
UNIVERSITAT POLITÈCNICA DE VALÈNCIA

School of Informatics

Automated classification of service reports using natural
language processing techniques

End of Degree Project

Bachelor's Degree in Data Science

AUTHOR: Gilyarovskaya , Elizaveta Alexeevna

Tutor: Morillas Gómez, Samuel

External cotutor: BERG, KARE OLAV

ACADEMIC YEAR: 2021/2022

Acknowledgements

I would like to express my deepest gratitude to my advisor and mentor Jan Erik Hjelseth
who offered guidance and support throughout my whole internship and made this project
possible. His experience and approach to research and data science is a source of inspira-
tion for me. Jan Erik Ofsti, Tore Tveit, Steve May are amazing team and I truly appreciate
having the opportunity to work with such a professionals.

Dear Ignacio Navarro Cano, Álvaro Mazcuñán, Miquel Marín and Ángel Langdon thank
you all for being amazing teammates in all my projects and deliverables, you are the ones
I have learned the most from and I would not be where I am without you all.

Last but not least, I wish to extend my special thanks to my supervisor Samuel Mo-
rillas who has offered himself as tutor even though he was on vacation, thank you for your
invaluable feedback.

Elizaveta Gilyarovskaya

i

ii

Resum

Kongsberg Maritime és una empresa tecnològica que lliura sistemes de po-
sicionament, topografia, navegació i automatització a vaixells mercants i ins-
tal·lacions a alta mar. És de vital importància tenir un sistema madur i eficaç
de gestió de reports que permeti analitzar i classificar tota la informació dispo-
nible i recolzar així el procés de la presa de decisions. L’empresa es beneficiarà
de la proposta desenvolupada en aquest projecte de forma directa ja que permet
automatitzar el procés de revisar i extreure informació dels informes i dedicar els
recursos antigament implicats en això a altres àrees del negoci

Com a part de Equip d’Innovació de Dades he desenvolupat aquest projecte amb
l’objectiu d’automatitzar els processos interns de la companyia aplicant tècniques
d’intel·ligència artificial, més concretament de processament del llenguatge natu-
ral, a les tasques de revisió i classificació dels informes de manteniment realitzats
pels enginyers de servei. En primer lloc, s’ha desenvolupat un model d’apre-
nentatge semisupervisat, few-shot learning, per a la tasca de classificar el text d’un
informe a les categories d’interès. Quan les prediccions d’aquest model han estat
corregides per experts del domini i s’han generat suficients dades etiquetades, s’-
han entrenat classificadors supervisats per millorar les prediccions i arribar a un
model definitiu per posar-lo en producció. També es va entrenar un model deep
learning de tipus red transformers mitjançant la tècnica transfer learning. Final-
ment, s’ha dissenyat custom rule-based matching per al reconeixement i l’extracció
d’entitats i paraules clau d’interès.

Per posar el programa en producció, s’ha desenvolupat una interfície d’usuari
que mostra la sortida dels models de forma gràfica i permet als agents encarre-
gats de supervisar-lo introduir les correccions a les prediccions del model per a
ajustar-les i millorar-les posteriorment.

Paraules clau: Processament de llenguatge natural, aprenentatge automàtic, clas-
sificació de text no supervisada, classificació de text supervisada, extracció d’enti-
tats personalitzades, automatització, millora empresarial, informes d’enginyeria
de serveis

iii

Resumen

Kongsberg Maritime es una empresa tecnológica que entrega sistemas de po-
sicionamiento, topografía, navegación y automatización a buques mercantes e
instalaciones en alta mar. Es de vital importancia para ellos tener un sistema ma-
duro y eficaz de gestión de reportes que permita analizar y clasificar toda la in-
formación disponible y apoyar de esta forma el proceso de la toma de decisiones.
La empresa se beneficiará de la propuesta desarollada en este proyecto de forma
directa ya que permite automatizar el proceso de revisar y extraer información
de los informes y dedicar los recurosos antiguamente implicados en eso a otras
áreas del negocio.

Como parte del Equipo de Innovación de Datos he desarrollado este proyecto con
el objetivo de automatizar los procesos internos de la compañía aplicando técni-
cas de inteligencia artificial, más concretamente de procesamiento del lenguaje
natural, a las tareas de revisión y clasificación de los informes de mantenimien-
to realizados por los ingenieros de servicio. En primer lugar, se ha desarrollado
un modelo de aprendizaje semisupervisado, few-shot learning, para la tarea de
clasificar el texto de un informe en las categorías de interés. Una vez que las pre-
dicciones de este modelo han sido corregidas por expertos del dominio y se han
generado suficientes datos etiquetados, se han entrenado clasificadores supervi-
sados para mejorar las predicciones y llegar a un modelo definitivo para ponerlo
en producción. También se entrenó un modelo deep learning de tipo red trans-
formers mediante la técnica transfer learning. Por último, se ha diseñado custom
rule-based matching para el reconocimiento y extracción de entidades y palabras
clave de interés.

Para poner la herramienta en producción, se ha desarrollado una interfaz de
usuario que muestra la salida de los modelos de forma gráfica y permite a los
agentes encargados de supervisarlo introducir las correcciones a las predicciones
del modelo para su posterior ajuste y mejora.

Palabras clave: Procesamiento de lenguaje natural, aprendizaje automático, cla-
sificación de texto no supervisada, clasificación de texto supervisada, extracción
de entidades personalizadas, automatización, mejora empresarial, informes de
ingeniería de servicios

iv

Abstract

Kongsberg Maritime is a technology enterprise that delivers systems for posi-
tioning, surveying, navigation, and automation to merchant vessels and offshore
installations. It is of critical importance for them to have a mature and effec-
tive reporting management system that allows analyzing and classifying all the
available information to support the decision-making process. The company will
benefit directly from this proposal since it will allow to automate the process of
reviewing and extracting information from the reports and dedicate the resources
formerly involved in that to other areas of the business.

As part of the Data Innovation Team I have developed this project with the
aim of automating the company’s internal processes by applying artificial intel-
ligence, more specifically, natural language processing techniques to the tasks of
reviewing and classifying maintenance reports made by service engineers. First,
a semi-supervised learning model, few-shot learning, has been developed for the
task of classifying the text of a report into the categories of interest. Once the pre-
dictions of this model have been corrected by domain experts and enough labeled
data has been generated, supervised classifiers were then trained to improve the
predictions and come up with a definitive model to put into production. A deep
learning transformers type of model was also trained using transfer learning tech-
nique . Finally, custom rule-based matching has been designed for the recognition
and extraction of entities and keywords of interest.

A user interface has been designed and developed to put the tool into produc-
tion. It displays the output of the models graphically and interacts with internal
databases to allow the agents in charge of supervising the model performance to
introduce corrections to the predictions for later fine-tuning and improvement of
the model.

Key words: Natural language processing, machine learning, unsupervised text
classification, supervised text classification, custom entities extraction, automat-
ing, business improvement, service engineering reports

Contents

Contents v

List of Figures vii

List of Tables viii

1 Introduction 1

1.1 Motivation . 1
1.2 Objectives . 2
1.3 Expected impact . 3
1.4 Memory structure . 3
1.5 Collaborations . 4

2 State of art 5

2.1 Background concepts . 5
2.1.1 Artificial Intelligence . 5
2.1.2 Machine Learning . 5
2.1.3 Deep Learning . 7
2.1.4 Natural Language Processing 8

2.2 Related Work . 10
2.3 Classy Classification . 10
2.4 Support Vector Machine . 11
2.5 Neuronal network . 11
2.6 Metrics . 13

3 Data preparation and understanding 16

3.1 Technologies used . 16
3.2 Dataset . 17
3.3 Data Preprocessing . 18

4 Analysis of the problem 20

4.1 Proposed solution . 20
4.2 Methodology . 21

5 Experimentation 22

5.1 First part: Topic Modeling, Few Shot Learning, Entity Ruler 22
5.1.1 Topic Modeling LDA with Scikit Learn 22
5.1.2 Topic Modeling with BERTopic 25
5.1.3 Few-Shot Learning: Classy Classification 27
5.1.4 Rule-based named Entity Recognition 28

5.2 Second part: Support Vector Machine and Bert 30
5.2.1 Support Vector Machine . 30
5.2.2 Bert . 31

6 Extracted knowledge and model evaluation 33

6.1 First Part . 33

v

CONTENTS vi

6.2 Second part . 34
7 Conclusions 38

7.1 Constraints Encountered . 39
7.2 Future work . 39
7.3 Relationship between previous studies and present research 40

Bibliography 42

Appendices
A Factory Method Design 45

B BERT transfer learning and fine-tuning 47

C Objetivos del desarrollo sostenible (ODS) 51

List of Figures

2.1 Founding fathers of AI. Source: [5] 6
2.2 The main types of machine learning. Source:[6] 6
2.3 Machine Learning vs Artificial Intelligence. Source:[8.2] 8
2.4 NLP pipeline. Source: [9.1] . 9
2.5 Architecture for the proposed system. Source: [11] 11
2.6 Hyperplane that best separates the classes. Source: [27] 12
2.7 Neural Network. Source: [11] . 12
2.8 Precision vs Recall. Source: [9] . 14
2.9 Binary Confusion Matrix. Source: [10] 15

3.1 Work Carried Out feature values. Source: Own elaboration 17
3.2 Dataset sample. Source: Own elaboration 18

4.1 Branch Strategy. Source: Jan Erik Hjelseth elaboration 21

5.1 Keywords of each topic by LDA Scikit Learn. Source: Own elabora-
tion . 24

5.2 Wordcloud by Gensim’s LDA of. Source: Own elaboration 24
5.3 Topics and their keywords Gensim’s LDA. Source: Own elaboration 25
5.4 Topic Word Scores output by the default BERTopic model with n-

grams range of (1,2). Source: Own elaboration 26
5.5 Topic Word Scores output by BERTopic model with Spacy embed-

dings with unigrams. Source: Own elaboration 26
5.6 Topic info BERTopic with Spacy embeddings. Source: Own elabo-

ration . 27
5.7 Support Set for Classy Classification. Source: Own elaboration . . . 27
5.8 HTML output after Entity Ruler. Source: Own elaboration 30

6.1 Classy Classification predictions shown in Microsoft Access Form.
Source: Jan Erik Hjelseth elaboration 34

6.3 CrossValidation with K-fold. Source: Own elaboration 35
6.2 Supervised models performance comparison. Source: Own elabo-

ration . 35
6.4 Classification report. Source: Own elaboration 36
6.5 Confusion Matrix. Source: Own elaboration 36
6.6 Bert Performance over epochs. Source: Own elaboration 37

vii

List of Tables

5.1 Number of support sentences per class. Source: Own elaboration . 28
5.2 Initialization BERT . 31

viii

CHAPTER 1

Introduction

A fundamental part of maritime technology companies dedicated to delivering
innovative products, services, and solutions is the work performed by the service
engineering department. This department is responsible for installing, maintain-
ing, and inspecting the products that are produced by the company.

It is a tedious but very important task to design a workflow that allows ex-
tracting as much knowledge as possible from the reports made by the engineers
as these reports contain really valuable information for other departments of the
company such as Aftersales, Warranty, Customer Support, Marketing, etc.

A very common problem in companies with a long history in the market is
that CRM’s (customer relationship systems) do not allow this information to be
collected in a structured format, instead service engineers have to upload word
documents explaining the work performed and future recommendations in a raw
text format with no structure at all. This makes it difficult to analyse these texts
for subsequent decision-making.

In big enterprises, making changes to the CRM and these forms is a long-term
process and there is a need for a short-term solution to automate this kind of
process meanwhile. This is when Artificial Intelligence is needed. The design
and deployment of the appropriate backend system and AI technology can po-
tentially save the company a significant amount of time and money.

1.1 Motivation

The company in which I have had the opportunity to work has a customer port-
folio of more than 30,000 vessels, more than 7,000 employees and 200 years of
experience, so it is essential to have a well-developed internal workflow system
that allows optimal collaboration between all departments to optimise processes
and tasks of their agents and thus increase profits.

Due to its long presence in the market, the coordination between the service
engineers department and the AfterSales department has become a bit outdated
with respect to what new technologies allow.

The current process for service report classification is cumbersome and time-
consuming. The service reports are sent to a team in India to be entered into

1

1.2 Objectives 2

IPDB database. A report is generated at regular intervals (excel file) and sent to
members of the life-cycle management team in Croatia. They will then read all
the reports, and classify them into the classes of interest such as safety issues,
non-conformity, warranty cases, quote requests, among others.. Any reports that
require further investigation or registration are then sent to the relevant parties.

This process requires a lot of manpower, and the resources involved are needed
for other tasks. Therefore there is a need to propose an innovative solution that
could allow the automation of the process of reviewing service reports for their
subsequent classification. This solution will use Natural Language Processing
techniques to attempt automatic classing of the reports. The resulting analysis
will be stored in a database, and a front end will be made for the analytic team to
facilitate their work.

During the analysis of the reports, any mention of spare parts used could be
forwarded to the relevant spare part team so verification can be made on whether
the parts were brought on board by the engineer, or taken from the vessel store.
An offer cold then be made to replenish on-board stores if necessary. On occasion
a vessel crew will ask the service engineer for a quote on pars needed. This is not
always picked up and forwarded by the back office organization, leading to the
customer having to contact the company again, to get the quote. This does not
give a good impression of the organization. This information could be automati-
cally extracted and forwarded to the relevant spare part team using a custom en-
tity recognition. There are probably more opportunities to be found in the service
reports, that are not thought of here, so more investigation could prove useful.

1.2 Objectives

The aim of this project is to automate the internal processes of Kongsberg Mar-
itime S.L.U by applying artificial intelligence in form of a semi-supervised ma-
chine learning model which preprocesses raw input texts and classifies them into
the classes of interest of the company taking into account all the available infor-
mation in them. This will project will also raise awareness of the importance of
digitization and automation within the business.

The end user of the tool will be the engineering team in charge of reviewing
the reports, so the desired result must have a graphic interface that allows this
team to read the report, see the prediction, and take any required action on it,
for example, sending an email to the marketing department with the report ref-
erence. Also, it is important to create a connection to a database so that this team
can introduce corrections to the predictions made by the model in order to be able
to improve the model by fine-tuning it over time.

With this being said, this objective can be broken down into the following
sub-objectives:

• Select the data sources that will serve as input to the models

• Design a factory method pattern in order to keep the data loading process
abstracted and easily maintained.

1.3 Expected impact 3

• Study with text preprocessing techniques in order to find the one that suits
the purpose the best.

• Decide the number of desired classes depending on how specific they shoud
be.

• Determine the data field that better summarises the engineer’s work for
classification purposes: it could be either "Work carried out" , or "Diagnos-

tics", or a combination of them both.

• Explore different text vectorization techniques and unsupervised machine
learning models to come up with a classifier that is able to detect the differ-
ent classes.

• Create a custom rule-based matching for the recognition and extraction
of entities and keywords of interest such as Kongsberg products, obsolete
products, and safety issue keywords among others.

• Design a graphical interface to display the model output so that the engi-
neering team in charge of reviewing the reports can easily incorporate this
tool into their work routine

• Develop a final APP that displays the output of the classifier applied to the
incoming reports. This way the model performance will be supervised by
the mentioned team for the first months in order to get corrections from
them and start generating a set of labeled data to be able to train a new
supervised classifier on this data afterwards. Select and fine-tune the su-
pervised model that suits the purpose the best.

1.3 Expected impact

The engineering team that is responsible for manually examining the reports will
find this tool to be of tremendous assistance. Once the model performance is
stable enough, the following improvements will be noted:

• A reduction of invested time in repetitive tasks and an increase in team
productivity by dedicating this saved time to other high-value activities.

• A possibility of a massive search of information in the different documents
and further analysis.

• A possibility of analyzing the life cycle of those spare parts that cause the
most part of safety or non-conformity issues.

• Increased traceability of the information.

1.4 Memory structure

This report consists of 7 chapters:

1.5 Collaborations 4

• Chapter 1, Introduction: This section sets out the motivation, objectives,
expected impact, structure of the report, and the collaborations that have
taken place in the development of the project.

• Chapter 2, State of the art: in this chapter the current state of the art is
discussed and the related work is overviewed. The most important back-
ground concepts are also explained.

• Chapter 3, Data preparation and understanding: this section brings up the
dataset description, the preprocessing carried out and the technologies used
for dealing with the data and for achieving the desired results throughout
the project.

• Chapter 4, Analysis of the problem: the proposed solution is detailed and
the working methodology followed for the development of the code is ex-
plained.

• Chapter 5, Experimentation: the experimentation of this project is divided
in two sections, the carried out experimentation with all models designs of
both parts is detailed in this chapter.

• Chapter 6, Extracted Knowledge and Model Evaluation: the review of se-
lected unsupervised techniques from the first part of Experimentation is
made. The evaluation of supervised models which design was explained in
the second part is explained.

• Chapter 7, Conclusions: the objectives that have been achieved are pre-
sented, detailing how they have been implemented. This chapter also dis-
cusses the limitations faced in different phases of this project and possible
areas of improvement are mentioned for the future. Finally, the relationship
between undertaken studies and present research is discussed.

Lastly, the bibliography is included with the all the cited bibliographic refer-
ences and all the sources consulted.

1.5 Collaborations

This final degree work has arisen as a result of a project proposed in the com-
pany Kongsberg, so it is necessary to mention all the collaborations that have
taken place during its realization. Jan Erik Hjelseth has been my tutor and the
person who has been in charge of implementing this functionality in the inter-
nal processes, so he is the one who has set the objectives and has supervised the
development and deployment of the model. He also performed an exploratory
data analysis beforehand to see if the available data was sufficient for the main
objective. Andrea Radovic, a project engineer, has been in charge of manually
reviewing the output, i.e., the predictions of the first iterations of the model to
start generating a correctly labeled dataset for the further development of the
supervised model.

CHAPTER 2

State of art

2.1 Background concepts

2.1.1. Artificial Intelligence

Artificial Intelligence (AI) is a branch of computing dedicated to developing intel-
ligent machines that can perform tasks and actions that normally require human
intelligence.

The most generally used informal definition of AI was created by Alan Turing.
The so-called Turing test [1], [2], [3] is quite easy. Let’s say that something that
we hide behind a curtain communicates with us. If we are unable to distinguish
it from a human, then it is artificial intelligence. It is also common to attribute
the birth of this field of research to computer scientist John McCarthy, Marvin
Minsky and Claude Shannon. This concept designated at the Dartmouth confer-
ence in 1956 [8] was defined as the science and engineering of "making intelligent
machines." See Figure 2.1.

Today’s era of quick technological development and exponential growth in
extraordinarily huge data sets (referred to as "big data") has allowed AI to go
from theoretical concept to practical implementation on a previously unheard-of
scale.

2.1.2. Machine Learning

Machine Learning is a branch of Artificial Intelligence. It is used in different
sectors with different objectives. Machine learning is what lies behind chatbots
and text processing apps such as translators, predictive text suggestion apps, etc.
It powers autonomous vehicles and image and face recognition applications. The
main concept behind the idea is that a computer program can learn and adapt
to new data with no human intervention. The latter is possible by algorithms
created exclusively for it: machine learning models.

A model is a mathematical construct that finds patterns or makes predictions
based on some examples it has learned. This definition consists of three main
parts: mathematical structure, prior learning, and prediction.

5

2.1 Background concepts 6

Figure 2.1: Founding fathers of AI. Source: [5]

The models are made of equations, functions, and formulas that combined
have the potential to apprehend what occurs inside given information. The va-
riety of their mathematical complexity could be very wide. There are models
that exclusively consist of a few addition and multiplication operations, which
include linear regression [4]; and models containing millions of trainable param-
eters, as explained later. Every model must be trained in order to be able to rec-
ognize patterns and make predictions on new data.

In what comes to machine learning fields of study, unsupervised learning and
supervised learning are the two primary approaches used in machine learning,
although reinforcement learning became a very promising branch as well these
past years, as shown in Figure 2.2.

Figure 2.2: The main types of machine learning. Source:[6]

Supervised learning algorithms base their learning on a previously labeled
training data set. By labeling it is meant that for each occurrence of the train-
ing data set the value of its target attribute is known. This will allow the algo-
rithm to be able to "learn" a function capable of predicting the target attribute for

2.1 Background concepts 7

a new dataset. The two main families of supervised algorithms are regression
algorithms when the outcome to be predicted is a numerical attribute and clas-
sification algorithms when the outcome to be predicted is a categorical attribute,
which is the case of this project.

Unsupervised algorithms are those that train on a collection of data without
previously established labels or classes. That is, no target or class value, whether
categorical or numerical, is known a priori. Unsupervised learning is used to do
grouping tasks, also known as clustering or segmentation, where the goal is to
identify clusters of data that are similar to one another.

Few-Shot Learning and Zero-Shot Learning are sub-areas of unsupervised
algorithms, meta-learning, primarly used in Computer Vision[computer vision].
It involves categorizing new data when you only have a small number of train-
ing samples with supervised data, using the N-way-K-shot classification approach
[22]. It refers to developing a classification model that is tested on labels it has
never seen before (zero-shot) or has only seen a few samples after being trained
on a specific set of classes (few-shot). Few-Shot Learning is a very new field that
requires additional study and development.

2.1.3. Deep Learning

Deep learning can be defined as a set of Machine Learning algorithms that at-
tempt to model high-level abstractions in data using architectures computational
systems that admit nonlinear transformations [13] and try to emulate the behav-
ior of the human brain when learning from data.

Recent developments in Deep learning, that involve the learning of large neu-
ral network-style models with numerous layers of representation, can be credited
for most of the gains artificial intelligence has made. In a range of tasks involving
vast volumes of labeled data, such as image classification [14], machine trans-
lation [15], and voice modeling [16], deep learning models have demonstrated
excellent performance.

The main difference between Machine learning and Deep Learning lies in their
training processes, especially in the feature extraction. In Machine Learning a
human agent guides the model on what type of feature to look for, while in Deep
Learning the feature extraction is fully automated and no human intervention is
needed: see Figure 2.3.

2.1 Background concepts 8

Figure 2.3: Machine Learning vs Artificial Intelligence. Source:[8.2]

A brief description of how Deep Learning models are usually trained will be
detailed below. To do so, it is necessary to define some background concepts such
as the following:

• Batch: the number of samples to work through before updating the internal
model parameters, that is, the weights.

• Epoch: the number of complete passes through the training dataset. An
epoch means that each sample in the training set has had an opportunity to
update the model weights.

• Loss function: is a function that compares the target and predicted output
values; measures how well the neural network models the training data.
The cost of this function must me minimized.

• Optimizer: is a function, an algorithm or a model that modifies the weights
of a neural network.

• Learning rate: is a parameter that measures the speed of convergence of
optimizing towards a minimum of the loss function.

So a a batch of data is obtained from the training set and entered into the
model, obtaining its predictions. The value returned by the loss function is ob-
tained by comparing the predictions with the ground truth. The optimizer then
updates the weights of the model in order to minimize the value of the loss func-
tion. This processes is repeated for all of the batches of the training set, and once
this is done an epoch will have ended. Then all the previous steps are repeated
for all the epochs. End of training process.

2.1.4. Natural Language Processing

Natural language processing (NLP) strives to build machines that understand
spoken and written human language, natural language. It is a field of study of Ar-
tificial Intelligence and a subfield of Machine Learning (See sections 2.1.1, 2.1.2).

2.1 Background concepts 9

Figure 2.4: NLP pipeline. Source: [9.1]

In addition, the emergence of Deep Learning models like transformer-type neu-
ral networks (further explained in the section 2.5) has marked the beginning of a
new era in NLP.

One crucial step in every every Natural Language Processing (NLP) project
is text cleaning and pre-processing. Since raw data is often filthy, feeding it into
a machine learning model could result in a variety of issues, such as imbalance,
outliers, noise, redundancy, noise, and incompleteness. To solve these issues, a
suitable data pre-processing pipeline is required, one example of it is shown in
Figure 2.4. Some of the steps are explained below:

• Tokenization: process of breaking the raw text into small chunks, i.e, words
called tokens which are fed to the model.

• Filtering Stopwords: stopwords are common words, such as "a", "and",
among others, that are present in the text but generally do not contribute
to the meaning of a sentence.

• Lemmatization and Stemming: text normalization techniques that trans-
form a word to its base root mode.

• Part of Speech Tagging: method of classifying words in a text (corpus) in ac-
cordance with a specific part of speech, depending on the word’s definition
and its context.

Once the text is preprocessed and its necessary features highlighted, there
are two large families of NLP algorithms to choose from. The first is that of the
Machine Learning and Deep Learning models already explained above and the
one used in this work. The alternative is rule-based models and systems, which
use linguistic rules designed by domain experts. This approach has been used in
this work for the entity extraction task.

2.2 Related Work 10

2.2 Related Work

The related work in the field of unsupervised learning includes the following
approaches:

The approach proposed by Dominik Stammbach and Elliott Ash [18] aims
to learn to assign classes to the whole dataset without providing ground-truth
labels by borrowing an algorithm used in a recent paper for the image classi-
fication Semantic Clustering by Adopting Nearest neighbors [20]. SCAN has been
demonstrated to be effective for image classification but what Dominik and Elliott
propose here is that for each document, they get semantically informative vectors
from a large pre-trained language model. The hypothesis behind this technique
is that neighbors in representation space often share the same label. In some set-
tings, we achieve performance close to a supervised regime. So the conclusion
is that documents and their close neighbors in embedding space often share the
same class in terms of topical content. Therefore, as with images, unsupervised
learning with SCAN can be used for text classification.

Another unsupervised learning method used previously in natural language
processing for text classification purposes is the one proposed by Ko and Seo [21]
which makes use of keyword lists to categorize sentences directly into a certain
number of predefined categories. This approach requires the compilation of such
keyword lists, for which expert domain knowledge is needed. The suggested
method breaks down the texts into sentences, then uses a sentence similarity met-
ric and keyword lists for each category to categorize each phrase. Following that,
it uses the categorized sentences for training, architecture explained in Figure
2.5. This way a training set is automatically generated. The main issue of this
method is the definition of these keyword lists, which need further investigation.
The experimentation shows that according to the obtained results with respect
to performance, the difference between the proposed method and the method by
supervised learning is insignificant, only 3.8%.

2.3 Classy Classification

Classy Classification is a Spacy 1 text categorizer for few-shot learning developed
by the author DavidFromPandora in the following GitHub repository [25]. This
repository belongs to Pandora Intelligence company [24], which is an indepen-
dent intelligence company, specialized in security risks. Inspired by Hugging
Face 2 models for few and zero shot classification and Rasa NLU approach [26]
David decided to develop its own approach suitable for using with sentence-
transformers 3 or Spacy models. After checking the source code, it is clear that he
sets and fits the Support Vector Machine model for getting the predictions in each
episode, but this model will be explained in the following section.

1
https://spacy.io/

2
https://huggingface.co/

3
https://www.sbert.net/

https://spacy.io/
https://huggingface.co/
https://www.sbert.net/

2.4 Support Vector Machine 11

Figure 2.5: Architecture for the proposed system. Source: [11]

2.4 Support Vector Machine

Support Vector Machine has become a widely used tool for classification purposes.
It dominated the field of Supervised Machine Learning for the past decade due
to its outstanding results in comparison to other models. Its decision function is
an optimal "hyperplane" that separates observations from different classes based
on patterns of information called features [27], and only the calculated support
vectors of each of the classes are taken into consideration to determine this bound-
ary. This hyperplane should maximize the margin, i.e., the distance between the
support vectors of the two to-be-predicted classes (in binary classification), see
Figure 2.6 . This hyperplane is curved in those problems where the features are
not linearly separable, that is, in higher dimensionality cases. The margin could
be hard, with no training errors permitted and the slack variable is set to zero or a
larger one with greater generalizability which allows the classifier to misclassify.

In more difficult classification cases, where outright curved hyperplanes are
required and the classifier depends on the data in nonlinear way, some kind of
kernel method is typically needed in order to transform the support vectors to a
higher-dimensional input space, for instance, polynomial kernel for image pro-
cessing. These kernel methods could also be used as form of dimensionality re-
duction for linear SVM tasks.

2.5 Neuronal network

A Neural Network is a complex mathematical model that uses interconnected nodes
or neurons in a layered structure that resembles the human brain. It creates an
adaptive, connectionist system that computers use to learn from their mistakes

2.5 Neuronal network 12

Figure 2.6: Hyperplane that best separates the classes. Source: [27]

and continuously improve. The basic units are neurons, which are usually orga-
nized in layers, as shown in the illustration below: Figure 2.7.

Figure 2.7: Neural Network. Source: [11]

The neurons in this system are linked to one another through links, and the
output value of neuron n is multiplied by a weight w and adjusted in accordance
with an activation function g. Another neuron in the following layer will use
this result as its input value. The trainable values of this model are precisely the
weights w mentioned before. An activation function is a function whose goal is
to give the network non-linearity. There are numerous types of activation func-
tions, for example, the ReLu function [12] corrects negative values to zero while
leaving positive values unchanged. As for the layers, there are three types of
layers: input, hidden, and output layers. A network is considered to be fully con-
nected if every neuron in each of its layers is connected to every neuron in each
of the layers below it. From the time the data is input until a prediction is issued,
the process is called forward propagation, while the process of re-training and
updating the w-weights is known as back propagation.

2.6 Metrics 13

There are numerous types of neural networks in each of the sectors of Deep
Learning. Some of these networks are multilayer neural networks, convolutional
networks, recurrent neural networks, transformers and graph-based networks.

Transformers

This type of network has been a revolution in many aspects of current Deep
Learning. It was proposed in 2017 by Google Brain researchers in the famous
paper Attention is all you need [7] as a sequence-to-sequence architecture. The
main purpose of Transformers is to be able to apply a layer of attention that is
capable of analyzing several fronts of information at the same time, not one at a
time.

Using multi-attention on the input data makes this model perform really well
in the fields of natural language processing (NLP) and computer vision (CV).
Regarding its disadvantages, this type of networks require a huge amount of data
in order to be trained correctly, in comparison to other neuronal network types.

In this project a Bidirectional Encoder Representations from Transformers (BERT),
in particular BERT_base model, with 12 encoders with 12 bidirectional self-attention
heads, will be used with predictive purposes. BERT was created and published
in 2018 by Jacob Devlin and his colleagues from Google [34].

2.6 Metrics

One of the most crucial parts of the model creation process is this section. The
model may appear to be good when it is not, and vice versa, depending on the
metric used to evaluate how well the model fits the training data.

Primarily, depending on the type of model, the criteria utilized to evaluate
performance are significantly varied.

Multi-label classifiers are commonly evaluated in terms of precision and re-
call, see Figure 2.8; or using their combination by employing metrics like F-
measure. In short, precision tells precision tells how many of the selected objects
were correct, see Equation 2.3. Recall tells you how many of the objects that
should have been selected were actually selected, as shown in the Equation 2.5.

2.6 Metrics 14

Figure 2.8: Precision vs Recall. Source: [9]

Precision and recall work in opposition to one another, meaning that raising
one lowers the other. In the extreme circumstances, precision is very high while
recall is very low if you choose virtually everything, and precision is very low
while recall is very high if you choose almost nothing. Therefore, achieving some
type of balance between the two is the aim. Using the F-1 score, which is the
harmonic mean of recall and precision, is the most popular method for doing
this.

So F1-macro was the measure used for evaluating all the models during the
experimentation with supervised models phase. F-1 macro takes into account
the precision and recall of the system’s predictions while employing the macro-
averaging method to prevent the model to be biased towards the most populous
classes.

Another useful metric in classification tasks is the confusion matrix, which is a
matrix of rows and columns that evaluates a model’s performance. The algorithm
predictions are put in the columns, while the actual values are put in the rows, as
shown in the Figure 2.9. The primary goal is to increase the amount of samples
that fall on the matrix’s major diagonal (increase of correct predictions).

2.6 Metrics 15

Figure 2.9: Binary Confusion Matrix. Source: [10]

F1 � macro =
1
|L| Â

leL
F1(yl, ŷl) (2.1)

F1 = 2 · precision · recall
precision + recall

(2.2)

precision =
TruePositives

TruePositives + FalsePositives
(2.3)

precision =
1
|L| Â

leL
Pr(yl, ŷl) (2.4)

recall =
TruePositives

TruePositives + FalseNegatives
(2.5)

recall =
1
|L| Â

leL
R(yl, ŷl) (2.6)

where L is the set of labels, yl the ground truth, and ŷl the predicted labels

CHAPTER 3

Data preparation and

understanding

This chapter’s main goal is to present the dataset that was utilized in this project,
along with their brief summary and technologies used for its handling.

3.1 Technologies used

Before starting to list all the experimentation done, it is necessary to explain
which programming language, frameworks and tools have been used to develop
this part of the work.

All the code in this work is done in Python3 1, one of the most widely used
programming languages in Data science. Since the experimentation phase has
been fairly extensive, many libraries have been used; nonetheless, they can gen-
erally be categorized into the following groups, where I will highlight the most
significant libraries:

• Data handling libraries: Pandas 2

• Natural Language libraries: Nltk 3, Spacy 4, re 5

• Mathematical functions and operations: Numpy 6, Statsmodels 7, Sklearn 8,
Scipy 9 y Huggingface 10.

• Data visualisation libraries: Matplotlib 11 and Seaborn 12

1
https://es.wikipedia.org/wiki/Python

2
https://pandas.pydata.org/

3
https://www.nltk.org/

4
https://spacy.io/

5
https://docs.python.org/3/library/re.html

6
https://numpy.org/

7
https://www.statsmodels.org/stable/index.html

8
https://scikit-learn.org/stable/

9
https://scipy.org/

10
https://huggingface.co/

11
https://matplotlib.org/

12
https://seaborn.pydata.org/

16

https://es.wikipedia.org/wiki/Python
https://pandas.pydata.org/
https://www.nltk.org/
https://spacy.io/
https://docs.python.org/3/library/re.html
https://numpy.org/
https://www.statsmodels.org/stable/index.html
https://scikit-learn.org/stable/
https://scipy.org/
https://huggingface.co/
https://matplotlib.org/
https://seaborn.pydata.org/

3.2 Dataset 17

• Deep Learning: torch 13 and transformers 14

Microsoft Access 15has been used to build the first version of Frontend.

3.2 Dataset

The available dataset has 2326 unique reports written in English with 5 features,
i.e. it has the shape of 2326 x 5 although that corresponds only to the data col-
lected from January 2022 to April 2022, so there is more data available in the
company database if needed. The features are: docid which is a unique id string
for each report; Diagnostics which is a raw text written by service engineer with
the diagnostics of the incidence; Work carried out which is also a raw text ex-
plaining the work carried out, on average it is a paragraph of at least five long
sentences; Recommendation which is also a long string of raw text with no pre-
defined values, normally is set to "none noted"; and finally Parts used which is a
string mentioning relevant information on Spare parts of the incidence. A Dataset
sample is shown in the Figure 3.2.

As observed, none of these features have predefined values that are repeated,
on the contrary, they are all natural texts. For instance, this is an extract of Work

Carried Out values, the dates have no common format and there are missing
spaces, spelling mistakes and also missing full stops; all this could be seen in the
Figure 3.1.

Figure 3.1: Work Carried Out feature values. Source: Own elaboration

13
https://pytorch.org/

14
https://huggingface.co/docs/transformers/index

15
https://www.microsoft.com/es-es/microsoft-365/access

https://pytorch.org/
https://huggingface.co/docs/transformers/index
https://www.microsoft.com/es-es/microsoft-365/access

3.3 Data Preprocessing 18

Figure 3.2: Dataset sample. Source: Own elaboration

3.3 Data Preprocessing

The preprocessing was carried out with my own Python script. The aim was to
leave the reports’ texts in the best condition possible in order to make it easier
later to extract meaningful information for the classification models.

As already mentioned in the Dataset Description section 3.2, the main prob-
lem with all the variables is that they are natural language texts, so several text
cleaning techniques have been applied to remove all unwanted tokens, regular
expressions were used in order to eliminate all possible date formats (initially
there were more than 50 different ways of writing dates), lowercasing was ap-
plied to all the corpus, stopwords were also removed for some of the models 16

and some basic tokenization was also done (such as separating punctuation from
words). Some of the used methods are shown in the Listing 3.1.

One of explored preprocessing options was the Python wrapper for Language
Tool 17 which is an online style and spell checker for natural language. Although
most of the corrections made by it were precise and correct, some acronyms, ab-
breviations and part serial numbers were corrected incorrectly, which was an un-
desirable behavior. Therefore, the use of this tool has been discarded.

1 def regex (df : pd . DataFrame , column) −> pd . DataFrame :
2

3 # t o o l = language_tool_python . LanguageTool (’ en−US ’ , conf ig ={ ’
cacheSize ’ : 1000 , ’ pipel ineCaching ’ : True })

4 # df [column] = df [column] . apply (lambda x : t o o l . c o r r e c t (x))
5

6 rx = r ’ \. (?=\D) ’ # to i n s e r t a white space a f t e r f u l l s tops
7 df [column] = df [column] . apply (lambda x : re . sub (rx , " . " , s t r (x)))
8

9 rx0 = r ’\d { 1 , 2 } \w{ 2 } [\ s]\w{ 1 , 3 } [\ s] [.] [\ s] { 1 , 2 } ? \ d { 0 , 5 } [)] ’ # to
grab 09 th dec . 20211)

10 df [column] = df [column] . apply (lambda x : re . sub (rx0 , " " , s t r (x)))
11

12 rx1 = r ’\d{1 , } [−\/.\ s]\d{1 ,2 } [−\/.\ s]?\d { 0 , 5 } ’
13 df [column] = df [column] . apply (lambda x : re . sub (rx1 , " " , s t r (x)))
14

15 rx2 = r ’\d { 1 , } \w?[−\/.]\w{ 1 , } [− \ / .] ? \ d { 0 , 5 } ’ # to grab those dates
t h a t have month as a s t r i n g

16 df [column] = df [column] . apply (lambda x : re . sub (rx2 , " " , s t r (x)))

16
https://en.wikipedia.org/wiki/Stop_word

17
https://pypi.org/project/language-tool-python/

https://en.wikipedia.org/wiki/Stop_word
https://pypi.org/project/language-tool-python/

3.3 Data Preprocessing 19

17

18 re turn df
19

20

21 def remove_stopwords_stemmer (df : pd . DataFrame , column) −> pd . DataFrame :
22 stemmer = PorterStemmer ()
23 words = stopwords . words (’ eng l i sh ’)
24 words . extend ([’ from ’])
25 df [column] = df [column] . apply (lambda x : " " . j o i n ([stemmer . stem (i)

f o r i in re . sub (" [^a−zA−Z] " , " " , s t r (x)) . s p l i t () i f i not in
words]))

26

27 re turn df

Listing 3.1: Preprocessing methods

As for the feature selection, after examining the data in depth, it was decided
to use the variable "Work carried out" as an input for the algorithms. This vari-
able contains texts of different lengths explaining the work carried out in the
given report. All missing values of this variable have been replaced by the string
"none noted" to be further classified in the "Get More Info" class. Tests have been
made to concatenate this feature with some of the others to obtain an input text to
the models with more information but that has only added more noise eventually
so this has been discarded.

Last but not least, all predictive models (Classy Classification, Support Vector
Machine, Bert) have been run at the sentence level, due to the fact that the full text
of a report almost always mentions all 8 classes, thus it is impossible to classify a
report in its entirety in only one of them. That is to say, a part of the preprocessing
consisted of creating an auxiliary dataframe with each report separated by its
sentences and each one stored with its unique identifier, which turned out to have
64222 rows. This has been done with the help of the Spacy Sentencizer pipeline
component 18 which has proved to detect sentence boundaries better than the
alternative NLTK tokenizers 19.

18
https://spacy.io/api/sentencizer

19
https://www.nltk.org/api/nltk.tokenize.html

https://spacy.io/api/sentencizer
https://www.nltk.org/api/nltk.tokenize.html

CHAPTER 4

Analysis of the problem

4.1 Proposed solution

This project is divided into two work blocks. The first part has been the one that
has required the most experimentation and time, since it has consisted in building
an unsupervised classifier and applying it to the set of reports written in natural
language and never previously classified. Before moving on to the classification
task itself, a work pipeline has been designed that automates the flow of data
from source to destination, that is, it takes into account the entire set of processes
that convert raw data into actionable answers to business questions.

So the data could be obtained either from SQL Database or CSV file, this data
collection process is abstracted by designing a DataLoader method that is based
on Factory Method Design pattern, which follows the "single resposability" prin-
ciple so that the program is easy to maintain and complex conditional code is
avoided, this is explained in more detail in Appendix A. New data sources will
be added as the project goes on and the requirements change, so this implemen-
tation facilitates the future maintenance.

Once a unified dataframe is created with the data coming from whichever
source, a preprocessing pipeline is applied to it. All the reports are split into sen-
tences, the raw text is cleaned and the final dataframe is fed into model. Being a
multiclass classifier, the predictions show a probability distribution of belonging
to one of the classes and only the two most probable classes are saved.

On the other hand, a custom entity recognition is applied on report level and
the result is saved as a html file with all the entities identified and marked with
color blocks directly on the text, this functionality will be shown in the final APP
in order to facilitate long text comprehension.

Once better results have been achieved than those of a naive 1 model, the
model has been put into production generating predictions which have been su-
pervised by Kongsberg engineers, which has allowed the generation of a labeled
dataset which has been used to choose and train a supervised learning model.

1
https://www.oreilly.com/library/view/budgeting-basics-and/9780470389683/

9780470389683_naive_models.html

20

https://www.oreilly.com/library/view/budgeting-basics-and/9780470389683/9780470389683_naive_models.html
https://www.oreilly.com/library/view/budgeting-basics-and/9780470389683/9780470389683_naive_models.html

4.2 Methodology 21

4.2 Methodology

Azure DevOps, specifically Azure GIT Repos 2, was used during development
for version control and testing. The Integrated Development Environment (IDE)
used in this project is Visual Studio Code 3 with the required extensions to inte-
grate it with Azure DevOps.

The intended branch strategy is shown in the Figure 4.1. In brief, the Mas-
ter Branch is kept and updated throughout life cycle. This branch will have the
latest updates to go into production. And will be used to branch new produc-
tion versions. The Development Branch is also kept and updated throughout the
whole project life cycle and this branch is base branch for all feature and bug
fix branches. This branch will have all changes merged to it and tested before
merging to Master Branch. Then, every time a new feature is developed a new
Feature Branch will be created, branched from Development Branch. They are
merged back to Development Branch when the feature is completed and tested.
This branch will be deleted after development have been tested and merged to
master.

Figure 4.1: Branch Strategy. Source: Jan Erik Hjelseth elaboration

2
https://azure.microsoft.com/es-es/services/devops/repos/

3
https://code.visualstudio.com/

https://azure.microsoft.com/es-es/services/devops/repos/
https://code.visualstudio.com/

CHAPTER 5

Experimentation

Finding the model and hyperparameter combination that best solves the afore-
mentioned challenge is the major goal of the experimentation in this project. It
consists of two parts, each in a different scenario. The first part will concentrate
on developing an unsupervised multi-class classifier by exploring several meth-
ods, including Transfer learning, Few shot learning, Topic Modeling, among oth-
ers. The task was faced exploring different techniques with the aim of getting
better results. Also the custom entity ruler matcher was developed during this
phase.

The second phase of experimentation will focus on building a supervised
multi-class classifier for the same purpose but using the corrected predictions
of the first iteration of the unsupervised model as training set, which results will
be evaluated in the following chapter.

5.1 First part: Topic Modeling, Few Shot Learning,

Entity Ruler

The first explored reports classification approach was Topic Modeling. Bayesian
topic modeling [32] is a technique that is related to unsupervised classification.
Topic models differ from classification in that the documents are not intended to
be assigned a single class label. As opposed to this, topics in topic models are
a probability distribution over words, while documents are a probability distri-
bution over subjects. Latent Dirichlet Allocation (LDA) is one of the algorithms
used to discover the topics that are present in a corpus. The algorithm takes as
input a bag of words matrix (i.e., each document represented as a row, with each
columns containing the count of words in the corpus). The aim is to approximate
document-topic and topic-word distribution. The number of topics parameter
must be specified.

5.1.1. Topic Modeling LDA with Scikit Learn

Latent Dirichlet Allocation (LDA) is a probabilistic graphical model based on on-
line variational Bayes algorithm so it only requires raw counts of each word in

22

5.1 First part: Topic Modeling, Few Shot Learning, Entity Ruler 23

the corpus, so a CountVectorizer 1 is used to transform the input data. Some man-
ual testing functions were made in order to come up with the best values of its
hyperparameters, these are:

• Min-df and Max-df: When building the vocabulary ignore terms that have
a document frequency strictly lower and upper than the given threshold,
respectively.

• Analyzer: Whether the feature should be made of word n-gram or character
n-grams.

• N-gram range: The lower and upper boundary of the range of n-values for
different word n-grams.

Gridsearching was also done for LatentDirichletAllocation model parameters
as well, for learning decay and number of topics especially, the metrics used in
order to evaluate each model configuration was Log Likelihood Score.

The final configuration ended up being as shown in the following Listing 5.1
1

2 v e c t o r i z e r = CountVectorizer (analyzer= ’word ’ ,
3 min_df =10 , # El iminat ing words t h a t

appeared in l e s s than 2 documents
4 max_df =0 .80 , # Ignore words appeared in

80% of the documents
5 ngram_range = (1 , 2) ,
6 max_features =50000 , # Max number of uniq

words
7)
8

9 data_vec tor ized = v e c t o r i z e r . f i t _ t r a n s f o r m (docs)
10

11 # Build LDA Model
12 lda_model = L a t e n t D i r i c h l e t A l l o c a t i o n (n_components =5 ,
13 # Number of t o p i c s
14 max_iter =10 ,
15 # Max learn ing i t e r a t i o n s
16 learning_method= ’ onl ine ’ ,
17 # use mini−batch of the t r a i n i n g

data f o r each update
18 random_state =100 ,
19 # Random s t a t e
20 b a t c h _ s i z e =128 ,
21 # n docs in each learn ing i t e r
22 evaluate_every = −1 ,
23 # compute p e r p l e x i t y every n

i t e r s
24 n_ jobs = −1 ,
25 # Use a l l a v a i l a b l e CPUs
26)
27 lda_output = lda_model . f i t _ t r a n s f o r m (data_vec tor ized)

Listing 5.1: LDA by Scikit Learn configuration

1
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.

text.CountVectorizer.html

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html

5.1 First part: Topic Modeling, Few Shot Learning, Entity Ruler 24

Although LDA is a very powerful algorithm for topic modeling tasks, it worked
poorly with this data, being unable to differentiate the topics within the corpus,
as reflected in the Figure 5.1 that shows the words that most contribute to each
identified by the model topic.

Figure 5.1: Keywords of each topic by LDA Scikit Learn. Source: Own elaboration

Apart from LDA by Scikit Learn algorithm, Gensim’s LDA model was also
implemented (there was an extensive experimentation process behind this as well
but the details will be omitted as the results are not good and this option was
discarded). As it is shown in the Figures 5.2 and Figure 5.3 the representative
keywords of each topic are not helpful to differentiate the topics either:

Figure 5.2: Wordcloud by Gensim’s LDA of. Source: Own elaboration

5.1 First part: Topic Modeling, Few Shot Learning, Entity Ruler 25

Figure 5.3: Topics and their keywords Gensim’s LDA. Source: Own elaboration

5.1.2. Topic Modeling with BERTopic

A transformer-based models such as BERT show amazing results in different
fields of [33], so it was crucial to test it on this data as well. BERTopic library
2 was used for the purpose. The mechanism behind it is the following: the
model creates a representation vector for each document, then the Uniform Man-
ifold Approximation and Projection (UMAP) algorithm reduces the dimensions
that of each vector, the Hierarchical Density-based Spatial Clustering of Applica-
tions with Noise (HDBSCAN) algorithm is used for the clustering, after that, the
class based Term Frequency–Inverse Document Frequency (TF-IDF) algorithm
retrieves the most relevant words for each topic and finally the Maximize Candi-
date Relevance algorithm is used. This way topic representations from clusters
are created.

This model receives a list of preprocessed reports(as explained in Data Prepro-
cessing section 3.3) as input and generates topics and their probabilities, the num-
ber of topic is a decision of the model, although after examining the result this
parameter can be changed to another number that suits better the data. BERTopic
can be used with different embedding models. Word embedding is a term used to
describe how words are represented for text analysis. It typically takes the form of
a real-valued vector that encodes the meaning of the word, with the expectation
that words that are adjacent to one another in the vector space will have similar
meanings. These models can be selected from Sentence-transformer or from Hug-
ging Face transformers models. In this project, the default BERTopic embedding,
"all-mpnet-base-v2" from Sentence-transformer embedding model and Spacy em-
bedding models were used with different n-grams ranges and neither of them
achieved good results. These configurations are shown in the Listing 5.2.

1 # Defaul t Ber topic c o n f i g u r a t i o n
2 topic_model_general = BERTopic (language=" eng l i sh " ,

c a l c u l a t e _ p r o b a b i l i t i e s =True , verbose=True)
3 topics , probs = topic_model_general . f i t _ t r a n s f o r m (docs)
4

5 # SentenceTransformer embedding model
6 sentence_model = SentenceTransformer (" a l l −mpnet−base −v2 " , device=" cpu ")
7 topic_model = BERTopic (embedding_model=sentence_model , verbose=True)
8 topics , probs = topic_model . f i t _ t r a n s f o r m (docs)
9

10 # Spacy embedding

2
https://maartengr.github.io/BERTopic/index.html

https://maartengr.github.io/BERTopic/index.html

5.1 First part: Topic Modeling, Few Shot Learning, Entity Ruler 26

11 nlp = spacy . load (" en_core_web_md " , exclude =[’ tagger ’ , ’ parser ’ , ’ ner ’ ,
’ a t t r i b u t e _ r u l e r ’ , ’ lemmatizer ’])

12 topic_model_nlp = BERTopic (embedding_model=nlp , verbose=True)
13 topics , probs = topic_model_nlp . f i t _ t r a n s f o r m (docs)

Listing 5.2: Different Bert configurations

In the following figures [5.4, 5.5] I show "Topic Word Scores" charts by the
default BERTopic configuration and BERTopic with spacy embeddings configu-
ration. It is clear that these results are not useful for the purpose at all.

Figure 5.4: Topic Word Scores output by the default BERTopic model with n-grams range
of (1,2). Source: Own elaboration

Figure 5.5: Topic Word Scores output by BERTopic model with Spacy embeddings with
unigrams. Source: Own elaboration

Furthermore, taking a look at the topic info table of the model with spacy
embeddings and n-grams range of (2,3), it can be observed that 797 observations
are classified as topic -1, while topic -1 refers to all outliers and should typically be
ignored (Figure 5.6). The distribution pattern over the classes was observed with
all other configurations. This shows that these models are unable to understand
the data.

All of the tested configuration of BERT based models have been shown to

work poorly for this specific collection of documents. The reason behind this
is that the reports are very technical texts in the engineering field and all deal
with the same topic: failures, maintenance, and spare parts in merchant ships

5.1 First part: Topic Modeling, Few Shot Learning, Entity Ruler 27

Figure 5.6: Topic info BERTopic with Spacy embeddings. Source: Own elaboration

and offshore installations. This is why the next approach to report classification
will focus on using few-shot learning for building multi-class classifier.

5.1.3. Few-Shot Learning: Classy Classification

Classy Classification is a few-shot learning type of algorithm which requires a sup-
port set of training examples, as already explained in section 2.3. In this phase it
will be used for building a multi-class classifier on the available data. All reports
will be split into sentences and the model will be executed at the sentence level
returning as output the probability distribution over the classes.

It goes without saying that most of the experimentation carried out with this
algorithm has been devoted to building a support set suitable for training, which
was an iterative process of trial and error and manual prediction checks to evalu-
ate the performance of the model. To avoid ambiguity, it was important to select
sentences that are both medium in length and highly precise for each class. Also
this model is the only one that turned out to work better with preprocessed texts
but without stopwords removal and port stemmer steps.

Choosing the number and titles of the classes in this phase was another cru-
cial choice. The optimal number of classes for the purpose has turned out to be
8, and the following names will be used to identify them: Safety Issue, Non-

Conformity, Warranty, Spareparts, General Reporting, Positive, Quote request,

and Get more information. This conclusion was reached after a data exploration
and multiple model iterations. Safety Issue and Non-Conformity are the most
important classes for the business to detect. The support phrases were manually
selected by reading the reports and extracting phrases that best match each class.
A sample of this support set is shown in the Figure 5.7 and the amount of the
suppport sentences per each class in shown in the Table 5.1.

Figure 5.7: Support Set for Classy Classification. Source: Own elaboration

5.1 First part: Topic Modeling, Few Shot Learning, Entity Ruler 28

Safety Issue 38
Non-conformity 25
Spareparts 28
Warranty 25
General reporting 38
Get More Info 12
Quote request 16
Positive 23

Table 5.1: Number of support sentences per class. Source: Own elaboration

Some alternatives to this algorithm have also been tested, for example, Classy
Classification using pretrained facebook bart model underneath "facebook/bart-large-
mnli". The results were not good enough so these other options were eventually
discarded and will not be discussed.

5.1.4. Rule-based named Entity Recognition

Part of this project has consisted in developing a named entity recognition to
detect and mark Kongsberg Maritime products in the text of reports. After testing
several options, the tool that has proven to be the most useful for the purpose is
Spacy’s Entity Ruler3. It allows to add spans to the default Spacy entities using
token-based rules or exact phrase matches. This way a custom rule-based entity
recognition system is created at the report level.

First, all the Kongsberg products were extracted from an existing excel file and
put into json in form of rules. See Listing 5.3

1 [
2 { " l a b e l " : "KM_PRODUCT" ,
3 " pa t te rn " : [
4 { " lower " : " k− f l e e t " } ,
5 { " lower " : " spares " }] } ,
6

7 { " l a b e l " : "KM_PRODUCT_OBSOLETE" ,
8 " pa t te rn " : [
9 { " lower " : " fanbeam " }] } ,

10

11 { " l a b e l " : "KM_PRODUCT_OBSOLETE" ,
12 " pa t te rn " : [
13 { " lower " : " switchboard " } ,
14 { " lower " : " longva " }] }
15]

Listing 5.3: Json file structure with defined rules

Apart from products entities, a list of 500 keywords related to safety issues and
concerns were defined by hand and the same procedure was done in order to cre-
ate rules for safety and concerns entities (such as "alarm", "deterioration", "dam-
age", "wreck", "fail" etc).

3
https://spacy.io/api/entityruler

https://spacy.io/api/entityruler

5.1 First part: Topic Modeling, Few Shot Learning, Entity Ruler 29

Spacy’s "en_core_web_sm" 4 trained pipeline for English was used as the ba-
sis for the entity rule with most of its predefined components disabled and the
overwrite_ents parameter enabled. Then json files with customized rules have

been added as pipelines to the created entity ruler to match the desired patterns.
See Listing 5.4.

1 # Loads j son f i l e s with pat tern c o n f i g u r a t i o n
2 a l l _ p a t t e r n s = loader . load_pat terns ()
3

4 # E n t i t y r u l e r c o n f i g u r a t i o n
5 r u l e r _ c o n f i g = { " overwri te_ents " : " t rue " }
6 nlp = spacy . load (’ en_core_web_sm ’ , d i s a b l e = [’ ner ’ , ’ parser ’ , ’

a t t r i b u t e _ r u l e r ’ , ’ lemmatizer ’])
7 r u l e r = nlp . add_pipe (" e n t i t y _ r u l e r " , name= " concern_ruler " , conf ig=

r u l e r _ c o n f i g) . add_patterns (a l l _ p a t t e r n s [’ concerns ’])
8 product_ruler = nlp . add_pipe (" e n t i t y _ r u l e r " , name=" product_ruler " ,

conf ig= r u l e r _ c o n f i g) . add_patterns (a l l _ p a t t e r n s [’ products1 ’])
9 s a f e t y _ r u l e r = nlp . add_pipe (" e n t i t y _ r u l e r " , name=" s a f e t y _ r u l e r " , conf ig

= r u l e r _ c o n f i g) . add_patterns (a l l _ p a t t e r n s [’ s a f e t y ’])

Listing 5.4: Entity ruler configuration

After examining the performance of the created system, it was noted that
sometimes mismatching was produced. For example, "drive" is one of KM prod-
ucts but it is also a verb, in which case it should not be matched. This was cor-
rected by looping through the list of matched entities for each report and deleting
those cases when the matched entity is of "KM_product type" and the token’s part
of speech is different from noun. Listing 5.4.

1 doc = nlp (x)
2 i n c o r r e c t _ t o k e n s = []
3 f o r token in doc :
4 i f token . ent_type_ == ’KM_PRODUCT’ and token . tag_ . s t a r t s w i t h ((’R ’ ,

’V ’ , ’A ’)) :
5 #KM products should always be Nouns .
6 i n c o r r e c t _ t o k e n s . append (token . vector_norm)
7

8 ents = l i s t (doc . ents)
9 f o r ent in ents :

10 i f ent . vector_norm in i n c o r r e c t _ t o k e n s :
11 ents . remove (ent)
12 ents = tuple (ents)
13 doc . ents = ents

Listing 5.5: Fixing wrong entitites

The output for each report were saved in a separate table in html format with
Spacy’s displaCy visualizer 5. The Figure 5.8 shows one of the generated html files.

4
https://spacy.io/models/en

5
https://spacy.io/usage/visualizers

https://spacy.io/models/en
https://spacy.io/usage/visualizers

5.2 Second part: Support Vector Machine and Bert 30

Figure 5.8: HTML output after Entity Ruler. Source: Own elaboration

5.2 Second part: Support Vector Machine and Bert

Getting corrected the predictions from the first iteration of Classy Classification
Model has lead to a correctly labeled dataset which is going to be used to train a
supervised model for the future iterations.

The X feature will still be "Work carried out" texts split into sentences and
feature Y will be the class corrections for each of the sentences received from the
members of the life-cycle management team.

5.2.1. Support Vector Machine

In the case of Support Vector Machine the experimentation consisted in choosing
the kernel type to be used in the algorithm and the regularization parameter.
The optimal values turned out to be a "linear" kernel and the regularization
parameter equal to 1 . This is why Scikit Learn LinearSVC 6 module was chosen
to train the classifier, which is pretty much the same as Scikit Learn’s SVC with
parameter kernel set to "linear" but better optimized for a large dataset.

This class expected a numerical input for both X and Y features, thus a trans-
formation of texts was needed. LabelEncoder transformer from Scikit Learn pre-
processing module 7 was used in order to encode target values, i.e. the Y feature
containing strings with class names.

In order to encode the sentences themselves, Term frequency-inverse docu-
ment frequency (TF-IDF) Vectorizer was chosen, which converts a collection of
raw documents to a matrix of TF-IDF features, i.e. usable vectors for the model.
It gives the rare term high weight and gives the common term low weight [28].

The parameters chosen for the Vectorizer are as follows: Listing 5.6
1 # Encode X f e a t u r e (sentences) as t f i d f v e c t o r s
2 t f i d f _ v e c t o r i z e r = T f i d f V e c t o r i z e r (s u b l i n e a r _ t f =True , min_df =3 ,
3 ngram_range =(1 , 2) ,
4 stop_words= ’ eng l i sh ’)
5 X_num = t f i d f _ v e c t o r i z e r . f i t _ t r a n s f o r m (X_text) . toarray ()

6
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#

sklearn.svm.LinearSVC

7
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.

LabelEncoder.html

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html

5.2 Second part: Support Vector Machine and Bert 31

Listing 5.6: TdIdfVectorizer

A further necessary step before training the model is to correct the class im-
balance in the labeled dataset, to avoid future biases in the predictions due to the
distribution.

Class frequencies prior to oversampling: Counter(0: 1178, 6: 257, 2: 243, 3:

138, 5: 75, 1: 28, 4: 23, 7: 10)

Synthetic Minority Oversampling Technique method from Imbalanced Learn
library 8 was applied in order to fix the class frequencies. This is a type of data
augmentation [29] for the minority class which basically consists in synthesizing
new examples for the minority classes. Regarding its parameters, the chosen
strategy is "all" which means that all classes will be resampled and the number
of nearest neighbours used to construct synthetic samples is set to 3 .

Class frequencies after SMOTE oversampling: Counter(0: 1178, 3: 1178, 5:

1178, 2: 1178, 6: 1178, 1: 1178, 4: 1178, 7: 1178)

5.2.2. Bert

Most transformer models have been trained on large amounts of raw text in a self-
supervised way, that is, the training data has been labeled autonomously, without
help from experts. However, for concrete tasks like this, the general pretrained
model has to go through a process called Transfer Learning [30]. Transfer learning
involves using a neural network that has been trained for a particular activity to
create a second network for a similar task. In other words, it involves utilizing
already developed characteristics and learning to create the starting point of a
new network created to complete a task associated with the first network. One of
the factors contributing to transformers’ recent success is transfer learning.

So BERT model is going to be retrained with our labeled dataset, freezing its
base and retraining only the last layers. This process and the fine-tuning process
will be performed using PyTorch, which is explained in broad strokes below.

The initialization of the model is done with the following parameters:

Initiation of params.
RANDOM_SEED 58
MAX_LEN 200
BATCH_SIZE 6
NCLASSES 8

Table 5.2: Initialization BERT

"Bert-base-cased" is the chosen model for the purpose downloaded with help of
transformers library from HuggingFace repository, it distinguishes between lower

8
https://imbalanced-learn.org/stable/references/generated/imblearn.over_

sampling.SMOTE.html

https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html

5.2 Second part: Support Vector Machine and Bert 32

and upper case which intuitively should work better with this data since it con-
tains many acronyms and proper names.

Tokenization breaks the raw text into words, sentences called tokens. The
tokenizer used here is used is the one imported from the pretrained model itself.
This tokenizer is defined in a way that is also adds special CLS and SEP tokens to
each of the phrases, activates truncation if needed and sets the attention mask as
the model requires. Then MyDataset class is created in a way that it inherits from
the Dataset PyToch class and it will be used to create a Pytorch type of dataset out
of both training and test partitions.

PyTorch also requires creating a DataLoader method that inherits from the Dat-
aLoader PyToch class and uses MyDataset class in order to create batches of data
(of size 6 in this case).

The next step is to create the model itself. A BertClassifier class is created
by inheriting from nn.Module Pytorch module, which basically means that it will
have all the features that a neural network has. The model is configured then
in a way that the first layer is set to a pretrained Bert model, then a dropout
layer with p=0.35 is added to drop some neurons during the training process
to make the model more capable of generalising. Finally on top of that, a linear
neuronal network layer from module nn.Linear is added. It is important to assure
that the number of output neurons of BERT layer matches the input number of
nn.Linear layer, which is 768. The number of ouput neurons will be equivalent to
the number of classes, that is, 8.

Then it is necessary to create another function, a forward method, which dic-
tates how the previously explained layers have to be connected and how the data
goes through the system.

Now that our custom top layers are added, the whole model should be re-
trained. The number of training iterations, i.e. epochs used is 5 and the selected
optimizer is AdamW with a learning rate of 2e-5 . Finally a scheduler is added
which aims to reduce a learning rate through the iterations while the model is
being trained, in order to optimize the training process. Finally the loss function
is set to CrossEntropyLoss() which has to be minimized through the iterations.

The developed code is included in the APPENDIX B.

CHAPTER 6

Extracted knowledge and model

evaluation

The experiments conducted and described in the preceding chapter are reviewed
in this part.

6.1 First Part

Due to the fact that the first part of experimentation was about unsupervised
techniques, the tested models are not quantitatively compared with each other.
To summarize the experimentation carried out in the first part, all of the tested
Topic Modeling techniques have failed to understand the internal structure of the
data and have not been able to extract distinguishable topics. However, Classy
Classification has been the selected model for the first iteration of predictions. Re-
garding the front-end part, a form was designed in Microsoft Access Software
listing all the reports, and once one of them is selected, it also lists its sentences
with their predictions and a drop-down list for each of them in case it needs to
be corrected. The sentence is coloured in red when the first prediction is Safety

Issue and in yellow when the first prediction is Non-conformity. This tool will
be used by life-cycle team’s engineers to supervise the performance of the Classy
Classification model and correct its predictions. In addition, the form is designed
in a way that each time a prediction is corrected, the correction is saved in another
dataframe which will be used for a supervised classifier later. See Figure 6.1:

33

6.2 Second part 34

Figure 6.1: Classy Classification predictions shown in Microsoft Access Form. Source:
Jan Erik Hjelseth elaboration

The obtained predictions after the first iteration were mostly correct as it turned
out after performing their manual correction.

A final feature successfully developed during this first part of the experimen-
tation has been the Custom Rule-based matching system, which has been de-
scribed in the previous chapter. All the extracted entities by this matching sys-
tem from each sentence are shown in respective columns as well in the designed
Microsoft Access form as shown in the Figure 6.1.

6.2 Second part

The evaluation of results obtained in the Second Part of Experimentation Chap-
ter is explained below, more precisely the evaluation of Support Vector Machine
classifier and BERT classifier.

A detail worth mentioning, is that the LinearSVC model has been selected for
the purpose due to the experimentation that has been designed initially compar-
ing the performance of several popular models such as RandomForestClassifier,
MultinomialNB and LogisticRegression. Cross Validation of CV = 5 was used
and as illustrated in the Figure 6.2, out of all models, LinearSVC performed the
best in all 5 folds, reaching a 0.98 F1-macro metric in one of them.

6.2 Second part 35

Figure 6.3: CrossValidation with K-fold. Source: Own elaboration

Figure 6.2: Supervised models performance comparison. Source: Own elaboration

The labeled dataset was split into training and testing sets, assigning 80% of
data observations to the former and the remaining 20% to the latter.

In order to evaluate the performance of the model K-Fold CrossValidation,
which is a statistical method used to estimate the skill of machine learning mod-
els by splitting a given data sample into the number of groups (K), switching
them to train and test the model and then taking the average score. It was per-
formed with the parameters of K=10 and scoring = "F1_macro" , obtaining the
following results: Figure 6.3.

The classification report shows very good results as well, especially for the
Positive and Quote Request classes, as indicated by their F1-macro values. See
Figure 6.4.

Finally, a normalized confusion matrix is plotted in order to evaluate the
model performance graphically. As expected, most of the elements from the main
diagonal are close to 1 or equal to 1, which is a sign of a good performance. Figure
6.5.

6.2 Second part 36

Figure 6.4: Classification report. Source: Own elaboration

Figure 6.5: Confusion Matrix. Source: Own elaboration

6.2 Second part 37

Figure 6.6: Bert Performance over epochs. Source: Own elaboration

After testing the model on unseen data, it showed a particularly good perfor-
mance when recognizing Positive and Spareparts classes.

Regarding BERT, after fine-tuning the model the best performance achieved
over the training epochs is shown in the following Figure 6.6. When examining
the predictions, it seems that this classifier is particularly good at recognizing
Non-Conformity cases. After multiple manual reviews of the predictions, it was
decided to stick with the BERT model for the upcoming iterations.

CHAPTER 7

Conclusions

This work has been carried out at Kongsberg Maritime company during my in-
ternship and it has been proposed to develop a tool to automatically classify ser-
vice reports to identify cases of interest to the business. The whole project has
had a very experimental, trial-and-error character, and what has turned out to
work best for the purpose will be summarized below.

In terms of the proposed objectives, the data loading process for the model
has been abstracted and made easy to maintain in case of future changes of data
sources. After the experimentation with text cleaning, we have opted for regular
expressions for text cleaning and TF-IDF vectorization for text encoding so that it
can be passed to the model. It was decided to establish 8 categories to be identi-
fied in the texts: Safety Issue, Non-Conformity, Warranty, Spareparts, General

Reporting, Positive, Quote request, and Get more information.

Out of all the variables available in the database, the field that has given the
best results in terms of predictions has turned out to be Work Carried Out and
it has also been decided to separate this field into phrases, identify each of these
with a double primary key and store it in an auxiliary dataframe, in which the
classification will be made at row level, that is, at phrase level.

During the first phase of the project, the one of unsupervised learning, the
Classy Classification algorithm has been chosen and once it has been put into pro-
duction and the predictions have been generated, these have been corrected, giv-
ing rise to a correctly labeled training set that has allowed entering the second
phase of the project, the one of the supervised learning. In this, Support Vector
Machine model has eventually been chosen as the definitive model and it is being
fine-tuned at this moment with subsequent iterations.

In addition, a Custom Rule-based matching system has been successfully de-
signed to identify and graphically mark Kongsberg products in the texts to facil-
itate reading comprehension when reading a long report.

A form has been developed in Microsoft Access to allow the supervision of the
model’s performance by the engineers who are the final clients of the tool. The
definitive APP is still to be developed and different software options are currently
being studied to identify the one that best suits the needs of the company.

A Microsoft Access form has been developed to allow the monitoring of the
model performance by the engineers who are the final customers of the tool. The

38

7.1 Constraints Encountered 39

final APP is still to be developed and different software options are currently
being studied to identify the one that best suits the company’s needs.

7.1 Constraints Encountered

One of the project obstacles identified is the internal friction against organiza-
tional change. There will always be some resistance to change in the organiza-
tion. This is a natural part of any change process that directly impacts people’s
daily work. People may feel uncertain about their role or future within the com-
pany. Even so, it is possible to mitigate most of the resistance. From day one,
clear and concise communication with all stakeholders is key to this mitigation.
Worth mentioning are the benefits for individuals, departments, and companies,
as well as new personal opportunities that directly or indirectly result from im-
plementation.

Regarding the technical part, the first constraint, and unquestionably the one
that has produced less favorable results than anticipated, is the quality of the
input data. In this case the spelling issues and the lack of general format of text
in the reports made the task much more difficult. No matter how many different
preprocessing techniques are applied on the data, if the quality of the data sets
is poor, it will be difficult (and frequently directly impossible) to accomplish any
data science objectives.

It is obvious that the lack of labeled dataset for the training purposes from
the beginning has greatly limited the time dedicated to experimenting with the
supervised models, since the majority of the time and effort of the project has
been focused on finding a first method unsupervised to get the first predictions.

Another difficulty has been deciding at what level to make the predictions,
whether at the level of the entire report or at the level of single sentences. The
problem is that many of the sentences need context to be classified correctly, while
a complete report may have parts related to more than one class at a time, so the
model is not able to decide on just one of them. Nor has a way been found that
manages to separate the report by phrases perfectly all the times.

7.2 Future work

As a proposal for future work, a much more extensive experimentation could be
carried out in the part of supervised models. As for BERT, more learning rates
and other loss functions and optimizers could be experimented with.

Regarding machine-learning models, experiments have been carried out with
other models such as XGBOOST [35] and Multinomial Naive Bayes [36] that gave
good results but those needed to be refined, which could also be another proposal
for future work. It is also necessary to perform additional experiments with other

7.3 Relationship between previous studies and present research 40

word embeddings and vectorization techniques, such as GloVe 1 or Word2Vec 2

and with the SMOTE configuration, among others.

It is intuited that as more labeled data is obtained, BERT will end up being
the definitive model that will be put into production, so there are infinite things
with which to continue the experimentation , starting with learning rates, other
loss functions and optimizers or directly other models such as ROBERTa, a model
that improves on the masked language modeling objective compared with BERT
and leads to better downstream task performance.

Regarding the design of the graphical interface, for now a practical and func-
tional way has been chosen to output the predictions and generate labeled data
by getting their corrections, but over time it would be necessary to investigate
a software that allows having a beautiful and at the same time functional design
which incorporates all the developed functionalities in a way that final users, that
is, the life-cycle management engineers are comfortable supervising the perfor-
mance of the model on a day-to-day basis.

7.3 Relationship between previous studies and present

research

The realization of this final degree project has been possible thanks to the knowl-
edge obtained during the last four years of the data science degree. The subjects
that have had a special relationship and have helped the most to achieve the ob-
jectives of this work are the following:

• The subjects of "Programming" and "Exploratory Data Analysis" for the
tasks of exploratory data analysis, data cleaning and data preprocessing.

• Good programming practices, all Python code development, understand-
ing of the source code of certain libraries, strategies to reduce computation
time mentioned and code optimization, is linked to the subjects "Program-
ming", "Data Structures and Algorithms" and "Algorithmics".

• All the tasks of text data processing and treatment, deep learning models
for sentiment analysis and comprehension of transformer architectures is
linked to the "Natural Language Processing" subject.

• The part of supervised learning models, the experimentation carried out
with them, their evaluation and deployment are closely related to the sub-
jects "Descriptive and Predictive Models II" and "Scalable Techniques in Ma-
chine Learning".

• The understanding of the mathematical basis of the models used and their
detailed mathematical formulation in several papers has been possible thanks
to the subjects "Mathematical Analysis" and "Continuous Modeling and
Simulation".

1
https://nlp.stanford.edu/projects/glove/

2
https://datascientest.com/es/nlp-word-embedding-word2vec-es

https://nlp.stanford.edu/projects/glove/
https://datascientest.com/es/nlp-word-embedding-word2vec-es

7.3 Relationship between previous studies and present research 41

• Finally, all "Project" subjects have been essential to learn how to apply the
theoretical knowledge in a data science project in a practical way, how to
organize the different phases of the work and how to structure the content
well.

Bibliography

[1] Turing A.M Intelligent machinery, report for National Physical Laboratory,
eds. in Machine Intelligence 7, eds., B. Meltzer and D. Michie,october, 1950.

[2] Turing A.M Computing machinery and intelligence. Mind 49, pp 433-460,
1950.

[3] Turing A.M Can a Machine Think. The World of Mathematics, ed. James R.
Newman, volume 4, pp 2099-2123, 1956.

[4] Maulud, D., Abdulazeez, A. M. A review on linear regression comprehen-
sive in machine learning Journal of Applied Science and Technology Trends, 1(4),
140-147. 2020.

[5] Father’s of AI picture last seen: 15 of august of
2022. Consulted in https://medium.com/rla-academy/

dartmouth-workshop-the-birthplace-of-ai-34c533afe99

[6] Types of Machine Learning picture last seen: 15 of august of 2022. Consulted
in shorturl.at/fW138

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. Attention Is All You Need
12 junio de 2017

[8] Dartmouth Summer Conference last seen: 14 of august of
2022. Consulted in https://250.dartmouth.edu/highlights/

artificial-intelligence-ai-coined-dartmouth

[9] Precision and Recall comparison picture last seen: 1 of august of 2022. Con-
sulted in https://en.wikipedia.org/wiki/Precision_and_recall

[10] Confusion matrix picture last seen: 7 of august of
2022. Consulted in https://www.researchgate.net/figure/

Confusion-Matrix-for-Binary-Classification-7_fig1_350487701

[11] Neuronal network structure last seen: 27 of august of 2022. Consulted in
https://www.ibm.com/cloud/learn/neural-networks

[12] ReLU Activation Function last seen: 31 of august of 2022. Consulted in
https://iq.opengenus.org/relu-activation/

[13] J. Schmidhuber. Deep Learning in Neural Networks: An Overview Neural
networks, 62, 86–117, 2013

42

https://medium.com/rla-academy/dartmouth-workshop-the-birthplace-of-ai-34c533afe99
https://medium.com/rla-academy/dartmouth-workshop-the-birthplace-of-ai-34c533afe99
shorturl.at/fW138
https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth
https://250.dartmouth.edu/highlights/artificial-intelligence-ai-coined-dartmouth
https://en.wikipedia.org/wiki/Precision_and_recall
%20https://www.researchgate.net/figure/Confusion-Matrix-for-Binary-Classification-7_fig1_350487701
%20https://www.researchgate.net/figure/Confusion-Matrix-for-Binary-Classification-7_fig1_350487701
https://www.ibm.com/cloud/learn/neural-networks
https://iq.opengenus.org/relu-activation/

BIBLIOGRAPHY 43

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun Deep residual
learning for image recognition Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016

[15] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V. Le, Mohammad
Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus
Macherey, Jeff Klingner, Apurva Shah, Melvin Johnson, Xiaobing Liu,
Lukasz Kaiser, Stephan Gouws, Yoshikiyo Kato, Taku Kudo, Hideto
Kazawa, Keith Stevens, George Kurian, Nishant Patil, Wei Wang, Cliff
Young, Jason Smith, Jason Riesa, Alex Rudnick, Oriol Vinyals, Greg Cor-
rado, Macduff Hughes, and Jeffrey Dean Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation
CoRR, abs/1609.08144, 2016.

[16] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio. arXiv preprint,
2016.

[17] Xenonstack vlog last seen: 20 of august of 2022. Consulted in https://www.

xenonstack.com/blog/log-analytics-deep-machine-learning

[18] Dominik Stammbach and Elliott Ash DocSCAN: Unsupervised Text Classi-
fication via Learning from Neighbors CoRR, vol. abs/2105.04024, 2021.

[19] Medium NLP pipeline last seen: 25 of august
of 2022. Consulted in https://medium.com/predict/

how-does-nlp-pre-processing-actually-work-8d097c179af1

[20] Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, Marc
Proesmans, and Luc Van Gool Scan: Learning to classify images without
labels. In Proceedings of the European Conference on Computer Vision, 2020.

[21] Youngjoong Ko and Jungyun Seo. Automatic Text Categorization by Unsu-
pervised Learning. COLING 2000 Volume 1: The 18th International Conference
on Computational Linguistics, pages 453-459, 2000.

[22] Few-Shot Learning Guide last seen: 26 of august of 2022. Consulted in
https://www.v7labs.com/blog/few-shot-learning-guide

[23] Towardsdatascience: Computer vision last seen: 26 of august of 2022. Con-
sulted in shorturl.at/BCFHK

[24] Pandora Intelligence last seen: 28 of august of 2022. Consulted in https:

//www.pandoraintelligence.com/

[25] Classy Classification repository last seen: 30 of august of 2022. Consulted in
https://github.com/Pandora-Intelligence/classy-classification

[26] Rasa NLU last seen: 30 of august of 2022. Consulted in https://github.

com/RasaHQ/rasa

[27] Support Vector Machine last seen: 31 of august of 2022. Consulted in
shorturl.at/d0368

https://www.xenonstack.com/blog/log-analytics-deep-machine-learning
https://www.xenonstack.com/blog/log-analytics-deep-machine-learning
https://medium.com/predict/how-does-nlp-pre-processing-actually-work-8d097c179af1
https://medium.com/predict/how-does-nlp-pre-processing-actually-work-8d097c179af1
https://www.v7labs.com/blog/few-shot-learning-guide
shorturl.at/BCFHK
https://www.pandoraintelligence.com/
https://www.pandoraintelligence.com/
https://github.com/Pandora-Intelligence/classy-classification
https://github.com/RasaHQ/rasa
https://github.com/RasaHQ/rasa
shorturl.at/d0368

BIBLIOGRAPHY 44

[28] TF-IDF simplified last seen: 31 of august of 2022. Consulted in https:

//towardsdatascience.com/tf-idf-simplified-aba19d5f5530

[29] SMOTE Oversampling last seen: 1 of september of
2022. Consulted in https://machinelearningmastery.com/

smote-oversampling-for-imbalanced-classification/

[30] Torrey, L., Shavlik, J. Transfer learning In Handbook of research on machine
learning applications and trends: algorithms, methods, and techniques, (pp. 242-
264), IGI global,2010.

[31] Yinhan Liu and Myle Ott and Naman Goyal and Jingfei Du and Mandar
Joshi and Danqi Chen and Omer Levy and Mike Lewis and Luke Zettle-
moyer and Veselin Stoyanov RoBERTa: A Robustly Optimized BERT Pre-
training Approach. CoRR, vol. abs/1907.11692, 2019.

[32] Blei, D. M., Lafferty, J. D. A correlated topic model of science. The annals of
applied statistics, 1(1), 17-35, 2007

[33] BERTopic Last seen: 30 of august of 2022.
Consulted in https://towardsdatascience.com/

implement-your-topic-modeling-using-the-bertopic-library-d6708baa78fe

[34] Devlin, Jacob; Chang, Ming-Wei; Lee, Kenton; Toutanova, Kristina BERT:
Pre-training of Deep Bidirectional Transformers for Language Understand-
ing. arXiv:1810.04805v2, October 2018

[35] Mustika, W. F., Murfi, H., Widyaningsih, Y. Analysis accuracy of xgboost
model for multiclass classification-a case study of applicant level risk pre-
diction for life insurance. In 2019 5th International Conference on Science in
Information Technology, (ICSITech) (pp. 71-77). (2019, October)

[36] Kibriya, A. M., Frank, E., Pfahringer, B., Holmes, G. Multinomial naive
bayes for text categorization revisited. In Australasian Joint Conference on Ar-
tificial Intelligence (pp. 488-499). Springer, Berlin, Heidelberg, 2004, December

https://towardsdatascience.com/tf-idf-simplified-aba19d5f5530
https://towardsdatascience.com/tf-idf-simplified-aba19d5f5530
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://machinelearningmastery.com/smote-oversampling-for-imbalanced-classification/
https://towardsdatascience.com/implement-your-topic-modeling-using-the-bertopic-library-d6708baa78fe
https://towardsdatascience.com/implement-your-topic-modeling-using-the-bertopic-library-d6708baa78fe

APPENDIX A

Factory Method Design

One of Good practices that I have learned and applied in this project is the Factory
Pattern. Factory Method is a creational design pattern used to create concrete
implementations of a common interface. It divides the creation of an object’s in-
terface from the code that uses that interface. For instance, an application needs
an object with a particular interface in order to function. Some parameter iden-
tifies the actual implementation of the interface. Each method of the class will
have a single, well-defined responsibility. A common interface in this case is the
one that reads the data from a specified source and returns a pandas dataframe.
So separate implementations for each logical path are provided: one for reading
the data from SQL Database and another one for reading the data from CSV files.
Lastly a separate component is created in order to decide which concrete imple-
mentation should be used based on the parameter specified: string that specifies
a format to use.

This way the refactoring of the code is made and its internal structure is im-
proved, so in the future we can easily add new types of data sources without
disturbing the existing client code.

Below is detailed briefly the concrete implementation of this design in this
project. So basically, there is a Abstract Base Class (which inherits from ABC ob-
ject from ABC library) which determines a basic representation of a DataLoader.
The abstract classes within it state that each DataLoader should have at least these
two methods: the first one in charge of reading a necessary configuration from
a given json file (with path information and headers formatting) and the sec-
ond one is the responsable of creating a pandas datarame taking into account the
configuration given in the json file.

1 c l a s s DataLoader (ABC) :
2 " " " Bas ic r e p r e s e n t a t i o n of a DataLoader " " "
3

4 @abstractmethod
5 def load_ json (s e l f , path : p a t h l i b . Path) :
6 " " " Loads the neccesary conf ig from the necessary j son " " "
7

8 @abstractmethod
9 def c r e a t e _ d f (s e l f , conf ig) :

10 " " " Creates a dataframe with the conf ig from json " " "

Listing A.1: Abstract Base Class definition

45

46

Then two classes are created by inheriting from the previous Abstract Base
Class, the csv file loader and the excel file loader. Each of them have defined
these two methods as specified above and the result of applying them both is a
unified pandas dataframe.

1 c l a s s csv_loader (DataLoader) :
2 " " " Loads csv f i l e s " " "
3 def _ _ i n i t _ _ (s e l f) :
4 s e l f . pa th_ to_ j son_conf ig = ’ ./ conf ig/conf ig_csv . j son ’
5

6 def load_ json (s e l f) :
7 with open (s e l f . path_to_ j son_conf ig , " r " , encoding=" utf −8 ") as f

:
8 j son = json . load (f)
9 re turn j son

10

11

12 def c r e a t e _ d f (s e l f) −> pd . DataFrame :
13 j son = s e l f . load_ json ()
14 df = pd . read_csv (j son [" ipdb "] [’ f i l e _ p a t h ’] [’ source_dir ’] + j son

[" ipdb "] [’ f i l e _ p a t h ’] [’ f i le_name ’] , sep = json [" ipdb "] [’
conf ig ’] [’ sep ’] , encoding = json [" ipdb "] [’ conf ig ’] [’
encoding ’] , skiprows=json [" ipdb "] [’ conf ig ’] [’ skip_rows ’])

15 columns_input = j son [" ipdb "] [’ columns ’] [’ column_names_input ’]
16 columns_output = j son [" ipdb "] [’ columns ’] [’ column_names_output ’]
17 f o r (previous_col_name , new_col_name) in zip (columns_input ,

columns_output) :
18 df . rename (columns ={ previous_col_name : new_col_name } ,

i n p l a c e = True)
19 re turn df

Listing A.2: Example CSV Loader

Finally a separate component is needed in order to decide which implemen-
tation to use. It receives a string indicating from which source is the data coming
from and based on this it returns a class object defined for treating this kind of
data. Lastly a method from this class in charge of creating the dataframe is called
and a dataframe is created and returned.

1 def load_dataframe (format : s t r) :
2 f a c t o r i e s = {
3 " csv " : csv_loader () ,
4 " e x c e l " : e x c e l _ l o a d e r ()
5 }
6

7 i f format in f a c t o r i e s . keys () :
8 re turn f a c t o r i e s [format] . c r e a t e _ d f ()
9 e l s e :

10 p r i n t (f "Unknown format : { format } . ")

Listing A.3: Separate component

APPENDIX B

BERT transfer learning and

fine-tuning

1 from transformers import BertModel , BertTokenizer , AdamW,
get_linear_schedule_with_warmup

2 import torch
3 from torch import nn , optim
4 from torch . u t i l s . data import Dataset , DataLoader
5 from sklearn . preprocess ing import LabelEncoder
6

7 # I n i t i a t i o n of params .
8 RANDOM_SEED = 58
9 MAX_LEN = 200 # the average sentence length

10 BATCH_SIZE = 6
11 NCLASSES = 8
12

13 np . random . seed (RANDOM_SEED)
14 torch . manual_seed (RANDOM_SEED)
15 device = torch . device (" cuda : 0 " i f torch . cuda . i s _ a v a i l a b l e () e l s e " cpu ")
16 p r i n t (device)
17

18 # Import the model and i t s own tokenizer
19 PRE_TRAINED_MODEL_NAME = ’ bert −base −cased ’
20 token izer = BertTokenizer . from_pretrained (PRE_TRAINED_MODEL_NAME)
21

22

23 # The c r e a t i o n of pytorch d a t a s e t
24

25 c l a s s MyDataset (Dataset) :
26

27 def _ _ i n i t _ _ (s e l f , sent , l a b e l , tokenizer , max_len) :
28 s e l f . sent = sent
29 s e l f . l a b e l = l a b e l
30 s e l f . token i zer = tokeni zer
31 s e l f . max_len = max_len
32

33 def __len__ (s e l f) : # pytorch always r e q u i r e s t h i s method
34 re turn len (s e l f . sent)
35

36 def __geti tem__ (s e l f , item) : # the method t h a t pytorch w i l l be c a l l i n g
to c r e a t e the batches of s i z e 6 (BATCH_SIZE)

37 sent = s t r (s e l f . sent [item])
38 l a b e l = s e l f . l a b e l [item]
39 encoding = token izer . encode_plus (

47

48

40 sent ,
41 max_length = s e l f . max_len ,
42 t r u n c a t i o n = True , # i f there are more than MAX_LEN tokens i t

e l i m i n a t e s the r e s t
43 add_specia l_tokens = True , # to add CLS and SEP token
44 re turn_token_type_ids = False ,
45 padding= ’ max_length ’ ,
46 re turn_at tent ion_mask = True , # encodes as 1 t h a t part of

sentence which i s taken i n t o account (c l s token , words
token) during the t r a i n i n g and encodes as 0 the r e s t (
padding tokens)

47 r e t u r n _ t e n s o r s = ’ pt ’
48) # encoding . keys () =[’ input_ ids ’ , ’ at tent ion_mask ’]
49

50

51 re turn {
52 ’ sent ’ : sent ,
53 ’ input_ ids ’ : encoding [’ input_ ids ’] . f l a t t e n () ,
54 ’ at tention_mask ’ : encoding [’ attention_mask ’] . f l a t t e n () ,
55 ’ l a b e l ’ : torch . tensor (l a b e l , dtype=torch . long)
56 }
57

58

59

60 # Data loader method t h a t uses the DATASET c l a s s we defined before in
order to c r e a t e batches of data and pass them to the model
af terwards :

61

62 def data_loader (df , tokenizer , max_len , b a t c h _ s i z e) : # the funct ion t h a t
re turns the data s p l i t i n t o batches

63 d a t a s e t = MyDataset (
64 sent = df . sent . to_numpy () ,
65 l a b e l = df . c l a s s 1 . to_numpy () ,
66 token izer = tokenizer ,
67 max_len = MAX_LEN
68)
69

70 re turn DataLoader (dataset , b a t c h _ s i z e = BATCH_SIZE , num_workers = 2)
71

72 # S p l i t the data i n t o t r a i n / t e s t p a r t i t i o n s
73 t r a i n , t e s t = t r a i n _ t e s t _ s p l i t (df , t e s t _ s i z e =0 .18 , random_state = 58)
74 t r a i n _ d a t a _ l o a d e r = data_loader (t r a i n , tokenizer , MAX_LEN, BATCH_SIZE)
75 t e s t _ d a t a _ l o a d e r = data_loader (t e s t , tokenizer , MAX_LEN, BATCH_SIZE)
76

77 # D e f i n i t i o n of the model
78

79 c l a s s BERTSent imentClass i f ier (nn . Module) :
80

81 def _ _ i n i t _ _ (s e l f , n _ c l a s s e s) :
82 super (BERTSentimentClassi f ier , s e l f) . _ _ i n i t _ _ ()
83 s e l f . b e r t = BertModel . from_pretrained (PRE_TRAINED_MODEL_NAME)
84 s e l f . drop = nn . Dropout (p = 0 . 3 5)
85 s e l f . l i n e a r = nn . Linear (s e l f . b e r t . conf ig . hidden_size , n _ c l a s s e s)
86

87 def forward (s e l f , input_ids , attention_mask) :
88 _ , c l s_output = s e l f . b e r t (
89 r e t u r n _ d i c t =False ,
90 input_ ids = input_ids ,
91 at tent ion_mask = attention_mask

49

92) # get the ouput formed by c l s tokens out of BERT l a y e r
93 drop_output = s e l f . drop (c l s_output) # pass the output of BERT

through the dropout l a y e r
94 output = s e l f . l i n e a r (drop_output) # pass the ouput of the dropout

l a y e r to the neuronal network l a y e r
95 re turn output
96

97 model = BERTSent imentClass i f ier (NCLASSES)
98 model = model . to (device) # i n d i c a t e t h a t we want to t r a i n the model

using the s e t device : using the GPU
99

100 # Training process
101 # For a t y p i c a l Pytorch t r a i n i n g cycle , we need to implement the loop

f o r epochs , i t e r a t e through the mini−batches ,
102 # perform feedforward pass f o r each mini−batch , compute the loss ,
103 # perform backpropagation f o r each batch and then f i n a l l y update the

gradients .)
104

105 EPOCHS = 5 # t r a i n i n g i t e r a t i o n s
106 opt imizer = AdamW(model . parameters () , l r =2e −5 , c o r r e c t _ b i a s =Fa l se)
107 t o t a l _ s t e p s = len (t r a i n _ d a t a _ l o a d e r) * EPOCHS # len (t r a i n _ d a t a _ l o a d e r)

equals the batch s i z e (6)
108 scheduler = get_linear_schedule_with_warmup (
109 optimizer ,
110 num_warmup_steps = 0 ,
111 num_training_steps = t o t a l _ s t e p s
112) # the scheduler aims to reduce the l r through the fol lowing i t e r a t i o n s

, t h i s i n t e n t s to optimize the t r a i n i n g process
113

114

115

116 def l a b e l s _ t o _ c l a s s _ w e i g h t s (l a b e l s , nc =80) :
117 # Get c l a s s weights (inverse frequency) from t r a i n i n g l a b e l s
118 l a b e l s = np . concatenate (l a b e l s , 0) # l a b e l s . shape = (866643 , 5)

f o r COCO
119 c l a s s e s = l a b e l s [: , 0] . astype (np . i n t) # l a b e l s = [c l a s s xywh]
120 weights = np . bincount (c l a s s e s , minlength=nc) # occurences per

c l a s s
121 weights [weights == 0] = 1 # r e p l a c e empty bins with 1
122 weights = 1 / weights # number of t a r g e t s per c l a s s
123 weights /= weights . sum () # normalize
124 re turn torch . Tensor (weights)
125

126 l o s s _ f n = nn . CrossEntropyLoss () . to (device) # the e r r o r funct ion t h a t
w i l l be minimized throught the i t e r a t i o n s

127

128

129 # Methods t h a t make the t r a i n i n g process i t e r a b l e
130 def train_model (model , data_loader , loss_ fn , optimizer , device ,

scheduler , n_examples) :
131 model = model . t r a i n ()
132 l o s s e s = []
133 c o r r e c t _ p r e d i c t i o n s = 0
134 f o r batch in data_loader :
135 input_ ids = batch [’ input_ ids ’] . to (device)
136 at tent ion_mask = batch [’ at tention_mask ’] . to (device)
137 l a b e l s = batch [’ l a b e l ’] . to (device)
138 outputs = model (input_ ids = input_ids , attention_mask =

attent ion_mask)

50

139 _ , preds = torch . max(outputs , dim=1) # pytorch s e l e c t s the max
weighted c l a s s as a p r e d i c t i o n

140 l o s s = l o s s _ f n (outputs , l a b e l s) # the way of c a l c u l a t i n g manually
the l o s s

141 c o r r e c t _ p r e d i c t i o n s += torch . sum(preds == l a b e l s) # we check how
many of predic tons are r i g h t

142 l o s s e s . append (l o s s . item ())
143 l o s s . backward () # we feed the model with t h i s c a l c u l a t e d l o s s

backwardly and update the weights
144 nn . u t i l s . clip_grad_norm_ (model . parameters () , max_norm = 1 . 0) # t h i s

prevents the gradient from growing too f a s t normalizing i t to
s c a l e −1 to 1

145 opt imizer . s tep () # s tep which updates the weights
146 scheduler . s tep () # s tep which updates the l r
147 opt imizer . zero_grad () #we r e t a r t the gradients f o r the fol lowing

i t e r a t i o n
148 re turn c o r r e c t _ p r e d i c t i o n s . double () /n_examples , np . mean(l o s s e s)
149

150 def eval_model (model , data_loader , loss_ fn , device , n_examples) :
151 model = model . eval () # t h i s al lows to ’ block the model ’ from updating

the weights , i t puts i t on the evaluat ion mode
152 l o s s e s = []
153 c o r r e c t _ p r e d i c t i o n s = 0
154 with torch . no_grad () : # t h i s i n d i c a t e s t h a t no weight should be

updated
155 f o r batch in data_loader :
156 #same s teps as in t r a i n i n g method
157 input_ ids = batch [’ input_ ids ’] . to (device)
158 at tent ion_mask = batch [’ at tention_mask ’] . to (device)
159 l a b e l s = batch [’ l a b e l ’] . to (device)
160 outputs = model (input_ ids = input_ids , at tention_mask =

attent ion_mask)
161 _ , preds = torch . max(outputs , dim=1)
162 l o s s = l o s s _ f n (outputs , l a b e l s)
163 c o r r e c t _ p r e d i c t i o n s += torch . sum(preds == l a b e l s)
164 l o s s e s . append (l o s s . item ())
165 re turn c o r r e c t _ p r e d i c t i o n s . double () /n_examples , np . mean(l o s s e s)
166

167 # Training
168 f o r epoch in range (4) :
169 p r i n t (’ Epoch { } de { } ’ . format (epoch +1 , EPOCHS))
170 p r i n t (’−−−−−−−−−−−−−−−−−− ’)
171

172 t r a i n _ a c c , t r a i n _ l o s s = train_model (model , t ra in_data_ loader , loss_ fn
, optimizer , device , scheduler , len (t r a i n))

173

174 t e s t _ a c c , t e s t _ l o s s = eval_model (model , t e s t _ d a t a _ l o a d e r , loss_ fn ,
device , len (t e s t))

175

176 p r i n t (’ Entrenamiento : Loss : { } , accuracy : { } ’ . format (t r a i n _ l o s s ,
t r a i n _ a c c))

177 p r i n t (’ V a l i d a c i n : Loss : { } , accuracy : { } ’ . format (t e s t _ l o s s ,
t e s t _ a c c))

Listing B.1: BERT

APPENDIX C

Objetivos del desarrollo sostenible

(ODS)

51

ANEXO

OBJETIVOS DE DESARROLLO SOSTENIBLE

Grado de relación del trabajo con los Objetivos de Desarrollo Sostenible (ODS).

Objetivos de Desarrollo Sostenible Alto Medio Bajo No

procede

ODS 1. Fin de la pobreza. X

ODS 2. Hambre cero. X

ODS 3. Salud y bienestar. X

ODS 4. Educación de calidad. X

ODS 5. Igualdad de género. X

ODS 6. Agua limpia y saneamiento. X

ODS 7. Enerǵıa asequible y no contaminante. X

ODS 8. Trabajo decente y crecimiento económico. X

ODS 9. Industria, innovación e infraestructuras. X

ODS 10. Reducción de las desigualdades. X

ODS 11. Ciudades y comunidades sostenibles. X

ODS 12. Producción y consumo responsables. X

ODS 13. Acción por el clima. X

ODS 14. Vida submarina. X

ODS 15. Vida de ecosistemas terrestres. X

ODS 16. Paz, justicia e instituciones sólidas. X

ODS 17. Alianzas para lograr objetivos. X

ETS Enginyeria Informàtica
Camı́ de Vera, s/n, 46022, Vaència
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

Reflexión sobre la relación del TFG/TFM con los ODS y con el/los ODS más
relacionados.

Este proyecto guarda relación con varios de los Objetivos de Desarrollo Sostenible de la Orga-

nización de las Naciones Unidas. Los dos objetivos con los que hay una mayor relación son el

objetivo 8, ’Trabajo decente y crecimiento económico’ y el objetivo 9, ’Industria, innovación e

infraestructuras’. También se puede relacionar con los objetivos 13, ’Acción por el clima’ y 14,

’Vida submarina’ de manera menos estrecha.

Esto se debe a que en este proyecto se ha desarrollado un nuevo software para un negocio que

afectará de forma positiva al crecimiento económico y el uso optimizado de los recursos necesar-

ios para realizarlo, de ah́ı la relación con los objetivos número 8 y 9.

Por último, al contribuir este proyecto a la automatización de procesos en un negocio tan grande

(y en un futuro tal vez en otros negocios del mismo sector) tiene especial correspondencia con

el objetivo 13, Acción por el clima. Al ser Kongsberg una empresa del sector Maŕıtimo, tiene

mucha responsabilidad de cuidar y mantener la vida submarina. Si esta herramienta detecta

correctamente las piezas que se mencionan como defectuosas en los reportes, contribuirá a reducir

el número de componentes defectuosos instalados en los buques que comprometen el bienestar

del medio ambiente y el bienestar submarino.

ETS Enginyeria Informàtica
Camı́ de Vera, s/n, 46022, Vaència
T +34 963 877 210
F +34 963 877 219
etsinf@upvnet.upv.es - www.inf.upv.es

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Expected impact
	Memory structure
	Collaborations

	State of art
	Background concepts
	Artificial Intelligence
	Machine Learning
	Deep Learning
	Natural Language Processing

	Related Work
	Classy Classification
	Support Vector Machine
	Neuronal network
	Metrics

	Data preparation and understanding
	Technologies used
	Dataset
	Data Preprocessing

	Analysis of the problem
	Proposed solution
	Methodology

	Experimentation
	First part: Topic Modeling, Few Shot Learning, Entity Ruler
	Topic Modeling LDA with Scikit Learn
	Topic Modeling with BERTopic
	Few-Shot Learning: Classy Classification
	Rule-based named Entity Recognition

	Second part: Support Vector Machine and Bert
	Support Vector Machine
	Bert

	Extracted knowledge and model evaluation
	First Part
	Second part

	Conclusions
	Constraints Encountered
	Future work
	Relationship between previous studies and present research

	Bibliography
	Factory Method Design
	BERT transfer learning and fine-tuning
	Objetivos del desarrollo sostenible (ODS)

