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Multiple Kernel Driven Clustering with Locally

Consistent and Selfish Graph in Industrial IoT

Abstract—In the cognitive computing of intelligent Industrial
Internet of Things (IIoT), clustering is a fundamental machine
learning problem to exploit the latent data relationships. To
overcome the challenge of kernel choice for non-linear clustering
tasks, multiple kernel clustering (MKC) has attracted intensive
attention. However, existing graph-based MKC methods mainly
aim to learn a consensus kernel as well as an affinity graph from
multiple candidate kernels, which cannot fully exploit the latent
graph information. In this paper, we propose a novel pure graph-
based MKC method. Specifically, a new graph model is proposed
to preserve the local manifold structure of the data in kernel
space so as to learn multiple candidate graphs. Afterwards, the
latent consistency and selfishness of these candidate graphs are
fully considered. Furthermore, a graph connectivity constraint is
introduced to avoid requiring any post-processing clustering step.
Comprehensive experimental results demonstrate the superiority
of our method.

Index Terms—Cognitive computing, Industrial Internet-of-
Things, graph learning, clustering, multiple kernel clustering.

I. INTRODUCTION

C
LUSTERING is used ubiquitously across the smart fac-

tories, intelligent machines, networked processes and big

data [1], as a fundamental procedure in the analysis of

scientific data [2], [3] and cognitive computing [4]. Its goal

is to partition unlabeled data points into their own clusters.

With the developing of Industry 4.0 or the Industrial Internet-

of-Things (IIoT) [5], [6], [7], the unlabeled and non-linear

data are getting more and more, so clustering has emerged

to be an important learning paradigm to exploit the latent

data relationships. Despite remarkable progress in a number

of learning methods, how to effectively handle non-linear

data is still a challenging problem. The traditional single

kernel methods can alleviate this challenge to a certain degree,

nevertheless, these methods require the user to select and tune

a single pre-defined kernel, therefore have been facing with

the curse of kernel choice: (1) the most suitable kernel for

a specific task is usually challenging to decide; and (2) it

is impractical and time-consuming to exhaustively search a

suitable kernel from multiple candidate kernels. In this paper,

we seamlessly integrate graph-based clustering (GBC) [8], [9]

and multiple kernel learning (MKL) [10], [11] to tackle this

challenge.

Due to the effectiveness of capturing the complex structure

hidden in data, GBC methods have been widely investigated

[8], [12], which consist of first constructing an affinity graph

based on graphical representations of the relationships among

data points, and then applying spectral algorithm (e.g., spectral

clustering) or graphtheoretic algorithm (e.g., normalized cut

and ratio cut) to accomplish clustering. Obviously, it is crucial

to construct a high-quality affinity graph that could accurately

capture the intrinsic sample relations. Overall, the mainstream

technologies can be typically divided into four main proto-

types. The first one is to construct a predefined similarity graph

as affinity graph, relying on binary similarity, cosine similarity,

or Gaussian kernel similarity [13]. The second one is adaptive

neighbors graph learning [8], [12], which builds a graph by

assigning a probability for each sample as the neighborhood of

another sample. Accordingly, the homogeneous samples have

high affinity values, while those heterogeneous samples have

low affinity values, hence, the resulting probability is deemed

as the affinity between two samples. The third one is based

on the data self-expressiveness [14], which reconstructs every

data point by a linear combination of all other data points

and produces a coefficient matrix that is used to construct

an affinity graph. The last one learns a new representation of

original data by non-negative matrix factorization (NMF) or

concept factorization (CF) [15], and then constructs an affinity

graph relying on the above ways. Generally, the graph-based

methods are superior to the k-means-based ones [16], [17].

On the other hand, MKL [11] not only can effectively han-

dle non-linear data but also alleviate the curse of kernel choice.

Usually, it aims to learn a consensus kernel by weighting

multiple candidate kernels in a kernel pool, meanwhile, it has

the great potential to fully exploit complementary information

between these kernels. Overall, three weight paradigms are

widely used: (1) using equally weighted combination of base

kernels, i.e., each kernel has the same weight value [18]; (2)

using the linearly or non-linearly combination of base kernels

[11], [19]; and (3) using the idea of adaptive neighbor to learn

a self-weighted consensus kernel [16], [17], i.e., the important

kernel should be assigned a large weight, and vice versa.

Based on both GBC and MKL, although the existing

multiple kernel clustering (MKC) methods has gained promis-

ing results, the existing MKC methods still suffer from the

following drawbacks: (1) they always pay more attention to

the learning of consensus kernel rather than affinity graph,

this violates the fact that the affinity graph is the crucial role

of graph-based clustering; significantly, some important graph

information of each candidate kernel may be lost, thus impair

the final clustering performance greatly; and (2) they require

an additional clustering step to produce the final clusters.

To tackle these drawbacks, a novel MKC method, termed

Locally Consistent and Selfish Graph (LCSG), is proposed in

this paper. In summary, its main contributions are three-fold:

• Unlike existing MKC methods, which distractingly learn

a consensus kernel and an affinity graph, LCSG concen-

trates intently on graph learning. Notably, it has three

main highlights: (1) a new kernel graph learning model

is proposed to preserve local manifold structure of data

in kernel space; (2) the objective function considers both
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the consistency and selfishness of multiple new graphs,

the former exploits the underlying consistent clustering

structure between these graphs, and the latter motivates

the selfishness of each graph to learn a consensus affinity

graph; and (3) theoretically, it is much faster than existing

competitors, as without performing matrix inversion.

• LCSG does not need to run an additional clustering

algorithm to produce the final cluster labels, since a graph

connectivity constraint is imposed to partition the data

points naturally into the required number of clusters.

• To the best of our knowledge, the highest clustering

performance on nine widely used benchmark datasets is

obtained to date reported.

The rest of article is organized as follows. Section II introduces

related works. In Section III, we propose the LCSG method.

The solver, computational complexity, and convergence of the

optimum problem are provided in Section IV. In subsequent

Section V, adequate experimentation and analysis are pre-

sented. The conclusion is founded in Section VI.

II. RELATED WORK

In recent years, MKC has rapidly developed and produced

several state-of-the-art methods [18], [19], [20], [21], [17],

which typically work as follows: (1) predefining multiple

kernel matrices over the given kernel pool, (2) learning both

a consensus kernel and an affinity graph, (3) performing

spectral clustering on the affinity graph, and (4) producing

the discrete clustering results by some postprocessings like k-

means. For instance, affinity aggregation for spectral clustering

(AASC) [22], multiple kernel k-means (MKKM) [23], robust

multiple kernel k-means (RMKKM) [18], spectral clustering

with multiple kernels (SCMK) [24], and neighbor-kernel-based

MKL (NKBM) [19] seek for the optimal (convex) linear com-

bination of the given multiple kernels to build an integrated

kernel. Based on MKKM, multiview clustering via late fusion

alignment maximization (MVCLFA) [25] proposes to maxi-

mally align the consensus partition with the weighted base

partitions, which can significantly reduce the computational

complexity. Unlike the above methods, self-weighted multiple

kernel learning (SMKL) [16], low-rank kernel learning graph-

based clustering (LKGr) [20], sparse kernel learning graph-

based clustering (LKGs) [20], local structural graph and low-

rank consensus MKL (LLMKL) [17], and robust multiple

kernel subspace clustering (JMKSC) [21] use a self-weighted

strategy to learn an optimal consensus kernel, based on the

assumption that the consensus kernel is a neighbor of all

candidate kernels and the important kernels should receive rel-

atively large weights, and vice versa. Amongst them, MKKM,

RMKKM [18] and NKBM are k-means-based methods, which

usually focus on how to reduce redundancy and enhance the

diversity between selected kernels to learn a linear weighted

kernel, and then perform k-means to obtain clusters; while

others are graph-based methods, which usually aim to learn a

consensus kernel as well as an affinity graph resorting to the

extra prior knowledge, and then perform graph clustering to

obtain clusters.

III. METHODOLOGY

A. Notations

Throughout the paper, matrices and vectors are denoted

as boldface capital letters and boldface lowercase letters,

respectively. For an arbitrary matrix Q, qij denotes its (i, j)-
th entry, and qi denotes its i-th column. Moreover, Tr(G),
rank(G), ‖G‖2F , and ‖G‖∗ denote the trace operator, rank

function, Frobenius-norm, and nuclear-norm of matrix G,

respectively; 1 is vector of all ones with compatible size. I

indicates identity matrix with compatible size. The scalars n,

c, and m are the numbers of samples, clusters, and candidate

kernels, respectively.

B. Locally Manifold Kernel Graph (LMKG)

Recent studies on spectral graph theory [26], [13] and

manifold learning theory [27] have demonstrated that the local

manifold structure can be effectively captured over a Euclidean

distance based nearest neighbor graph. It is generally formu-

lated as follows:

min
G

n∑

i,j=1

(‖xi − xj‖22gij + αg2ij) s.t. g
T
i 1 = 1, gi ≥ 0 (1)

where α is a tradeoff parameter, gij characterizes the similarity

between samples xi and xj , and the constraints, gT
i 1 = 1,

gi ≥ 0, are used to guarantee the probability property of gi.

However, problem (1) cannot effectively handle non-linear

data. To preserve the local manifold structure in kernel space,

one may think of using ‖φ(xi)−φ(xj)‖22 instead of ‖xi−xj‖22
intuitively, where φ is a mapping from the input space to the

reproducing kernel Hilbert space; nevertheless, it is difficult

to solve that. Based on kernel trick, we propose a new model

to learn a locally manifold kernel graph (LMKC) as follows:

min
G

n∑

i,j=1

(−ker(xi,xj)gij + αg2ij) s.t. g
T
i 1 = 1, gi ≥ 0 (2)

where ker : Rd × R
d → R is a kernel function. Based on

the fact that if xi is close to xj in kernel space, the term

ker(xi,xj) will has a higher value, and the extra minus will

lead to a smaller value. Therefore, −ker(xi,xj) can be used

to measure the similarity between samples xi and xj in Hilbert

space. Mathematically, the (i, j)-th entry of the kernel Gram

matrix K, kij , is defined as ker(xi,xj), so problem (2) can

be transformed into

min
G

−Tr(KG) + α‖G‖2F s.t. G ≥ 0,GT
1 = 1 (3)

where Tr(∗) is the trace operation. Note that α ≥ 0 can tune

the graph structure according to the following Proposition 1.

Proposition 1. By tuning parameter α, a trade-off between

two extreme graph structures can be obtained:

(1) A sparse graph that one vertex is linked with only one

other vertex.

(2) A complete graph that all vertices are linked with each

other vertices by the same edge weight 1

n
.

Proof. First, we have the following problem when α → 0.

max
gi

kT
i gi s.t. gi ≥ 0, gT

i 1 = 1 (4)
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which returns a maximum value gij = max(ki), hence the

j-th entry of gi is assigned to one and others are zeros, i.e.,

in sparse graph G, the j-th vertex is only linked to only one

other the i-th vertex with the edge weight of g∗ij = 1. Second,

we have the following problem when α → ∞.

min
gi

gT
i gi s.t. gi ≥ 0, gT

i 1 = 1 (5)

whose solution is g∗ij =
1

n
, i.e., in complete graph G, the j-th

vertex is linked with all other vertices with the edge weights

of 1

n
. Thus, α can tune the graph structure of graph G.

C. Multiple Kernel Clustering Using Locally Consistent and

Selfish Graph

In a multiple kernel clustering setting, a kernel pool with

multiple kernels, {Ki}mi=1, is predefined. Consequently, m
LMKGs, {Gi}mi=1, can then be achieved according to Eq. (3).

In this paper, we design a pure graph learning paradigm to

intently learn an affinity graph based on the following two

intuitive assumptions. (1) Consistency: any pair of LMKGs

trust each other and admit the same underlying consistent

clustering structure; (2) Selfishness: the optimal consensus

affinity graph can be elected by all LMKGs, a group of

meaningful reward values to measure the efficiency of each

LMKG. Formally, the proposed objective function is as below:

min
Gi,A,w

m∑

i=1

−Tr(KiGi) + α‖Gi‖2F
︸ ︷︷ ︸
Locally manifold kernel graph learning

+ γ

m∑

i=1

m∑

j=1,j 6=i

‖Gi −Gj‖2F
︸ ︷︷ ︸

Consistency term

+ β

m∑

i=1

wi‖A−Gi‖2F
︸ ︷︷ ︸

Selfishness term

s.t. Gi ≥ 0,GT
i 1 = 1,A ≥ 0,AT

1 = 1,

rank(LA) = n− c, 0 ≤ wi ≤ 1,wT
1 = 1

(6)

where α, β, and γ are tradeoff parameters, the i-th entry of

w = {w1, · · · , wm} is the reward value of the i-th LMKG

according to its efficiency, A is the expected consensus affinity

graph, LA = DA − 0.5(AT + A) and DA (with the i-th
diagonal entry dii =

∑n

j 0.5(aij + aji)) are the Laplacian

matrix and degree matrix of matrix A, respectively.

In problem (6), the fist term is the LMKG learning term,

which learns m LMKGs from multiple candidate kernels and

captures the underlying locally manifold structure of each

candidate kernel. The second term is the consistency term,

which enforces to exploit the underlying consistent clustering

structure between all the LMKGs. The third term is the

selfishness term, which encourages each LMKG to selfishly

obtain different reward according to its efficiency, so as to

learn a consensus affinity graph used for spectral clustering.

The nonnegative affine constraint, A ≥ 0,AT
1 = 1, akin to

Gi ≥ 0,GT
i 1 = 1, is used to guarantee the probability prop-

erty of A. According to graph theory, if the graph connectivity

constraint, rank(LA) = n − c, is satisfied, the graph A has

exact c strongly connected subgraphs [8], by which way, the

ideal neighbors assignment with clear clustering structure can

be achieved directly. 0 ≤ wi ≤ 1,wT
1 = 1 is used to control

the scale of w.

As a result, the three terms in problem (6) jointly tackle the

first drawback (i.e., distractible graph learning), meanwhile,

the connectivity constraint tackles the second drawback (i.e.,

post-processing clustering burden).

IV. OPTIMIZATION

A. Solver of LCSG

The solver iteratively updates one variable at a time by

fixing the others. The solutions of the subproblems are as

follows:

(1) Gi-subproblem: With other variables fixed, Gi could be

solved by the following problem:

min
Gi≥0,GT

i
1=1

m∑

i=1

−Tr (KiGi) + α‖Gi‖2F

+γ

m∑

i=1

m∑

j=1,j 6=i

‖Gi −Gj‖2F + β

m∑

i=1

wi ‖A−Gi‖2F
(7)

Note that problem (7) is independent for different i, so we can

solve the following problem separately for each i, namely

min
Gi≥0,GT

i
1=1

−Tr(KiGi) + α‖Gi‖2F

+γ

m∑

j=1,j 6=i

‖Gi −Gj‖2F + βwi‖A−Gi‖2F
(8)

Solving the problem above without constraints yields

G∗
i =

Ki + 2βwiA+ γ
∑m

j=1,j 6=i Gj

2α+ 2βwi + γ(m− 1)
(9)

Afterwards, analogously to [28] in virtue of a two-step fast

approximation strategy, the problem w.r.t. Gi can then be

approximate to

min
Gi≥0,GT

i
1=1

‖Gi −G∗
i ‖2F (10)

which needs to compute the Euclidean projection of a point

onto the capped simplex, it can be effectively solved by a valid

iterative algorithm proposed in [8].

(2) A-subproblem: Since LA is positive semidefinite, its p-

th smallest eigenvalue is denoted as σp(LA) and satisfied

σp(LA) ≥ 0. Theoretically, rank(LA) = n − c indicates∑c
p=1

σp(LA) = 0. According to Ky Fan’s theory, this graph

connectivity constraint can be rewritten as

min
HTH=I

Tr(HTLAH) =
n∑

k,l=1

‖hk − hl‖22 akl (11)

where H = {h1, · · · ,hc} ∈ R
n×c is the embedding matrix.

By dropping other irrelevant variables and introducing a large

enough value of λ, A and H are involved into

min
A,H

β

m∑

i=1

wi‖A−Gi‖2F + λTr(HTLAH)

s.t. A ≥ 0,AT
1 = 1,HTH = I

(12)

This problem can be solved by updating A and H alternately.
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(i) Solving A when H is fixed, letting skl = ‖hk − hl‖22
and gikl = (Gi)kl for ease of notation, Eq. (12) turns to be

min
A

m∑

i=1

n∑

k,l=1

wi(akl − gikl)
2 +

λ

β

n∑

k,l=1

sklakl

s.t. ∀k,ak ≥ 0,aT
k 1 = 1

(13)

Problem (13) can be separated into a set of smaller indepen-

dent problems for each k, i.e.,

min
ak≥0,aT

k
1=1

m∑

i=1

wi

∥∥ak − gi
k

∥∥2
2
+

λ

β
sTk ak (14)

This problem is equivalent to solve the following problem:

min
ak≥0,aT

k
1=1

∥∥∥∥∥ak −
1

m

m∑

i=1

(
gi
k −

λ

2mβwi

sk

)∥∥∥∥∥

2

2

(15)

which can be solved just like problem (10).

(ii) Solving H when A is fixed, Eq. (12) degrades into

min
H∈Rn×c,HTH=I

λTr(HTLAH) (16)

whose solution is formed by the c eigenvectors of LA corre-

sponding to its c smallest eigenvalues.

(3) w-subproblem: w is updated according to Proposition 2.

Proposition 2. The reward of the i-th LMKG is determined

by normalized wi =
1

2‖A−Gi‖F+ζ
, where ζ is infinitely close

to zero.

Proof. Motivated by [29], we define an auxiliary problem

without w as follows:

min
A

m∑

i=1

√
‖A−Gi‖2F + λTr(HTLAH)

s.t. aij ≥ 0,aT
i 1 = 1

(17)

whose Lagrange function is
∑m

i=1

√
‖A−Gi‖2F +

λTr(HTLAH)+Φ(Λ,A), where Λ is Lagrange multiplier,

and Φ(Λ,A) indicates the indicator function of A from the

constraints. Taking the derivative of the Lagrange function

w.r.t. A and setting the derivative to zero, we have

m∑

i=1

ŵi

∂‖A−Gi‖2F
∂A

+
∂Ω(A)

∂A
= 0 (18)

where Ω(A) = λTr(HTLAH) + Φ(Λ,A) and ŵi =
1/(2‖A − Gi‖F ). Obviously, Eq. (18) is the same as the

derivation of the Lagrange function of problem (12). Thus,

ŵi can be considered as the wi in (12). To avoid dividing by

zero in theory, ŵi can be transformed into

wi =
1

2‖A−Gi‖F + ζ
(19)

where ζ is infinitely close to zero.

Note that the convergence criterion is rank(LA) = n− c,
thus parameter λ should be automatically increased or de-

creased when the number of connected subgraphs of graph

A is smaller or greater than c during the iteration. The

pseudocode of our LCSG is depicted in Algorithm 1.

Algorithm 1 The algorithm of LCSG

Input: Multiple kernels {Ki}mi=1, parameters α, β, and γ.

1: Initialize wi = 1/m for each graph, and λ = 10−5;

2: repeat

3: Update each LMKG Gi by problem (10);

4: Update the consensus graph A by problem (15);

5: Update the embedding matrix H by problem (16);

6: Update the weight vector w by problem (19);

7: until rank(LA) = n− c is satisfied;

8: Use graphconncomp function to find the strongly con-

nected components of graph A.

Output: Clustering results.

B. Computational Complexity Analysis

In Algorithm 1, the computational complexity of updating

{Gi}mi=1, A, H and w are O(mn2), O(n2), O(cn2) and

O(mn2), respectively. Hence, the computational complexity

of our LCSG is only O(n2) in each iteration. while that of

other graph-based MKC methods are at least O(n3). The main

reason is that the existing graph-based MKC methods always

involve the matrix reverse operator, where the computational

complexity of the matrix reverse operator is O(n3).

C. Convergence Analysis

Objective function (6) is convex w.r.t. one variable while

fixing the others. For each subproblem, it is convex mini-

mization problem and has optimal solution. Thus, by solving

these subproblems alternatively, our algorithm will reduce the

objective function monotonically. Moreover, we prove that the

whole function is lower bounded in virtue of Proposition 3.

Thus, the convergence of our algorithm can be guaranteed.

Proposition 3. Objective function (6) is lower bounded.

Proof. Objective function (6) can be divided into two parts

(i.e., Θ1 and Θ2). First, the lower bound of Θ1 is given by

Θ1 = −Tr(KiGi) + α‖Gi‖2F
=α‖Gi‖2F − 〈KT

i ,Gi〉+
1

4α
‖Ki‖2F − 1

4α
‖Ki‖2F

=‖
√
αGi −

1

2
√
α
Ki‖2F − 1

4α
‖Ki‖2F ≥ − 1

4α
‖Ki‖2F

(20)

Second, the lower bound of Θ2 is given by

Θ2 = γ

m∑

i=1

m∑

j=1,j 6=i

‖Gi −Gj‖2F + β

m∑

i=1

wi‖A−Gi‖2F ≥ 0

(21)

Hence, the whole function, Θ =
∑

Θ1+Θ2, is lower bounded

as Θ ≥ − 1

4α

∑m
i=1

‖Ki‖2F .

V. EXPERIMENTS

We demonstrate the effectiveness of our LCSG by conduct-

ing several experiments on nine public benchmark datasets.
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A. Datasets and Kernel Pool

Following [18], [21], we employ nine widely used bench-

mark datasets, including six image datasets (i.e., Yale, Jaffe,

ORL, AR, COIL20, and BA) and three text corporas (i.e.,

TR11, TR41, and TR45). These datasets can stand for the

complex IIoT non-linear data for evaluating the performance

of the proposed method. The statistics of these datasets are

briefly summarized in Table I.

TABLE I: Statistics of the nine benchmark datasets

Dataset # Classes # Samples # Features

Yale 15 165 1024

Jaffe 10 213 676

AR 120 840 768

ORL 40 400 1024

COIL-20 20 1440 1024

BA 36 1404 320

TR11 9 414 6429

TR41 10 878 7454

TR45 10 690 8261

In the same way as [18], a kernel pool is built in advance,

which consists of 12 candidate kernels (i.e., m = 12): a cosine

kernel kij = (xT
i xj)/(‖xi‖22 ·‖xj‖22); four polynomial kernels

kij = (u + xT
i xj)

v where u varies from {0, 1} and v varies

from {2, 4}; and seven radial basis function (RBF) kernels

kij = exp(−‖xi−xj‖22/(2θτ2), where θ varies from the set of

{0.01, 0.05, 0.1, 1, 10, 50, 100} and τ is the maximum distance

between any two samples. All the kernels are normalized to

[0, 1] by kij = kij/
√
kiikjj .

B. Competitors and Evaluating Metric

We compare the proposed LCSG method with the follow-

ing state-of-the-art competitors: MKKM [23], RMKKM [18],

AASC [22], SCMK [24], LKGr [20], SMKL [16],

JMKSC [21], and MVCLFA [25]. Amongst these methods,

MKKM, RMKKM, and MVCLFA are k-means-based meth-

ods, while others are graph-based methods. For MVCLFA,

we take the kernels as views and fed into it. For fair compar-

ison, the involved parameters of these competitors have been

carefully tuned as recommended by their respective authors.

To quantitatively investigate the clustering performance, three

widely used metrics, clustering accuracy (ACC), normalized

mutual information (NMI), and purity, are applied here. For

the three metrics, the higher values indicate the better per-

formance. Meanwhile, to alleviate the instability caused by

k-means in spectral clustering, we independently repeat each

experiment 20 times.

C. Performance Evaluation

The clustering results are presented in Tables II, III and

IV. It can clearly be seen that our LCSG consistently obtains

the best performance, and the improvements are significant

in most case. Surprisingly, our LCSG improves by 8.0%,

5.4%, and 6.0%, respectively, compared to JMKSC (the best

competitor) in terms of ACC, NMI, and purity. Note here that

owing to the introduced graph connectivity constraint (i.e.,

rank(LA) = n − c), our LCSG yields a standard deviation

of zero in every case. These results indicate the higher effec-

tiveness of our pure graph learning than the existing non-graph

learning and distractible graph learning for MKC tasks.

Furthermore, to evaluate the quality of the learned con-

sensus affinity matrix (also known as affinity graph) A, we

illustrate A produced by the comparison methods on the Jaffe

dataset by using a visual assessment similar to [30]. The

results are shown in Fig. 1. Obviously, the matrix A of our

LCSG has better block diagonal property and inter-cluster

separability than the competitors. Thanks to the introduced

graph connectivity constraint (i.e., rank(LA) = n − c), the

learned graph A can be exactly partitioned into c strongly

connected subgraphs by automatically tuning λ. What’s more,

the phenomenon that all the standard deviations of our LCSG

(presented in Tables II, III and IV) are zeros is consistent with

the above graph theory.

(a) AASC [22] (b) SCMK [24] (c) LKGr [20]

(d) SMKL [16] (e) JMKSC [21] (f) Our LCSG

Fig. 1: Visualization of the learned affinity graph A on the Jaffe
dataset. The Jaffe dataset consists of 10 clusters. Note that the darker
the blue color, the value is closer to zero. (Zoom in for best view).

D. Parameter Sensitivity

In the proposed LCSG method, there are three parameters,

α, γ and β, needed to be tuned. Take the Yale and ORL

datasets, for example. By fixing α = 1 and using a grid

search strategy, the searching regions of β and γ are selected

from {10−4, · · · , 101} and {10−3, · · · , 102}, respectively. We

then show the parameter sensitivities w.r.t. β and γ in Fig.

2. Subsequently, by fixing β = 0.1, γ = 10 and β = 0.01,

γ = 100 for the Yale and ORL datasets, respectively, α is

tuned from the range of {10−8, · · · , 108}. We then show the

parameter sensitivities w.r.t. α in Fig. 3. Overall, satisfactory

performance is obtained over a large range of parameter values

for all datasets. For simplicity, we fix α = 1 in all experiments,

one can tune it for better performance.

E. Convergence

Theoretically, the convergence of our LCSG can be guar-

anteed (see Section IV-C). Experimentally, we evaluate the

convergence of our LCSG on the Yale and ORL datasets.

Note here that the convergence criterion is rank(LA) = n−c,
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TABLE II: Clustering performance comparison (average ± standard deviation) in term of ACC.

Dataset MKKM [23] RMKKM [18] AASC [22] SCMK [24] LKGr [20] SMKL [16] JMKSC [21] MVCLFA [25] Our LCSG

Yale 0.457±0.041 0.521±0.034 0.406±0.027 0.582±0.025 0.540±0.030 0.582±0.017 0.630±0.006 0.618±0.011 0.661±0.000

ORL 0.475±0.023 0.556±0.024 0.272±0.009 0.656±0.015 0.616±0.016 0.573±0.032 0.725±0.014 0.692±0.005 0.810±0.000

Jaffe 0.746±0.069 0.871±0.053 0.304±0.008 0.869±0.022 0.861±0.052 0.967±0.000 0.967±0.007 0.981±0.005 1.000±0.000

AR 0.286±0.014 0.344±0.012 0.332±0.006 0.544±0.024 0.314±0.015 0.263±0.009 0.609±0.007 0.667±0.008 0.779±0.000

BA 0.405±0.019 0.434±0.018 0.271±0.003 0.384±0.014 0.444±0.018 0.246±0.012 0.484±0.015 0.413±0.005 0.523±0.000

COIL 0.548±0.058 0.667±0.028 0.349±0.050 0.591±0.028 0.618±0.051 0.487±0.031 0.696±0.016 0.664±0.013 0.863±0.000

TR11 0.501±0.048 0.577±0.094 0.472±0.008 0.549±0.015 0.607±0.043 0.708±0.033 0.737±0.002 0.572±0.026 0.756±0.000

TR41 0.561±0.068 0.627±0.073 0.459±0.001 0.650±0.068 0.595±0.020 0.671±0.002 0.689±0.004 0.594±0.005 0.788±0.000

TR45 0.585±0.066 0.640±0.071 0.526±0.008 0.634±0.058 0.663±0.042 0.671±0.004 0.687±0.036 0.721±0.002 0.778±0.000

TABLE III: Clustering performance comparison (average ± standard deviation) in term of NMI.

Dataset MKKM [23] RMKKM [18] AASC [22] SCMK [24] LKGr [20] SMKL [16] JMKSC [21] MVCLFA [25] Our LCSG

Yale 0.501±0.036 0.556±0.025 0.468±0.028 0.576±0.012 0.566±0.025 0.614±0.015 0.631±0.006 0.609±0.009 0.643±0.000

ORL 0.689±0.016 0.748±0.018 0.438±0.007 0.808±0.008 0.794±0.008 0.733±0.027 0.852±0.012 0.836±0.003 0.889±0.000

Jaffe 0.798±0.058 0.893±0.041 0.272±0.006 0.868±0.021 0.869±0.031 0.951±0.000 0.952±0.010 0.970±0.008 1.000±0.000

AR 0.592±0.014 0.655±0.015 0.651±0.005 0.775±0.009 0.648±0.007 0.568±0.014 0.820±0.002 0.844±0.002 0.894±0.000

BA 0.569±0.008 0.585±0.011 0.423±0.004 0.544±0.012 0.604±0.009 0.486±0.011 0.621±0.007 0.556±0.002 0.666±0.000

COIL 0.707±0.033 0.773±0.017 0.419±0.027 0.726±0.011 0.766±0.023 0.628±0.018 0.818±0.007 0.782±0.005 0.928±0.000

TR11 0.446±0.046 0.561±0.118 0.394±0.003 0.371±0.018 0.597±0.031 0.557±0.068 0.673±0.002 0.582±0.012 0.683±0.000

TR41 0.578±0.042 0.635±0.092 0.431±0.000 0.492±0.017 0.604±0.023 0.625±0.004 0.660±0.003 0.575±0.006 0.729±0.000

TR45 0.562±0.056 0.627±0.092 0.420±0.014 0.584±0.051 0.671±0.020 0.622±0.007 0.690±0.022 0.681±0.001 0.772±0.000

TABLE IV: Clustering performance comparison (average ± standard deviation) in term of Purity.

Data MKKM [23] RMKKM [18] AASC [22] SCMK [24] LKGr [20] SMKL [16] JMKSC [21] MVCLFA [25] Our LCSG

Yale 0.475±0.037 0.536±0.031 0.423±0.026 0.610±0.014 0.554±0.029 0.667±0.014 0.673±0.007 0.624±0.010 0.703±0.000

ORL 0.514±0.021 0.602±0.024 0.316±0.007 0.699±0.015 0.658±0.017 0.648±0.017 0.753±0.012 0.732±0.004 0.830±0.000

Jaffe 0.768±0.062 0.889±0.045 0.331±0.008 0.882±0.023 0.859±0.038 0.967±0.000 0.967±0.007 0.981±0.005 1.000±0.000

AR 0.305±0.012 0.368±0.010 0.350±0.006 0.642±0.014 0.330±0.014 0.530±0.014 0.656±0.010 0.685±0.003 0.805±0.000

BA 0.435±0.014 0.463±0.015 0.303±0.004 0.606±0.009 0.479±0.017 0.623±0.011 0.563±0.018 0.438±0.006 0.646±0.000

COIL 0.590±0.053 0.699±0.022 0.391±0.044 0.635±0.013 0.650±0.039 0.683±0.004 0.806±0.010 0.690±0.013 0.913±0.000

TR11 0.655±0.044 0.729±0.096 0.547±0.000 0.783±0.011 0.776±0.030 0.835±0.048 0.819±0.001 0.768±0.009 0.787±0.000

TR41 0.728±0.042 0.776±0.065 0.621±0.001 0.758±0.034 0.759±0.031 0.761±0.003 0.799±0.003 0.757±0.008 0.833±0.000

TR45 0.691±0.058 0.752±0.074 0.575±0.011 0.728±0.048 0.800±0.026 0.816±0.004 0.822±0.031 0.806±0.001 0.883±0.000

i.e., the connected subgraphs of the learned graph A is equal

to c, so we need to continuously self-tune parameter λ until

the desired graph is obtained. The results presented in Fig. 4

suggest that the objective value is monotonically decreased,

and the clustering performance is gradually improving. No-

tably, although the algorithm seems to converge after only 5

iterations for the ORL dataset, the additional iterations are also

need to meet the convergence criterion, i.e., rank(LA) = n−c.
Usually, LCSG converges in less than 20 iterations for all

evaluated datasets.

F. Running Time

We compare the running time (in seconds) of all competitors

on the Yale, ORL, TR11, and TR45 datasets. All codes are

implemented in MATLAB 2016b and run on a Mac PC with

a 3.2 GHz Intel Core i7 processor, 16-GB RAM, and macOS

Mojave operating system. The mean and standard deviations

of 20 trials are reported in Table V, the proposed LCSG has a

competitive superiority on running time. Although the running

time of MKKM and MVCLFA is lower than that of our LCSG,

their clustering performance is worse than that of ours.

VI. CONCLUSION

In this paper, we have proposed a pure graph-based MKC

method to address the changeling non-linear clustering issues

for cognitive computing of intelligent IIoT. Specifically, a new

graph model, termed as LMKG, that can preserve the local

manifold structure of data in kernel space is introduced to learn
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Fig. 2: ACC and NMI of our LCSG w.r.t. β and γ on the Yale (the
fist row) and ORL (the second row) datasets. α is fixed to 1. (Zoom
in for best view).
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Fig. 3: ACC and NMI of our LCSG w.r.t. α on the Yale and ORL
datasets.

multiple LMKGs from multiple candidate kernels. By consid-

ering both the consistency and selfishness of these LMKGs,

the quality of affinity graph achieves significant improvement.

Further, the graph connectivity constraint avoids requiring

any post-processing step such that the clustering results can

be immediately obtained. Comprehensive experimental results

clearly demonstrates the superiority of our method. Therefore,

our LCSG method can be used to effectively handle the non-

TABLE V: Computational time (in seconds) comparison.

Method Yale ORL TR11 TR45

MKKM [23] 0.015±0.001 0.128±0.003 0.059 ±0.002 0.162±0.005

RMKKM [18] 0.870±0.011 3.622±0.085 4.144±0.117 6.908±0.121

AASC [22] 0.221±0.005 0.910±0.007 0.977±0.014 1.686±0.019

SCMK [24] 5.492±0.144 42.040±1.782 51.454±3.102 218.715±5.384

LKGr [20] 1.422±0.015 7.425±0.227 13.718±0.340 80.558±3.211

SMKL [16] 1.439±0.022 12.836±0.565 9.863±0.144 154.683±5.101

JMKSC [21] 1.219±0.015 2.462±0.108 3.974±0.125 8.765±0.183

MVCLFA [25] 0.251±0.004 0.893±0.011 1.116±0.420 2.243±0.047

Our LCSG 0.620±0.023 1.882±0.054 2.121±0.113 5.921±0.121
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Fig. 4: Convergence curve of our LCSG on the Yale and ORL
datasets.

linear data from intelligent IIoT and other industrial sensor

networks.

In our future work, it is potentially interesting to extend

the proposed method to handle large-scale non-linear data for

cognitive computing.
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Multiple Kernel Driven Clustering with Locally

Consistent and Selfish Graph in Industrial IoT

Abstract—In the cognitive computing of intelligent Industrial
Internet of Things (IIoT), clustering is a fundamental machine
learning problem to exploit the latent data relationships. To
overcome the challenge of kernel choice for non-linear clustering
tasks, multiple kernel clustering (MKC) has attracted intensive
attention. However, existing graph-based MKC methods mainly
aim to learn a consensus kernel as well as an affinity graph from
multiple candidate kernels, which cannot fully exploit the latent
graph information. In this paper, we propose a novel pure graph-
based MKC method. Specifically, a new graph model is proposed
to preserve the local manifold structure of the data in kernel
space so as to learn multiple candidate graphs. Afterwards, the
latent consistency and selfishness of these candidate graphs are
fully considered. Furthermore, a graph connectivity constraint is
introduced to avoid requiring any post-processing clustering step.
Comprehensive experimental results demonstrate the superiority
of our method.

Index Terms—Cognitive computing, Industrial Internet-of-
Things, graph learning, clustering, multiple kernel clustering.

I. INTRODUCTION

C
LUSTERING is used ubiquitously across the smart fac-

tories, intelligent machines, networked processes and big

data [1], as a fundamental procedure in the analysis of

scientific data [2], [3] and cognitive computing [4]. Its goal

is to partition unlabeled data points into their own clusters.

With the developing of Industry 4.0 or the Industrial Internet-

of-Things (IIoT) [5], [6], [7], the unlabeled and non-linear

data are getting more and more, so clustering has emerged

to be an important learning paradigm to exploit the latent

data relationships. Despite remarkable progress in a number

of learning methods, how to effectively handle non-linear

data is still a challenging problem. The traditional single

kernel methods can alleviate this challenge to a certain degree,

nevertheless, these methods require the user to select and tune

a single pre-defined kernel, therefore have been facing with

the curse of kernel choice: (1) the most suitable kernel for

a specific task is usually challenging to decide; and (2) it

is impractical and time-consuming to exhaustively search a

suitable kernel from multiple candidate kernels. In this paper,

we seamlessly integrate graph-based clustering (GBC) [8], [9]

and multiple kernel learning (MKL) [10], [11] to tackle this

challenge.

Due to the effectiveness of capturing the complex structure

hidden in data, GBC methods have been widely investigated

[8], [12], which consist of first constructing an affinity graph

based on graphical representations of the relationships among

data points, and then applying spectral algorithm (e.g., spectral

clustering) or graphtheoretic algorithm (e.g., normalized cut

and ratio cut) to accomplish clustering. Obviously, it is crucial

to construct a high-quality affinity graph that could accurately

capture the intrinsic sample relations. Overall, the mainstream

technologies can be typically divided into four main proto-

types. The first one is to construct a predefined similarity graph

as affinity graph, relying on binary similarity, cosine similarity,

or Gaussian kernel similarity [13]. The second one is adaptive

neighbors graph learning [8], [12], which builds a graph by

assigning a probability for each sample as the neighborhood of

another sample. Accordingly, the homogeneous samples have

high affinity values, while those heterogeneous samples have

low affinity values, hence, the resulting probability is deemed

as the affinity between two samples. The third one is based

on the data self-expressiveness [14], which reconstructs every

data point by a linear combination of all other data points

and produces a coefficient matrix that is used to construct

an affinity graph. The last one learns a new representation of

original data by non-negative matrix factorization (NMF) or

concept factorization (CF) [15], and then constructs an affinity

graph relying on the above ways. Generally, the graph-based

methods are superior to the k-means-based ones [16], [17].

On the other hand, MKL [11] not only can effectively han-

dle non-linear data but also alleviate the curse of kernel choice.

Usually, it aims to learn a consensus kernel by weighting

multiple candidate kernels in a kernel pool, meanwhile, it has

the great potential to fully exploit complementary information

between these kernels. Overall, three weight paradigms are

widely used: (1) using equally weighted combination of base

kernels, i.e., each kernel has the same weight value [18]; (2)

using the linearly or non-linearly combination of base kernels

[11], [19]; and (3) using the idea of adaptive neighbor to learn

a self-weighted consensus kernel [16], [17], i.e., the important

kernel should be assigned a large weight, and vice versa.

Based on both GBC and MKL, although the existing

multiple kernel clustering (MKC) methods has gained promis-

ing results, the existing MKC methods still suffer from the

following drawbacks: (1) they always pay more attention to

the learning of consensus kernel rather than affinity graph,

this violates the fact that the affinity graph is the crucial role

of graph-based clustering; significantly, some important graph

information of each candidate kernel may be lost, thus impair

the final clustering performance greatly; and (2) they require

an additional clustering step to produce the final clusters.

To tackle these drawbacks, a novel MKC method, termed

Locally Consistent and Selfish Graph (LCSG), is proposed in

this paper. In summary, its main contributions are three-fold:

• Unlike existing MKC methods, which distractingly learn

a consensus kernel and an affinity graph, LCSG concen-

trates intently on graph learning. Notably, it has three

main highlights: (1) a new kernel graph learning model

is proposed to preserve local manifold structure of data

in kernel space; (2) the objective function considers both
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the consistency and selfishness of multiple new graphs,

the former exploits the underlying consistent clustering

structure between these graphs, and the latter motivates

the selfishness of each graph to learn a consensus affinity

graph; and (3) theoretically, it is much faster than existing

competitors, as without performing matrix inversion.

• LCSG does not need to run an additional clustering

algorithm to produce the final cluster labels, since a graph

connectivity constraint is imposed to partition the data

points naturally into the required number of clusters.

• To the best of our knowledge, the highest clustering

performance on nine widely used benchmark datasets is

obtained to date reported.

The rest of article is organized as follows. Section II introduces

related works. In Section III, we propose the LCSG method.

The solver, computational complexity, and convergence of the

optimum problem are provided in Section IV. In subsequent

Section V, adequate experimentation and analysis are pre-

sented. The conclusion is founded in Section VI.

II. RELATED WORK

In recent years, MKC has rapidly developed and produced

several state-of-the-art methods [18], [19], [20], [21], [17],

which typically work as follows: (1) predefining multiple

kernel matrices over the given kernel pool, (2) learning both

a consensus kernel and an affinity graph, (3) performing

spectral clustering on the affinity graph, and (4) producing

the discrete clustering results by some postprocessings like k-

means. For instance, affinity aggregation for spectral clustering

(AASC) [22], multiple kernel k-means (MKKM) [23], robust

multiple kernel k-means (RMKKM) [18], spectral clustering

with multiple kernels (SCMK) [24], and neighbor-kernel-based

MKL (NKBM) [19] seek for the optimal (convex) linear com-

bination of the given multiple kernels to build an integrated

kernel. Based on MKKM, multiview clustering via late fusion

alignment maximization (MVCLFA) [25] proposes to maxi-

mally align the consensus partition with the weighted base

partitions, which can significantly reduce the computational

complexity. Unlike the above methods, self-weighted multiple

kernel learning (SMKL) [16], low-rank kernel learning graph-

based clustering (LKGr) [20], sparse kernel learning graph-

based clustering (LKGs) [20], local structural graph and low-

rank consensus MKL (LLMKL) [17], and robust multiple

kernel subspace clustering (JMKSC) [21] use a self-weighted

strategy to learn an optimal consensus kernel, based on the

assumption that the consensus kernel is a neighbor of all

candidate kernels and the important kernels should receive rel-

atively large weights, and vice versa. Amongst them, MKKM,

RMKKM [18] and NKBM are k-means-based methods, which

usually focus on how to reduce redundancy and enhance the

diversity between selected kernels to learn a linear weighted

kernel, and then perform k-means to obtain clusters; while

others are graph-based methods, which usually aim to learn a

consensus kernel as well as an affinity graph resorting to the

extra prior knowledge, and then perform graph clustering to

obtain clusters.

III. METHODOLOGY

A. Notations

Throughout the paper, matrices and vectors are denoted

as boldface capital letters and boldface lowercase letters,

respectively. For an arbitrary matrix Q, qij denotes its (i, j)-
th entry, and qi denotes its i-th column. Moreover, Tr(G),
rank(G), ‖G‖2F , and ‖G‖∗ denote the trace operator, rank

function, Frobenius-norm, and nuclear-norm of matrix G,

respectively; 1 is vector of all ones with compatible size. I

indicates identity matrix with compatible size. The scalars n,

c, and m are the numbers of samples, clusters, and candidate

kernels, respectively.

B. Locally Manifold Kernel Graph (LMKG)

Recent studies on spectral graph theory [26], [13] and

manifold learning theory [27] have demonstrated that the local

manifold structure can be effectively captured over a Euclidean

distance based nearest neighbor graph. It is generally formu-

lated as follows:

min
G

n∑

i,j=1

(‖xi − xj‖22gij + αg2ij) s.t. g
T
i 1 = 1, gi ≥ 0 (1)

where α is a tradeoff parameter, gij characterizes the similarity

between samples xi and xj , and the constraints, gT
i 1 = 1,

gi ≥ 0, are used to guarantee the probability property of gi.

However, problem (1) cannot effectively handle non-linear

data. To preserve the local manifold structure in kernel space,

one may think of using ‖φ(xi)−φ(xj)‖22 instead of ‖xi−xj‖22
intuitively, where φ is a mapping from the input space to the

reproducing kernel Hilbert space; nevertheless, it is difficult

to solve that. Based on kernel trick, we propose a new model

to learn a locally manifold kernel graph (LMKC) as follows:

min
G

n∑

i,j=1

(−ker(xi,xj)gij + αg2ij) s.t. g
T
i 1 = 1, gi ≥ 0 (2)

where ker : Rd × R
d → R is a kernel function. Based on

the fact that if xi is close to xj in kernel space, the term

ker(xi,xj) will has a higher value, and the extra minus will

lead to a smaller value. Therefore, −ker(xi,xj) can be used

to measure the similarity between samples xi and xj in Hilbert

space. Mathematically, the (i, j)-th entry of the kernel Gram

matrix K, kij , is defined as ker(xi,xj), so problem (2) can

be transformed into

min
G

−Tr(KG) + α‖G‖2F s.t. G ≥ 0,GT
1 = 1 (3)

where Tr(∗) is the trace operation. Note that α ≥ 0 can tune

the graph structure according to the following Proposition 1.

Proposition 1. By tuning parameter α, a trade-off between

two extreme graph structures can be obtained:

(1) A sparse graph that one vertex is linked with only one

other vertex.

(2) A complete graph that all vertices are linked with each

other vertices by the same edge weight 1

n
.

Proof. First, we have the following problem when α → 0.

max
gi

kT
i gi s.t. gi ≥ 0, gT

i 1 = 1 (4)
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which returns a maximum value gij = max(ki), hence the

j-th entry of gi is assigned to one and others are zeros, i.e.,

in sparse graph G, the j-th vertex is only linked to only one

other the i-th vertex with the edge weight of g∗ij = 1. Second,

we have the following problem when α → ∞.

min
gi

gT
i gi s.t. gi ≥ 0, gT

i 1 = 1 (5)

whose solution is g∗ij =
1

n
, i.e., in complete graph G, the j-th

vertex is linked with all other vertices with the edge weights

of 1

n
. Thus, α can tune the graph structure of graph G.

C. Multiple Kernel Clustering Using Locally Consistent and

Selfish Graph

In a multiple kernel clustering setting, a kernel pool with

multiple kernels, {Ki}mi=1, is predefined. Consequently, m
LMKGs, {Gi}mi=1, can then be achieved according to Eq. (3).

In this paper, we design a pure graph learning paradigm to

intently learn an affinity graph based on the following two

intuitive assumptions. (1) Consistency: any pair of LMKGs

trust each other and admit the same underlying consistent

clustering structure; (2) Selfishness: the optimal consensus

affinity graph can be elected by all LMKGs, a group of

meaningful reward values to measure the efficiency of each

LMKG. Formally, the proposed objective function is as below:

min
Gi,A,w

m∑

i=1

−Tr(KiGi) + α‖Gi‖2F
︸ ︷︷ ︸
Locally manifold kernel graph learning

+ γ

m∑

i=1

m∑

j=1,j 6=i

‖Gi −Gj‖2F
︸ ︷︷ ︸

Consistency term

+ β

m∑

i=1

wi‖A−Gi‖2F
︸ ︷︷ ︸

Selfishness term

s.t. Gi ≥ 0,GT
i 1 = 1,A ≥ 0,AT

1 = 1,

rank(LA) = n− c, 0 ≤ wi ≤ 1,wT
1 = 1

(6)

where α, β, and γ are tradeoff parameters, the i-th entry of

w = {w1, · · · , wm} is the reward value of the i-th LMKG

according to its efficiency, A is the expected consensus affinity

graph, LA = DA − 0.5(AT + A) and DA (with the i-th
diagonal entry dii =

∑n

j 0.5(aij + aji)) are the Laplacian

matrix and degree matrix of matrix A, respectively.

In problem (6), the fist term is the LMKG learning term,

which learns m LMKGs from multiple candidate kernels and

captures the underlying locally manifold structure of each

candidate kernel. The second term is the consistency term,

which enforces to exploit the underlying consistent clustering

structure between all the LMKGs. The third term is the

selfishness term, which encourages each LMKG to selfishly

obtain different reward according to its efficiency, so as to

learn a consensus affinity graph used for spectral clustering.

The nonnegative affine constraint, A ≥ 0,AT
1 = 1, akin to

Gi ≥ 0,GT
i 1 = 1, is used to guarantee the probability prop-

erty of A. According to graph theory, if the graph connectivity

constraint, rank(LA) = n − c, is satisfied, the graph A has

exact c strongly connected subgraphs [8], by which way, the

ideal neighbors assignment with clear clustering structure can

be achieved directly. 0 ≤ wi ≤ 1,wT
1 = 1 is used to control

the scale of w.

As a result, the three terms in problem (6) jointly tackle the

first drawback (i.e., distractible graph learning), meanwhile,

the connectivity constraint tackles the second drawback (i.e.,

post-processing clustering burden).

IV. OPTIMIZATION

A. Solver of LCSG

The solver iteratively updates one variable at a time by

fixing the others. The solutions of the subproblems are as

follows:

(1) Gi-subproblem: With other variables fixed, Gi could be

solved by the following problem:

min
Gi≥0,GT

i
1=1

m∑

i=1

−Tr (KiGi) + α‖Gi‖2F

+γ

m∑

i=1

m∑

j=1,j 6=i

‖Gi −Gj‖2F + β

m∑

i=1

wi ‖A−Gi‖2F
(7)

Note that problem (7) is independent for different i, so we can

solve the following problem separately for each i, namely

min
Gi≥0,GT

i
1=1

−Tr(KiGi) + α‖Gi‖2F

+γ

m∑

j=1,j 6=i

‖Gi −Gj‖2F + βwi‖A−Gi‖2F
(8)

Solving the problem above without constraints yields

G∗
i =

Ki + 2βwiA+ γ
∑m

j=1,j 6=i Gj

2α+ 2βwi + γ(m− 1)
(9)

Afterwards, analogously to [28] in virtue of a two-step fast

approximation strategy, the problem w.r.t. Gi can then be

approximate to

min
Gi≥0,GT

i
1=1

‖Gi −G∗
i ‖2F (10)

which needs to compute the Euclidean projection of a point

onto the capped simplex, it can be effectively solved by a valid

iterative algorithm proposed in [8].

(2) A-subproblem: Since LA is positive semidefinite, its p-

th smallest eigenvalue is denoted as σp(LA) and satisfied

σp(LA) ≥ 0. Theoretically, rank(LA) = n − c indicates∑c
p=1

σp(LA) = 0. According to Ky Fan’s theory, this graph

connectivity constraint can be rewritten as

min
HTH=I

Tr(HTLAH) =
n∑

k,l=1

‖hk − hl‖22 akl (11)

where H = {h1, · · · ,hc} ∈ R
n×c is the embedding matrix.

By dropping other irrelevant variables and introducing a large

enough value of λ, A and H are involved into

min
A,H

β

m∑

i=1

wi‖A−Gi‖2F + λTr(HTLAH)

s.t. A ≥ 0,AT
1 = 1,HTH = I

(12)

This problem can be solved by updating A and H alternately.
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(i) Solving A when H is fixed, letting skl = ‖hk − hl‖22
and gikl = (Gi)kl for ease of notation, Eq. (12) turns to be

min
A

m∑

i=1

n∑

k,l=1

wi(akl − gikl)
2 +

λ

β

n∑

k,l=1

sklakl

s.t. ∀k,ak ≥ 0,aT
k 1 = 1

(13)

Problem (13) can be separated into a set of smaller indepen-

dent problems for each k, i.e.,

min
ak≥0,aT

k
1=1

m∑

i=1

wi

∥∥ak − gi
k

∥∥2
2
+

λ

β
sTk ak (14)

This problem is equivalent to solve the following problem:

min
ak≥0,aT

k
1=1

∥∥∥∥∥ak −
1

m

m∑

i=1

(
gi
k −

λ

2mβwi

sk

)∥∥∥∥∥

2

2

(15)

which can be solved just like problem (10).

(ii) Solving H when A is fixed, Eq. (12) degrades into

min
H∈Rn×c,HTH=I

λTr(HTLAH) (16)

whose solution is formed by the c eigenvectors of LA corre-

sponding to its c smallest eigenvalues.

(3) w-subproblem: w is updated according to Proposition 2.

Proposition 2. The reward of the i-th LMKG is determined

by normalized wi =
1

2‖A−Gi‖F+ζ
, where ζ is infinitely close

to zero.

Proof. Motivated by [29], we define an auxiliary problem

without w as follows:

min
A

m∑

i=1

√
‖A−Gi‖2F + λTr(HTLAH)

s.t. aij ≥ 0,aT
i 1 = 1

(17)

whose Lagrange function is
∑m

i=1

√
‖A−Gi‖2F +

λTr(HTLAH)+Φ(Λ,A), where Λ is Lagrange multiplier,

and Φ(Λ,A) indicates the indicator function of A from the

constraints. Taking the derivative of the Lagrange function

w.r.t. A and setting the derivative to zero, we have

m∑

i=1

ŵi

∂‖A−Gi‖2F
∂A

+
∂Ω(A)

∂A
= 0 (18)

where Ω(A) = λTr(HTLAH) + Φ(Λ,A) and ŵi =
1/(2‖A − Gi‖F ). Obviously, Eq. (18) is the same as the

derivation of the Lagrange function of problem (12). Thus,

ŵi can be considered as the wi in (12). To avoid dividing by

zero in theory, ŵi can be transformed into

wi =
1

2‖A−Gi‖F + ζ
(19)

where ζ is infinitely close to zero.

Note that the convergence criterion is rank(LA) = n− c,
thus parameter λ should be automatically increased or de-

creased when the number of connected subgraphs of graph

A is smaller or greater than c during the iteration. The

pseudocode of our LCSG is depicted in Algorithm 1.

Algorithm 1 The algorithm of LCSG

Input: Multiple kernels {Ki}mi=1, parameters α, β, and γ.

1: Initialize wi = 1/m for each graph, and λ = 10−5;

2: repeat

3: Update each LMKG Gi by problem (10);

4: Update the consensus graph A by problem (15);

5: Update the embedding matrix H by problem (16);

6: Update the weight vector w by problem (19);

7: until rank(LA) = n− c is satisfied;

8: Use graphconncomp function to find the strongly con-

nected components of graph A.

Output: Clustering results.

B. Computational Complexity Analysis

In Algorithm 1, the computational complexity of updating

{Gi}mi=1, A, H and w are O(mn2), O(n2), O(cn2) and

O(mn2), respectively. Hence, the computational complexity

of our LCSG is only O(n2) in each iteration. while that of

other graph-based MKC methods are at least O(n3). The main

reason is that the existing graph-based MKC methods always

involve the matrix reverse operator, where the computational

complexity of the matrix reverse operator is O(n3).

C. Convergence Analysis

Objective function (6) is convex w.r.t. one variable while

fixing the others. For each subproblem, it is convex mini-

mization problem and has optimal solution. Thus, by solving

these subproblems alternatively, our algorithm will reduce the

objective function monotonically. Moreover, we prove that the

whole function is lower bounded in virtue of Proposition 3.

Thus, the convergence of our algorithm can be guaranteed.

Proposition 3. Objective function (6) is lower bounded.

Proof. Objective function (6) can be divided into two parts

(i.e., Θ1 and Θ2). First, the lower bound of Θ1 is given by

Θ1 = −Tr(KiGi) + α‖Gi‖2F
=α‖Gi‖2F − 〈KT

i ,Gi〉+
1

4α
‖Ki‖2F − 1

4α
‖Ki‖2F

=‖
√
αGi −

1

2
√
α
Ki‖2F − 1

4α
‖Ki‖2F ≥ − 1

4α
‖Ki‖2F

(20)

Second, the lower bound of Θ2 is given by

Θ2 = γ

m∑

i=1

m∑

j=1,j 6=i

‖Gi −Gj‖2F + β

m∑

i=1

wi‖A−Gi‖2F ≥ 0

(21)

Hence, the whole function, Θ =
∑

Θ1+Θ2, is lower bounded

as Θ ≥ − 1

4α

∑m
i=1

‖Ki‖2F .

V. EXPERIMENTS

We demonstrate the effectiveness of our LCSG by conduct-

ing several experiments on nine public benchmark datasets.
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A. Datasets and Kernel Pool

Following [18], [21], we employ nine widely used bench-

mark datasets, including six image datasets (i.e., Yale, Jaffe,

ORL, AR, COIL20, and BA) and three text corporas (i.e.,

TR11, TR41, and TR45). These datasets can stand for the

complex IIoT non-linear data for evaluating the performance

of the proposed method. The statistics of these datasets are

briefly summarized in Table I.

TABLE I: Statistics of the nine benchmark datasets

Dataset # Classes # Samples # Features

Yale 15 165 1024

Jaffe 10 213 676

AR 120 840 768

ORL 40 400 1024

COIL-20 20 1440 1024

BA 36 1404 320

TR11 9 414 6429

TR41 10 878 7454

TR45 10 690 8261

In the same way as [18], a kernel pool is built in advance,

which consists of 12 candidate kernels (i.e., m = 12): a cosine

kernel kij = (xT
i xj)/(‖xi‖22 ·‖xj‖22); four polynomial kernels

kij = (u + xT
i xj)

v where u varies from {0, 1} and v varies

from {2, 4}; and seven radial basis function (RBF) kernels

kij = exp(−‖xi−xj‖22/(2θτ2), where θ varies from the set of

{0.01, 0.05, 0.1, 1, 10, 50, 100} and τ is the maximum distance

between any two samples. All the kernels are normalized to

[0, 1] by kij = kij/
√
kiikjj .

B. Competitors and Evaluating Metric

We compare the proposed LCSG method with the follow-

ing state-of-the-art competitors: MKKM [23], RMKKM [18],

AASC [22], SCMK [24], LKGr [20], SMKL [16],

JMKSC [21], and MVCLFA [25]. Amongst these methods,

MKKM, RMKKM, and MVCLFA are k-means-based meth-

ods, while others are graph-based methods. For MVCLFA,

we take the kernels as views and fed into it. For fair compar-

ison, the involved parameters of these competitors have been

carefully tuned as recommended by their respective authors.

To quantitatively investigate the clustering performance, three

widely used metrics, clustering accuracy (ACC), normalized

mutual information (NMI), and purity, are applied here. For

the three metrics, the higher values indicate the better per-

formance. Meanwhile, to alleviate the instability caused by

k-means in spectral clustering, we independently repeat each

experiment 20 times.

C. Performance Evaluation

The clustering results are presented in Tables II, III and

IV. It can clearly be seen that our LCSG consistently obtains

the best performance, and the improvements are significant

in most case. Surprisingly, our LCSG improves by 8.0%,

5.4%, and 6.0%, respectively, compared to JMKSC (the best

competitor) in terms of ACC, NMI, and purity. Note here that

owing to the introduced graph connectivity constraint (i.e.,

rank(LA) = n − c), our LCSG yields a standard deviation

of zero in every case. These results indicate the higher effec-

tiveness of our pure graph learning than the existing non-graph

learning and distractible graph learning for MKC tasks.

Furthermore, to evaluate the quality of the learned con-

sensus affinity matrix (also known as affinity graph) A, we

illustrate A produced by the comparison methods on the Jaffe

dataset by using a visual assessment similar to [30]. The

results are shown in Fig. 1. Obviously, the matrix A of our

LCSG has better block diagonal property and inter-cluster

separability than the competitors. Thanks to the introduced

graph connectivity constraint (i.e., rank(LA) = n − c), the

learned graph A can be exactly partitioned into c strongly

connected subgraphs by automatically tuning λ. What’s more,

the phenomenon that all the standard deviations of our LCSG

(presented in Tables II, III and IV) are zeros is consistent with

the above graph theory.

(a) AASC [22] (b) SCMK [24] (c) LKGr [20]

(d) SMKL [16] (e) JMKSC [21] (f) Our LCSG

Fig. 1: Visualization of the learned affinity graph A on the Jaffe
dataset. The Jaffe dataset consists of 10 clusters. Note that the darker
the blue color, the value is closer to zero. (Zoom in for best view).

D. Parameter Sensitivity

In the proposed LCSG method, there are three parameters,

α, γ and β, needed to be tuned. Take the Yale and ORL

datasets, for example. By fixing α = 1 and using a grid

search strategy, the searching regions of β and γ are selected

from {10−4, · · · , 101} and {10−3, · · · , 102}, respectively. We

then show the parameter sensitivities w.r.t. β and γ in Fig.

2. Subsequently, by fixing β = 0.1, γ = 10 and β = 0.01,

γ = 100 for the Yale and ORL datasets, respectively, α is

tuned from the range of {10−8, · · · , 108}. We then show the

parameter sensitivities w.r.t. α in Fig. 3. Overall, satisfactory

performance is obtained over a large range of parameter values

for all datasets. For simplicity, we fix α = 1 in all experiments,

one can tune it for better performance.

E. Convergence

Theoretically, the convergence of our LCSG can be guar-

anteed (see Section IV-C). Experimentally, we evaluate the

convergence of our LCSG on the Yale and ORL datasets.

Note here that the convergence criterion is rank(LA) = n−c,
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TABLE II: Clustering performance comparison (average ± standard deviation) in term of ACC.

Dataset MKKM [23] RMKKM [18] AASC [22] SCMK [24] LKGr [20] SMKL [16] JMKSC [21] MVCLFA [25] Our LCSG

Yale 0.457±0.041 0.521±0.034 0.406±0.027 0.582±0.025 0.540±0.030 0.582±0.017 0.630±0.006 0.618±0.011 0.661±0.000

ORL 0.475±0.023 0.556±0.024 0.272±0.009 0.656±0.015 0.616±0.016 0.573±0.032 0.725±0.014 0.692±0.005 0.810±0.000

Jaffe 0.746±0.069 0.871±0.053 0.304±0.008 0.869±0.022 0.861±0.052 0.967±0.000 0.967±0.007 0.981±0.005 1.000±0.000

AR 0.286±0.014 0.344±0.012 0.332±0.006 0.544±0.024 0.314±0.015 0.263±0.009 0.609±0.007 0.667±0.008 0.779±0.000

BA 0.405±0.019 0.434±0.018 0.271±0.003 0.384±0.014 0.444±0.018 0.246±0.012 0.484±0.015 0.413±0.005 0.523±0.000

COIL 0.548±0.058 0.667±0.028 0.349±0.050 0.591±0.028 0.618±0.051 0.487±0.031 0.696±0.016 0.664±0.013 0.863±0.000

TR11 0.501±0.048 0.577±0.094 0.472±0.008 0.549±0.015 0.607±0.043 0.708±0.033 0.737±0.002 0.572±0.026 0.756±0.000

TR41 0.561±0.068 0.627±0.073 0.459±0.001 0.650±0.068 0.595±0.020 0.671±0.002 0.689±0.004 0.594±0.005 0.788±0.000

TR45 0.585±0.066 0.640±0.071 0.526±0.008 0.634±0.058 0.663±0.042 0.671±0.004 0.687±0.036 0.721±0.002 0.778±0.000

TABLE III: Clustering performance comparison (average ± standard deviation) in term of NMI.

Dataset MKKM [23] RMKKM [18] AASC [22] SCMK [24] LKGr [20] SMKL [16] JMKSC [21] MVCLFA [25] Our LCSG

Yale 0.501±0.036 0.556±0.025 0.468±0.028 0.576±0.012 0.566±0.025 0.614±0.015 0.631±0.006 0.609±0.009 0.643±0.000

ORL 0.689±0.016 0.748±0.018 0.438±0.007 0.808±0.008 0.794±0.008 0.733±0.027 0.852±0.012 0.836±0.003 0.889±0.000

Jaffe 0.798±0.058 0.893±0.041 0.272±0.006 0.868±0.021 0.869±0.031 0.951±0.000 0.952±0.010 0.970±0.008 1.000±0.000

AR 0.592±0.014 0.655±0.015 0.651±0.005 0.775±0.009 0.648±0.007 0.568±0.014 0.820±0.002 0.844±0.002 0.894±0.000

BA 0.569±0.008 0.585±0.011 0.423±0.004 0.544±0.012 0.604±0.009 0.486±0.011 0.621±0.007 0.556±0.002 0.666±0.000

COIL 0.707±0.033 0.773±0.017 0.419±0.027 0.726±0.011 0.766±0.023 0.628±0.018 0.818±0.007 0.782±0.005 0.928±0.000

TR11 0.446±0.046 0.561±0.118 0.394±0.003 0.371±0.018 0.597±0.031 0.557±0.068 0.673±0.002 0.582±0.012 0.683±0.000

TR41 0.578±0.042 0.635±0.092 0.431±0.000 0.492±0.017 0.604±0.023 0.625±0.004 0.660±0.003 0.575±0.006 0.729±0.000

TR45 0.562±0.056 0.627±0.092 0.420±0.014 0.584±0.051 0.671±0.020 0.622±0.007 0.690±0.022 0.681±0.001 0.772±0.000

TABLE IV: Clustering performance comparison (average ± standard deviation) in term of Purity.

Data MKKM [23] RMKKM [18] AASC [22] SCMK [24] LKGr [20] SMKL [16] JMKSC [21] MVCLFA [25] Our LCSG

Yale 0.475±0.037 0.536±0.031 0.423±0.026 0.610±0.014 0.554±0.029 0.667±0.014 0.673±0.007 0.624±0.010 0.703±0.000

ORL 0.514±0.021 0.602±0.024 0.316±0.007 0.699±0.015 0.658±0.017 0.648±0.017 0.753±0.012 0.732±0.004 0.830±0.000

Jaffe 0.768±0.062 0.889±0.045 0.331±0.008 0.882±0.023 0.859±0.038 0.967±0.000 0.967±0.007 0.981±0.005 1.000±0.000

AR 0.305±0.012 0.368±0.010 0.350±0.006 0.642±0.014 0.330±0.014 0.530±0.014 0.656±0.010 0.685±0.003 0.805±0.000

BA 0.435±0.014 0.463±0.015 0.303±0.004 0.606±0.009 0.479±0.017 0.623±0.011 0.563±0.018 0.438±0.006 0.646±0.000

COIL 0.590±0.053 0.699±0.022 0.391±0.044 0.635±0.013 0.650±0.039 0.683±0.004 0.806±0.010 0.690±0.013 0.913±0.000

TR11 0.655±0.044 0.729±0.096 0.547±0.000 0.783±0.011 0.776±0.030 0.835±0.048 0.819±0.001 0.768±0.009 0.787±0.000

TR41 0.728±0.042 0.776±0.065 0.621±0.001 0.758±0.034 0.759±0.031 0.761±0.003 0.799±0.003 0.757±0.008 0.833±0.000

TR45 0.691±0.058 0.752±0.074 0.575±0.011 0.728±0.048 0.800±0.026 0.816±0.004 0.822±0.031 0.806±0.001 0.883±0.000

i.e., the connected subgraphs of the learned graph A is equal

to c, so we need to continuously self-tune parameter λ until

the desired graph is obtained. The results presented in Fig. 4

suggest that the objective value is monotonically decreased,

and the clustering performance is gradually improving. No-

tably, although the algorithm seems to converge after only 5

iterations for the ORL dataset, the additional iterations are also

need to meet the convergence criterion, i.e., rank(LA) = n−c.
Usually, LCSG converges in less than 20 iterations for all

evaluated datasets.

F. Running Time

We compare the running time (in seconds) of all competitors

on the Yale, ORL, TR11, and TR45 datasets. All codes are

implemented in MATLAB 2016b and run on a Mac PC with

a 3.2 GHz Intel Core i7 processor, 16-GB RAM, and macOS

Mojave operating system. The mean and standard deviations

of 20 trials are reported in Table V, the proposed LCSG has a

competitive superiority on running time. Although the running

time of MKKM and MVCLFA is lower than that of our LCSG,

their clustering performance is worse than that of ours.

VI. CONCLUSION

In this paper, we have proposed a pure graph-based MKC

method to address the changeling non-linear clustering issues

for cognitive computing of intelligent IIoT. Specifically, a new

graph model, termed as LMKG, that can preserve the local

manifold structure of data in kernel space is introduced to learn
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Fig. 2: ACC and NMI of our LCSG w.r.t. β and γ on the Yale (the
fist row) and ORL (the second row) datasets. α is fixed to 1. (Zoom
in for best view).
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Fig. 3: ACC and NMI of our LCSG w.r.t. α on the Yale and ORL
datasets.

multiple LMKGs from multiple candidate kernels. By consid-

ering both the consistency and selfishness of these LMKGs,

the quality of affinity graph achieves significant improvement.

Further, the graph connectivity constraint avoids requiring

any post-processing step such that the clustering results can

be immediately obtained. Comprehensive experimental results

clearly demonstrates the superiority of our method. Therefore,

our LCSG method can be used to effectively handle the non-

TABLE V: Computational time (in seconds) comparison.

Method Yale ORL TR11 TR45

MKKM [23] 0.015±0.001 0.128±0.003 0.059 ±0.002 0.162±0.005

RMKKM [18] 0.870±0.011 3.622±0.085 4.144±0.117 6.908±0.121

AASC [22] 0.221±0.005 0.910±0.007 0.977±0.014 1.686±0.019

SCMK [24] 5.492±0.144 42.040±1.782 51.454±3.102 218.715±5.384

LKGr [20] 1.422±0.015 7.425±0.227 13.718±0.340 80.558±3.211

SMKL [16] 1.439±0.022 12.836±0.565 9.863±0.144 154.683±5.101

JMKSC [21] 1.219±0.015 2.462±0.108 3.974±0.125 8.765±0.183

MVCLFA [25] 0.251±0.004 0.893±0.011 1.116±0.420 2.243±0.047

Our LCSG 0.620±0.023 1.882±0.054 2.121±0.113 5.921±0.121
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Fig. 4: Convergence curve of our LCSG on the Yale and ORL
datasets.

linear data from intelligent IIoT and other industrial sensor

networks.

In our future work, it is potentially interesting to extend

the proposed method to handle large-scale non-linear data for

cognitive computing.
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