = 1600 , e n t i t y −> r x _ d e l i v 1605 , s d u _ i n _ l i s t 0

DL throughput in Mbps
50 PRBs 106 PRBs

# of slots 1 6 12 1 6 12
MCS 9 0.92 / 1.00 5.04 / 6.00 6.85 / 11.99 1.94 / 2.10 9.41 /12.60 —
MCS 16 1.79 /1.95 8.73 / 11.68 — 3.80 / 4.10 — —
MCS 28 3.89 / 4.20 18.8 / 25.21 — 8.19 / 8.81 — —

DL jitter in ms
50 PRBs 106 PRBs

# of slots 1 6 12 1 6 12
MCS 9 12.585 2.258 1.407 6.061 1.660 —
MCS 16 6.375 1.286 — 3.381 — —
MCS 28 3.191 0.831 — 1.779 —- —

Table 5.2: Over-The-Air UDP throughput benchmark

Together with the Iperf throughput benchmark, ping test have been performed to measure latency
at around 11.5 mili-seconds for every stable configuration. As with the RFSIM benchmark, in
Fig. 5.25 a comparison between theoretical and measured throughput is shown. There are several
points zero-ed to show that those configurations were unstable. The points that to show a through-
put value appear closer to the theoretical line, indicating that the scenario with USRPs achieves a
throughput closer to the maximum.

Figure 5.25: USRP theoretical throughput vs. measured throughput

It is possible to compare the throughput results from the RFSIM and USRP scenarios, as seen in
Fig. 5.26, where lines of best fit have been added. For the RFSIM case, instead of a line is a
second-degree polynomial curve because the best fit line did not cross the origin and this curve has
a higher R squared value. It is clear that RFSIM is limited by processing power while with USRPs
the throughput is close to theoretical.
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Figure 5.26: RFSIM vs USRP throughput
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Chapter 6

Conclusions and Future Work

This chapter finally summarizes all the work done in this project, offering some conclusions, dis-
cussing the limitations encountered and providing a guideline for future works in this field.

6.1 Conclusions

This Bachelor’s degree final project has focused on exploring the Open RAN novel concept and
a recent implementation of the O-RAN standard called FlexRIC. These are the first steps towards
open, intelligent, virtualized mobile networks that will become the norm in the coming years,
and this project researched them. This study has consisted of several stages of development to
acquire the specific knowledge and to make use of it, thanks to the abilities learned throughout my
Telecommunication’s Engineering degree.

The project has firstly consisted in a thorough review of the technical aspects that define the 5G
NR and O-RAN standards, focusing on the Radio Access Network and E2 Interface. The software
and hardware platforms used by the community to research and test mobile networks have also
been examined.

Next, the appropriate equipment has been configured to achieve the setup to be used in the RAN
deployment. In this section there has been a great deal of learning about the physical and operat-
ing system parameters involved. The setup has had plenty of troubleshooting work regarding the
physical connections, computing power and dealing with USRP errors, until arriving at the final
configuration explained in this report.

OpenAirInterface has many options, modes and tools available for a RAN deployment which had
to be explored to learn what was implemented, their usage, what they can be used to and to select
the ones relevant for this project. The same had to be done with the FlexRIC project, to conclude
what was worth studying. Then, the different aspects that wanted to be tested and analyzed in-depth
in the results had to be defined.

So, one part of this work has been to study the OAI RAN using the SA and phy-test modes.
Although at first the connection had to be done via RFSIM, later on the USRPs could be used. The
different modes have been analyzed using ROMES measurement software, an advanced spectrum
analyzer, the OAI Scope, Wireshark and the provided logs. As a network analytic measurement,
throughput benchmarks were performed on simulated and true radio heads and the results discussed
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and compared between them and against the theoretical values.

The other part of this work has focused on has been the FlexRIC implementation of the O-RAN
standard. The analysis conducted has mainly had to do with the near-RT RIC, the E2 Interface, the
Service Models and available xApps. All has been examined both in code and in execution, using
Wireshark to inspect the E2AP and E42AP message exchanges. As proposed by a Challenge,
a Troughput xApp has been designed and showcased its usefulness in different UDP and TCP
communication examples. Finally, as FlexRIC claims to be O-RAN compatible, a concise test to
check that connection between the E2 Agent and O-RAN RIC has been performed.

Some key takeaways from this project are that, although a usual 5G deployment includes the Core,
it has been interesting to test the RAN exclusively as very few reports are available and it is a
great subject of study. OAI provides several options to run an isolated RAN that would not have
otherwise been explored. This has obligated a better understanding of the physical layer and RAN
protocols. In addition, it has been possible to verify that OAI achieves close to maximum through-
puts when using USRPs, only limited by the CPU performance.

Moreover, FlexRIC introduces a great alternative to O-RAN’s own implementation and it will be
nice to see how they evolve into the future, with its different design decisions. It also provides a
good framework for xApp developing that has been tried out with the custom made Throughput
xApp featured in this work. The RLC mode discrepancy would still need to be resolved by the
developers.

Finally, due to time constrains and the delay to release FlexRIC’s new version, it could not be
tested. It would have been interesting to test it with USRPs and to try the new features it brings.

6.2 Limitations

6.2.1 PC performance

A lot of work has been done in this project to deal with the PC’s lack of enough performance power.
In the beginning, the PC machines were selected as they were already in use in other deployments
with USRP B210 in 4G LTE. Switching to newer and more capable USRP N310 and 5G NR
resulted in an increase in the processing power needed. We must note that 5G NR introduces the
use of higher bandwidths compared to 4G LTE as well as higher computational demand with the
new LDPC encoding.

This has resulted in the need to extremely tweak the PC’s performance configuration as shown in
Section 3.1 to prevent Under-runs, Late processing and Dropped packet errors from UHD. Even
another networking driver DPDK was tried out to replace Linux networking stack with a low over-
head user-land based driver. This tweaking has taken up very valuable time of this project that
could have been used to focus on more relevant aspects.

In the end, the PC’s under-performance has limited the throughput benchmark in Section 5.3.1 as
some configurations were unstable due to lack of CPU power.

In view of this, I would now have explored other possibilities such as employing more powerful
computers or offloading the LDCP calculations to an FPGA or GPU board. To use another board,
together with the PCIe SFP+ network card, the motherboards should have at least two PCIe x16
connectors, which the ones in the MCG’s Lab do not have.
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6.2.2 Server setup

As a side note, I have also tried to run a similar set up but virtualized by using Virtual Machines
(VMs) inside a rack server instead of two different physical PCs. This is motivated by the new
trend in network virtualization introduced with 5G, so that many of the network functions can be
run on remote, virtualized, scalable environments.

There are several challenges regarding this setup, mainly with the USRPs high-bandwidth commu-
nications and processing, and the available resources at the MCG’s Lab made it more convenient
for us to use discrete physical machines for the Proof-of-Concept in the end.

On one side, the standard bandwidth that OAI and its community use is 40Mhz (106PRB) which
requires +40MSps to send the band-base spectrum from the USRP to the host. And a single 1Gbps
Ethernet connection can achieve up to 25MSps (Mega Samples per second) but it does not satisfy
the network capacity of 61.44MSps that each USRP demands.

At the moment, the MCG Lab does not have a 10Gbps network to use (and even if it did have,
the high bit-stream might saturate and delay others users’ stream) nor the rack server has physical
space for PCIe SPF+ cards for direct connection. The server in use is provisionally located at the
Lab with a 1Gb connection but its intended location is in a server-room 4 floors above where, due
to the +100m distance, the link is limited to 10Mb. For the future, it is recommended to create a
dedicated 10 Gbps network for the USRPs to use in a USRP testbench rack.

It is possible to lower the number of PRBs to 24 (10Mhz bandwidth) in the gNB config file to
lower the MSps network demand by changing the following parameters, but it would still need a
1Gb dedicated connection: dl_carrierBandwidth, ul_carrierBandwidth,
initialDLBWPlocationAndBandwidth and initialULBWPlocationAndBandwidth.

On the other side, OAI requires a linux low latency kernel and direct access to the CPU gov-
ernor to encode and decode LDCP frames in real-time and, although it is possible to set every
configuration as if it was a physical machine, the underlying VM orchestrator still sets the CPU
queues and priorities. For this, UHD generates many D and L errors regarding dropped frames
or late packets in the network flow. To fix this, a more in-depth analysis of the VM environment
should be done, which is out of the scope of this project.

This setup could have been used with RFSIM, but not with USRPs. As the initial intention was to
use true radio heads, the migration to PC machines was done and this setup was not revisited.

6.2.3 OAI and FlexRIC

OAI and FlexRIC’s lack of proper and up-to-date documentation and code commenting has been
a constant struggle to be deal with during this project. Some MCG colleagues who had already
worked with OAI shared these complaints. Therefore some works have switched to other software
platforms such as srsRAN.

Many of the methods used in this project have been a result of searching through the code for
options and information that were not documented anywhere else. In fact, the FlexRIC xApp SDK
is not published together with the rest of the code in its GitLab repository but it is hidden away in
its webpage as a downloadable zip file.

Additionally, a constant issue with OAI is to have developed tools for 4G but not to have them
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functioning for 5G although it states the “nr” tag.

Moreover, the delay in FlexRIC’s new version (dev) release from the July to mid-August has made
it impossible for me to test it due to lack of time. This new version adds many functionalities that
would have been interesting to try out.

6.3 Future work

As for future lines work, I would consider the following:

• To deploy an End-to-End network with both the RAN and Core to use the SA mode instead
of phy-test, establish a standard connection to send data through instead of the noS1mode
and to try out the different RLC modes. Adding a Core network to this study opens many
new possibilities.

• Explore the new FlexRIC version that uses a recent OAI version and adds new SMs and
xApps.

• Try out the O-RAN RIC’s functionalities with the FlexRIC’s E2Agent to explore its possi-
bilities.

• Utilize more powerful machines or an adequate server setup to eliminate errors due to lack
of performance and open up the possibilities for higher throughput connections.
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Appendix A

gNB configuration file

Listing A.1: gnb.band78.tm1.fr1.106PRB.usrpn310.conf
Active_gNBs = ( ”gNB−OAI ” ) ;
Asn1_ve r bo s i t y = ” none ” ;

gNBs = ( {
/ / / / / / / / / / I d e n t i f i c a t i o n p a r ame t e r s :
gNB_CU_ID = 0xe00 ;
gNB_ID = 0xe00 ;
gNB_name = ”gNB−OAI ” ;
/ / T r a ck i ng a r e a code , 0x0000 and 0 x f f f e a r e r e s e r v e d v a l u e s
t r a c k i n g _ a r e a _ c o d e = 1 ;
p lm n _ l i s t = ({

mcc = 208 ;
mnc = 99 ;
mnc_ leng th = 2 ;
s n s s a i L i s t = ( {

s s t = 1 ;
sd = 0x1 ; / / 0 f a l s e , e l s e t r u e

} ,
{

s s t = 1 ;
sd = 0x112233 ; / / 0 f a l s e , e l s e t r u e

} ) ;
} ) ;

n r _ c e l l i d = 12345678L

/ / / / / / / / / / P h y s i c a l p a r ame t e r s :
s s b _ S u b c a r r i e r O f f s e t = 0 ;
pd s ch_An t ennaPo r t s = 1 ;
pu s ch_An t ennaPo r t s = 1 ;
s i b 1 _ t d a = 1 ;
m in_ rx t x t ime_pdsch = 6 ;
m in_ rx t x t ime = 6 ;

do_SRS = 1 ;

pdcch_Conf igSIB1 = ( {
c o n t r o lR e s o u r c e S e t Z e r o = 11 ; #11
s e a r chSpaceZe ro = 0 ;
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} ) ;

se rv ingCel lConf igCommon = ({ # spCellConfigCommon
phy sCe l l I d = 0 ;

# downlinkConfigCommon
# f r equency In foDL

# t h i s i s 3300 .60 MHz + 53*12*30e−3 MHz = 3319 .68
abso lu t eF requencySSB =

621312;
d l _ f r equencyBand = 78 ;
# t h i s i s 3300 .60 MHz
d l _ a b s o l u t e F r e q u e n c yPo i n tA =

620040;
# scs − S p e c i f i c C a r r i e r L i s t

d l _ o f f s t T o C a r r i e r = 0 ;
# s u b c a r r i e r S p a c i n g
# 0=kHz15 , 1=kHz30 , 2=kHz60 , 3=kHz120

d l _ s u b c a r r i e r S p a c i n g = 1 ;
d l _ c a r r i e r B a n dw i d t h = 106 ;

# in i t i a lDownl inkBWP
# g e n e r i c P a r ame t e r s

# t h i s i s RBs t a r t =0 ,L=106 (275* (L−1) ) +RBs t a r t
i n i t i a lDLBWPloca t ionAndBandwid th = 28875 ;

# s u b c a r r i e r S p a c i n g
# 0=kHz15 , 1=kHz30 , 2=kHz60 , 3=kHz120

i n i t i a lDLBWPsub c a r r i e r S p a c i n g = 1 ;
#pdcch −ConfigCommon

i n i t i a lDLBWPcon t r o lRe sou r c eSe tZe r o = 11 ;
i n i t i a lDLBWPsea rchSpaceZe ro = 0 ;

# pdsch −ConfigCommon
# pdschT imeDoma inA l l o ca t i onL i s t ( up t o 16 e n t r i e s )
in i t ia lDLBWPk0_0 = 0 ; # f o r DL s l o t
ini t ia lDLBWPmappingType_0 = 0 ; #0= typeA ,1= typeB
in i t i a lDLBWPsta r tSymbolAndLeng th_0 = 40 ; # t h i s i s SS=1 ,L=13
ini t ia lDLBWPk0_1 = 0 ; # f o r mixed s l o t
ini t ia lDLBWPmappingType_1 = 0 ;
in i t i a lDLBWPsta r tSymbolAndLeng th_1 = 57 ; # t h i s i s SS=1 ,L=5

#uplinkConfigCommon
# f r equency In foUL
u l_ f r equencyBand = 78 ;
# scs − S p e c i f i c C a r r i e r L i s t
u l _ o f f s t T o C a r r i e r = 0 ;

# s u b c a r r i e r S p a c i n g
# 0=kHz15 , 1=kHz30 , 2=kHz60 , 3=kHz120

u l _ s u b c a r r i e r S p a c i n g = 1 ;
u l _ c a r r i e r B a n dw i d t h = 106 ;
pMax = 20 ;
# i n i t i a lUp l i nkBWP
# g e n e r i c P a r ame t e r s

in i t i a lULBWPloca t ionAndBandwid th = 28875 ;
# s u b c a r r i e r S p a c i n g
# 0=kHz15 , 1=kHz30 , 2=kHz60 , 3=kHz120

i n i t i a lULBWPsub c a r r i e r S p a c i n g = 1 ;
# rach −ConfigCommon

# rach −Con f i gGene r i c
p r a c h _Con f i g u r a t i o n I n d e x = 98 ;

#prach_msg1_FDM
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#0 = one , 1=two , 2= fou r , 3= e i g h t
prach_msg1_FDM = 0 ;
p r a ch_msg1_F r equencyS t a r t = 0 ;
z e r oCo r r e l a t i o nZon eCon f i g = 12 ;
p r eamb leRece ivedTa rge tPower = −96;

# preamblTransMax ( 0 . . . 1 0 ) = ( 3 , 4 , 5 , 6 , 7 , 8 , 1 0 , 2 0 , 5 0 , 1 00 , 2 00 )
preambleTransMax = 6 ;

# powerRampingStep
# 0=dB0 ,1=dB2 ,2=dB4 ,3= dB6

powerRampingStep = 1 ;
# ra_ReponseWindow
# 1 , 2 , 4 , 8 , 10 , 20 , 40 , 80

ra_ResponseWindow = 4 ;
# ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR
#1= onee i gh t h ,2= one f ou r t h ,3= ha l f , 4= one ,5= two ,6= fou r ,7= e i g h t ,8= s i x t e e n

ssb_perRACH_OccasionAndCB_PreamblesPerSSB_PR = 3 ;
# oneHa l f ( 0 . . 1 5 ) 4 , 8 , 1 2 , 1 6 , . . . 6 0 , 6 4

ssb_perRACH_OccasionAndCB_PreamblesPerSSB = 15 ;
# r a _Con t e n t i o nRe s o l u t i o nT ime r
# ( 0 . . 7 ) 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64

r a _Con t e n t i o nRe s o l u t i o nT ime r = 7 ;
r s r p_Th re sho ldSSB = 19 ;

# prach −RootSequenceIndex_PR
#1 = 839 , 2 = 139

prach_RootSequenceIndex_PR = 2 ;
p r ach_Roo tSequence Index = 1 ;
# SCS f o r msg1 , can on ly be 15 f o r 30 kHz < 6 GHz , t a k e s p r e c endence

ove r t h e one d e r i v e d from prach −Con f i g Index
#
msg1_Subca r r i e rSpa c i ng = 1 ,

# r e s t r i c t e d S e t C o n f i g
# 0= u n r e s t r i c t e d , 1= r e s t r i c t e d t ype A, 2= r e s t r i c t e d t ype B

r e s t r i c t e d S e t C o n f i g = 0 ,
# pusch −ConfigCommon ( up t o 16 e l emen t s )

in i t ia lULBWPk2_0 = 6 ; # used f o r UL s l o t
ini t ia lULBWPmappingType_0 = 1
in i t i a lULBWPsta r tSymbolAndLeng th_0 = 41 ; # t h i s i s SS=0 L=13

ini t ia lULBWPk2_1 = 6 ; # used f o r mixed s l o t
ini t ia lULBWPmappingType_1 = 1 ;
in i t i a lULBWPsta r tSymbolAndLeng th_1 = 52 ; # t h i s i s SS=10 L=4

ini t ia lULBWPk2_2 = 7 ; # used f o r Msg . 3 du r i n g RA
ini t ia lULBWPmappingType_2 = 1 ;
in i t i a lULBWPsta r tSymbolAndLeng th_2 = 52 ; # t h i s i s SS=10 L=4

msg3_Del taPreamble = 1 ;
p0_NominalWithGrant = −90;

# pucch −ConfigCommon s e t u p :
# pucchGroupHopping
# 0 = n e i t h e r , 1= group hopping , 2= sequence hopping

pucchGroupHopping = 0 ;
hopp ing Id = 40 ;
p0_nomina l = −90;

# s s b_Po s i t i o n s I nBu r s _B i tmapPR
# 1= sho r t , 2=medium , 3= long

s s b _Po s i t i o n s I nBu r s t _ PR = 2 ;
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s s b _P o s i t i o n s I nBu r s t _B i tm a p = 1 ;

# s s b _ p e r i o d i c i t y S e r v i n g C e l l
# 0 = ms5 , 1=ms10 , 2=ms20 , 3=ms40 , 4=ms80 , 5=ms160 , 6= spa re2 , 7= sp a r e 1

s s b _ p e r i o d i c i t y S e r v i n g C e l l = 2 ;

# dmrs_TypeA_pos i t i on
# 0 = pos2 , 1 = pos3

dmrs_TypeA_Pos i t ion = 0 ;

# s u b c a r r i e r S p a c i n g
# 0=kHz15 , 1=kHz30 , 2=kHz60 , 3=kHz120

s u b c a r r i e r S p a c i n g = 1 ;

# tdd −UL−DL−Configurat ionCommon
# s u b c a r r i e r S p a c i n g
# 0=kHz15 , 1=kHz30 , 2=kHz60 , 3=kHz120

r e f e r e n c e S u b c a r r i e r S p a c i n g = 1 ;
# p a t t e r n 1
# d l _UL_T r a n sm i s s i o nP e r i o d i c i t y
# 0=ms0p5 , 1=ms0p625 , 2=ms1 , 3=ms1p25 , 4=ms2 , 5=ms2p5 , 6=ms5 , 7=ms10
d l _UL_T r a n sm i s s i o nP e r i o d i c i t y = 6 ;
n r o fDown l i n kS l o t s = 7 ;
nrofDownl inkSymbols = 6 ;
n r o fU p l i n k S l o t s = 2 ;
n ro fUp l inkSymbo l s = 4 ;

ssPBCH_BlockPower = −25;
}

) ;

# Ded i c a t e d Se r v i ng Ce l l C o n f i g u r a t i o n
s e r v i n gC e l l C o n f i gD e d i c a t e d = ({
# BWP−Downlink

# BWP 1 Con f i g u r a t i o n
dl_bwp −Id_1 = 1 ;
d l_bwp1_ loca t ionAndBandwid th = 28875 ; / / RBs t a r t =0 , L=106 (40 MHz BW)
# s u b c a r r i e r S p a c i n g
# 0=kHz15 , 1=kHz30 , 2=kHz60 , 3=kHz120
d l _ bwp1_ s ub c a r r i e r S p a c i n g = 1 ;

f i r s tAc t iveDownl inkBWP −Id = 1 ; #BWP−Id
defaultDownlinkBWP −Id = 1 ; #BWP−Id

# Up l inkConf ig
# BWP−Upl ink

# BWP 1 Con f i g u r a t i o n
ul_bwp −Id_1 = 1 ;
u l_bwp1_ loca t ionAndBandwid th = 28875 ; / / RBs t a r t =0 , L=106 (40 MHz BW)
# s u b c a r r i e r S p a c i n g
# 0=kHz15 , 1=kHz30 , 2=kHz60 , 3=kHz120
u l _ bwp1_ s ub c a r r i e r S p a c i n g = 1 ;

f i r s tAc t i veUp l inkBWP −Id = 1 ; #BWP−Id
}

) ;
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# −−−−−−− SCTP d e f i n i t i o n s
SCTP : {

# Number o f s t r e ams t o use i n i n p u t / o u t p u t
SCTP_INSTREAMS = 2 ;
SCTP_OUTSTREAMS = 2 ;

} ;
/ / / / / / / / / / AMF pa r ame t e r s :

am f_ i p_ add r e s s = ( { ipv4 = ” 1 9 2 . 1 6 8 . 7 1 . 1 3 2 ” ;
i pv6 = ” 1 9 2 : 1 6 8 : 3 0 : : 1 7 ” ;
a c t i v e = ” yes ” ;
p r e f e r e n c e = ” ipv4 ” ; } ) ;

NETWORK_INTERFACES : {
GNB_INTERFACE_NAME_FOR_NG_AMF = ” r f s im5g − p u b l i c ” ;
GNB_IPV4_ADDRESS_FOR_NG_AMF = ” 1 9 2 . 1 6 8 . 7 1 . 1 2 9 ” ;
GNB_INTERFACE_NAME_FOR_NGU = ” r f s im5g − p u b l i c ” ;
GNB_IPV4_ADDRESS_FOR_NGU = ”1 9 2 . 1 6 8 . 7 1 . 1 2 9 ” ;
GNB_PORT_FOR_S1U = 2152 ; # Spec 2152

} ;
} ) ;

MACRLCs = ( {
num_cc = 1 ;
t r _ s _ p r e f e r e n c e = ” l o c a l _L1 ” ;
t r _ n _ p r e f e r e n c e = ” local_RRC ” ;
pusch_TargetSNRx10 = 200 ;
pucch_TargetSNRx10 = 200 ;
u l s c h _max _ f r ame _ i n a c t i v i t y = 0 ; } ) ;

L1s = ( {
num_cc = 1 ;
t r _ n _ p r e f e r e n c e = ” loca l _mac ” ;
p u s c h _ p r o c _ t h r e a d s = 4 ;
p r a c h _ d t x _ t h r e s h o l d = 120 ;
p u c c h 0_d t x _ t h r e s h o l d = 150 ;

o f dm_ o f f s e t _ d i v i s o r = 8 ;
} ) ;

RUs = ( {
l o c a l _ r f = ” yes ”

nb_ tx = 1
nb_rx = 1
a t t _ t x = 0
a t t _ r x = 0 ;
bands = [ 7 8 ] ;
max_pdschRefe renceS igna lPower = −27;
max_rxga in = 75 ;
eNB_ in s t ance s = [ 0 ] ;
## beamforming 1x2 ma t r i x : 1 l a y e r x 2 a n t e n n a s
b f _we i gh t s = [0 x00007 f f f , 0x0000 ] ;
c l o c k _ s r c = ” e x t e r n a l ” ;
s d r _ a d d r s = ” add r =192 . 1 6 8 . 1 0 . 2 , c l o c k _ s o u r c e = e x t e r n a l , t ime_ s ou r c e =

e x t e r n a l ”
} ) ;

THREAD_STRUCT = ( {
# t h r e e c o n f i g f o r l e v e l o f p a r a l l e l i s m ”PARALLEL_SINGLE_THREAD” , ”

PARALLEL_RU_L1_SPLIT” , o r ”PARALLEL_RU_L1_TRX_SPLIT”
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p a r a l l e l _ c o n f i g = ”PARALLEL_SINGLE_THREAD” ;
# two op t i o n f o r worker ”WORKER_DISABLE” or ”WORKER_ENABLE”
wo rke r _ con f i g = ”WORKER_ENABLE” ;

} ) ;

s e c u r i t y = {
# p r e f e r r e d c i p h e r i n g a l g o r i t hm s
# t h e f i r s t one o f t h e l i s t t h a t an UE s u p p o r t s i n chosen
# v a l i d v a l u e s : nea0 , nea1 , nea2 , nea3
c i p h e r i n g _ a l g o r i t hm s = ( ” nea0 ” ) ;

# p r e f e r r e d i n t e g r i t y a l g o r i t hm s
# t h e f i r s t one o f t h e l i s t t h a t an UE s u p p o r t s i n chosen
# v a l i d v a l u e s : n ia0 , n ia1 , n ia2 , n i a 3
i n t e g r i t y _ a l g o r i t h m s = ( ” n i a2 ” , ” n i a 0 ” ) ;

# s e t t i n g ’ d r b _ c i p h e r i n g ’ t o ” no ” d i s a b l e s c i p h e r i n g f o r DRBs , no ma t t e r
# what ’ c i p h e r i n g _ a l g o r i t hm s ’ c o n f i g u r e s ; same t h i n g f o r ’ d r b _ i n t e g r i t y ’
d r b _ c i p h e r i n g = ” yes ” ;
d r b _ i n t e g r i t y = ” no ” ;

} ;

l o g _ c o n f i g :
{

g l o b a l _ l o g _ l e v e l =” i n f o ” ;
g l o b a l _ l o g _ v e r b o s i t y =”medium ” ;
hw_ log_ l eve l =” i n f o ” ;
hw_ l og_ve r bo s i t y =”medium ” ;
p h y _ l o g _ l e v e l =” i n f o ” ;
p h y _ l o g _ v e r b o s i t y =” low ” ;
mac_ l og_ l ev e l =” i n f o ” ;
mac_ l og_v e r bo s i t y =” h igh ” ;
r l c _ l o g _ l e v e l =” i n f o ” ;
r l c _ l o g _ v e r b o s i t y =”medium ” ;
p d c p _ l o g _ l e v e l =” i n f o ” ;
p d c p _ l o g _ v e r b o s i t y =”medium ” ;
r r c _ l o g _ l e v e l =” i n f o ” ;
r r c _ l o g _ v e r b o s i t y =”medium ” ;
f 1 a p _ l o g _ l e v e l =” debug ” ;
f 1 a p _ l o g _ v e r b o s i t y =”medium ” ;

} ;
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E2AP available stats list

• MAC layer

– mac.dl_aggr_tbs Downlink aggregate transport block size.
– mac.ul_aggr_tbs Uplink aggregate transport block
– mac.dl_aggr_sdus Downlink aggregate sdu
– mac.ul_aggr_sdus Uplink aggregate sdu
– mac.dl_aggr_bytes_sdus Downlink aggregate bytes sdus
– mac.ul_aggr_bytes_sdus Uplink aggregate bytes sdus
– mac.dl_aggr_prb Downlink aggregate physical resource block
– mac.ul_aggr_prb Uplink aggregate physical resource block
– mac.dl_aggr_retx_prb Downlink aggregate re-transmission physical resource
block

– mac.wb_cqi Channel quality indicator
– mac.dl_mcs1 Downlink modulation and coding scheme 1
– mac.ul_mcs1 Uplink modulation and coding scheme 1
– mac.dl_mcs2 Downlink modulation and coding scheme 2
– mac.ul_mcs2 Uplink modulation and coding scheme 2
– mac.phr Power head room
– mac.pusch_snr Pusch snr
– mac.pucch_snr Pucch snr
– mac.rnti Radio network temporary identifier

• RLC layer

– rlc.txpdu_pkts Aggregated number of transmitted RLC PDUs
– rlc.txpdu_bytes Aggregated amount of transmitted bytes in RLC PDUs
– rlc.txpdu_wt_ms Aggregated head-of-line tx packet waiting time to be transmit-
ted (i.e. send to the MAC layer)
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– rlc.txpdu_dd_pkts Aggregated number of dropped or discarded tx packets by
RLC

– rlc.txpdu_dd_bytes Aggregated amount of bytes dropped or discarded tx packets
by RLC

– rlc.txpdu_retx_pkts Aggregated number of tx pdus/pkts to be re-transmitted
(only applicable to RLC AM)

– rlc.txpdu_retx_bytes Aggregated amount of bytes to be re-transmitted (only
applicable to RLC AM)

– rlc.txpdu_segmented Aggregated number of segmentations
– rlc.txpdu_status_pkts Aggregated number of tx status pdus/pkts (only appli-
cable to RLC AM)

– rlc.txpdu_status_bytes Aggregated amount of tx status bytes (only applicable
to RLC AM)

– rlc.txbuf_occ_bytes Current tx buffer occupancy in terms of amount of bytes
(average: NOT IMPLEMENTED)

– rlc.txbuf_occ_pkts Current tx buffer occupancy in terms of number of packets
(average: NOT IMPLEMENTED)

– rlc.rxpdu_pkts Aggregated number of received RLC PDUs
– rlc.rxpdu_bytes Amount of bytes received by the RLC
– rlc.rxpdu_dup_pkts Aggregated number of duplicate packets
– rlc.rxpdu_dup_bytes Aggregated amount of duplicated bytes
– rlc.rxpdu_dd_pkts Aggregated number of rx packets dropped or discarded by
RLC

– rlc.rxpdu_dd_bytes Aggregated amount of rx bytes dropped or discarded by
RLC

– rlc.rxpdu_ow_pkts Aggregated number of out of window received RLC pdu
– rlc.rxpdu_ow_bytes Aggregated number of out of window bytes received RLC
pdu

– rlc.rxpdu_status_pkts Aggregated number of rx status pdus/pkts (only appli-
cable to RLC AM)

– rlc.rxpdu_status_bytes Aggregated amount of rx status bytes (only applicable
to RLC AM)

– rlc.rxbuf_occ_bytes Current rx buffer occupancy in terms of amount of bytes
(average: NOT IMPLEMENTED)

– rlc.rxbuf_occ_pkts Current rx buffer occupancy in terms of number of packets
(average: NOT IMPLEMENTED)

– rlc.txsdu_pkts Number of SDUs delivered
– rlc.txsdu_bytes Number of bytes of SDUs delivered
– rlc.rxsdu_pkts Number of SDUs received
– rlc.rxsdu_bytes Number of bytes of SDUs received
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– rlc.rxsdu_dd_pkts Number of dropped or discarded SDUs
– rlc.rxsdu_dd_bytes Number of bytes of SDUs dropped or discarded
– rlc.rnti Radio Network Temporary Identifier
– rlc.mode 0: RLC Ack Mode, 1: RLC Unack Mode, 2: RLC Transparent Mode
– rlc.rbid Radio bearer id
– rlc.frame Radio frame
– rlc.slot Radio slot

• PDCP layer

– pdcp.txpdu_pkts Aggregated number of tx packets
– pdcp.txpdu_bytes Aggregated bytes of tx packets
– pdcp.txpdu_sn Current sequence number of last tx packet (or TX_NEXT)
– pdcp.rxpdu_pkts Aggregated number of rx packets
– pdcp.rxpdu_bytes Aggregated bytes of rx packets
– pdcp.rxpdu_sn Current sequence number of last rx packet (or RX_NEXT)
– pdcp.rxpdu_oo_pkts Aggregated number of out-of-order rx pkts (or RX_REORD)
– pdcp.rxpdu_oo_bytes Aggregated amount of out-of-order rx bytes
– pdcp.rxpdu_dd_pkts Aggregated number of duplicated discarded packets (or dropped
packets because of other reasons such as integrity failure) (or RX_DELIV)

– pdcp.rxpdu_dd_bytes Aggregated amount of discarded packets’ bytes
– pdcp.rxpdu_ro_count This state variable indicates the COUNT value following
the COUNT value associated with the PDCP Data PDU which triggered t-Reordering.
(RX_REORD)

– pdcp.txsdu_pkts Number of SDUs delivered
– pdcp.txsdu_bytes Number of bytes of SDUs delivered
– pdcp.rxsdu_pkts Number of SDUs received
– pdcp.rxsdu_bytes Number of bytes of SDUs received
– pdcp.rnti Radio Network Temporary Identifier
– pdcp.mode Mode of pdcp
– pdcp.rbid Radio bearer
– pdcp.tstamp Time stamp
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Appendix C

Throughput xApp

# The 3−Clause BSD L i c en s e
# R e d i s t r i b u t i o n and use i n s ou r c e and b i n a r y forms , w i th o r w i t h ou t mod i f i c a t i o n , a r e p e rm i t t e d p r ov i d ed t h a t t h e

f o l l ow i n g c o n d i t i o n s a r e met :
# 1 . R e d i s t r i b u t i o n s o f s o u r c e code must r e t a i n t h e above c o p y r i g h t n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e f o l l ow i n g

d i s c l a im e r .
# 2 . R e d i s t r i b u t i o n s i n b i n a r y form must r e p r odu c e t h e above c o p y r i g h t n o t i c e , t h i s l i s t o f c o n d i t i o n s and t h e

f o l l ow i n g d i s c l a im e r i n t h e documen t a t i on and / o r o t h e r m a t e r i a l s p r ov i d ed wi th t h e d i s t r i b u t i o n .
# 3 . N e i t h e r t h e name of t h e c o p y r i g h t h o l d e r nor t h e names o f i t s c o n t r i b u t o r s may be used t o endo r s e o r promote

p r o d u c t s d e r i v e d from t h i s s o f tw a r e w i t h ou t s p e c i f i c p r i o r w r i t t e n p e rm i s s i o n .

# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ”AS IS ” AND ANY EXPRESS OR IMPLIED
# WARRANTIES, INCLUDING , BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED . IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
# ANY DIRECT , INDIRECT , INCIDENTAL , SPECIAL , EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING , BUT NOT LIMITED
# TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES ; LOSS OF USE , DATA, OR PROFITS ; OR BUSINESS INTERRUPTION)
# HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY , WHETHER IN CONTRACT, STRICT LIABILITY , OR TORT (INCLUDING
# NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
# THE POSSIBILITY OF SUCH DAMAGE.

## Autho r s : Hung NGUYEN, OAI M5G
## Se r g i o MALLASÉN, MCG iTeam UPV

impo r t sy s
sy s . p a t h . append ( ’ . / s r c ’ )
impo r t l o gg i n g

from sdk . xapp_base impo r t Xappbase
from sdk . c o n s t a n t s impo r t Ind
impo r t a s y n c i o
impo r t sdk . comm_layer a s comm_layer
from sdk . u t i l s impo r t do_no th ing , p d c p _ a t t r , mac_a t t r , r l c _ a t t r
impo r t sdk . a p i a s a p i
from sdk impo r t c o n t e x t

impo r t p l o t i l l e
impo r t c o l l e c t i o n s

c l a s s Xapp ( Xappbase ) :
d e f _ _ i n i t _ _ ( s e l f , con f ) :

p e r i o d _ t o _ r u n _ l o g i c = 1 − seconds −

supe r ( ) . _ _ i n i t _ _ (
p e r i o d _ t o _ r u n _ l o g i c ,
l o g _ l e v e l = l o gg i n g .DEBUG,
p i n g_ t imeou t = con f [ ’ c o nn e c t i o n_ t imeou t ’ ] ,
r e c o r d = Fa l s e ,
s im u l a t i o n = Fa l s e ,
t r i g g e r _ p e r i o d i c _ f u n c =True
)

# s u b s c r i b e f o r t h e s e r v i c e s
s e l f . r e p o r t ( Ind .MAC)
s e l f . r e p o r t ( Ind .RLC)
s e l f . r e p o r t ( Ind . PDCP)

# V a r i a b l e s f o r h o l d i n g s t a t s d a t a
s e l f . mac_t imes tamps = l i s t ( )
s e l f . r l c _ t im e s t amp s = l i s t ( )
s e l f . pdcp_ t imes t amps = l i s t ( )

s e l f . mac_de l t a = c o l l e c t i o n s . deque ( maxlen =60)
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s e l f . r l c _ d e l t a = c o l l e c t i o n s . deque ( maxlen =60)
s e l f . p d c p _d e l t a = c o l l e c t i o n s . deque ( maxlen =60)

s e l f . mac_d l_agg r_ t b s = l i s t ( )
s e l f . mac_d l_agg r_ t b s . append ( 0 )
s e l f . mac_u l_agg r_ t b s = l i s t ( )
s e l f . mac_u l_agg r_ t b s . append ( 0 )

s e l f . r l c _ r x p d u _ b y t e s = l i s t ( )
s e l f . r l c _ r x p d u _ b y t e s . append ( 0 )
s e l f . r l c _ t x p d u _ b y t e s = l i s t ( )
s e l f . r l c _ t x p d u _ b y t e s . append ( 0 )

s e l f . pdcp_ rxpdu_by t e s = l i s t ( )
s e l f . pdcp_ rxpdu_by t e s . append ( 0 )
s e l f . pd cp_ t xpdu_by t e s = l i s t ( )
s e l f . pd cp_ t xpdu_by t e s . append ( 0 )

s e l f . mac_d l_ t h roughpu t = c o l l e c t i o n s . deque ( maxlen =60)
s e l f . mac_u l_ t h roughpu t = c o l l e c t i o n s . deque ( maxlen =60)

s e l f . r l c _ r x _ t h r o u g h p u t = c o l l e c t i o n s . deque ( maxlen =60)
s e l f . r l c _ t x _ t h r o u g h p u t = c o l l e c t i o n s . deque ( maxlen =60)

s e l f . p d cp_ r x_ t h r oughpu t = c o l l e c t i o n s . deque ( maxlen =60)
s e l f . p d c p_ t x _ t h r o ughpu t = c o l l e c t i o n s . deque ( maxlen =60)

s e l f . f l a g _ f i r s t _ t i m e = 1

de f r u n _ p e r i o d i c ( s e l f , *a rgs , **kwargs ) :
− Th i s f u n c t i o n w i l l c a l l eve ry s e l f . p e r i o d seconds t o t h e l o g i c . −
i f a p i . number_connec ted_ue ( ) :

f i g = p l o t i l l e . F i g u r e ( ) − Se t f i g −
f i g . s e t _ y _ l i m i t s ( min_ =0)
f i g . x _ l a b e l =” seconds ”
f i g . y _ l a b e l =”Mbytes ”
f i g . x _ t i c k s _ f k t = s t r _ t i c k −T i ck s wi th 3 dec ima l p l a c e s −
f i g . y _ t i c k s _ f k t = s t r _ t i c k
f i g . wid th = 105
f i g . h e i g h t = 33

p d c p _ s t a t s = a p i . g e t _ a t t r ( a t t r =[” pdcp . r n t i ” , ” pdcp . t s t amp ” , ” pdcp . t x pdu_by t e s ” , ” pdcp . r xpdu_by t e s ” ] ,
windows =1)

s e l f . pdcp_ t imes t amps . append ( p d c p _ s t a t s [ 0 ] [ 0 ] [ ’ pdcp . t s t amp ’ ] [ 0 ] )
s e l f . pdcp_ rxpdu_by t e s . append ( p d c p _ s t a t s [ 0 ] [ 0 ] [ ’ pdcp . r xpdu_by t e s ’ ] [ 0 ] )
s e l f . pd cp_ t xpdu_by t e s . append ( p d c p _ s t a t s [ 0 ] [ 0 ] [ ’ pdcp . t xpdu_by t e s ’ ] [ 0 ] )

r l c _ s t a t s = a p i . g e t _ a t t r ( a t t r =[” r l c . r n t i ” , ” r l c . t s t amp ” , ” r l c . t x pdu_by t e s ” , ” r l c . r x pdu_by t e s ” ] , windows =1)
s e l f . r l c _ t im e s t amp s . append ( r l c _ s t a t s [ 0 ] [ 0 ] [ ’ r l c . t s t amp ’ ] [ 0 ] )
s e l f . r l c _ r x p d u _ b y t e s . append ( r l c _ s t a t s [ 0 ] [ 0 ] [ ’ r l c . r xpdu_by t e s ’ ] [ 0 ] )
s e l f . r l c _ t x p d u _ b y t e s . append ( r l c _ s t a t s [ 0 ] [ 0 ] [ ’ r l c . t xpdu_by t e s ’ ] [ 0 ] )

ma c_ s t a t s = a p i . g e t _ a t t r ( a t t r =[”mac . r n t i ” , ”mac . t s t amp ” , ”mac . d l _ a g g r _ t b s ” , ”mac . u l _ a g g r _ t b s ” ] , windows =1)
s e l f . mac_t imes tamps . append ( ma c_ s t a t s [ 0 ] [ 0 ] [ ’ mac . t s t amp ’ ] [ 0 ] )
s e l f . mac_d l_agg r_ t b s . append ( ma c_ s t a t s [ 0 ] [ 0 ] [ ’ mac . d l _ a gg r _ t b s ’ ] [ 0 ] )
s e l f . mac_u l_agg r_ t b s . append ( ma c_ s t a t s [ 0 ] [ 0 ] [ ’ mac . u l _ a gg r _ t b s ’ ] [ 0 ] )

s e l f . p d c p _d e l t a . append ( ( s e l f . pdcp_ t imes t amps [ −1] − s e l f . pdcp_ t imes t amps [ 0 ] ) / 1 e6 )
s e l f . r l c _ d e l t a . append ( ( s e l f . r l c _ t im e s t amp s [ −1] − s e l f . r l c _ t im e s t amp s [ 0 ] ) / 1 e6 )
s e l f . mac_de l t a . append ( ( s e l f . mac_t imes tamps [ −1] − s e l f . mac_t imes tamps [ 0 ] ) / 1 e6 )

i f s e l f . f l a g _ f i r s t _ t i m e == 1 :
s e l f . f l a g _ f i r s t _ t i m e = 0
s e l f . pdcp_ rxpdu_by t e s . append ( p d c p _ s t a t s [ 0 ] [ 0 ] [ ’ pdcp . r xpdu_by t e s ’ ] [ 0 ] )
s e l f . pd cp_ t xpdu_by t e s . append ( p d c p _ s t a t s [ 0 ] [ 0 ] [ ’ pdcp . t xpdu_by t e s ’ ] [ 0 ] )
s e l f . r l c _ r x p d u _ b y t e s . append ( r l c _ s t a t s [ 0 ] [ 0 ] [ ’ r l c . r xpdu_by t e s ’ ] [ 0 ] )
s e l f . r l c _ t x p d u _ b y t e s . append ( r l c _ s t a t s [ 0 ] [ 0 ] [ ’ r l c . t xpdu_by t e s ’ ] [ 0 ] )
s e l f . mac_d l_agg r_ t b s . append ( ma c_ s t a t s [ 0 ] [ 0 ] [ ’ mac . d l _ a gg r _ t b s ’ ] [ 0 ] )
s e l f . mac_u l_agg r_ t b s . append ( ma c_ s t a t s [ 0 ] [ 0 ] [ ’ mac . u l _ a gg r _ t b s ’ ] [ 0 ] )

s e l f . p d cp_ r x_ t h r oughpu t . append ( 0 )
s e l f . p d c p_ t x _ t h r o ughpu t . append ( 0 )

s e l f . r l c _ r x _ t h r o u g h p u t . append ( 0 )
s e l f . r l c _ t x _ t h r o u g h p u t . append ( 0 )

s e l f . mac_u l_ t h roughpu t . append ( 0 )
s e l f . mac_d l_ t h roughpu t . append ( 0 )

e l s e :
s e l f . p d cp_ r x_ t h r oughpu t . append ( ( ( s e l f . pdcp_ rxpdu_by t e s [ −1] − s e l f . pdcp_ rxpdu_by t e s [ −2 ] )*8 / 1 e6 ) / ( s e l f

. p d c p _d e l t a [ −1] − s e l f . p d c p _d e l t a [ −2 ] ) )
s e l f . p d c p_ t x _ t h r o ughpu t . append ( ( ( s e l f . pdcp_ t xpdu_by t e s [ −1] − s e l f . pdcp_ t xpdu_by t e s [ −2 ] )*8 / 1 e6 ) / ( s e l f

. p d c p _d e l t a [ −1] − s e l f . p d c p _d e l t a [ −2 ] ) )

s e l f . r l c _ r x _ t h r o u g h p u t . append ( ( ( s e l f . r l c _ r x p d u _ b y t e s [ −1] − s e l f . r l c _ r x p d u _ b y t e s [ −2 ] )*8 / 1 e6 ) / ( s e l f .
r l c _ d e l t a [ −1] − s e l f . r l c _ d e l t a [ −2 ] ) )

s e l f . r l c _ t x _ t h r o u g h p u t . append ( ( ( s e l f . r l c _ t x p d u _ b y t e s [ −1] − s e l f . r l c _ t x p d u _ b y t e s [ −2 ] )*8 / 1 e6 ) / ( s e l f .
r l c _ d e l t a [ −1] − s e l f . r l c _ d e l t a [ −2 ] ) )

s e l f . mac_d l_ t h roughpu t . append ( ( ( s e l f . mac_d l_ agg r_ t b s [ −1] − s e l f . mac_d l_agg r_ t b s [ −2 ] )*8 / 1 e6 ) / ( s e l f .
mac_de l t a [ −1] − s e l f . mac_de l t a [ −2 ] ) )
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s e l f . mac_u l_ t h roughpu t . append ( ( ( s e l f . mac_u l_ agg r_ t b s [ −1] − s e l f . mac_u l_agg r_ t b s [ −2 ] )*8 / 1 e6 ) / ( s e l f .
mac_de l t a [ −1] − s e l f . mac_de l t a [ −2 ] ) )

f i g . p l o t ( s e l f . p d cp_de l t a , s e l f . pdcp_ rx_ th roughpu t , l a b e l =”PDCP Rx PDU t h r o u ghpu t ” , l c =” b l u e ” )
f i g . p l o t ( s e l f . p d cp_de l t a , s e l f . pd cp_ t x_ t h r oughpu t , l a b e l =”PDCP Tx PDU th r o u ghpu t ” , l c =” cyan ” )

f i g . p l o t ( s e l f . r l c _ d e l t a , s e l f . r l c _ r x _ t h r o u g h p u t , l a b e l =”RLC Rx PDU th r o u ghpu t ” , l c =” r ed ” )
f i g . p l o t ( s e l f . r l c _ d e l t a , s e l f . r l c _ t x _ t h r o u g h p u t , l a b e l =”RLC Tx PDU t h r o u ghpu t ” , l c =”magenta ” )

f i g . p l o t ( s e l f . mac_de l t a , s e l f . mac_u l_ th roughpu t , l a b e l =”MAC UL t h r o ughpu t ” , l c =” wh i t e ” )
f i g . p l o t ( s e l f . mac_de l t a , s e l f . mac_d l_ th roughpu t , l a b e l =”MAC DL t h r o ughpu t ” , l c =” ye l l ow ” )

p r i n t ( f i g . show ( l egend=True ) )

# i f no t s e l f . s im u l a t i o n :
## Th i s s t a t s a r e on ly v a l i d when we run wi th r e a l RIC
# Not on t h e s im u l a t i o n mode .
# s e l f . l og . i n f o ( f ’ Number o f Mac msg r e c e i v e d r e cv so f a r : { s e l f . mac_recv } ’ )
# s e l f . l og . i n f o ( f ’ Number o f RLC msg r e c e i v e d r e cv so f a r : { s e l f . r l c _ r e c v } ’ )
# s e l f . l og . i n f o ( f ’ Number o f PDCP msg r e c e i v e d r e cv so f a r : { s e l f . pdcp_ recv } ’ )

e l s e :
s e l f . l og . i n f o ( ”No ue connec t ed ” )

de f s t r _ t i c k ( min_ , max_ ) : − To show axes v a l u e s wi th on ly 3 de c ima l s −
r e t u r n ’ { : . 3 f } ’ . f o rma t ( min_ + (max_−min_ ) / 2 )

a sync de f main ( ) :
con f = {

’ c onn e c t i o n_ t imeou t ’ : 1 ,
’ r unn ing_ t ime ’ : 240 ,

}
xapp = Xapp ( con f )
awa i t xapp . run ( )
awa i t a s y n c i o . s l e e p ( con f [ ” r unn i ng_ t ime ” ] )
xapp . s t o p ( )

i f __name__ == ” __main__ ” :
a s y n c i o . run ( main ( ) )
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