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Abstract  22 

 23 

The aim of this work was to characterizes, by the non-destructive technique based on the 24 

laser-backscattering imaging analysis, the effect of pre-treatment with papain enzyme 25 

(1% w/w), the enzyme action time (0, 3, 6 and 24 h at 4 ºC) and cooking (80 ºC for 3 min) 26 

on pork loin tenderness. Texture and image analyses were run for the untreated and treated 27 

samples, and for the uncooked and cooked samples. Images of the laser pattern generated 28 

on the meat surface were decomposed into red, green and blue channels. Two descriptors 29 

types (direct and relative) were developed for each one by segmentation. The obtained 30 

results revealed the increased tenderness in the samples that underwent enzyme treatment 31 

with maximum values at 6 h (29.3±3.2 N). Cooking increased enzyme action with much 32 

lower values (39.2±3 N) than for the samples without treatment (75.6±2.9 N). For 33 

uncooked meat, changes in texture were related mainly to the relative descriptor of the 34 

blue and green channels, and those from the red channel for cooked meat, which allowed 35 

prediction models to be obtained (R2 CV = 0.9; RMSE CV = 1.9). 36 

 37 

 38 

 39 
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  41 



3 
 

1. Introduction 42 

Tenderness is one of the most important meat characteristics (Bhat et al., 2018; Lomiwes 43 

et al., 2014; Takei et al., 2015), and is described as the most important factor to influence 44 

consumer satisfaction (Bolumar et al., 2014; Silva et al., 2015). Ageing is an effective 45 

traditional way to improve tenderness and other meat characteristics (Bhat et al., 2018). 46 

Meat proteins are known to undergo intense degradation during postmortem ageing due 47 

to the action of calpains and cathepsins, which results in increased meat tenderness 48 

(Toldrá, 2012). The main changes are associated with myofibrils fragmentation through 49 

the Z-disc, the degradation of desmin, titin and nebulin, and the appearance of two 50 

polypeptides with molecular masses of 95 and 30 KDa (Toldrá and Reig, 2015). 51 

Increasing meat tenderness and flavour is often done by ageing it, but this involves 52 

economic considerations in time, space, labour and energy terms (Bhat et al., 2018). In 53 

addition, tenderization by ageing is limited and sometimes proves insufficient for certain 54 

population sectors that can only eat very soft food. In fact with decreased chewing 55 

function due to prosthesis placement and muscle weakness associated with ageing, or 56 

sequelae of stroke or other diseases/injuries, people like the elderly can become 57 

increasingly unable to eat meat, which is very tasty food, and serves as a good protein 58 

source that comes in normally cooked dishes. This may lead to protein deficiencies in this 59 

population (Takei et al., 2015). However, the problem can increase because the cooking 60 

process sometimes increases meat toughness. In muscles in which myofibrillar proteins 61 

predominate, such as Longissumus lumborum, a high temperature rate is applied, and the 62 

denaturation of myofibrillar components results in toughening (Walsh et al., 2010). 63 

To increase meat tenderness, other strategies like chemical and mechanical methods are 64 

adopted. Chemical methods include post-exsanguination vascular infusion and 65 

exogenous proteases, solubilising agents likes salt (marination) and calcium. Mechanical 66 
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methods consist in grinding, blade or needle tenderisation and applying high-pressure 67 

processing (HPP) pre- or post-rigour in combination with or without heat (Bolumar et al., 68 

2014). Applying enzymes for meat tenderisation has been considered for years. 69 

Exogenous protease enzymes, such as papain, bromelain and ficin, are widely used as 70 

meat tenderizers (Eom et al., 2015; Takei et al., 2015; Toldrá and Reig, 2015). Papain is 71 

extracted from papaya latex (EC 3.4.22.2) and is one of the commonest plant enzymes 72 

employed for artificial meat tenderisation because of its ability to break down both 73 

myofibrillar proteins and connective tissues (Barekat and Soltanizadeh, 2017). In these 74 

studies, softness is evaluated with mechanical properties by employing a texturometer, 75 

which very well describes the texture of meat, but in a destructive analysis. So when 76 

samples need to be measured at different times during their transformation, it is say, at 77 

the same time that they are undergoing changes, heterogeneity must be assumed among 78 

them or their number should increase during each sampling time. Recently, imaging 79 

methods have been utilised to visually assess meat and foodstuff quality of the processing 80 

line based on colour, shape, size, surface texture features, etc. Technically speaking, 81 

image processing is a methodology capable of offering an accurate physical description 82 

of an object through image analysis (Taheri-Garavand et al., 2019) without destroying it. 83 

Among other imaging techniques, the laser backscattering method has also been applied 84 

to model and characterize food properties, and for processing both solid and fluid food 85 

matrices. This approach is based on a simple device, which also includes image analysis 86 

procedures, from which the interaction of laser with samples is captured on digital images 87 

as diffraction patterns. In this approach, the laser is transmitted through the matrix until 88 

the surface and is scattered because of the sample’s internal structure and components. 89 

Light scattering is the result of photon projection at different angles in a given material. 90 

Hence of the total laser light projected onto the food surface, a fraction of photons is 91 
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reflected on it, while the rest enter food tissue and undergoes absorption (related to the 92 

chemical constituents), transmission, or diffuse reflection (scattering) (Udomkun et al., 93 

2014). These phenomena may provide information about the structures and morphology 94 

of the matrix because the backscattered photons have inherently interacted with the 95 

internal components (Mollazade et al., 2013). 96 

The patterns from these digital images are processed and transformed into numerical data, 97 

which can be used to predict food and process parameters for non-destructive 98 

physicochemical monitoring. One of the main advantages of this technique, apart from 99 

its low cost, is it can be applied to study static or dynamic samples, which change as they 100 

are being measured. Recently, our research group successfully worked with this technique 101 

by applying it to evaluate the rheological properties of vegetable-based creams (Verdú et 102 

al., 2019c), the physico-chemical properties of biscuits with different fibre contents 103 

(Verdú et al., 2019a) and by monitoring the texture of milk during fermentation for yogurt 104 

production (Verdú et al., 2019b) or cheese curing (Verdú et al., 2020). 105 

Thus, the aim of this work is to characterize, by the non-destructive technique based on 106 

the laser-backscattering imaging analysis, the effect of the pre-treatment with papain 107 

enzyme, the enzyme action time and cooking, on pork loin tenderness. 108 

 109 

2. Material and Methods 110 

2.1. Experimental design 111 

This study was carried out with sliced fresh pork loins (Longissumus dorsi) (7 mm 112 

thickness), purchased from a local Spanish supermarket (Mercadona, Spain). Samples 113 

were repackaged in plastic bags by mixing slices from different lots to reduce the batch 114 

effect.  115 
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Three factors were studied: enzyme treatment, enzyme action time and cooking process. 116 

For this purpose, 96 samples were employed, half of which were treated with the enzyme, 117 

and the remaining 48 were used as the control. The enzyme was papain (Biocon, Les 118 

Franqueses del Vallés, Spain), a proteolitic enzyme (Singh et al., 2018) with an activity 119 

of 6000 USP. Firstly, 1% (w/w), which is the least amount capable of covering the entire 120 

surface, was directly applied to the surface of the sliced loins, which were kept at 4 ºC 121 

during the enzyme action time (0, 3, 6 and 24 h) on a Petri dish. For each time, half the 122 

control and treated samples were placed individually inside plastic bags and cooked at 80 123 

ºC for 3 min, while the rest were analyzed without heat treatment (Fig. 1B). The cooking 124 

method was chosen to obtain homogeneous heat diffusion around samples, without 125 

allowing the cooking liquid to interact with samples. Later at room temperature, the 126 

samples that had undergone enzyme treatment and the control ones (without it) were 127 

analyzed at each enzyme action time, either with or without heat treatment (12 samples 128 

each). The mass variation, texture, image analysis and correlation between them were 129 

noted to describe the changes that took place according to the factors. Fig. 1B shows the 130 

experimental design. 131 

  132 

2.2. Physical properties 133 

2.2.1. Texture analysis 134 

For all the samples, texture was analyzed at each sampling time and room temperature by 135 

employing the slice shear force (SSF) according to that described by Bruce and Aalhus 136 

in 2017. A TA-XT2 texture analyser (Stable Microsystems, England) was used and the 137 

crosshead speed was set at 500 mm/min. The blade employed for shearing was flat with 138 

a similar degree of bevel (half-round) and thickness (1.684 mm). The software was 139 
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Exponent (Stable Micro Systems Ltd, version 6.1.11.0), and shear force was obtained and 140 

expressed as Newton (N). 141 

2.2.2. Mass loss 142 

All the samples were weighed at time 0 and after each enzymatic action time (3, 6 and 24 143 

h), as were the cooked ones later. By employing Equation 1, the mass loss for each 144 

enzyme action time, because of the cooking process, was calculated. 145 

 146 

∆M = (𝑚𝑚𝑚𝑚−𝑚𝑚𝑚𝑚)
𝑚𝑚𝑚𝑚

 (1) 147 

where ΔM is the mass increment for the enzyme action time; mf is mass after each enzyme 148 

action time; mo is the initial mass. For the cooking process action: mf is the mass after 149 

cooking and mo is the mass at the end of each enzyme action time. 150 

 151 

2.2.3. Imaging system and descriptors 152 

The imaging system was based on capturing the generated laser backscattering pattern 153 

onto the loin surface because of the light transmitted from the bottom of the sample. The 154 

capture system was a Logitech C920 camera (CMOS sensor, resolution of 2304x1535) 155 

placed inside a dark cabin to keep it away from light, and 15 cm vertically over the sample 156 

surface. It was placed in the middle of the capture field. The laser pointer (650 nm, 157 

50 mW, 3 mmᴓ) was perpendicularly placed 9 cm under samples by emitting to the 158 

central zone of the bottom surface (Fig. 1A). The selected laser specifications were 159 

decided according to previous studies, where one red light-laser pointer was successfully 160 

used (Tu et al., 2000; Verdú et al., 2019a). In this case, power was higher to obtain a 161 

sufficient transmittable light fraction because of the properties of the studied food matrix. 162 
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The RGB (red, green and blue) images (1280 × 720 pixels in the JPEG format) were 163 

captured for each sample type, employing version 2.51 of Logitech Webcam Software 164 

(compilation 13.51.828). All automatic light controls parameters were set to manual mode 165 

in order to work with consistent light captures (gain, shutter speed, white balance, …). 166 

Image descriptors were extracted following the steps shown in Fig. 1C and 1D and in the 167 

Supplementary Material (Fig. 1): firstly, the RGB images were cut to 350 x 350 pixels, 168 

and then the fraction of each different image from the samples was removed to avoid 169 

reflections because they can produce noise in data. To do so, and after evaluating any 170 

capture anomaly, images were cut again to 325 pixels, which was the diameter of the Petri 171 

dish whose surface was completely covered by the sample. Once this was done, images 172 

were decomposed into three, each containing only the information from one of the red, 173 

green or blue channels. Colour channels were split to collect information from not only 174 

the R pixels, but also from G and B. In this case, the used wavelength stimulated pixels 175 

from all the channels. This is done because the laser excites the G and B sensor, although 176 

with less efficiency (Batistell et al., 2014), allowing us to get valuable information from 177 

the R saturated areas with one single capture. The camera sensor quantize R, G and B 178 

values with only 8 bits, thus if a big difference in light intensity exists in the scene, the 179 

limited dynamic range cannot accurately represent all the nuances. Taking advantage of 180 

the different efficiency of sensors we can recover part of this information. The last step 181 

involved transforming images into data (descriptors that express the spatial intensity 182 

signal). To this end, segmentation was done, where the different tones of the laser-pattern 183 

morphology for each channel, which went from 0 (darker colour) to 255 (brighter colour), 184 

were delimited by different tone intensities and measured as number of pixels. The free 185 

FIJI image software was used to process all the images. 186 



9 
 

Two different groups of descriptors were generated; relative and direct descriptors. 187 

Specific software was developed to automatically process and extract descriptors from 188 

images, which was used in another study (Verdu et al., 2019a). To obtain the former, a 189 

line of 325 pixels to cross the images in the center (the dashed yellow line in Fig. 1C) was 190 

selected. From this, a profile was generated by the tone of each pixel that expresses the 191 

intensity signal. Finally, descriptors were obtained with the number of pixels of the tone 192 

located at 20% (w4), 40% (w3), 60% (w2), 80% (w1) and 100% (w0) of the maximum 193 

tone value (w Max).  194 

To obtain the direct descriptors (Fig. 1D), images were segmented between two intensities 195 

(values of tones (0 to 255)), and the number of pixels between both values was defined 196 

as a direct descriptor. So six direct descriptors were defined according to the established 197 

tone interval: A250 (tone 250 to 151), A150 (tone 150 to 101); A100 (tone 100 to 76); 198 

A75 (tone 75 to 51); A50 (tone 50 to 36); A35 (tone 35 to 0). 199 

 200 

2.2.4. Statistical analyses 201 

Factors enzyme treatment, enzyme action time and cooking process were studied by a 202 

multifactor analysis of variance for the physico-chemical properties data and the principal 203 

component analysis (PCA) values. In those cases with a significant effect (p<0.05), the 204 

average was compared by Fisher's least significant difference (LSD). The PCA was used 205 

to reduce image analysis data dimensionality to perform a joint comparative analysis. 206 

Support vector machine (SVM) for regression (SVM-R) was applied to study the 207 

dependency between the texture data and image data by evaluating the calibration (R2) 208 

and crossvalidation (R2 CV) coefficients and the root mean square errors (RMSE). SVM 209 

is a supervised learning methodology based on the statistical learning theory, which is 210 
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frequently used for spectral data analyses (Boser et al., 1992). Procedures were performed 211 

with the PLS Toolbox 6.3 (Eigenvector Research Inc., Wenatchee, Washington, USA), a 212 

toolbox extension in the Matlab 7.6 computational environment (The Mathworks, Natick, 213 

Massachusetts, USA). 214 

 215 

3. Results and Discussion 216 

3.1. Physico-chemical properties 217 

The three evaluated factors (enzyme treatment, enzyme action time and cooking methods) 218 

statistically influenced both the texture and mass variation of pork loins. Figure 2A shows 219 

the shear force values for the control and treated samples before and after cooking. 220 

Enzyme treatment reduced the shear force, which became more evident when the enzyme 221 

action time prolonged. While the shear force values slightly rose with the control samples 222 

during the study, with statistically significant differences being found only for samples at 223 

0 and 24 h and after cooking, the values of the samples treated with papain lowered. 224 

Values mainly lowered during the first 6 h, from which point the shear force values did 225 

not change until the end. Papain is a highly efficient enzyme that causes significant 226 

degradation of both myofibrillar and collagen proteins (Ashie et al., 2002a) by the 227 

specificity action on amino acids with aromatic side chains, such as Phe (Phenylalanine) 228 

and Tyr (Tyrosine), at the P2 position (Singh et al., 2018). 229 

The increased shear force values for the control samples could be due to the water lost 230 

during this period (Fig. 2B). Water loss from whole raw meat can take place through the 231 

action of endogenous proteolytic enzymes (calpains, cathepsins, caspases) as exudation, 232 

and by water evaporation from the surface when muscle is cut (Tornberg, 2005). 233 

Proteolytic enzymes are responsible for muscle fibre degradation (Bhat et al., 2018) 234 
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because myofibrils hold water (≈ 80%) in the spaces between thick and thin filaments in 235 

living muscle (Offer et al., 1989). During this action, which is called tenderness, 236 

endogenous proteolytic enzymes, mainly µ-calpain (Bhat et al., 2018), in muscle break 237 

up the myofibril structure and tenderise meat (Morton et al., 2018), losing water. As the 238 

control samples did not undergo softening, but quite the opposite, hardening, we expected 239 

water loss to be due to evaporation. In fact meat drying promotes closer contact between 240 

proteins and new interactions form that increase hardness (Aliño et al., 2009). 241 

However, the papain-treated samples underwent the same water loss as the control during 242 

the first 6 h, which was lower at the end of the experiment (Fig. 2B). According to the 243 

results reported by other authors (Ashie et al., 2002b; Eom et al., 2015; Takei et al., 2015), 244 

the marked papain activity on the protein structure produced a rapid and strong hydrolytic 245 

effect on connective tissues by breaking polypeptides (Barekat and Soltanizadeh, 2017), 246 

which minimized water loss at the end of the experiment and increased softness. In fact, 247 

Figure 3 shows the augmented image of the treated and control samples at the 24-hour 248 

enzyme action time, where the hydrolytic effect is visible mainly on connective tissues 249 

(letter “c” in Fig. 3A). Instead the control samples showed superficial dark grooves (letter 250 

“d” in Fig. 3B) because of the hole generated by water loss. Both these behaviours became 251 

more evident when images were analyzed. For this purpose, images were transformed 252 

into the greyscale from 0 (black) to 255 (white), and a line of pixels was evaluated. The 253 

line of pixels showed heterogeneous tone values in the control sample (the purple line in 254 

Fig. 3), which were homogeneous for the treated sample (the blue line in Fig. 3) because 255 

hydrogel formed on the surface. Langmuir and Schaefer already reported papain’s ability 256 

to form gel as a monolayer back in 1939, which could form on the surface of samples. 257 

This could explain why enzyme action finished 6 h after it was applied. Gel formation 258 

can lead to enzyme immobilization and, therefore, to its action.  259 
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The effect of cooking brought about increased hardness for both sample types and for all 260 

the enzyme action times (Fig. 2A), compared to the uncooked samples. During heating, 261 

the different meat proteins denature and cause structural changes in meat, such as the 262 

destruction of cell membranes, shrinkage of meat fibres, the aggregation and gel 263 

formation of myofibrilar and sarcoplasmic proteins, and shrinkage and solubilisation of 264 

connective tissue (Tornberg, 2005). Specifically at 80 ºC, hardness increases (Becker et 265 

al., 2016) due to denaturation of myofibrillar protein, which predominate in Longissumus 266 

lumborum (Walsh et al., 2010). This denaturation also caused water loss, which was 267 

around 25% for both sample types (Fig. 2B). Even so, the treated samples displayed a 268 

sharp drop in hardness compared to the untreated ones, with values close to those of the 269 

uncooked treated samples. This result was clearly observed with the samples that 270 

underwent enzyme treatment for 6 h at 4 ºC and were then cooked (Fig. 2A). A rise in 271 

temperature during cooking could enhance enzyme action. In fact papain’s optimal 272 

activity occurs at temperatures within the 65-80 ºC range (Barekat and Soltanizadeh, 273 

2017; Singh et al., 2018). Thus increasing temperature during cooking accelerates enzyme 274 

activity of myofibrillar proteins, which was so high that it minimised their shrinkage due 275 

to cooking, and also diminished their water-holding capacity and, therefore, increased 276 

water loss. This effect was clearly observed at enzyme action time 0 (Fig. 2A). At this 277 

time, the enzyme was added to samples and they were immediately cooked at the same 278 

time as the untreated samples, but shear force was much lower for the former. So a low 279 

cooking temperature with an effect on enzyme action (from 65 ºC) and the cooking 280 

method (e.g. stewing) could make the softness values of the meat treated with papain rise, 281 

as herein demonstrated. This cooking process would have the main advantage (meat 282 

tenderness) of low-temperature long-time cooking (LTLT), but without its disadvantages 283 

(juiciness and cooking loss) (Dominguez-Hernandez et al., 2018).  284 
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3.2. Image analysis 285 

Having processed the images before cooking and generated the descriptors for each 286 

channel, data were explored following the differences observed in the space of variance 287 

obtained in the PCA. Four components expressed 77.75% of variance, being PC1 with 288 

43.78% which could be related to sample type (with or without enzyme treatment) and 289 

enzyme action time. When the weights of each descriptor (loadings) on the PCA were 290 

analyzed (Fig. 4A), the Green channel descriptors were the most influential, followed by 291 

those of the Blue channel. For both, the relative descriptors (W) had more descriptors 292 

with higher loading values than the direct descriptors (A), perhaps because they depend 293 

less on sample thickness. Instead the Red channel had the fewest descriptors with high 294 

weight values (only W2 and W3). As the laser emitted light at 650 nm (red), the Red 295 

channel was expected to be the most influential on the generated PCA model. One 296 

explanation could lie in the web cam characteristics. The three sensors (red, green, blue) 297 

are sensitive to a wavelength range (spectrum) and, therefore, to 650 nm at different levels 298 

(red sensor was the most excited, while green and blue were less excited). So Red channel 299 

sensors could be saturated and samples change because of factors (enzyme treatment and 300 

enzyme action time), which would not suffice to reduce saturation or, if reducing it, some 301 

information could be lost. This could explain the highest values of the descriptors for this 302 

channel. Instead for the Green and Blue channels, although the excitation of sensors was 303 

lower, the changes in samples would generate changes on the laser patterns, and they 304 

would suffice to change sensor excitation and, consequently, the generated descriptors. 305 

So, by employing only the descriptors with a high weight value in the PCA (the 306 

descriptors inside the dashed black line box in Fig. 3A), a new PCA study was performed. 307 

In this case, the results improved as total variance rose to 98.14% and PC1 component 308 

had 89.02% of the total. Figure 3B shows the representation of the PC1 values during the 309 
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enzyme action time. PC1 evolution was dependent on the enzyme action time, with the 310 

same behaviour displayed by both sample types. The PC1 values lowered with time, being 311 

lower for the papain-treated samples, which reached the lowest PC1 value (maximum 312 

difference) at the 6-hour treatment time, like that observed for shear force and mass loss 313 

(Fig. 2). The PC1 result was clearly understood when the descriptors with the highest 314 

weight values in the PCA model were observed. Figure 5A, by way of example, shows 315 

the evolution on descriptor W2 for the three channels. For both sample types, the 316 

descriptor values lowered, as with the other descriptors, which could reveal the reduction 317 

of light through samples. During the study, both sample types lost water, which increased 318 

the contact between proteins, as previously mentioned, and less light crossed samples. In 319 

addition, for the treated samples, this reduction could be done mainly to the disruption of 320 

the protein structure, the delocated water content and gel formation, which would all 321 

generate an amorphous structure like that shown in Figure 3A. In this disordered structure, 322 

the Anderson localisation phenomenon would take place (Wiersma et al., 1997). Based 323 

on this phenomenon, light diffusion in a disordered system might come to a halt 324 

(confined) when disorder reaches a critical value. The scattering process carried out due 325 

to the marked disorder caused the material to reduce the light transmitted through it by 326 

exponentially reducing the transmission coefficient with sample thickness (Wiersma et 327 

al., 1997), which can become opaque. 328 

The study of the images obtained from the samples after cooking was conducted as 329 

previously for the samples before it. The PCA generated by employing descriptors did 330 

not show any relation with both factors (enzyme action time and cooking process). The 331 

evaluation of the descriptors from Green and Blue channels displayed chaotic behaviour, 332 

which was instead coherent for the Red channel. In line with this result, a new PCA was 333 

done by employing only the descriptors of the Red channel. The new model was obtained 334 
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by employing five components, which expressed 97.05% of the total variance, while PC2 335 

explained 22.21% of the total variance, which was related to both factors. The analysis of 336 

the loading showed that descriptors W2, W3, W3/W0, W3/W1, A75, A50 and A35 had 337 

the highest weight values in the PCA model (Fig. 4C). So a third PCA analysis was done 338 

and used only these descriptors. In this new PCA, only two components were needed 339 

(83.57%), and PC1 explained 46.66%, of the total variance, which was related to both 340 

factors. Figure 4D shows the evolution of the PC1 values during the enzyme action time. 341 

The evolution of the PC1 values differed from both sample types. While no evolutions 342 

and only moderate increases were observed for the control samples, for the treated 343 

samples abrupt decreases took place during the first 6 h, which remained constant after 344 

this period. Evolution was similar to that observed for texture and water loss after cooking 345 

(Fig. 2A and B). The main factor affecting samples was the cooking process. On the one 346 

hand, it lowered the descriptors’ values, compared to those obtained for the uncooked 347 

samples (Fig. 5A and B); on the other hand, it enhanced enzyme action, as previously 348 

mentioned. The lower descriptors’ values were because cooking led to the shrinkage and 349 

compaction of meat fibres, which hindered the laser light from passing through samples, 350 

as shown in Fig. 1C and 1D. In them, the laser pattern of both samples is shown and the 351 

smaller diameter for samples with cooking treatment is clearly observed. This result could 352 

explain why the highest weight values in the PCA model were given only by the 353 

descriptors from the Red channel. The smallest amount of light to pass through samples 354 

would not be enough to excite the sensors of the Green and Blue channels and as a result, 355 

descriptors with chaotic behaviour. Besides, the increase in enzyme action brought about 356 

by the cooking process, as seen in the shear force study (Fig. 2A), was clearly observed 357 

at enzyme action time 0. At this time point, the values of descriptors and PC1 (Fig. 5B 358 

and 4D, respectively) were much lower in the treated samples. The disruption of the 359 
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protein structure, gel coagulation and, therefore, the generated amorphous structure 360 

would increase samples’ opacity, possibly because of the increased Anderson localisation 361 

phenomenon. 362 

 363 

3.3. Relation between physico-chemical and image results 364 

After observing the same behaviour among water loss, shear force and the changes in the 365 

laser-backscattering imaging, the relation among those in which changes were evident 366 

was evaluated for each one. For changes in the laser-backscattering imaging, PC1 was 367 

uses as result of the linear combinations of image descriptors to one variable. Figure 6A 368 

shows the relation among the mass loss for untreated and treated uncooked samples, for 369 

the treated and cooked samples, and their respective PC1 values. Figure 6B depicts the 370 

shear force relation for the uncooked treated and the treated + cooked samples and their 371 

respective PC1 values. For the uncooked samples, although the untreated samples 372 

displayed greater mass loss, changes in the PC1 values were higher for the treated 373 

samples, which revealed the importance of the protein structure disruption generated by 374 

enzymatic activity on the laser response, as evidenced by the observed relation between 375 

shear force and PC1 (Fig. 6B). Thus, for the uncooked samples, changes in laser pattern 376 

would occur by the dehydration, while these would vastly increase by the changes in 377 

texture caused by the enzyme in the treated samples. 378 

For the cooked samples, although a relation appeared between mass loss and PC1 for the 379 

treated samples (Fig. 6A), as there was no significant variation in it, the changes in PC1 380 

should be attributed mainly to texture changes (see Fig. 6B).  381 

One relation was evaluated, support vector machine for regression (SVM-R) was applied 382 

to study the dependence among mass loss, texture and images for those treatments with 383 
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changes. The results did not show any model between mass loss and image changes, 384 

regardless of treatment. Although a relation was found (Fig. 6A), data dispersion made it 385 

impossible to develop any model. Instead three models were constructed between the 386 

texture and images of the samples treated with the enzyme: one employed the uncooked 387 

samples, another used the cooked samples and the third utilised both. Table 1 shows the 388 

prediction results. The obtained R2 were higher than 0.90 for all the models, and no 389 

differences in errors were specifically observed. The goodness of the obtained models 390 

was evident when the average of the standard error for texture (in Table 1 of 391 

Supplementary Material), which expresses the variability in meat texture at each sampling 392 

time, was compared to the RMSE values for the models (Table 1), which express the error 393 

in texture prediction. While the average for the former was 2.9 and 2.6 for the uncooked 394 

and cooked samples, respectively, the highest RMSE was 1.902. So the obtained models 395 

could confirm the direct relation between meat structure (independently of the cooking 396 

process) and the laser pattern generated when structure changes sufficed to minimise 397 

other effects, such as drying, which occurred with the control samples before cooking. 398 

 399 

4. Conclusion 400 

The laser-backscattering imaging technique tool was proven capable of evaluating pork 401 

loin tenderness based on three factors: enzyme pretreatment, enzyme action time, cooking 402 

method. 403 

Enzyme action increased sliced fresh pork loin tenderness and its maximum value was 404 

obtained at 6 h of enzymatic treatment at 4ºC, but the cooking process considerably 405 

increased activity because the temperature set (80ºC) fell within the optimal enzyme 406 



18 
 

activity temperatures range (65–80ºC). Activity is so high that it can minimise the marked 407 

increase in hardness due to cooking. 408 

Changes in samples brought about changes in the image descriptors. For the samples 409 

before cooking, the descriptors from Green and Blue channels were the most influential, 410 

while the Red channel was for the samples after cooking. Samples’ increased opacity due 411 

to water loss and compaction, mainly by cooking, led the Red channel to go from 412 

saturation to an adequate excitation level, while the Green and Blue channels went from 413 

a good excitation level to non-excitation. Hence decomposition of the images in the three 414 

channels (Red, Green, Blue) allows us to analyse the samples that undergo marked 415 

changes while being processed without varying the image capture system. 416 

The relations between the changes in both laser pattern and meat texture caused by the 417 

enzyme, and independently of the cooking method, were demonstrated whenever 418 

enzymatic changes minimised other effects like drying. So this technique could be used 419 

to evaluate meat texture by reducing the effect that meat heterogeneity has on the mean 420 

texture value obtained by employing destructive techniques such as texturometers. 421 
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Figure 1 528 

 529 

 530 

 531 

 532 

Fig. 1. A: Image device scheme; B: Scheme of the experiment; C and D: Image processing 533 

and data extraction by decomposing the RGB images into those with information from 534 

the Red, Green and Blue channels to obtain relative descriptors (C) and direct descriptors 535 

(D). 536 

  537 
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Figure 2 538 

 539 

 540 

 541 

 542 

 543 

 544 

Fig. 2. Texture (A) and mass variation (B) for the control (black line) and treated samples 545 

(grey line) for each enzyme action time. Continuous line: uncooked samples. Dashed line: 546 

cooked samples. Bars represent standard deviation. 547 
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Figure 3 549 

 550 

 551 

 552 

Fig. 3. Augmented image of the treated (A) and control (B) samples at enzyme action 553 

time 24 h. c: hydrolytic effect on connective tissues; d: dark grooves by water loss. Blue 554 

and purple line: line of pixels in which the gray tone was analyzed. Graphs: gray tone 555 

intensity at each pixel.  556 

  557 
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Figure 4 558 

 559 

 560 

 561 

 562 

Fig. 4. A: Loading for the first PCA analysis done with the descriptors obtained from the 563 

three channels of images of the uncooked samples. B: PCA done only with the descriptors 564 

with higher weight values on the first PCA. C: Loading for the second PCA analysis done 565 

with the descriptors obtained from the Red channels of images of the cooked samples. D: 566 

PCA done only with the descriptors with higher weight values on the second PCA. Red 567 

line: Red channel; Green line: Green channel; Blue line: Blue channel; Black line: control 568 

uncooked samples; Grey line: treated uncooked samples; Black dashed line: control 569 

cooked samples; Grey dashed line: treated cooked samples; Dashed black line box: the 570 

descriptors considered with high weight values in the PCA model. Bars represent standard 571 

deviation.  572 
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Figure 5 573 

 574 

 575 

Fig. 5. Evolution of descriptor W2 for the Red, Green and Blue channels for the uncooked 576 

samples (A) and Red channel for the cooked samples (B). Red line: Red channel; Green 577 

line: Green channel; Blue line: Blue channel. Bars represent standard deviation. 578 
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Figure 6 580 

 581 

 582 

 583 

Fig. 6: Relation between the mass loss (A) or shear force (B) with the PC1 obtained from 584 

PCA analysis of the image descriptors. Continuous black line: untreated and uncooked 585 

samples; Continuous gray line: treated and uncooked samples; Dashed gray line: treated 586 

and cooked samples. Bars represent standard deviation. 587 
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Table 1 589 

 590 

Table 1. Prediction parameters for the regression models between the shear force and 591 

imaging data of the treated samples.   592 

 593 

 Model performance 

 
uncooked cooked uncooked + cooked 

RMSE C 1.394 0.564 1.217 

RMSE CV 1.704 1.403 1.902 

Bias C 0.2867 0.0547 0.0957 

Bias CV 0.3497 0.2671 0.07012 

R2 C 0.945 0.989 0.962 

R2 CV 0.916 0.923 0.904 

 594 

 595 
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