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Abstract— Green energy management is an economical 

solution for better energy usage, but the employed literature 

lacks focusing on the potentials of edge intelligence in 

controllable Internet of Things (IoT). Therefore, in this article, 

we focus on the requirements of todays’ smart grids, homes, and 

industries to propose a deep learning based framework for 

intelligent energy management. We predict future energy 

consumption for short intervals of time as well as provide an 

efficient way of communication between energy distributers and 

consumers. The key contributions include edge devices based 

real-time energy management via common cloud-based data 

supervising server, optimal normalization technique selection, 

and a novel sequence learning based energy forecasting 

mechanism with reduced time complexity and lowest error rates. 

In the proposed framework, edge devices relate to a common 

cloud server in an IoT network that communicates with the 

associated smart grids to effectively continue the energy demand 

and response phenomenon. We apply several preprocessing 

techniques to deal with diverse nature of electricity data, followed 

by an efficient decision-making algorithm for short-term 

forecasting and implement it over dependable resource-

constrained devices. We perform extensive experiments and 

witness 0.15 and 3.77 units reduced MSE and RMSE for 

residential and commercial datasets, respectively. 

 
Index Terms— Energy management, energy forecasting, GRU, 

machine learning, LSTM, dependable IoT, smart grids, smart 

homes/industries, edge computing. 

I. INTRODUCTION 

Energy management at smart grids via automated 

techniques for future load forecasting is an interesting area of 

research. Smart grids are the secure and trust-worthy locations 

to distribute the electric energy among diverse sets of 

consumers such as smart homes and industries. The electric 

energy retails chain includes production at power plants, 

distribution at smart grids, and consumption at residential [1] 

or commercial buildings and industrial sectors [2]. The 

amount of energy produced in power plants that is distributed 

at grids is entirely influenced by its usage at consumer side. 

Majority of the consumers are non-experts of energy demands 

from electric grids, resulting financial loss and futile energy 

expenditure. Similarly, the producers want to minimize the 

cost and obtain an optimized level of energy generation, 

farming the need of appropriate scheduling and management 

strategies. 

A proper planning for energy production and consumption 

ensures its purposeful usage at industries/household and a 

balanced amount of energy generation at power plants. The 

channel holding the energy communication stability between 

producer and consumer is smart grid that is responsible for the 

equilibrium state of energy for both parties [3]. Energy 

forecasting methods are significantly helpful in this regard that 

predict the future energy of a consumer and demands 

accordingly from the grids. Miss-prediction of energy leads to 

additional costs and its wastage. A loss of 10 million pounds 

per year is reported with an increase of 1% forecasting error in 

the United Kingdom in 1984 for a residential building [4]. 

Therefore, precise energy demand forecasting methods are 

required for optimal future decisions. The energy forecasting 

methods are in abundance with applications to household and 

industrial zones. The representative methods that are 

particularly related to the presented work are discussed in the 

subsequent paragraphs, while the detailed literature is covered 

in Section II. 

The individual load forecasting systems are deployable in 

many daily life applications such as day-ahead residential 

forecasting assists in appropriate energy demands from smart 

grids [5]. The computationally intelligent techniques involving 

load forecasting play a vital role in reducing the energy crisis 

and contributes to the environmental greenery. Most of these 

methods consist of deep learning based sequential learning 

mechanisms such as long short-term memory (LSTM), which 

is the most popular in energy forecasting related methods. 

LSTM is a type of recurrent neural network (RNN) that is 

widely used in many computer vision domains such as video 

analytics for sequence and series learning tasks [6]. Despite 

the usage of LSTMs, hybrid approaches incorporating fuzzy 

neural inference systems with genetic algorithms are part of 

energy forecasting related literature. Different from the 

aforementioned strategies, T.-Y. Kim and S.-B. Cho [7] 

introduced the usage of spatial and temporal features 

assimilated together for effective housing energy consumption 

prediction. The authors proved the supremacy of 

convolutional neural networks (CNNs) to extract the 

representative features of different variables that affect the 
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energy consumption prediction. Furthermore, these 

representative features with CNNs degrade the error rates over 

individual household power consumption dataset. 

A thorough study of the employed load forecasting related 

literature leaves several open challenges for future research. 

The most prominent and challenging task while presenting a 

novel energy prediction technique is achieving exactness in 

the forecasting accuracy. Another big challenge that is 

inadequately covered in the employed literature is execution 

of the implemented algorithm over the edge nodes that leads 

to fruitful communication between interconnected devices in 

an IoT network for energy utilization. Recently, resource-

constrained devices in IoT environments have shown high-

level of potentials in video analytics [8], healthcare [9], and 

many other domains [10]. In continuation to these challenges, 

the reduced time complexity of an energy forecasting method, 

particularly while dealing the problem of short-term load 

forecasting is also a primary concern. Furthermore, the cloud 

[11] and fog computing [12, 13] paradigms are scarcely 

utilized in energy forecasting literature, which are trustworthy 

platforms for efficient Big Data analysis and instant decision 

making, such as anomalous energy demand prediction. 

Therefore, to handle these issues efficiently and effectively in 

controllable IoT networks by using deep learning strategies, 

we propose a novel edge-intelligence based energy forecasting 

framework for smart grids energy management with the 

following summarized contributions: 

• We handle energy demand fluctuations via dependable 

edge intelligence-based novel and adaptable framework to 

bring the energy producers and consumers to a common 

platform for effective communication based on future 

predictions of our employed algorithm. 

• We present an infrastructure to deploy resource-

constrained controllable devices at variable consumer 

locations (smart homes or industries), that are connected 

through IoT network with cloud supervising server to 

upload their current demands and inform about the future 

requirements. Smart grids respond to the domestic and 

industrial requests received from cloud server and 

transmits the specific amount of energy, ensuring smooth 

energy management. Cloud server filters out each demand 

to report about the anomalous energy demands from 

consumers. It has a bonus of energy forecasting data 

storage that can be used for further in-depth analysis. 

• Based on our extensive experiments, we prove our 

framework to be as a paradigm for future edge-intelligence 

based energy forecasting methods. The initial experiments 

include normalization technique selection, choosing 

optimal sequential model, where we demonstrate the 

performance of our framework relative to each model. We 

analyze the execution time of different flavors of the 

series-learning models to gauge between the running time 

and preciseness of a model. 

The rest of the paper has three major sections. Section II 

explains the state-of-the-art methods for intelligent load 

forecasting. The proposed methodology and functionalities of 

our framework are given in Section III. The experimentation 

details and performance evaluation are explained in Section 

IV. The overall research is concluded in Section V with some 

future research directions. 

II. RELATED WORK 

This section has two major sub-sections; (1) statistical 

methods, and (2) deep learning based strategies. Energy load 

forecasting related literature is very old and can be studied in 

detail from a survey [14] that covers research articles from 

1956 to 2013. Similarly, a recent survey is presented by Fallah 

et al. [15] with coverage of 52 papers in the range of 

2001~2019. The energy forecasting methods during the given 

tenure [16, 17] lack focusing on the usage of resource-

constrained devices, which are emerging due to their 

computational capabilities and instant decision support 

system. The subsequent sections discuss these methods in a 

classified format i.e., statistical and deep learning based load 

forecasting methods. 

A. Statistical approaches towards load forecasting 

Statistical methods such as set theories [18] etc. are widely 

used for many applications, such as energy forecasting and are 

observed in comparatively old related literature [19]. The 

major techniques include clustering [20], support vector 

regression (SVR) [21], extreme learning machine (ELM) [22], 

etc. The center of focus for majority of the forecasting 

methods is short-term load forecasting (STLF). For instance, 

Ceperic et al. utilized SVR machines to predict the future load 

for short-term duration [23]. In this paper, authors introduced 

two significant improvements over the existing SVR based 

forecasting techniques. The first advancement is the 

mechanism for generation of model inputs and the second one 

is its subsequent model input selection by utilizing feature 

selection algorithms. In this work, authors employed particle 

swarm global optimization to optimize the SVR hyper-

parameters which in turn reduces the operator interaction. This 

research methodology is tested over two load forecasting 

datasets and a fair comparison with state-of-the-art indicates 

their improved accuracy. In another followed research for 

STLF, Li et al. forecasted energy by wavelet transform and 

evolutionary ELM [22]. The presented strategy is not entirely 

dependent on ELM, rather it is a hybrid strategy of ELM and a 

modified artificial bee colony algorithm that forecasts for 1 to 

24 hours ahead. The artificial bee colony algorithm is used to 

support the ELM in selection of best parameters from given 

input weights. The authors achieved new state-of-the-art 

results on electric utility data from ISO New England and 

North America. 
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Figure 1: The proposed framework for intelligent energy management using dependable and controllable IoT with energy distribution, depletion, and 

management. 

B. Deep learning based methods for future load prediction 

With the emergence of deep learning in computer vision, 

IoT [24], security, healthcare [25], etc., scientists also utilized 

it for energy forecasting [26, 27] to achieve better and precise 

prediction results. Mainstream deep learning based methods in 

energy forecasting related literature focus on prediction for 

residential buildings, as Kong et al. proposed STLF using 

resident behavior learning and LSTM [28]. They mainly 

focused on handling the variable behavior of residential loads 

that hinder the precise prediction results. Another followed 

research [29] presented a hybrid technique for energy 

forecasting of residential buildings, where they incorporated 

deep learning and genetic algorithms with LSTM to propose 

an optimized objective function with hidden neurons for 

energy forecasting. Their method is tested over residential and 

commercial buildings data for VSTLF prediction, and the 

results are dominant over existing conventional prediction 

models. Wu et al. utilized multiple kernel learning based 

transfer regression method for load forecasting and performed 

experiments over residential buildings data to show the large 

margin of decreased error rate [30]. Similarly, a recent 

research [7] utilized CNN and LSTM and [31] implemented 

ensemble structures via wavelet neural networks for STLF. 

The deep learning based literature for energy forecasting is 

dense with major focus on sequential data processing 

techniques such as RNN and LSTMs. Till date, the sequential 

learning models are not transformed to the edge nodes with 

significant accuracy. Therefore, to handle this problem, we 

present an energy forecasting framework that is functional 

over resource-constrained devices. The explanatory details 

about our framework are given in Section III. 

III. EFFICIENT MULTI-LAYER GRU FOR LOAD FORECASTING 

The overall framework is given in Figure 1, where two 

major tiers and the energy consumers scenario at industrial 

and residential sectors are separately described. First tier 

depicts the energy management with household and industrial 

demand and supply. The resources (such as windmill, solar 

plants, etc.) provide energy to grid stations, where it is 

distributed among several types of consumers, primarily 

residential and industrial zones. The energy management tier 

is entirely responsible for energy consumption prediction and 

its appropriate management, where a cloud server is involved 

as a third-party communicator between consumers and smart 

grids. The cloud server contains demands from household and 

industries that are stored, analyzed, and forwarded to the grid 

station for energy supply to the respective consumer. The 

energy consumption prediction tier has a central role in our 

framework, where the consumer parties are equipped with a 

resource-constrained device for future energy prediction. 

Energy production resources and their related details are out of 

the scope of this paper and we assume the grid station to 

receive enough energy from the given resources.  

A. Energy management via controllable IoT devices 

A grid is a secure location to distribute the electrical 

energy among consumers with varied attributes such as level 

of consumption. A smarter grid with appropriate energy 

management (distribution) mechanism saves energy wastage 

and its extra depletion. Traditional grids openly supply energy 

to the demanding customers, without any information about 

their usage, climate changes, and many other situations that 

yield in poor utilization of energy. On the other hand, a smart 

grid keeps track of the energy demands and distributes it 

accordingly. But most of the times, grids show poor 

performance as they are overloaded or most prominently the 
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grids do not preserve energy demands related data. Therefore, 

provide no mechanism to detect anomalous energy demand 

from residential or commercial sector. This issue is tackled in 

our framework through an intermediate cloud analysis 

concept, where the demands from consumers undergo certain 

analysis steps before they are passed on to the smart grids. 

 
Figure 2: Sample scenario to portray the proposed energy management system 

using dependable resource-constrained devices.  

A sample scenario of energy management using our 

proposed infrastructure is portrayed in Figure 2, where the 

future load forecasting advanced to its demand transmission 

and energy acquisition is performed for “House-1”. The figure 

has different colors for distinction of demands of each house 

and industry. In Figure 2, solid line shows energy demand and 

the dotted ones represent the energy supply from the smart 

grid, respective to each color for a different location. The 

energy data usage in minutes for “House-1” is given as an 

input to our proposed trained model that outputs the energy 

usage for the future 1-hour. House-1 has trained forecasting 

model embedded over the resource-constrained device. It 

gives the input data for 3-hours (X kilowatt) and the trained 

model predicts future 1-hour usage, termed as “Y”. House-1 

transmits the request to cloud server which saves it and 

analyze the demand with previous history for abnormality 

check, and optimally transmits it to the smart grid. The 

abnormality may refer to sudden fluctuation in demand from 

residential building or an industry. Smart grid responds to the 

request and supplies Y- kilowatt energy to House-1. This 

cycle continues for all the houses and industries and rotates 

smoothly due to the fast processing over cloud server. 

B. Energy consumption prediction 

The technical contributions of our framework are the 

future energy prediction using a resource-constrained device 

with reduced error rate and optimized computation. There are 

several steps involved in achieving the final trained model that 

is functional in real-world scenarios. The first step is 

preprocessing raw data of an existing dataset, followed by our 

novel sequential learning mechanism to obtain the optimum 

trained model, as explained below. 

1) Data preprocessing 

Electric energy data contain several parameters such as 

date, time, active and reactive power, voltage, etc. that are 

involved in data recording via smart meters. The smart meter 

acts as a hub to connect the wires of different appliances or 

machineries in a single main board. Normally, the data is 

collected for a month or year, where it has several issues such 

as redundancy, missing values, long ranged parameters, etc. 

These errors are caused due to defects in measuring device, 

climate change, metering problems, and individuals’ mistakes. 

Thus, the electric energy data need cleansing and data 

normalization techniques for better refinement and appropriate 

results. 

In our framework, we apply several preprocessing 

techniques to purify the data for training purposes. Firstly, we 

remove the missing values and extract the purposeful data. 

Second, we perform outlier detection, prior to normalization 

method. It has a key advantage of ignoring the exceptional odd 

digits that may affect the range of normalization values and 

drag the parameters toward maximal or minimal range. The 

next important preprocessing step is normalization, where we 

applied several techniques before preceding to the optimal 

“standard transform selection” for final experiments. These 

normalization techniques include minmax scalar, standard 

scalar, maxabs scalar, quantile transform, and power 

transformer. The transition effect of data after normalization is 

visualized for the residential parameters in Figure 3, where 

the data in range of 0 to 250 is normalized between -2.5 and 

3.5. The majority of the parameter values in normalized data 

lie between -1 and 1, therefore, it can play a significant role in 

precise model training. Finally, we convert the original 

datasets (residential and commercial) into shorter intervals 

because we are dealing with short-term load forecasting. The 

preprocessing techniques over raw format of data for both the 

datasets results in enhanced prediction performance. 

 
Figure 3: Visualization of residential dataset parameters; before and after 

applying the optimal normalization technique. 

2) Proposed sequential load forecasting model 

The trending sequential learning neural networks used in 

the employed energy forecasting literature are RNNs and  
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Figure 4: Training loss of our proposed multi-layered GRU over commercial and residential dataset. The training loss over commercial dataset is better as 

compared to residential due to the parameters difference between these datasets. 

it = σ[wi[ht−1, xt] + bi]     (1) 

ft = σ[wf[ht−1, xt] + bf]     (2) 

ot = σ[w0[ht−1, xt] + b0]     (3) 

LSTMs. Traditional neural networks consider only a single 

input, while RNNs [32], in contrast, take input at multiple time 

steps and analyze the series of patterns. The RNNs take input 

and generate output at each time stamp, therefore, it 

encounters vanishing gradient problem i.e., forgetting the 

effect of a longer sequence. The RNNs always face hard times 

while carrying information from earlier time stamps in long-

lasting sequential information. For instance, processing a long 

sequence of energy raw data will lead in losing some 

important information from the initial sequences. This 

problem is solved by LSTMs, which has several gates (input, 

forget, and output gates) to learn long-term sequential 

information as shown mathematically in Eq. 1 to 3. In these 

equations, “𝑖𝑡”, “𝑓𝑡”, “𝑜𝑡” are input, forget, and output gates, 

respectively. “𝜎” refers to the sigmoid function, which is used 

to coerce the output between 0 and 1. “𝑤𝑖”, “𝑤𝑓”, and “𝑤0” 

are the weights of the corresponding gates, “ℎ𝑡−1” indicates 

the output of the previous LSTM block at varied timestamp 

(t), “𝑥𝑡” shows the input at the ongoing timestamp. Finally, 

“𝑏𝑖”, “𝑏𝑓”, and “𝑏0” are the biased terms for the respective 

gates i.e., input, forget, and output gates, correspondingly. The 

structure of the LSTMs is more complex and yields in huge 

processing complexity due to the presence of gated recurrent 

units and memory cell, working together to achieve final 

output. Another effective yet efficient solution to this problem 

is gated recurrent neural network (GRU) [33], that contains 

only two gates; reset and update gate with an activation unit. 

To simplify the mathematics behind the GRU, suppose an 

update gate “Ut” at time duration “td”. When any input “i” is 

fed into the network with time “it”, it is then multiplied with 

its own weights, given as “W1” and the same process 

continues for “it-1” that is the previous unit and is multiplied 

by its own weight “W2”. A sigmoid activation function is 

applied on their resultant sum to acquire the output value of 

the update gate between 0 and 1, as given in Eq. 4. 

𝑈𝑡 =  𝜎[(𝑊1 × 𝑖𝑡  ) + (𝑊2 × 𝑖𝑡−1)]     (4) 

Following this, consider a reset gate “Rt ”, the formula to 

compute its value is given in Eq. 5. It is used to decide how 

much of the previous information to forget. 

𝑅𝑡 =  𝜎[(𝑊1 × 𝑖𝑡  ) + (𝑊2 × 𝑖𝑡−1)]     (5) 

Now, to store the reset gate information, introduce a memory 

content “𝑀𝑟
′” which has information related to the past and has 

the following (Eq. 6) tangent function corresponding to the 

weights. 

𝑀𝑟
′ =  𝑡𝑎𝑛ℎ [(𝑊1 × 𝑖𝑡  ) + (𝑅𝑡 ⊚ 𝑖𝑡−1)]   (6) 

The element-wise product between the reset gate “Rt” and 

“W2” determines the information to be removed from the 

previous time stamps. The final memory at current time stamp 

is calculated using element-wise multiplication and sum 

operation, as illustrated in Eq. 7. 

𝑀𝑟 =  𝑈𝑡 ⊚ 𝑖𝑡−1 + (1 − 𝑈𝑡) ⊚ 𝑀𝑟
′ )    (7) 

The simple structure of GRU makes it implementable in real-

time over resource-constrained devices such as Raspberry-Pi. 
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Although some research studies [33] advocate the superiority 

of LSTMs for specific problems but in our framework, the 

multi-layered GRU dominates LSTM in terms of accuracy and 

computational complexity, as evident from experimental 

results given in Section IV. The proposed model has two 

stacked layers of GRU that help better learning of sequential 

data. In our architecture, we use 0.2 dropout after each layer of 

GRU. The detailed explanation of sequential learning 

mechanism (memory cells and gates) and its mathematical 

computation is out of the scope of this paper and can be 

deeply studied from the referred research works [6, 34]. After 

the stacked GRU layers, we pass its output to a dense layer for 

final sequential data prediction. The number of epochs used 

for both residential and commercial datasets are 150 and its 

learning is shown in Figure 4. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

We perform extensive experiments including comparison 

with state-of-the-art on two datasets and time complexity 

analysis for personal computers (PC) and resource-constrained 

devices. We utilize two datasets: Individual household electric 

power consumption [35] and Commercial dataset [36] for 

comparison and the results are convincing for our multi-

layered GRU, as compared to recent methods in energy 

forecasting related literature. In this section, first, we explain 

the evaluation metrics used in this research work. Second, we 

explain the datasets utilized for experiments and provide 

discussion about the dominant performance of our framework. 

Finally, we evaluate our models’ size and execution time over 

resource-constrained devices and PCs, as explained in the 

subsequent sections. 

MSE =  
𝟏

𝐧
∑ (𝐲 − ŷ)𝐧

𝟏
2        (8) 

MAE =  
𝟏

𝒏
∑ |𝒚 − ŷ|𝒏

1         (9) 

RMSE = √
1

n
∑ (y

n

1
− ŷ)2       (10) 

MAPE = 
100%

n
∑ |

At−Ft

At
|

n

t−1
      (11) 

A. Evaluation metrics 

For the performance evaluation, mean square error (MSE), 

root mean square error (RMSE), mean absolute error (MAE), 

and mean absolute percentage error (MAPE) are used in our 

experimental results. Eq. 8 to 11 demonstrates the 

mathematical formulation of these metrics. The first used 

metric is MSE that measures average of the squares of errors 

i.e., it is considered as the mean squared difference between 

the predicted and the actual values, as given in Eq. 8. 

Secondly, we compute MAE that is the average magnitude of 

the prediction errors without considering their directions. In 

other words, it is the average of the absolute differences 

between a models’ prediction and its actual values for all 

instances in the testing set. Eq. 9 shows the mathematical 

formula for MAE computation. RMSE is the standard 

deviation of prediction errors and is a commonly used metric 

in climatology, forecasting, and regression analysis used to 

verify the experimental models and is determined in Eq. 10. 

The last metric namely MAPE is a measure of prediction 

accuracy of a forecasting method such as time series 

prediction. This metric express accuracy in percentage, as 

depicted mathematically in Eq. 11. 

B. Performance comparison with state-of-the-art methods 

We compare the performance of the proposed method on 

competitive benchmarks using individual household electric 

power consumption and commercial dataset. The comparison 

with recent methods over residential and commercial dataset is 

explained in the coming subsections, where the supremacy of 

our proposed model is described in detail. 

 
Figure 5: Visualization of our proposed GRU based trained model when 

compared to original values present in residential household prediction 

dataset. The difference between real and predicted power is very narrow, thus, 

the better performance of the proposed model for future load prediction is 

clearly observable. 

1) Evaluation over Residential dataset 

The actual data and our predicted results for residential 

dataset are plotted in Figure 5 and the comparative graph is 

illustrated in Figure 6, where the better performance of our 

trained model compared to existing methods is observable 

over the residential load forecasting dataset. On this dataset 

(UCI dataset) [35], our method achieved the lowest error score 

compared to all the recent methods under consideration. For 

instance, Kim et al. proposed a novel energy load prediction 

methodology based on deep neural and CNN-LSTM based 

network and achieved 0.37, 0.34, 0.61 and 34.84 error rate for 

MSE, MAE, RMSE, and MAPE, respectively [7]. Another 

autoencoder based network introduced in [37] attained 0.21 

unit MSE and 0.25 value for MAE. A followed research by 

Wu et al. reduced the MAPE error rate for the same dataset up 

to 73.07 (between 1 and 100, non-normalized) using MKL 

regression [30], that is normalized between 0 and 1 in Figure 

6. In contrast to these methods, the proposed GRU model 

achieved the lowest error rates of 0.17, 0.19, and 0.22, for 

MSE, MAE, and RMSE, respectively. Similarly, the MAPE of 

the proposed model is 60, that is normalized to the range of 0 

and 1 and is plotted in Figure 6 against recent state-of-the-art 

methods. Besides the best and accurate performance, our 

proposed method has lower computational complexity that is 

discussed in Section IV. The ground truth values graph when  
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Figure 6: Comparison of the proposed model with recent existing methods and LSTM sequential forecasting over residential dataset, where our trained multi-

layered GRU dominates Kim et al. (CNN-LSTM) [7], Kim et al. (Autoencoders) [37], and Wu et al. (multi-kernal learning based regression) [30] for all the used 

metrics. MAPE of our proposed model lags behind Kim et al. (CNN-LSTM) [7], which has higher computational complexity of CNN and LSTMs. 

 
Figure 7: Visual representation of actual data and prediction output results 

using commercial dataset, where the data is plotted for time series in minutes 

against the actual power in kilowatt. 

compared to the predicted power by the proposed model is 

given in Figure 5 with minor observable variations between 

both the values (ground truth and prediction), indicating 

effective real-world deployment of the proposed model. 

2) Evaluation over Commercial dataset 

The proposed framework has high-level of adoptability for 

both industrial and residential buildings, and for approval of 

this claim, we also made experiments over a well-known 

commercial dataset, “PJM hourly energy consumption dataset 

[36]”. It is collected by a regional transmission organization in 

United States, known as PJM Interconnection LLC (PJM). 

PJM is a part of Easter Interconnection grid, which is 

responsible for energy supply to 14 different regions including 

Delaware, Illinois, Indiana, etc. The data given in this dataset 

are hourly and measured in megawatts, where it has coverage 

of the aforementioned regions and is collected between 2006 

and 2018. The proposed model prediction results on this 

dataset against the test data ground truth values are visualized 

in Figure 7, where a slight gap is observable in time duration 

of 40 to 80 minutes. The rest of the values are highly 

overlapping, indicating the higher accuracy of the proposed 

model. 

TABLE I: COMPARATIVE ANALYSIS OF THE PROPOSED MULTI-LAYERED GRU 

WITH GAO ET AL. [35], MUJEEB ET AL. [36], AND VARIOUS FLAVORS OF 

CONVENTIONAL METHODS PRESENTED BY [36]. IN THE ABOVE FIGURE, NARX 

IS NONLINEAR AUTOREGRESSIVE NETWORK WITH EXOGENOUS INPUTS, DE-

ELM REFERS TO DIffERENTIAL EVOLUTION ELM, RELM STANDS FOR 

RECURRENT ELM, DE-RELM REFERS TO DE RECURRENT ELM, AND 

ESAENARX INDICATES EFFICIENT SPARSE AUTOENCODER NONLINEAR 

AUTOREGRESSIVE NETWORK WITH EXOGENOUS. 

Method RMSE 

ELM [38] 21.2 

NARX [38] 9.26 

DE-ELM [38] 9.18 

RELM [38] 9.04 

CEANN (Gao et al.) [39] 8.96 

DE-RELM (Mujeeb et al.) [38] 5.24 

ESAENARX (Mujeeb et al.) [38] 3.86 

Proposed 0.09 

After an extensive research, we compared our results with 

two recently published energy forecasting methods; [39] and 

various flavors offered by Mujeeb et al. [38]. The overall 

comparison is given in Table I, where the lowest error rates 

are reported by our multi-layered GRU based energy 

forecasting model. There are several types of data available in 
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PJM dataset, where we experimented over the already used 

sequences by [39] and [38] in their methods. In Table I, it is 

illustrated that the proposed model achieved 0.09 RMSE value 

over commercial [36] dataset, that is the lowest error rate 

when compared to recent energy forecasting methods using 

this dataset. Therefore, it is evident from experiments, as 

reported in Table I and Figure 7 for actual and predicted 

output data, that our proposed model is malleable and can be 

utilized for both household and industrial sectors in real-world 

scenarios. 

C. Time complexity analysis 

Efficient time complexity of a trained model is a difficult 

task to achieve along with higher accuracy, particularly, when 

a model is implemented over resource-constrained devices. 

Therefore, we carry out a detailed time complexity analysis 

with major focus on the model size and its execution time, 

while considering the proposed GRU based approach as well 

other possibilities. Since, the employed energy forecasting 

literature lacks focusing on resource-restricted devices, 

therefore, to present a fair comparison, we analyze the 

execution time on both, Raspberry-Pi and PC. The tested PC 

for experiments has Intel(R) Core (TM) i7-7700 CPU 

(3.60Hz) processor with 16 GB RAM windows 10 64-bit, 

Python version 3.6.4, Tensorflow version 1.12.0, and Keras 

version 2.2.4. The Raspberry-Pi used for experiments is ARM 

Cortex A53 processor, with Raspbian operating system. The 

possible details related to time complexity analysis are given 

in Table II, which advocates that for PC and a resource 

constrained-device the best performance in terms of model 

size and execution time is shown by our multi-layered GRU. 

The closest match after GRU is LSTM-based forecasting 

model, where it has 779.6 KB model size and running time for 

2-hours prediction is 6.43 seconds. The model size for CNN 

and Bi-directional LSTM is very huge i.e., 20336 KB and as 

compared to all the flavors of LSTM, the lowest execution 

time is 6.38 seconds and 591 KB model size. We implemented 

the given sequential forecasting models and computed their 

time complexity. The future time is predicted for coming 2-

hours, where the proposed model consumes minimum time 

among all the given options and has the least model size with 

accurate results. The best performance in Table II is given as 

bold, where the time analysis proves that our proposed model 

fits the requirements of smart grids and can transform the 

forecasting problem into the edge. 

TABLE II: TIME COMPLEXITY ANALYSIS OF OUR PROPOSED MODEL WHEN 

COMPARED TO EXISTING SEQUENTIAL LEARNING BASED ENERGY 

FORECASTING APPROACHES.  

Method 
Execution time (secs) 

Model size (KBs) 
Raspberry-Pi PC 

LSTM 

N/A 

16.92 779.6 

CNN-LSTM 29.43 790.83 

Bi-directional LSTM 19.34 1695.34 

CNN-Bi-directional LSTM 59.27 2391.34 

Proposed 20.36 6.38 591 

V. CONCLUSIVE REMARKS AND FUTURE LINEATION 

The influence of IoT devices for various problems is 

increasing on a daily basis with numerous solutions to real-

world tasks. These devices are mostly used in computer vision 

and image processing problems for intelligent surveillance and 

activity recognition. The future energy prediction and its 

appropriate management using IoT devices is rarely studied, 

particularly the deep learning and its related concepts are not 

inferenced to the edge. In our research, we applied lightweight 

computationally intelligent techniques, functional over 

resource-constrained devices for future energy prediction, that 

yields in its effective management. 

To this end, we investigated controllable IoT devices for 

energy load forecasting and presented a functional algorithm 

over the edge nodes in smart homes/industries. In the 

proposed framework, a controllable resource-constrained 

device is equipped with our pre-trained model for short-term 

load forecasting. The obtained model is trained using existing 

datasets via multi-layered GRU that has an efficient and 

accurate output prediction results. The dependable resource-

constrained device predicts the future energy usage which is 

demanded from smart grid using the cloud server as a channel 

of communication. Smart grid supplies the demanded energy 

to that specific residential building or industry, obtained as a 

request from the cloud server. Thus, through our users’ 

friendly framework, energy management has become very 

efficient and effective and is feasible for installation at smart 

homes/industries.  

 Besides the edge intelligence using dependable IoT, in 

future, the resource-constrained devices can be interconnected 

together in an IoT network for mutual energy sharing to fulfil 

each others’ demand and save energy resources. Similarly, we 

intend to integrate sequential learning with fuzzy logics for 

effective real-time energy forecasting methods. Further, we 

aspire to study efficient set theory concepts integrated with 

effective CNNs using weighted fusion schemes and 

implementing cloud and fog computing for highly accurate 

and quick output predictions for weekly and monthly 

forecasting.  
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