Document downloaded from:

http://hdl.handle.net/10251/188824

This paper must be cited as:

Benner, P.; Dufrechou, E.; Ezzatti, P.; Gallardo, R.; Quintana-Orti, ES. (2021). Factorized
solution of generalized stable Sylvester equations using many-core GPU accelerators. The
Journal of Supercomputing (Online). 77(9):10152-19164. https://doi.org/10.1007/s11227-

021-03658-y

The final publication is available at
https://doi.org/10.1007/s11227-021-03658-y

Copyright - gpringer-Verlag

Additional Information

Journal of Supercomputing manuscript No.
(will be inserted by the editor)

Factorized Solution of Generalized Stable Sylvester
Equations Using Many-Core GPU Accelerators

Peter Benner - Ernesto Dufrechou -
Pablo Ezzatti - Rodrigo Gallardo -
Enrique S. Quintana-Orti

the date of receipt and acceptance should be inserted later

Abstract We investigate the factorized solution of generalized stable Sylvester
equations as those usually arising in model reduction, image restoration, and
observer design. The algorithms proposed here, based on the Newton iteration
for the matrix sign function, are highly parallel and thus provide a valuable
tool to solve large-scale problems on a variety of platforms. In this work, we
evaluate parallel implementations of these algorithms on graphics processors
showing how they can take advantage of this sort of data-parallel hardware.

Keywords Matrix sign function, Newton iteration, GPUs

1 Introduction

In this paper, we consider the (continuous-time) generalized Sylvester equation
in factored form
AXD+EXB+ FG = 0, (1)

where A, E € R"™", B,D e R™™, F e R"*?, G € R?*™, and X € R"*"™
is the sought-after solution. Equation has a unique solution if and only
ifa+ B8 #0foral ae A(AE) and 8 € A(B, D), where A(U,V) denotes
the generalized eigenspectrum of the matrix pencil U — AV. In particular, this
property holds for generalized stable Sylvester equations, where both A (4, E)
and A (B, D) lie in the open left half plane. Sylvester equations have numer-
ous applications in control theory, signal processing, filtering, model reduction,

Peter Benner
E-mail: benner@mpi-magdeburg.mpg.de
Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.

Ernesto Dufrechou, Pablo Ezzatti and Rodrigo Gallardo
E-mail: {edufrechou,pezzatti,rgallardo}@fing.edu.uy
Facultad de Ingenieria, Universidad de la Repiblica, Uruguay.

Enrique S. Quintana-Orti
E-mail: quintana@disca.upv.es
DISCA, Universitat Politécnica de Valéncia, Spain.

2 Peter Benner et al.

image restoration, etc., see, e.g., [I] and the references therein. In particular,
in model reduction using cross-Gramians [2LBl[4[5], image restoration [6], and
observer design [7], p < n,m and the solution X often exhibits a low (numer-
ical) rank [8]. In such cases, it is beneficial to compute the factorized solution
of the equation, both from the perspective numerical accuracy and computa-
tional cost. Thus, we aim at computing a pair of matrices Y and Z7', both with
a small number of columns, such that X = Y Z. Algorithms for the standard
case (F = I,, D = I,;;) were first suggested in [9/[].

As the factorized solution of still involves a considerable computa-
tional effort, we develop efficient realizations enhanced with high performance
computing techniques. Here, we focus on dense linear algebra, i.e., we do not
assume A, B, D, FE in to be sparse. In order to exploit modern computa-
tional hardware, we focus on th ematrix sign function as underlying solver
technology as it is matrix-multiplication rich and can be implemented using
mostly BLAS3-dominant operations. Specifically, the rise of graphics process-
ing units (GPUs) as powerful and ubiquitous parallel co-processors motivates
our efforts to accelerate the key matrix computations in the solver.

Previous work on parallel algorithms for solving linear matrix equations
includes implementations of algorithm using the (Hessenberg-)Schur decom-
position of the coefficient matrices. As this is usually done using (Sca) LAPACK
routines, the papers [?,7,?] concentrate on the solution of (quasi-)triangular
Sylvester equations. While [?] focuses on task-parallelism, but not not GPU
accelerators, and does not consider the generalized variant of the Sylvester
equation considered here, [?,?] study the symmetric case of Lyapunov equa-
tions. The solution algorithm there is not related to the iterative low-rank
solver approach considered here, and the parallel performance of theses solvers
is limited by that of the QZ algorithm for the initial stage of the solution pro-
cedure. In contrast to this, we avoid the QZ algorithm completely and suggest
a matrix multiplication rich method that leverages the low-rank structure of
the right-hand side for memory and computational savings. Our previous work
on parallel and GPU-accelerated Lyapunov and Sylvester solvers summarized
in [?] did not consider the generalized and factorized Sylvester case ([I]). More-
over, we improve our GPU-enabled routine of the factorized solver and include
two more variants, a hybrid CPU-GPU version and a dual-GPU version.

The rest of the paper is structured as follows. In Section [2] we briefly review
the classical sign function solver for the generalized Sylvester equation. In that
section, we also derive the factored iteration, and propose an initial transfor-
mation of the equation that considerably reduces the cost per iteration. Then,
in Section 3] we provide some details on how the Sylvester equation solvers are
parallelized using many-core strategies. Numerical experiments reporting the
accuracy and the high performance of the new methods on a hardware plat-
form based on GPUs are presented in Section [4] The final section summarizes
the findings n this paper and gives some concluding remarks.

Factorized Solution of Generalized Stable Sylvester Equations on GPUs 3

2 Iterative Schemes for Generalized Stable Sylvester Equations

Traditional solvers for generalized Sylvester equations consist of generaliza-
tions of the Bartels-Stewart (BS) method [10] and the Hessenberg-Schur method
[I1L12]. A different approach is to rely on iterative schemes for the computa-
tion of the matrix sign function. We adapt the basic Newton iteration used
in this context [I3] to solve the generalized equations in and providing
the solution in factored form. Similar algorithms have been proposed for the
standard Sylvester equation in [I] and for the Lyapunov equation in [T4L15].
We also propose an initial transformation of the equation that further reduces
the cost of both the classical and the factored iterations.

2.1 Theoretical background

Consider a matrix M € R with no eigenvalues on the imaginary axis, and

let M =S [JO_ JO+] S~ be its Jordan decomposition. Here, the Jordan blocks

in J- € R and J* € RECYXUY contain, respectively, the stable and un-
stable parts of A (M, I;). (Here, I; denotes the square identity matrix of order

1.) The matriz sign function of M is defined as sign (M) := S [705 IlO—t:| S—L

By applying Newton’s root-finding iteration to M? = I in order to compute
sign (M), with the starting point chosen as M, we obtain the Newton iteration
for the matrix sign function:

1
My :=M, M, := §(Mk+Mk_1), k=0,1,2,.... (2)
Under the given assumptions, the sequence {M},}72 , converges to sign (M) =
limg 0o My, [13], with an ultimately quadratic convergence rate. As the ini-
tial convergence may be slow, the use of acceleration techniques such as those
in [I6L[17] is recommended. If X is a solution of , the similarity transfor-

mation defined by [16‘ I)i } can be used to block-diagonalize the block upper

triangular matrix

i - { 3)

(=R N

cl _ [E'AE'CD™!
-B| 0 —-BD!

as follows:

0 I, 0 —BD! 0 I,

I, - X|[E'AE-'CD Y| [, X] _[A4 O
0 Ipn 0 —-BD™! 0I,| |0-B|"

I, X1 '[E-'AE'cD'|[I, X
CPAN R 13

Using sign (f[), the relation given in , and the property of the sign function
sign (T 1 T) = T~ 1sign (ﬁ) T, we derive the following expression for the

4 Peter Benner et al.

solution of the generalized Sylvester equation :
. ~ -1, 2X
sign (H) = { 0" I] . (5)

This relation forms the basis of the numerical algorithm derived next since it
states that we can solve by computing the matrix sign function of H in .
It is more convenient to use the equivalence of H — \I,, 1, to

H—-\K := [éFg]—)\[gg], (6)

given by

~ E 0 I, 0
H = \K = L(H = My)M, where L = {0 Im]’M: [0 D]'

From (j5) we know that we can compute the solution of the generalized Sylvester
equation by applying to H. In doing so, we obtain in the first step

H=YH+H"Y)=YL'"HM~' + MH'L)
=L ' (3(H+LMH'LM))M~' =L (3(H+ KH'K)) M~
Repeating this calculation and denoting Hy := H = LHM, we arrive at

1 1
Hyy = o (Hy +LMH,'LM) = 5 (Hi +KH'K), k=1,2,..., (7)

so that Hy = LH, M. Finally, taking limits on both sides, yields

) . ~ —E2EXD
H, = klggon = Lsign (H) M = [0 D }) (8)

and X = %EilngD*I, Hi5 denotes the upper right n x m-block of Hy,.

2.2 Solution of the generalized Sylvester equation

In [I] it is observed that exploiting the block-triangular structure of the matrix
pencil H — AK, we obtain the following classical generalized Newton iteration
for the solution of the generalized Sylvester equation :

Ag = A, App1 = 3 (Av+ BA'E),
By := B, Biy1 == 3 (Byx+DB;'D), k=0,1,2,.... (9)
Co = FQG, Ck-',—l = %(C’kthA,:leBk_lD),

At convergence, the solution of is computed by solving the linear equation

1 .
EXD = 5 kILI&Ck.

Factorized Solution of Generalized Stable Sylvester Equations on GPUs 5

Also, from we have limg_,oo Ay = —F and limy_,., B, = —D, which
suggests the stopping criterion

{ [Ax + Elly [[Bx + Dl }
X) =T,
11 1D

(10)

where 7 is a tolerance threshold. One might choose 7 = e for the machine
precision ¢ and, for instance, ¥ = n or v = 10y/n. However, as the terminal
accuracy sometimes cannot be reached, in order to avoid stagnation it is better
to choose 7 = /e and to perform 1 to 3 additional iterations once this crite-
rion is satisfied. Due to quadratic convergence of the method, this is usually
sufficient to reach the attainable accuracy, as already suggested and explained
in the context of sign function based matrix equation solvers in [T4].

Due to the quadratic convergence of the Newton iteration , this is usually
enough to achieve the attainable accuracy.

2.3 Factored solution of the generalized Sylvester equation

In order to obtain a factorized solution of , we rewrite the iteration for Cj
as two separate iterations:

FO Z:F, Fk+1 ::L[Flm EAllek]7

V2
} e k=0,1,2,...,
GO = Ga Gk+1 = ﬁ GkBk—lD)

so that Cx4+1 = Fr1+1Gr+1. Although this iteration is cheaper during the initial
steps if p < n,m, this advantage is lost as the iteration advances since the
number of columns in Fy1; and the number of rows in Gjy1 is doubled in
each iteration step. This can be avoided by applying a similar technique as that
employed in [I4] for the factorized solution of generalized Lyapunov equations.
Let F, € R™*P* and G} € RP**™. We first compute a rank-revealing QR
(RRQR) factorization [I8] of Gj41 as defined above; that is, we calculate

1 G.] _ (R
o] -vne n=[]

where U is orthogonal, Il is a permutation matrix, and R is upper triangular
with By € R™™ of full row-rank. Then, we compute a RRQR factorization
of Fi+1U:

= [Fy, EA'F U =VTIp, T= {Tl}

\/i I k ’ 0 I
where V' is orthogonal, ITr is a permutation matrix, and T is upper triangular
with 77 € R™?P% of full row-rank. Partitioning V = [Vi, Vo], with V; € R™™,
and computing

[T11, Th2] :=Th 1R, Ty € RV,

6 Peter Benner et al.

we then get as the new iterates
Frq1 :=ViThy, Gr1 = Rillg,

which satisfy Cxi1 = F11Gpry1. Setting

Y = %E*lklggon, Z .= %klggo GyD71,

we obtain the solution in factored form X = Y Z. If X has low numeri-
cal rank, the factors Y and Z will have a low number of columns and rows,
respectively, and the storage space and computation time needed for the fac-
tored iteration will be lower than that of the classical iteration. In such case,
r,t < m,n, and the cost of the current iteration for the factorized solution is
(03 + m3) + O(2(n + m)?) flops, where the cubic part comes from solving
the linear systems and computing the matrix products EA,;IE and DB, ID;
see [II, Section 4] for details of the complexity analysis.

2.4 Numerical performance

We next analyze the accuracy of the new Sylvester solvers borrowing exam-
ples from [19,20]. We use IEEE double-precision floating-point arithmetic with
machine precision € ~ 2.2204 x 1076, For the numerical evaluation, we im-
plemented two MATLAB functions:

— ggesne: The classical generalized Newton iteration for the generalized
Sylvester equation in factored form as given in @

— ggesnc: The factored variant of the generalized Newton iteration for the
generalized Sylvester equation in factored form.

We compare these functions with the BS method as implemented in function
lyap from the MATLAB Control Toolbox. As the BS solver in MATLAB
cannot deal with the generalized Sylvester equation, we apply it to the trans-
formed standard Sylvester equation (E~*A)X + X (BD~1)+ E~'FGD~1 = 0.

Example 1. A basic test case aimed to compute the cross-Gramian matrix
We, of a generalized linear time-invariant system of the form

Mi(t) = —Kz(t) + Bu(t), y(t) = Cx(t). (11)
This matrix is given by the solution of the generalized Sylvester equation
KWeoM + MW,.,K + BC =0, (12)

and W, = WCOM . The cross-Gramian contains information of certain proper-
ties of the linear system [4] and can also be used for model reduction [2]. We
employ the solvers to compute W,, for a system described in [19, Example 4.2]
which comes from a model for heat control in a thin rod. The physical process
is modeled by a linear-quadratic optimal control problem for the instationary
1D heat equation. Semi-discretization in space using finite elements leads to a

Factorized Solution of Generalized Stable Sylvester Equations on GPUs 7

Example 1; m=n, p=1 Example 2; m=n, p=1

—lyap
- - -ggcsne
1 ggesnc

XXX

Relative residual

3 , . . . , . . .
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Problem size n Problem size n

Fig. 1 Numerical performance of the generalized Sylvester equation solvers applied to Ex-
amples 1 (left) and 2 (right).

system of the form , where M and K are the mass matrix and stiffness ma-
trix, respectively, of the finite element approximation. Mesh refinement leads
to systems of different orders n. The other parameters in this example are set
toa=0.01,b=2,¢c=1,5=0,5=01,7 =09, =1

The left-hand side plot in Fig. [1] shows the results for various problem
dimensions. As a measure of the quality of the solutions, we report the relative
residuals))

|IKWE M+ MWK+ BC||r
21K\ p Wl ellM|le + 1BleICllr

where WC*O denotes the computed solution. For thsi example, the two factored
solvers outperform the BS method by a margin that grows with the problem

dimension n.
Example 2 [20, Example 13]. In this case we choose for real a,b,d, e > 1

A = diag (l,a,aQ,,..,an_l), B = diag (1,b_1,b_2,...,b_(n_1)>
D = diag (—1, a7l a2, —d—<"—1>) ., B =diag(—1,—e,—€2,...,—e"1),
H=w", v:[1,2,...,n]T C=—-HD - HB,

where the parameters a, b, d, and e regulate the eigenvalue distribution of
the corresponding matrices. We then employ an equivalence transformation
defined as T = H5SHy, where
Hy =1, - 2mhT, o o=[1,1,...,1",
H2 :In* %thzT’ h2 = [13717"'7(71)”‘71]717
S =diag (1,s,...,s"71), s > 1,

to transform the matrices of the equation into

A=T"TATT, B=TBT-', D=TDT-', E=T-TETT, C=T-TCT'.

8 Peter Benner et al.

The factorized right-hand side matrix is then given by F = —T~Tv and G =
v (D+ B)T~. In this example we set the parameters as a = 1.001, b = 1.004,
d =1.002, e = 1.003, and s = 1.01.

The right-hand side plot in Figure |1} compares the relative errors in the
IX—X"||r
] X1 r -
all three algorithms are remarkably similar and as small as could be expected

from numerically backward stable methods.

computed solution X*, , for the different methods. The errors for

3 Many-Core Versions

In this section we describe our GPU-accelerated realisations. Our routines off-
load the most expensive computational stages of the method to the accelerator,
leaving less-demanding and/or hardly parallelizable operations to the CPU.

Single-GPU variant, Very,,. As we stated previously, the method proposed
for the generalized stable Sylvester equation is based on two simultaneous
matrix iterations. From the computational cost perspective, these iterations
involve two major operations: the matrix inversion (computed as a matrix
factorization and the solution of two triangular linear systems) and a matrix
update, which can be performed via a matrix multiplication (GEMM). These
two operations (which are performed on both iteration matrices) represent ap-
proximately an 85% of the total cost of the method. Therefore, an important
acceleration can be expected from off-loading these operations to the GPU.
In our implementation, basic linear algebra kernels such as matrix products,
transpositions and norms, are performed using the cuBLAS GPU-accelerated
library, while more complex operations, such as LU factorizations and trian-
gular system solves rely on the cuSolverlibrary. It should be noted that both
operations occur in every iteration of the procedure. Regarding the data trans-
fers, the equation matrices A, B, D and FE are sent to the device once, prior to
the beginning of the procedure. Contrarily, the factors of the solution matrix
are retrieved back to the CPU at each iteration, since the compression stage
that uses the RRQR factorization to reduce the number of columns/rows of
the factors is performed in the CPU. Without compression, the sign function
iteration duplicates the number of columns/rows of the left /right factors of the
solution at each iteration. The compression procedure leverages the low-rank
property of the factors to keep the size of the factors bounded.

Hybrid variant, Veryy,. As our method for the Sylverster equation combines
operations performed in the CPU with others performed in the GPU, it is in-
teresting to analyze how the computation on both devices can be overlapped
to maximize the utilization of the hardware. To allow this, it is necessary to
re-define the compute workflow. Concretely, we overlap the compression stage
(computed in the CPU) with the matrix factorizations and triangular solves
(computed in the GPU) corresponding to the next iteration, a strategy com-
monly referred as look-ahead [21]. This is convenient because the result of the

Factorized Solution of Generalized Stable Sylvester Equations on GPUs 9

linear systems in a given iteration are used to update the iteration matrices,
which are then compressed. This variant can achieve important accelerations
when the compression runtime is comparable to the cost of the matrix factor-
izations and linear system solution.

Dual GPU variant, Veryp,,s The Newton iteration involves two independent
recurrences (for {A}, and {B},) with a third one (for {C};) that depends on
the other two. However, in the factored variant of the method, the {C}, recur-
rence is replaced by two independent ones (for {F'}; and {G}r). In turn, {F'};
depends on {A}, while {G}; depends on By. This allows to completely sepa-
rate the ({A}y,{F}x)-iteration from the ({B}y,{G})-one, handling each in a
separate device. This approach offers two distinct benefits. On the one hand,
duplicating the computational power to solve the main stages of the algorithm
can strongly reduce the required runtime (up to 2x in the ideal case). On
the other hand, the duplication of the memory allows addressing problems of
larger scale. Although, the two recurrences are independent, the compression
of the factors requires a synchronization. Specifically, the synchronization oc-
curs before the RRQR factorization of Fj1U, given that U is the orthogonal
matrix resulting from the RRQR factorization of Gi41. The communication
of data between the CPU memory and the devices also occurs at this point,
where Fj 1 = [Fy, FEAT'F}] and Gjy1 = [Gr; Gy B~1D] are transferred to
the CPU memory to be compressed. It is important to note that, if the com-
pression procedure keeps the number of columns of Fj and rows of G small,
the cost of these transfers and the compression itself is small compared to the
operations that involve the square matrices Ay and By (of dimension n and
m respectively). See the outline of the Verygp,svariant in Figure

4 Experimental Evaluation

In this section we analyze the parallel performance of the generalized Sylvester
equation solvers based on the sign function. We used two platforms for the
experiments. The executions involving one or two GPUs were performed on
a server equipped with a Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz, 64GB
of RAM, and two GeForce GTX 980 Ti GPUs with 6GB of GDDR5 memory.
The multicore CPU experiments were performed in a 40-core Intel Xeon Gold
6138 CPU @ 2.00GHz, with 128 GB de RAM.

IEEE double-precision floating-point arithmetic was used for all the execu-
tions, and the multicore runs were performed with Matlab R2018b on a Linux
system. The GPU executions were performed using CUDA 10.2.

Example 3. For the parallel evaluation we construct matrices A € R™*",
B e R™™ F e RV and G € RP*™ with random entries uniformly
distributed in U[-1,1]. Matrix A is then “stabilized” as A := A — ||A|rI,.
Finally, we compute the QR factorization A = QR and set A := R and
E := Q7. Matrices B and D are analogously obtained from a QR factoriza-
tion of B — || B|| ¢,

10

Peter Benner et al.

[Operation [Kernel [Device]
X = EA,;1 GETRF+GETRS GPU1
€=B.'D GETRF+GETRS GPU2
do

_ 1 /
Apy1 = 5(Ar +xE) | GEMM GPU1
Fiy1 = [Fr, xFi] MEMCPY

—_ I)
By = Q(Bg + DE) | GEMM GPU2
Gry1=3 [G:&] MEMCPY
start transfer of Fj1; and Gy41 to the CPU
X = EA,;_'{I GETRF+GETRS GPU1
§{=B,D GETRF+GETRS GPU2
Gry1 =U {%1] Il GEQP3+GESVD
Fp U=V [Tol] Il | ORGQR+GEQP34GESVD CPU
[T, The] :=Th1IF LAPMT
Frpq :=V1Tn GEMMM
Gry1:=Rillg LAPMT

until convergence

Fig. 2 Algorithmic formulation of the factorized Newton iteration for the sign function.
The steps have been re-organized so that the two sequences that compose the method can
be isolated and executed in different devices.

[Problem [Dim. [ggesnc [ggcsnegpy [ggCSNCypuy [ggcsncryp [ggCSNCagpus]
256 130.6 104.9 99.7 91.0 72.9
512 666.2 445.5 340.0 322.0 219.1
Example 1 1024 4790.0 2454.2 1624.9 1582.2 901.4
2048 41265.6 18156.2 10029.6 9927.6 5896.6
4096 | 312538.6 141689.4 73067.4 72852.3 42338.9
256 74.6 35.2 30.2 30.3 20.15
512 653.6 146.8 106.0 105.5 72.78
Example 2 1024 5028.3 951.5 608.2 605.3 386.06
2048 47479.6 9644.4 5291.0 5238.0 3210.52
256 68.2 62.7 56.1 40.2
512 737.3 295.1 206.7 204.4 135.9
Example 3 1024 4934.8 1581.1 986.9 982.0 574.9
2048 39301.3 11316.9 6087.3 6091.8 3599.8
4096 | 299589.3 87656.7 44863.2 44684.1 25830.4

Table 1 Execution time (in milliseconds) for the baseline and proposed variants, on the
three example problems and different problem sizes.

For the experimental evaluation we include two extra versions to serve as
the baseline. First, a CPU-based variant (ggcsnc) of the iterative solver to
compute the factorized solution of the Generalized Sylvester equation imple-
mented in Matlab[ﬂ Second, a GPU version of the Generalized Sylvester that
works with the full (non-factored) solution (ggcsneg,,). Table (1| summarizes
the runtime required by the baseline variants as well as the three GPU versions

1 The most expensive operation of this method are matrix operations, which Matlab off-
loads to external libraries (such as BLAS or LAPACK). Matlab adds a small amount of
overhead which makes this baseline slightly unfair from the runtime perspective.

Factorized Solution of Generalized Stable Sylvester Equations on GPUs 11

ggCSnChyb ggCSnC2gpu5
Problem Inv. & Upd. | % | Comp. | % || Theo. | Achi. | Theo. | Achi.
Example 1 96395 | 961 | 115.0 | 1.2 || 115.0 | 1020 | 4133.0
Example 2 5012.7 | 947 | 789 | 15 || 789 | 530 | 2080.5
Example 3 5998.8 | 969 | 83 | 02 || 83| -45 | 24875

Table 2 Runtime and percentage of the total runtime of the main stages of the solver
(left), and comparison between the theoretical and achieved acceleration (right) for the test
cases of dimension 2048. Runtime values are in milliseconds.

proposed in this work: ggcsncgy,,, ggesncy,y, and ggesncagpys. These imple-
mentations are employed to solve three distinct test cases of scalable size.
In our evaluation, we select the cases corresponding to the following matrix
dimensions: n = m = 256,512, 1024, 2048 and 4096.

The results show that our proposal clearly outperforms both baseline vari-
ants. Moreover, the runtime reduction grows with the dimension of the ma-
trices, reaching 3.5x for the largest test cases. For the smallest test cases,
n = m = 256 and 512, the runtimes for the single-GPU versions are similar,
presenting differences of up to 30%. For these contexts, the use of two GPUs
does not contribute to accelerate the solution. This situation can be attributed
to the synchronizations required at each iteration of the solver. Additionally,
the hardware platform employed for the experiments employs the pciE inter-
face to communicate data between the GPUs and the CPU. In this sense,
equipment with more advanced interconnection technology, such as NVIDIA’s
NVLink, could render notable benefits. In the medium and large test cases, our
new realisations attain higher performance than their baseline counterparts. In
more detail, for the cases with matrix dimensions n = m = 1024, the new al-
gorithms are approximately 30% faster than their non-factored counterparts.
Additionally, the use of two GPUs is slightly better in some test cases and
slightly worse in others, and the ggcsncy,, variant is negligibly faster than
the ggcsncg,, ones. In the large test cases, with matrix dimensions 2048 and
4096, the important volume of computations involved allows to exploit more
efficiently the underlying hardware platform. Especially, for these test cases
the ggcsncagpys variant delivers remarkable runtime reductions.

In order to perform a more complete analysis, we study the maximum the-
oretical benefit achievable by our proposal. In this line, Table 2| (left) offers
the runtime and percentage of total runtime required by some of the the most
important operations, for the test cases with matrices dimension 2048. Specif-
ically, we include two main stages, the inversion and update of the iteration
matrices, and the compression of the solution matrix. As we stated previously,
the matrix inversion and update are performed on two matrices independently,
and represent the most computationally-demanding parts. The ggcsncagpus
variant leverages task-parallelism to off-load each inversion-update sequence
to a different GPU, which makes the major achievable runtime reduction equiv-
alent to half the total runtime of these stages. In comparison, in the ggcsncpy
version the previous stages are concurrently computed with the matrix com-
pression, which implies that the best improvement for this case is equal to

12 Peter Benner et al.

the runtime taken by the compression (as this operation typically requires
significantly less runtime than the other overlapped operations). In Table
(right) we summarize the theoretical and actual runtime reductions. For the
ggcsncpyy solver, the runtime reductions are strongly correlated with the the-
oretical values as the achieved reductions are equal to the theoretical minus
plus a small overhead. It should be remarked that the computational cost of
the compression stage depends of the number of rows and columns of the ma-
trices involved. In the three examples of Table[2] these numbers are 36, 53 and
7 respectively, which means this variant only offers benefits when n and m are
large. Regarding the ggcsncygpys variant, the results show that the observed
runtime reductions are close to the theoretical values. Specifically, these re-
ductions reach 70 and 80% of the maximum for the examples of Table |2, and
the benefits increase with the runtime.

5 Conclusions

We have discussed a matrix sign function-based scheme to directly obtain the
factorized solution of the generalized stable Sylvester equation. The factored
iteration allows significant savings in computation time and memory require-
ments in case the solution has low numerical rank. The novel algorithm can be
efficiently parallelized. In this work, we have designed and evaluated implemen-
tations that efficiently leverage both data- and task-parallelism on platforms
equipped with multicore processors and one or two GPUs. The experimental
results confirm the efficacy of the sign function-based solvers and report a
considerable advantage that can be realised on massively parallel hardware.
In future work, we intend to generalize our approach to harness distributed
platforms equipped with several GPUs, in order to handle large-scale problems.

Acknowledgments.We acknowledge support of the ANIT — MPG Indepen-
dent Research Group: “Efficient Hetergenous Computing” at UdelaR, a part-
ner group of the Max Planck Institute in Magdeburg.

References

1. P. Benner, E. S. Quintana-Orti, and G. Quintana-Orti, “Solving stable Sylvester equa-
tions via rational iterative schemes,” J. Sci. Comp., vol. 28, no. 1, pp. 51-83, 2005.

2. R. Aldhaheri, “Model order reduction via ral schur-form decomposition,” Internat. J.
Control, vol. 53, no. 3, pp. 709-716, 1991.

3. P. Benner and C. Himpe, “Cross-Gramian-based dominant subspaces,” Adv. Comput.
Math., vol. 45, no. 5, pp. 25633—-2553, 2019.

4. K. Fernando and H. Nicholson, “On a fundamental property of the cross-Gramian ma-
trix,” IEEE Trans. Circuits and Systems, vol. CAS-31, no. 5, pp. 504-505, 1984.

5. C. Himpe and M. Ohlberger, “Cross-Gramian based combined state and parameter
reduction for large-scale control systems,” Mathematical Problems in Engineering, vol.
2014, p. 843869, 2014.

6. D. Calvetti and L. Reichel, “Application of ADI iterative methods to the restoration of
noisy images,” SIAM J. Matrixz Anal. Appl., vol. 17, pp. 165—186, 1996.

Factorized Solution of Generalized Stable Sylvester Equations on GPUs 13

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

B. Datta, Numerical Methods for Linear Control Systems Design and Analysis. Else-
vier Press, 2003.

L. Grasedyck, “Existence of a low rank or H-matrix approximant to the solution of a
Sylvester equation,” Numer. Lin. Alg. Appl., vol. 11, pp. 371-389, 2004.

P. Benner, “Factorized solution of Sylvester equations with applications in control,” in
Proc. Intl. Symp. Math. Theory Networks and Syst. MTNS 2004, 2004.

R. Bartels and G. Stewart, “Solution of the matrix equation AX + X B = C: Algorithm
432,” Comm. ACM, vol. 15, pp. 820-826, 1972.

W. Enright, “Improving the efficiency of matrix operations in the numerical solution
of stiff ordinary differential equations,” ACM Trans. Math. Softw., vol. 4, pp. 127-136,
1978.

G. H. Golub, S. Nash, and C. F. Van Loan, “A Hessenberg—Schur method for the
problem AX + XB = C,” IEEE Trans. Automat. Control, vol. AC-24, pp. 909-913,
1979.

J. Roberts, “Linear model reduction and solution of the algebraic Riccati equation by
use of the sign function,” Internat. J. Control, vol. 32, pp. 677687, 1980, (Reprint
of Technical Report No. TR-13, CUED/B-Control, Cambridge University, Engineering
Department, 1971).

P. Benner and E. Quintana-Orti, “Solving stable generalized Lyapunov equations with
the matrix sign function,” Numer. Algorithms, vol. 20, no. 1, pp. 75-100, 1999.

P. Benner, J. Claver, and E. Quintana-Orti, “Parallel distributed solvers for large stable
generalized Lyapunov equations,” Parallel Proc. Letters, vol. 9, no. 1, pp. 147-158, 1999.
R. Byers, “Solving the algebraic Riccati equation with the matrix sign function,” Linear
Algebra Appl., vol. 85, pp. 267-279, 1987.

N. Higham, “Computing the polar decomposition—with applications,” SIAM J. Sci.
Statist. Comput., vol. 7, pp. 1160-1174, 1986.

T. Chan, “Rank revealing QR factorizations,” Linear Algebra Appl., vol. 88/89, pp.
67-82, 1987.

J. Abels and P. Benner, “CAREX — a collection of benchmark examples for continuous-
time algebraic Riccati equations (version 2.0),” SLICOT Working Note 1999-14, Nov.
1999, available from http://www.slicot.org.

M. Slowik, P. Benner, and V. Sima, “Evaluation of the linear matrix equation solvers
in SLICOT,” J. Numer. Anal. Ind. Appl. Math., vol. 2, no. 1-2, pp. 11-34, 2007.

J. I. Aliaga, R. M. Badia, M. Barreda, M. Bollhéfer, E. Dufrechou, P. Ezzatti, and E. S.
Quintana-Orti, “Exploiting task and data parallelism in ilupack’s preconditioned cg
solver on numa architectures and many-core accelerators,” Parallel Computing, vol. 54,
pp. 97-107, 2016.

