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A B S T R A C T   

Soil erosion is a threat for the sustainability of agriculture and severely affects the Mediterranean crops. Olive 
groves are among the rainfed agriculture lands that exhibit soil and water losses due to the impact of unsus
tainable practices such as conventional tillage and herbicides abuse. To achieve a more sustainable olive oil 
production, alternative, greener crop management practices need to be tested in the field. Here, a weed cover 
(CW) treatment is tested at an olive tree plantation that has undergone conventional mechanical tillage for 20 
years and results were compared against an adjacent control plantation that maintained tillage as a weed control 
strategy (CO). Both plantations were under the same tillage management for centuries and macroscopic analysis 
confirms they are otherwise comparable. Compared to the CO, where tilled soil cover was zero, 20 years of CW 
(weeds cover 64%; litter cover 5%) had led to significantly higher values of soil bulk density and soil organic 
matter. Results from rainfall simulation experiments at 55 mm h− 1 on 0.25 m2 plots under CO (N = 25) and CW 
(N = 25) show that as a result of the improved soil structure, CW (i) reduced soil losses by two orders of 
magnitude (140 times), (ii) decreased runoff yield by one order of magnitude (from 2.65 till 27.6% of the 
rainfall), (iii) significantly reduced runoff sediment concentration (from 18.6 till 1.43 g l− 1), and (iv) signifi
cantly delayed runoff generation (CO = 273 s; CW = 788 s). These results indicate that weed cover is a sus
tainable land management practice in Mediterranean olive groves and promotes sustainable agriculture 
production in mountainous areas under rainfed conditions, which are typically affected by high erosion rates 
such those found in the CO plots. Due to the spontaneous recovery of plant cover, we conclude that weed cover is 
an excellent nature-based solution to increase in the soil organic matter content and soil erosion reduction in 
rainfed olive orchards.   

1. Introduction 

Soil erosion is a threat to the sustainable production in agricultural 
land due to the loss of nutrients, soil particles, water, and seeds (Keesstra 
et al., 2021). Soil erosion, among other soil degradation processes 
(Núñez-Delgado et al., 2020), is a major threat to the soil system of the 
Mediterranean ecosystem as it depletes the already meagre organic 
matter of the upper soil layer. Agriculture can result in negative envi
ronmental impacts due to soil erosion acceleration as a consequence of 
aggressive managements such as herbicides (Liu et al., 2016), tillage 
(Zhang et al., 2013), or soil compaction due to the widespread use of 
heavy machinery (Lima et al., 2019; Yao et al., 2019). A review of the 
current soil erosion rates in agriculture, reveals values that are several 

orders of magnitude higher than the soil formation rate (Chalise et al., 
2019; García-Ruiz et al., 2017; S. D. Keesstra et al., 2019a, 2019b; 
Novara et al., 2019b), thus inducing land degradation and desertifica
tion (Briassoulis, 2019; Jucker Riva et al., 2017). Soil erosion assessment 
is a key instrument when pursuing sustainable production within an 
integrated and holistic approach in agriculture development (Bastianoni 
et al., 2001; La Rosa et al., 2008). To achieve sustainable or tolerable soil 
erosion rates, proper management should be stablished both in agri
culture (Mattsson et al., 2000) and livestock production (Cederberg and 
Mattsson, 2000). 

Olive (Olea Europaea) is a Mediterranean native crop with 7000 years 
since domestication. Olive, along with wheat and grapes, is one of the 
Mediterranean triad products that were widespread along the 
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Mediterranean basin where wild olive (oleaster) is indigenous (Culham 
and Greene, 1988). After its spread by the Phoenicians, the Greeks, and 
the Roman Empire, the use of olive oil has been identified as part of the 
Mediterranean culture. Within the landscape, olive plantations charac
terize the traditional rainfed agriculture production in the Mediterra
nean. Today, Spain is the largest producer of olive oil with 6.6 million 
Mg y− 1 and with the largest cultivated area, 2.6 million ha. Sixty percent 
of the world production is cropped in the fields of the Mediterranean 
basin, where olive oil is a basic nutrition product (Vossen, 2007). Olive 
fields and olive oil are part of the Mediterranean culture and some au
thors identify the Mediterranean with the land where the olive can be 
cropped. Loumou and Giourga (2003) claim that the life and the identity 
of the Mediterranean is found in the olive groves. Nobel Prize laureate 
Odysseas Elytis wrote that “With an Olive Tree, a Vineyard and a Boat, 
You Can Rebuild Greece”. Olive and the Mediterranean are perceived as 
twins by the society. 

The traditional rainfed olive production involves intense and repet
itive tillage to suppress weeds and reduce or control their competition 
for nutrients and water against the olive. This traditional abuse of tillage 
results in bare soils and then in higher soil erosion, that leads to soil 
degradation and a gradual loss in crop production. Researchers have 
already warned that such soil erosion rates are not sustainable. The 
research carried out by José Alfonso Gómez in Andalusia insists on the 
high erosion rates induced by steep slopes, herbicide abuse, intense 
tillage, and lack of cover crops, and the need to find sustainable man
agement practices that promote soil ecosystems services (Gómez et al, 
2006a, 2006b, 2014). In the historical perspective study of Vanwalle
ghem et al. (2011), it is shown that soil erosion in olive orchards is not 
only a contemporary issue but has been a persistent historical problem in 
the Mediterranean, at least since the 18th century (Amate et al., 2013; 
Marathianou et al., 2000; Vanwalleghem et al., 2010). Moreover, a re
view of the State-of-the-Art of soil erosion in the Mediterranean olives 
shows that the problem affects all regions and staple crops across the 
Mediterranean. Most of the research on soil erosion in olive plantations 
is carried out in Andalusia (Calderon et al., 2016; Rodríguez-Lizana 
et al., 2008; Taguas et al., 2009). However, high soil erosion rates are 
also measured in olive groves in central Iberian Peninsula (Sastre et al., 
2017), Crete (Kairis et al., 2013; Karydas et al., 2009), and Eastern Spain 
(Rodrigo-Comino et al., 2017), and we still know little about the impact 
of cropping olives in other regions of the Mediterranean belt or other 
global producers such as United States, Brazil, and Argentina. 

While soil erosion research in olive plantations is mainly experi
mental, modelling approaches are also present and necessary for man
agement planning at larger scales (e.g. Panagos et al., 2015). 
Nevertheless, experimental research carried out at plot scale allows 
measurement of water and soil losses with accuracy and therefore the 
comparison of the impact of different management practices (Taguas 
et al., 2010; Novara et al., 2021). The plot approach is connected to the 
impact of gullying in soil erosion, and this is an emerging topic as the 
highest erosion rates are found in gullied areas (Taguas et al., 2012; 
Amare et al., 2019). The use of rainfall simulation experiments is also a 
source of information about the peak of erosion delivered during low 
frequency high magnitude rainfall events as demonstrated by Rodri
go-Comino et al. (2018). However, soil erosion monitored on plots was 
the source of information that contributed with direct information from 
natural rainfall events (Espejo-Pérez et al., 2013; Francia Martínez et al., 
2006) and enriched the knowledge about the management impact on 
soil and water losses. The research conducted on soil erosion plots in 
Andalusia has also been complemented with the use of magnetic iron 
oxide tracers (Guzmán et al., 2013). 

The impact of tillage in Mediterranean crops is a threat to the sus
tainability of the agricultural production in rainfed Mediterranean crop 
production. The negative impact of this agriculture management is 
found in other crops, too. For example, Novara et al. (2011) found high 
erosion rates due to tillage in the Sicilian vineyards. Within the seven 
management practices assessed by Novara et al. (2011), soil erosion 

rates reached 85 Mg ha− 1 y− 1 with conventional tillage in 2005, 
meanwhile other managements always yielded lower than 60 Mg ha− 1 

y− 1 and sometimes lower than 20 Mg ha− 1 y− 1 upon the different types 
of cover crops. Keesstra et al. (2016) concluded that soil erosion rates are 
non-sustainable under tillage and herbicide treatments in apricots 
plantations is Eastern Spain. Soil erosion was extremely high in 
herbicide-treated plots with 0.91 Mg ha− 1 h− 1 of soil lost; in the tilled 
fields erosion rates were slightly lower with 0.51 Mg ha− 1 h− 1. On the 
other hand, covered soils under organic farming management on apricot 
orchards showed an erosion rate of 0.02 Mg ha− 1 h− 1. This is 46- and 
26-times lower soil losses in organic weed covered managed soils in 
comparison to herbicide and tillage, respectively. Soil erosion mea
surements with plots under natural rainfall or under rainfall simulation 
experiments provide information at short-term, and soil erosion needs 
also to be assessed at medium- and long-term periods. The use of 
methods such as Improved Stock Unearthing Method (ISUM) provides 
long-term data (Rodrigo-Comino and Cerdà, 2018). Barrena-González 
et al. (2020) confirmed that after 20 years, high erosion losses were 
measured in vineyards in Extremadura under intensive tillage. ISUM 
calculated 45.7 Mg ha− 1 y− 1 in average whereas the Universal Soil Loss 
Equation (USLE) estimated 17.4 Mg ha− 1 y− 1. Other crops are affected 
by the mismanagement of removal of the plant cover. Bayat et al. (2019) 
also found high erosion rates in persimmon plantations in Spain, with as 
much as 50 Mg ha− 1 y− 1 measured using ISUM. Raya et al. (2006) found 
extremely high erosion rates in almonds in Andalusia due to the bare 
soils and intense tillage, but also found that using thyme as a cover crop 
could reduce soil losses by 97%. This is a general trend found in different 
crops and research sites along the Mediterranean: high erosion rates that 
can be controlled using soil conservation strategies (Battany and 
Grismer, 2000; Casalí et al., 2009). This is a positive information as high 
erosion rates are causing environmental and economic damages (Pan
agos et al., 2018) that need to be controlled. 

Here we use a simulated rainfall approach to determine the impact of 
weeds as a cover crop to reduce soil losses in olive groves. Rainfall 
simulation experiments allow an accurate measurement of the runoff 
and sediment delivery and the repetition of measurements to achieve a 
dataset to quantify the impact of the management. Moreover, the 
measurements can be done under the same weather conditions (season) 
and under similar soil conditions to avoid temporal variability in soil 
moisture and vegetation cover. Furthermore, rainfall simulation exper
iments are carried out at high magnitude – low frequency rainfall events, 
which allows to research how the extreme events, the ones that induce 
most of the runoff and soil erosion, and determines the annual soil los
ses. Rainfall simulators reduce the cost, the experimental period, and 
increase the accuracy of the measurements. 

The objective of this research is to quantify the impact of weeds to 
control the soil erosion rates in an olive grove. A long-term approach (20 
years) will allow to calculate the mean annual benefit to use weeds in 
olive rainfed agriculture. 

2. Materials and methods 

2.1. Study area 

The Sierra de Enguera (El Teularet) Soil Erosion and Degradation 
Research Station (Figure S1 and S2) was established in 2002 to monitor 
soil and water losses in different crops and rangelands by means of plots, 
soil sampling, and rainfall simulators (Cerdà et al., 2017, 2018; Cerdà 
and Rodrigo-Comino, 2021). El Teularet is located in Sierra de Enguera 
in the southwest Valencia province (Eastern Spain, 750 m a.s.l., 38◦ 55◦

N, 00◦ 50◦ W) and was selected as representative of the Mediterranean 
traditional agriculture crops and rangelands. The climate shows a mean 
annual temperature of 12.7 ◦C. January is the coldest month (9.8 ◦C) and 
August is the warmest (25.7 ◦C). Mean annual rainfall is 540 mm with a 
typical Mediterranean summer drought. 

Two paired study sites were selected within the El Teularet study 
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area (Figure S1). The control (CO) study site (38◦55′55.24′′N; 
0◦49′46.43′′W) is under tillage, while the weed cover (CW) study site 
(38◦55′21.55′′N; 0◦50′26.35′′W) has not been tilled for 20 years. In both 
study sites, olive crops (Blanqueta variety) are cultivated under the 
Valencia Organic Farming Committee (Comité d’Agricultura Ecológica 
de la Comunitat Valenciana) rules. Soils at the study sites are Typic 
Xerorthents developed over Cretaceous marls (Cerdà et al., 2018, 
2021a). Soil texture at both study sites and at two depths shows no 
significant differences, with the exception of silt content sampled at 4–6 
cm (Figure S1; Table S1). Silt content at 4–6 cm in the control (CO) study 
site was 44.48% (IQR = 42.15–46.23), whereas in the weed cover (CW) 
it was slightly lower at 41.13% (IQR = 39.13–43.2). Most samples 
classified as loam, with only three (3% of all samples) classifying as clay 
loam from different points and depths of both study site (Fig. 1). The 
similarity of soil texture across the two treatments, in addition to all 
other environmental and historical management similarities, allows for 
further comparison. 

2.2. Experimental layout 

In both study sites, olive crops were planted in 1997 and the ex
periments were carried out in August 2017, during the dry season, to 
avoid spatial and temporal variability of soil moisture. In each study site, 
25 plots were established along two representative inter-rows, a least 2 
m apart from each other. One rainfall simulation experiment was carried 
out per plot. The sampling strategy along the two tested treatments is 
shown in Figure S1. The CO treatment was tilled four times per year 
(March, May, July, and November). Each April, June, and August, the 
CW treatment was treated with a flail mower attached to a tractor 
(Figure S2). 

2.3. Soil and surface sampling and analysis 

Soil sampling took place at each of the 50 research plots, 25 plots for 
control (CO) and 25 for weed cover (CW). Samples were taken at 0–2 
and 4–6 cm depth with a ⌀6 cm ring. Plant, litter, rock fragment, and 
bare soil cover were measured prior to the rainfall simulation experi
ments and were determined by measuring 100 points regularly 

distributed at each 0.25 m2 plot. Grain size, soil moisture, and organic 
matter and bulk density was determined from the samples collected in 
August 2017. Soil moisture and organic matter and bulk density were 
measured in the lab from the samples collected during the experimental 
period of August 2017. The pipette method was used to determine grain 
size (Deshpande and Telang, 1950). Bulk density was measured using 
the core ring method. Soil organic matter was measured by means of the 
Walkley-Black method (Amate et al., 2013). Soil moisture was deter
mined by the desiccation and measured in all the 100 samples: 2 depths 
× 2 managements × 25 plots. 

2.4. Rainfall simulation experiments 

The experimental setup for the rainfall simulation experiments was 
carried out during the sampling period of August 2017. It involved 50 
rainfall simulation experiments (Cerdà et al., 2020) at rainfall intensity 
of 55 mm h− 1 for 1 h over circular paired plots with an area of 0.25 m2. 
Thus, on each plot a total of 13.75 l were precipitated in the course of 1 
h. At each plot, runoff was collected at 1-min intervals and water volume 
was measured. The runoff coefficient was calculated as the percentage of 
rainfall water leaving the circular plot as overland flow. Runoff samples 
were desiccated (105 ◦C for 24 h) to determine the runoff sediment 
concentration. The sediment yield was calculated upon the runoff 
discharge and the runoff sediment concentration. The soil erosion rates 
were then converted to soil loss per area and time [Mg ha− 1 h− 1]. 

During the rainfall simulation experiments, time to ponding (time 
required for 40% of the surface to be ponded) Tp [s], time to runoff 
initiation Tr [s], and time required by runoff to reach the outlet Tro [s] 
were recorded. These parameters show when the soil ponded, when the 
runoff was initiated, and when it reached the plot runoff collector. Tr-Tp 
[s] and Tro-Tr [s] were also calculated, and they indicate how quickly 
ponding is transformed into runoff and how much time is required for 
runoff on the soil surface to reach the plot outlet. Shorter periods of time 
imply lower infiltration rates, lower permeability, higher surface con
nectivity, and lower surface roughness. These parameters are indicators 
of the hydrological connectivity at the plot scale and have been suc
cessfully used to assess the runoff dynamics at pedon scale (Cerdà et al., 
2020). Runoff coefficient Rc [%] was calculate following the equation: 

Rc=
Q
V

100% (1)  

where Q [mm] is the total runoff from the plot and V [mm] is the total 
volume of water precipitated [mm] on the plot during the experiment. 
Sediment yield Sy [g] was calculated following the equation: 

Sy=R × Sc (2)  

where Sc [g l− 1] is the concentration of the sediment in the runoff and R 
[l]. 

Soil erosion rate was calculated in g m− 2 h− 1 and Mg ha− 1 h− 1 

following the equation: 

Se=
Sy
A

(3)  

where A [m2] is the plot area, here equal to 0.25 m2. 

2.5. Statistical analysis 

Measurement distributions did not always fit the normal distribution 
under the test Saphiro-Wilk, therefore medians together and inter
quartile ranges (IQR) are reported. In all cases, the non-parametric 
Wilcoxon test is used to assess statistical significance. Results are re
ported in boxplots with suspected outliers denoted with × , significance 
is denoted in standard star code at different levels (i.e., *p < 0.05, **p <
0.01, ***p < 0.001, ****p < 0.0001) and n.s. stands for no significance. 
Statistical analysis and plotting were conducted in R (R Development 

Fig. 1. Sand, silt, and clay percent content of soil samples taken from two 
sampling depths (0–2 and 4–6 cm) in the Control (CO) and Weed cover (CW) 
treatments. N.s. denotes no significance whereas ** denotes significance only at 
the p < 0.01 level. Outliers are denoted with × . 
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Core Team, 2017) using packages ggplot2 (Wickham, 2016) and ggpubr 
(Kassambara, 2020), and code is available on request. 

3. Results 

3.1. Soil cover 

Regarding soil cover, in the control plot (CO) all plant, litter, and 
stone cover had a median value of 0. Stone cover was also negligible in 
the weed cover (CW) plot, with no significant difference from that of CO 
(Fig. 2). However, plant, and litter cover in CW were significantly 
higher, at 64% (IQR = 58–66) and 5% (IQR = 4–8), respectively. 

3.2. Soil properties 

Soil organic matter (SOM), bulk density (BD), and soil water content 
(SWC) were used to quantify the effect of the CW treatment on soil 
properties. Results are shown in Fig. 3 (also Table S2). SOM was 
significantly higher in the CW plot than in the CO plot, both at the upper 
(0–2 cm) and lower (4–6 cm) soil layer. Especially in the upper layer, 
median SOM of CW was over 100% higher than that of CO with 
respective values being 2.08% (IQR = 2.02–2.31) and 1.03% (IQR =
0.99–1.05), respectively (Fig. 3). BD was also significantly higher in CW, 
both in the upper (1.42 versus 1.23 g cm− 3) and lower (1.43 versus 1.26 
g cm− 3) soil layer (Fig. 3b). Finally, SWC was significantly lower in both 
soil layers of the weed cover plot, especially in the upper layer where CW 
had 5.78% (IQR = 5.409–5.994) versus 3.48% (3.26–3.74) in the CO 
(Fig. 3c). 

3.3. Runoff initiation 

Rainfall simulation experiments allow assessment of the runoff for
mation and direct comparison between treatments due to the identical 
rainfall characteristics. Time to ponding (Tp), time to runoff (Tr), and 
time to runoff outlet (Tro) were determined in each plot (Fig. 4 and 
Table S3). In all cases differences were significant. In the control plot 
(CO), time to ponding was 86 s (IQR = 81–88), and 104 s (96–114) later 
runoff begun and after 81 s (IQR = 61–100) runoff had reached the 
outlet of the plot. The entire time required from the onset of rainfall to 
runoff at the outlet of the control plots was 266 s (IQR = 254–293). On 
the other hand, in the weed cover (CW) treatment, time to ponding was 
158 s (IQR = 153–161), and 236 s (221–255) later runoff begun and 

after 389 s (IQR = 363–433) runoff had reached the outlet of the plot. 
The entire time required from the onset of rainfall to runoff at the outlet 
of the CW plots was 786 s (IQR = 747–816), almost 3 times as much as 
for CO. 

3.4. Soil and water losses 

Runoff coefficient (Rc), sediment concentration (Sc), and soil erosion 
rate (Se) are used to quantify the effect of the treatment on soil and 
water losses occurring during the rainfall simulation experiments (Fig. 5 
and Table S4). In all cases differences were significant at the p < 0.0001 
level (Fig. 5). Runoff coefficient in the CO plots was over an order of 
magnitude higher than that of the CW, with median values being 
27.14% (IQR = 23.54–29.14) and 2.24% (IQR = 2.01–3.31), respec
tively (Fig. 5a). Sediment concentration [g l− 1] in the CO plots was also 
an order of magnitude higher than that of the CW, with median values 
being 17.69 [g l− 1] (IQR = 16.58–19.68) and 1.40 [g l− 1] (IQR =

Fig. 2. Plant, litter, and stone cover [%] of plots in the Control (CO) and Weed 
cover (CW) treatments. **** denotes significance at the p < 0.0001 level (****) 
and n.s. denotes no significant difference. Outliers are denoted with × . 

Fig. 3. Soil organic matter [%] (a), bulk density [g cm− 3] (b), and soil water 
content [%] (c) of soil samples taken from two depths (0–2 and 4–6 cm) in the 
Control (CO) and Weed cover (CW) treatments. All differences between treat
ments are significance at the p < 0.0001 level (****). Outliers are denoted with 
× . 

Fig. 4. Time to ponding (Tp), Time to runoff (Tr), and Time to runoff outlet 
(Tro), as well as differences Tp-Tr and Tr-Tro (all measured in s) in the Control 
(CO) and Weed cover (CW) treatments. All differences between treatments are 
significance at the p < 0.0001 level (****). Outliers are denoted with × . 
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1.07–1.67), respectively (Fig. 5b). Soil erosion rate in the CO plots was 
over two orders of magnitude higher than that of the CW, with median 
values being 250.97 g m− 2 h− 1 (IQR = 233.80–337.09) and 1.97 g m− 2 

h− 1 (IQR = 1.24–2.36), respectively (Fig. 5c). According to the results, 
when upscaling soil erosion rates from plot to field scale CW treatment 
has negligible rates whereas CO produces a median of 2.51 Mg ha− 1 h− 1 

(IQR = 2.34–3.37). 

4. Discussion 

The fifty rainfall simulation experiments conducted in August 2017 
at the Sierra de Enguera (El Teularet) Soil Erosion and Degradation 
Research Station demonstrated that the long-term use of weeds as a 
cover crop transformed the marly soils from highly erodible to stable 
soils under the water erosion process due to changes in soil properties. 

4.1. Soil organic matter 

Confirming previous findings on the effect of cover crops and residue 
on SOM (Chalise et al., 2019; Martins et al., 2015), the CW treatment led 
to an increase of soil organic matter. As documented in the literature, 
organic matter benefits a wide range of soil functions and services such 
as arthropod fauna presence and diversity (Bàrberi et al., 2010), and 
development of better soil infiltration conditions which is fundamental 
to increase the soil water retention capacity and reduce the soil losses. 
Here, we found that CW led to an annual average increase of organic 
matter at 0–2 cm was 0.05% y− 1 (from 1.03% to 2.08% in 20 years). 
Assuming uniform distribution of SOM in the topsoil, this increase is 
moderate compared to the change observed at a nearby irrigated citrus 
plantation by Novara et al. (2019a). In their study, Novara et al. (2019a) 
reported an increase of 0.26% y− 1 (from 1.18% to 5.53% in 21 years). 
The relatively lower increase in SOM observed here can be attributed to 
the rainfed conditions that restrict the plant biomass production, while 
in citrus farms irrigation promotes the development of weed biomass 
and the subsequent accumulation of litter (Fig. 6a). 

4.2. Bulk density 

The non-linear relationship of SOM concentration on soil bulk den
sity has been well documented and can be modelled with an exponential 
equation (Ruehlmann and Körschens, 2009). Here we confirm the gen
eral tendency of soils with higher SOM to have lower BD but also 
attribute this decrease in the absence of tillage in the CW treatment. 

Fig. 5. Runoff coefficient [%] (a), sediment concentration [g l− 1] (b), and soil 
erosion rate [g m− 2 h− 1] (c) in the Control (CO) and Weed cover (CW) treat
ments. All differences between treatments are significance at the p < 0.0001 
level (****). Outliers are denoted with × . 

Fig. 6. Relation of runoff coefficient [%] at treatments CO and CW and dif
ferences of median values versus (a) soil organic matter content [%] sampled at 
0–2 cm, (b) soil bulk density (0–2 cm depth), (c) mean soil moisture from 2 
depths [%], and (d) soil erosion [g m− 2 h− 1], over the 20 years of experi
mental data. 
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Indeed, similar results were also reported by Carter (1990) who found a 
bulk density of 1.34 ± 0.06 Mg m− 3 for ploughed loam and 1.40 ± 0.03 
Mg m− 3 for direct drilling/seeding, as well as Lampurlanés and Can
tero-Martínez (2003) who found a mean bulk density (0–120 cm depth) 
of 1.34 g cm− 3 under no tillage and 1.22 g cm− 3 under tillage. 

Under such changes in bulk density, one would intuitively expect a 
reduction of soil water capacity and infiltration processes. Nevertheless, 
in agricultural soils, macropores rather that total porosity is the major 
determinant of soil saturated hydraulic conductivity. Weed cover and 
absence of tillage promotes the development of macropores, either due 
to soil fauna (Green and Askew, 1965), roots (Hatano et al., 1988; 
Mitchell et al., 1995), or cracks (Mitchell et al., 1995; Novák et al., 
2000), and thus higher infiltration rates. Tillage disturbs macropores 
continuity and therefore, in terms of soil water conservation, it is not 
beneficial drying the wetting phase. Under no-tillage with cover crops, 
Osunbitan et al. (2005) has also observed higher bulk density and hy
draulic conductivity of loamy sand soils compared to 3 different tillage 
treatments. Cerdà et al. (2021b) found that the use of herbicides in
creases in 20% the soil bulk density in Saturn-peaches crops in Eastern 
Spain, which result in high erosion rates. Due to this effect, the increase 
in soil bulk density did not affect runoff discharge as shown in Fig. 6b. 
Here we demonstrated that although the soils increased the bulk density 
by 0.0085 gr cm− 3 y− 1 in twenty years, the runoff reduced by 1.2465% 
y− 1 as a consequence of moving from a matrix flow under tillage man
agement to a preferential flow after 20 years with cover crops. Sander 
and Gerke (2007) found the importance of preferential flows in paddy 
fields were dye tracer penetrated vertically via preferential pathways to 
depths from 94 till 120 cm while most of the matrix remained unstained. 
Biopores and cracks were the main cause of macropores, and they 
caused high spatial variability of hydraulic conductivity. Clothier et al. 
(2008) reviewed the impact of preferential flow impact on water 
transport in the soil and found a generalized impact on the infiltration 
capacity of soils such as we found in our experiments in Sierra de 
Enguera experimental farm. Some authors, such as Janssen and Lennartz 
(2008) demonstrated that the preferential flow through the hard pan 
due to earthworm burrows, root channels and shrinkage cracks induce 
higher infiltration rates that can reach the groundwater level. This 
confirm that at the experimental site of Sierra de Enguera, weeds can 
contribute to increase the infiltration rates, reduce runoff discharge, and 
soil loss although the soil bulk density increased. 

Another key issue here is that the low bulk density of the soils under 
tillage (CO) changes due to the raindrop impact that contribute to the 
formation of a soil crust that induce low infiltration rates and high runoff 
discharges (Robinson and Phillips, 2001). This is why some farmers 
apply a shallow tillage to avoid the soil compaction and take advantage 
of the cover crops, however this shallow and less intense ploughing 
strategy induces higher erosion rates (Novara et al., 2019b). 

4.3. Surface cover 

Plant and residue cover are key parameters on direct infiltration due 
to the development of macropore flow, but also due to the induced delay 
in the surface runoff transport. Recently, Bombino et al. (2019) found 
that in olive groves in the Mediterranean with a cover of chipped pruned 
branches reduces the runoff rate on average by 30%, mainly because of 
the increased soil infiltration rates, and they mention that the retention 
of vegetal residues may be advisable to reduce surface runoff generation 
rates. We report the runoff generation with the measurement of the time 
from the runoff generated in the plot (Tr) till the runoff measured at the 
exit of the plot (Tro). This time until the runoff reaches the plot outlet is 
relevant to understand that the plant cover reduces the surface runoff 
velocity, and this increase the ponding and the infiltration rate. Here, for 
each 1% of vegetation cover results in 4.74 s of delay of the runoff, and 
this is an opportunity for the ponded water to infiltrate and contribute to 
macropore flow (Fig. 7). Similar conclusions have been reached with the 
use of indigenous grasses (Zhang et al., 2012), crop residue mulches (Li 

et al., 2019; Telak and Bogunovic, 2021), and plant litter (Sun et al., 
2016) found when they incorporated plant litter in the Loess Plateau 
soils to reduce the velocity of the water flowing on the soil surface. 

4.4. Soil water 

Tillage impacts on the soil moisture balance in two ways. As 
mentioned above, it disturbs macropores continuity and therefore, in 
terms of soil water conservation, it is beneficial during the drying phase 
since it hinders evaporation. Furthermore, under tillage management, 
top layer drying is controlled only by evaporation whereas, under weed 
cover, it also depends on plant transpiration which can be significant 
during the dry season (Schiller and Cohen, 1995). Here the measure
ments of soil moisture were conducted during a typically dry Mediter
ranean summer when soil moisture is at its minimum. The dataset 
informs about lower values in the CW treatment, both at 0–2 and 4–6 cm 
depth, than in the CO treatment. It is not clear whether the additional 
water stress due to weed cover can impact the development of the olive 
trees, but measurements show that the SWC difference is less pronounce 
in the deeper (4–6 cm) layer (Fig. 3c), therefore it is probably even less 
significant at the root zone. Regarding the effect of soil water on the 
runoff process, assuming that both CW and CO treatment have a similar 
soil water capacity, increased SWC present in CO contributes to shorter 
response times (Fig. 3 and Table S3) and a higher discharge (Fig. 3c). 

4.5. Soil erosion 

This strategy to reduce the tillage intensity (recurrence) has been 
used as an alternative to the traditional tillage. Turtola et al. (2007) 
applied in the Finnish clayey soils and they found that surface runoff 
increased with decrease in the tillage intensity due to the changes in soil 
roughness. Turtola et al. (2007) also found that the shallow tillage 
produced higher soil erosion rates (0.407–0.1700 Mg ha− 1yr− 1), still 
48% higher than the no-tillage managed fields. This is why the authors 
concluded that in the flat clayey soils typical for southern Finland, 
tillage has a great influence on soil losses and conservation agriculture 
should be applied. Schillinger (2001) in the Pacific Northwest (USA) 
shows that long-term practice of minimum and delayed minimum tillage 
during fallow significantly increased surface residue and clod retention 
for erosion control with no adverse agronomic affects compared with 
conventional tillage. Both examples show that under cold and temperate 

Fig. 7. Relation of Plant Cover [%] and Tro-Tr [s] per plot (Tillage and Weed 
cover) at treatments CO and CW and differences of median values. 
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climatic conditions shown a positive use of weed cover to reduce soil 
erosion. This is even more contrasted in the olive orchards in the Med
iterranean where soils are bare when tillage is applied, and they show a 
permanent cover when they are under no-tillage management. Here the 
tested no tillage and weed cover treatment allowed the transformation 
of rainfed Mediterranean agriculture in a more ecosystem friendly land 
use. The treatment resulted in an average annual reduction of runoff by 
1.24% and a reduction of soil losses by 0.20 Mg ha− 1 y− 1 during the 20 
years covered by the measurements (Fig. 6d). 

4.6. Rainfall simulation 

Rainfall simulation experiments contributed with accurate infor
mation about the impact of weed cover on soil erosion and runoff. This 
method is typically applied under high rainfall intensities, to reproduce 
extreme rainfall event conditions, that are known to generate the highest 
runoff discharges and highest erosion rates. For example, from the 
rainfall events recorded in the universal soil loss equation (USLE) 
database, the top 10% in magnitude contribute 50% of all eroded soils, 
the 25 largest daily events deliver 46–63% of the load, and the 5 largest 
daily events delivered 23–39% of the sediments (González-Hidalgo 
et al., 2009). This observation is even more pronounced in semiarid 
ecosystems where extreme events are more frequent. For example, in the 
El Ardal research station, Murcia, López-Bermúdez et al. (1998) found 
that the extreme rainfall events were the most efficient to detach and 
transport soil material, and during a 9-year experiment Romero Díaz 
et al. (1998) found that the largest rainfalls events were the ones to 
determine the total soil losses. Since these determining extreme events 
take place at low frequency, rainfall simulation allows the collection of 
data that would otherwise require decades of observation to be collected 
within a few weeks. 

4.7. Cover crops for sustainability 

The high erosion rates in Mediterranean rainfed crops threaten the 
sustainability of their production and the ecosystem services they sup
ply. At the global scale, the Mediterranean rainfed crops under con
ventional intensive tillage constitute a hurdle against the 2030 
Sustainable Development Goals of the United Nations and the Land 
Degradation Neutrality challenge (Daliakopoulos and Keesstra, 2019; 
Keesstra et al., 2018a, 2018b; Visser et al., 2019) since erosion rates do 
not allow soil formation processes to restore soil losses. The intense 
tillage and bare soils result also in the loss of nutrients and induce a lost 
in the soil quality mainly due to the loss of organic matter and soil 
structural stability (Novara et al., 2019b; Ramos et al., 2010; Tejada and 
Benítez, 2020; Rodrigo-Comino et al., 2020a,b). Therefore, the need of 
innovative land management practices is required to reduce soil losses 
and contribute to the sustainability of Mediterranean agriculture 
(Daliakopoulos et al., 2019). Option such as the use of catch crops, 
mulches, and geotextiles are available to farmers, however they are 
expensive for low productivity and low turnover rainfed agriculture 
(López-Vicente et al., 2020). In fact, rainfed agriculture is threatened by 
land abandonment, which in turn affects soil and water yield, and de
grades the traditional Mediterranean agricultural landscape (Nadal-
Romero et al., 2019), therefore there is a need to find management 
practices that can reduce costs while increasing output value due to the 
ecosystem services sustainable agricultural soils can offer (Brady et al., 
2019; Malherbe et al., 2019). 

Here we test the effectiveness of weed cover as a sustainable land 
management practice for rainfed crops as it is the easiest to apply, has 
low cost, and is based on local resources. The combined advantages of 
the weed cover treatment, resulting to significant increase of soil organic 
matter and a simultaneous reduction of soil loss and plot runoff, have the 
potential to transform the rainfed agriculture in the Mediterranean in a 
more friendly ecosystem where soil and water are preserved as in a 
forest. We conclude that it is relevant to promote the use of weed cover 

as a sustainable management in Mediterranean olive plantations to 
achieve the Sustainable Development Goals of the United Nations. A 
recent state-of-the-art review shows that cover crops can also contribute 
to the conservation of the water resources when properly managed in 
semiarid ecosystems (Novara et al., 2021). 

5. Conclusions 

This work compares two study sites representative of tillage and 
weed cover by means of an experiment that was initiated in 1997 and 
finalized in 2017. Within twenty years, soil losses in the weed cover site 
reduced by two orders of magnitude due to the reduction in soil water 
losses and sediment concentration. Although tillage induced a lower soil 
bulk density, the increase in soil organic matter in the weed covered 
plots contributed to the reduction the runoff discharge and soil loss. We 
demonstrated that weed cover reduces soil and water losses in olive 
plantations and increased soil organic matter content, which is relevant 
to succeed with a sustainable management in Mediterranean olive 
plantations that will contribute to achieve the Sustainable Development 
Goals of the United Nations. 
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Mekonnen, M., Terol, E., Janizadeh, S., Mbarki, S., Saldanha Vogelmann, E., 
Hazrati, S., Sannigrahi, S., Parhizkar, M., Giménez-Morera, A., 2021a. Rainfall and 
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simple methodology to assess historical soil erosion in olive orchards. 
Geomorphology 114, 294–302. https://doi.org/10.1016/j.geomorph.2009.07.010. 

Vanwalleghem, T., Amate, J.I., de Molina, M.G., Fernández, D.S., Gómez, J.A., 2011. 
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