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Abstract

The development of condition monitoring (CM) systems of induction machines (sIMs)
is essential for the industry because the early fault detection helps engineers to optimise
maintenance plans. However, the use of several IMs to test and validate the fault diagnosis
methods developed requires also the use of costly test benches that, anyway, often face
limitations in the range of faults and operating conditions to be tested. To avoid it, the
use of accurate models such as those based on finite element method (FEM) would reduce
the major drawbacks of test benches but their inability to execute FEM models in real
time largely reduces their application in the development of on-line continuous monitoring
systems. To alleviate this problem a hybrid FEM-analytical model has been proposed. It
uses an analytical model that can be run in real-time in a hardware in the loop (HIL)
system, after its parameters have been computed through FEM simulations. In this way,
the proposed model provides high accuracy but at the cost of long simulation times and
high computational costs (both computing power and memory resources) to compute the
IM parameters. This work aims at reducing these drawbacks. In particular, a model based
on sparse identification techniques is proposed. The method balances model complexity
and accuracy by selecting a sparse model that reduces the number of FEM simulations to
accurately compute the coupling parameters of an induction machine model with different
fault severity degrees. Particularly, the proposed methodology has been applied to develop
models with abnormal eccentricity levels as this fault is related to development of mechanical
faults that produce most of IM breakdowns.
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1. Introduction1

The CM of IMs has been a subject of eager interest over the last years due to the costly2

downtimes that an unexpected breakdown can cause [1]. The main sources of failures,3

about the 40-50% in large IMs, are related to mechanical faults leading to eccentricity [2]4

with catastrophic consequences [3]. Therefore, the early detection of the eccentricity fault in5

IMs would be crucial to adjust maintenance plans and ensure the continuity of the industry6

operation.7

During the latest years the detection of the eccentricity fault in IMs has gathered great8

efforts from the scientific community. In fact, it has been proposed the acquisition and9

analysis of a wide variety of physical variables of the IM such as the magnetic stray flux10

[4, 5] or vibrations [6] among others. Nevertheless, their use has several drawbacks. On the11

one hand, their acquisition requires costly sensors, which are also difficult to install on the12

IM working in the industry. On the other hand, it is not possible to detect all types of13

faults through the analysis of these magnitudes [7]. Alternatively, the analysis of the stator14

current has been widely used for the CM of IMs as it is a magnitude conveying relevant15

information about the machine condition. It is well-known that each type of fault induces16

or amplifies a family of harmonic components in the stator current, whose frequencies have17

already been demonstrated theoretically and validated experimentally. Moreover, it has low18

requirements on hardware and software for its acquisition and analysis.19

The eccentricity fault in an IM can appear in three different forms [8] as shown in Figure 1:20

static, dynamic or mixed eccentricity. In the case of static and dynamic eccentricity, the rotor21

symmetry axis is shifted from the stator centre. In the case of static eccentricity, the rotor22

rotates around its symmetry axis whereas in the case of dynamic eccentricity not. This leads23

to different configurations of the air-gap width. In the first case, static eccentricity, there are24

fixed angular position where the air-gap width is minimum and maximum respectively. On25

the contrary, in case of dynamic eccentricity, the position of the minimum and maximum air-26

gap widths vary as the rotor rotates. The main frequencies due to these type of eccentricities27

are derived from the general equation to detect the so called principal slot harmonic (PSH)28

or rotor slot harmonic (RSH) [8, 9]:29

fh =

[
(kR± nd)

1− s
p
± ν
]
f1 (1)

where k is any positive integer, R are the number of rotor slots, nd = 0 for static eccentricity30

or a positive integer for dynamic eccentricity, s is the slip, p is the pole pairs, ν is the order31

of the stator time harmonics and f1 is the mains frequency.32

Finally, the mixed eccentricity (Figure 1 d) is a combination of both static and dynamic33

eccentricities. In this case the low rank fault frequencies that appear are defined by:34

fmecc = f1 ± kfr k = 1, 2, 3 . . . (2)

where fr is the rotor’s mechanical angular speed.35

A detection of these harmonic components is necessary but not sufficient to perform the36

diagnosis. IMs are not ideal and always have inherent levels of asymmetries, eccentricities,37
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Stator centre Rotation axeRotor centre

a) Healthy b) Static eccentricity

c) Dynamic eccentricity d) Mixed eccentricity

Figure 1: Eccentricity types. It can be seen that for static eccentricity the positions for the minimum and
maximum airgap widths are fixed regarding the stator for any rotor orientation while for dynamic and mixed
eccentricity those positions change as the rotor rotates.

etc. For example, in the case of static eccentricity, these inherent levels should be lower38

than 10% [10], but they may lead to wrong diagnoses. Therefore, the study of the amplitude39

evolution of these fault harmonic components regarding the fault severity degree will not40

only allow establishing theoretical thresholds from which detect incipient failures but also41

reducing misdiagnoses. Besides, the type of machine, the working conditions or the load42

condition are additional factors influencing the behaviour of the fault harmonic components43

which should be considered when developing a CM system.44

On-line CM systems and artificial intelligence (AI) based fault diagnosis system would45

have a major impact in the detection of these faults at early stage. The on-line CM system46

continuously monitor the machine status obtaining a trend of the eccentricity fault harmonic47

components to monitor the severity of the upcoming fault. AI based CM systems need to48

trained with a large number of signals to learn to classify the machine status (healthy or49

faulty) and even to determine the severity degree of a given fault. Thus, not only the50

behaviour but also the reliability of the on-line CM system and the AI based fault diagnosis51

systems need to be checked with a large number of tests covering a wide variety of scenarios:52

types of machines, levels of severity of the fault, load conditions, working conditions (steady53

state, transient), etc.54

The ideal is to fulfil these requirements (different IM with different levels of severity of55

the fault, wide variety of working conditions and load conditions) with IM working in the56

industry. However, that would require close and effective collaboration with the industry57

and, besides, there is a very limited number of IMs that could be running in the industry58
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under faulty conditions. Although laboratory test benches are a good alternative choice, the59

tests are limited to the IMs and drives available in the laboratory. Besides, it is very costly60

because it needs several destructive tests and, from a practical point of view, obtaining61

several degrees of a given fault or even simultaneous faults is a very challenging task. That62

is, although the experimental validation is inevitable at the last stage of the fully developed63

CM, during the development stage other less costly alternatives must be considered.64

Accurate models could help at reducing these drawbacks: it is possible to obtain different65

models of several types of IMs, with different levels of severity of a given fault or even with66

simultaneous faults at much lower cost than using laboratory test benches; moreover, these67

models enable simulation of IMs under a wide variety of working conditions. To achieve these68

benefits these models must consider the detailed IM structure to obtain simulation results69

that truly reflect the real-world situations. Besides, these models have to run in real time to70

properly test on-line condition monitoring systems. However, to achieve these requirements71

(accuracy and the possibility of running in real-time) in a unique model is very challenging.72

In the following subsection the main advances in the development of faulty models of IM73

are reviewed.74

1.1. Faulty IMs models75

Several IMs models have been proposed in the technical literature. The well-known d-q76

model [11, 12] is widely used in order to understand and design vector controlled drives. It is77

simple to be implemented in a HIL but it does not consider the geometrical complexities, the78

spatial distribution of the windings (i.e. the space harmonics) [13], the non-linearity of the79

core materials and it cannot include the effects that a fault introduces in a machine and, thus,80

it cannot be used for fault diagnosis purposes. To include these features in the model other81

analytical approaches have been proposed in the technical literature such as the multiple82

coupled circuit model (MMC) [14], the winding function approach (WFA) [15], the Con-83

cordia transformations [16], the use of natural variables [17], the voltage-behind-reactance84

formulation [18], the magnetic equivalent circuit (MEC) [19] or the sparse identification [20].85

Nevertheless, these approaches cannot consider non-ideal conditions and cannot include the86

effect of the rotor and stator slots in the air-gap magnetic force distribution, specially, when87

the eccentricity is being modelled [21], as required in faulty IM models. Particularly, the88

the sparse identification is proposed to improve the efficiency of motor control [20] and uses89

the stator voltages and currents of an induction motor to compute the paramenters of the90

equivalent circuit. However, it assumes some simplifications such as uniform air-gap width91

which is enough for motor control but not suitable for fault diagnosis purposes.92

On the other hand, FEM models and their accuracy are widely accepted as they usually93

take into account the geometrical complexities, the spatial distribution of the windings, the94

non-linearity of the core materials, etc [22]. Unfortunately, time-stepping FEM simulations95

require high computing power and memory resources. Besides, they take long simulation96

times (from minutes to days) for short simulation periods. These constrains are even worse97

with faulty IM models where simplifications to boost the time-stepping FEM simulation,98

such as the symmetry boundary conditions, can no longer be applied. To sum up, FEM99

highly increases the accuracy in machine simulation [22], but at significant computational100
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cost even with modern processing power computers [23]. Consequently, the savings in com-101

putational effort are crucial in fields where a large number of results are required such as102

fault diagnosis, either for on-line CM systems or for AI based fault diagnosis systems, motor103

control optimization, etc.104

Hybrid FEM-analytical models have been recently proposed as they are able to run in105

real time in a HIL simulator and keep good accuracy [24, 25, 26, 27]. They are based on the106

equivalent circuit parameters computation through magneto-static FEM simulations and on107

using these parameters in the analytical model [27]. However, the hybrid FEM-analytical108

model still has several limitations as the evaluation of each new scenario (fault conditions)109

requires the full FEM analysis to compute the new coupling parameters with its long running110

times and computational effort.111

In an attempt to address these drawbacks [28] proposes the sparse subspace learning112

(SSL) in combination with a hierarchical collocation strategy to compute a low-rank pre-113

diction of the parametric solution of the FEM model. In fact, the SSL uses the outputs of114

a deterministic solver to produce parametric solutions in a multi-level interpolation frame-115

work. Thereafter, the deterministic solver uses these predicted solutions as input, as initial116

guess, to obtain the solution in a new sampling point. In that case, the initial guess is so117

close to the solution that the iteration time of the solver is drastically reduced or might118

not even be required to run. From the point of view of the fault diagnosis purposes, this119

approach does not mean any substantial improvement because it does not reduce the large120

number of magneto-static FEM simulations required to obtain the coupling parameters [27]121

for the analytical model. To alleviate this problem the sparse identification was proposed122

in [29] to obtain an faulty induction machine model. However, to perform the parameter123

identification of a new faulty IM model the method requires the input of not only a wide124

range of fully FEM computed coupling parameters of the same machine with different sever-125

ity degrees of the same fault under study. Therefore, it reduces the computational effort126

compared with traditional methods, but it still requires a large number of FEM simulations.127

Besides, it is very limited to be applied to other machines or even to other faults.128

To ease the limitations of traditional SSL implementation, and as a novelty, this paper129

proposes the use of the sparse identification technique aimed at reducing the number of130

magneto-static FEM simulations. This will avoid the need of a FEM simulation for every131

new sampling point, as in [28]. Therefore, this paper proposes the sparse identification132

to compute the coupling parameters of the faulty IM model based on the results of a very133

reduced number of magneto-static FEM simulations.This will not only reduce the compu-134

tational effort but will also guarantee good accuracy of the obtained model. In this paper,135

the proposed method is applied to obtain models with static eccentricity faults as it is a136

fault that may lead to catastrophic failures and because it is very difficult to artificially force137

different degrees of the fault in IM to be used in test benches. These models will provide a138

better understanding of the physical phenomena while tracking the behaviour of the fault139

harmonic components, to establish thresholds, etc. Besides, as these models are capable to140

run in real time under different working conditions (power supply variations, load changes,141

etc), they will be useful for developing on-line CM systems and to train AI based automatic142

diagnostic systems.143
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The paper is structured as follows. In section 2 the hybrid FEM-analytical model is144

described and the methodology to compute the coupling parameters is introduced showing145

the main drawbacks of the approach. Section 3 introduces the proposed method to compute146

the coupling parameters and the main benefits are presented in terms on computing time147

and memory requirements. The main results are presented in section 3.3 In this section the148

coupling parameters computed with the proposed method are compared with those obtained149

with traditional methods. Moreover, the achieved accuracy is as good as the saving in terms150

on computing time and data storage memory. In section 4 the simulations results in terms151

of fault diagnosis purposes are presented while in section 5 the experimental validation is152

described. Finally, in 6 the main conclusions are presented.153

2. Hybrid FEM-analytical model of an IM154

The electromagnetic behavior of a general IM with M stator and N rotor phases can be155

modelled as [30, 31, 32]:156 

Us1
...

UsM
Ur1

...
UrN


=



Rs1
. . .

RsM

Rr1
. . .

RrN





Is1
...
IsM
Ir1
...
IrN


+

d[Ψ]

dt
(3)

where the subscripts s and r stand for stator and rotor respectively, [U ] is the phase voltage157

matrix, [R] is the resistances matrix, [I] is the phase current matrix and Ψ stands for the158

flux linkage that can be computed as:159 

Ψs1
...

ΨsM

Ψr1
...

Ψrn


=



Ls1s1 . . . Ls1sM Ls1r1 . . . Ls1rN
...

. . .
...

LsMs1 . . . LsMsM LsMr1 . . . LsMrN

Lr1s1 . . . Lr1sM Lr1r1 . . . Lr1rN
...

. . .
...

LrNs1 . . . LrNsM LrNr1 . . . LrNrN





Is1
...
IsM
Ir1
...
IrN


(4)

where [L] is also known as the inductances matrix, that is to say, the coupling parameters160

between the different electromagnetic circuits inside of an IM. To simplify, (4) can also be161

expressed as:162 [
Ψs

Ψr

]
=

[
Lss Lsr
LTsr Lrr

] [
Is
Ir

]
(5)

where [Lss], [Lsr] and [Lrr] are the coupling parameters between stator phases, between163

stator and rotor phases and between rotor phases respectively. The electromagnetic torque164

generated Te by the IM is modelled as:165

Te = [Is]
T d[Lsr]

dθ
[Ir] (6)
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and finally, the equation that models the mechanical behaviour is:166

Te − TLoad = J
d2θ

dt2
+ b

dθ

dt
= Jα +Bω (7)

where TLoad is the load torque, J is the inertia constant, B is viscous friction constant, α is167

the angular acceleration and ω is the rotational speed. The analytical model of an IM using168

the system of equations (3) to (7) can be easily implemented in a Simulink model as shown169

in Figure 2. The main advantage of this type of model is that can be run in real time in a170

HIL system. It must be highlighted that all blocks used are standard Simulink blocks except171

for the “OpComm” block belonging to the HIL library and used to connect the input signals172

of the model. The model shown in Figure 2 uses the stator voltages and the load torque173

as inputs. For instance, to cover a wide variety of industrial scenarios the user can select174

to power the IM either using direct on-line (DOL) (balanced or unbalanced phase voltages)175

or through a variable speed drive (VSD) with its usual open/close loop controls. Moreover,176

during the real-time simulation the user could apply changes in the power supply such as177

the voltage and/or the reference speed of the VSD. On the other hand, the user can define178

load torque profiles to simulate industrial processes and/or modify the load torque during179

the real time simulation. Therefore, it allows to simulate the IM model under a wide variety180

of working conditions as required for the CM systems development.181

Figure 2: Analytical model using the system equations (3)-(7) using Simulink blocks ready to be run in a
HIL system for real-time simulation.

In this approach, the key issue is to compute the coupling parameters [L] of the faulty182

IM model. Specifically, the presence of derivatives in (6) requires an accurate enough com-183

putation of the coupling parameters for the reliable identification of different fault severity184

degrees. As the coupling parameters [L] vary depending on the rotor position, specially in185

the case of a faulty machine, it is necessary to compute the mutual and self inductance for186

each rotor position requiring, thus, a large number of magneto-static FEM simulations.187
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To illustrate the main drawbacks associated with the coupling parameters [L] computa-188

tion based on FEM software and to introduce and show the main benefits of the proposed189

method the machine whose main characteristics are shown in Table 1 is used. Given the190

importance of the static eccentricity fault, this fault has been used to illustrate the method191

but the same procedure of sections 2.1 and 3 is also valid for other different types of faults.192

Table 1: Data of the simulated machine.
Electrical Mechanical

Power 1.1kW Pole pairs 2
Voltage 230/400 V Speed 1415 rpm
Current 4.4/2.55 A No of rotor bars 28
Frequency 50Hz No of stator slots 36

Airgap length 0.28mm

2.1. Methodology to compute the parameters of the IM model using FEM for a generic case193

FEM software allows to create accurate IM models which consider the non-uniform air-194

gap due to stator and rotor and other asymmetries due to faults. Therefore, in opposition195

the simulation requirements for healthy machines, the whole geometry of a faulty machine196

has to be considered in the simulation which results in a much more time-consuming task.197

Besides, a large number of simulations are required to compute the coupling parameters198

matrix.199

Figure 3 shows the general diagram to compute the coupling parameters [L] for a IM.200

The process starts by creating a FEM model of the IM in which the geometry of the machine201

as well as the specific characteristics of the fault are considered and the rotor is placed in202

the first position (q = 1). Starting from the first stator phase (m = 1) each of the M stator203

phases are fed with 1 A DC and the magneto-static FEM simulation is performed. With the204

results it is possible to compute the coupling parameters between stator phases [Lss] and205

between stator and rotor phases [Lsr]. Usually, in case of cage IM the coupling parameters206

between stator phases and rotor bars are considered instead of between stator and rotor207

phases. Subsequently, each of the N rotor phases is fed by 1 A DC, the FEM magneto-208

static simulation is performed and the coupling parameters between rotor phases (rotor bars209

in case of cage IM) [Lrr] are computed. The rotor is moved in increments of rd = 2π/K,210

where K is the number of positions desired, and the aforementioned process is repeated for211

each rotor position. Clearly, the larger the K considered the higher the accuracy in the212

description of the coupling parameters [L] for different rotor positions and the higher the213

number of FEM simulations required with its corresponding running time, computing power214

and memory resources. Finally a three dimension (M +N,M +N,K) coupling parameters215

matrix [L] is obtained, where the third dimension is related to the rotor position q. Hence,216

the coupling parameters matrix [Labq] designated from now as [Lq] is the coupling parameter217

matrix [L] of dimensions (M +N,M +N) corresponding to the rotor position q.218
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Stator phase m=1
Rotor Position q=1

Feed stator phase m
1A DC

Magneto-static
FEM analysis

Compute Lsms1..M

m = M?m=m+1

m =1

No

Feed rotor phase n
1A DC

Magneto-static
FEM analysis

Compute Lrnr1..N

n = N?

Yes

END

START

Yes

Lss Lsr

LT
sr Lrr

[MxM] [MxN]

[NxM] [NxN]

[L1]
[L2]

[(M+N)x(M+N)]

[LK ]

[Lq]

Compute Lsmr1..N

Rotor phase n=1

n=n+1 No

q = K?

Yes

q=q+1 No

Figure 3: General diagram of the procedure to compute the coupling parameters [L] of a IM model using
FEM software.

The method proposed in this paper assumes linear conditions for the computation of the219

inductance matrix of the eccentric machine. From a diagnostic point of view, saturation220

generates fault harmonics which are different from those generated by the eccentricity fault.221

Indeed, the purpose of the presented approach is to develop an efficient method for computing222

an inductance matrix that accurately captures the effect of the eccentricity fault. The223

proposed paper aims at developing an analytical model able to run in real-time with high224

accuracy (based on FEM results) but a much lower cost. In this case, considering only the225

linear, incremental problem, balances the results with the computational costs obtaining a226

reasonably accurate solution for eccentricity fault diagnosis purposes. Nevertheless, if the227

saturation effects are also to be reproduced, there are several methods presented in the228

technical literature where the inductance matrix obtained with the proposed approach can229

be used. One of such methods is the the “incremental permeability” solution proposed in230

[33], which is used in several FEM software packages to save computation time, such as FEM.231

In this solution, first, the nonlinear problem is solved at a particular nonlinear operating232

point (particular instantaneous currents, rotor orientation), using a full FEM simulation.233

Then, a linear, incremental problem based on the incremental permeabilities is solved, by234

9



feeding each phase with a current of 1A with all other excitations are turned off. This235

linear problem is solved in [33] using again FEM simulations, which could be replaced by236

the solutions provided by the proposed method, in a much faster way, while keeping their237

accuracy.238

2.1.1. Particularizing the method to compute the coupling parameters to the IM under study.239

To illustrate the cost in terms of computing power, memory resources and processing240

time, the method introduced in section 2 and illustrated in the Figure 3 has been applied to241

obtain the coupling parameters matrix [L] of the IM whose main characteristics are shown242

in Table 1. The software used for the FEM simulations is the open source femm 4.2 and the243

computer used has an intel processor (R) Core (TM) i5-6400 CPU@2.70GHz 2.20GHz and244

16GB of RAM memory.245

The first step, is to decide the rotor movement steps (rd = 2π/K) to be used. This246

term is related to the accuracy, in terms of rotor position, needed to compute the coupling247

parameters [L]. Usually, the result of multiplying the number of stator slots by the number248

of rotor bars for cage IM (or rotor slots in case of wound rotor IM) provides a good value of249

K:250

K = nerof rotor bars x nerof stator slots = 28x36 = 1008 (8)

and, therefore rd = 2π/K = 2π/1008 = 0.00632rads. Considering the process shown in251

Figure 3 where for the IM studied K = 1008, a rotor phase is the loop of two adjacent rotor252

bars N = 28/2 and the number of stator phases is M = 3, the computation of the coupling253

parameters matrix [L] in this generic case requires (M + N) · K = (3 + 28/2) · 1008 =254

17, 136 magneto-static FEM simulations. Taking into account that each magneto-static255

FEM simulation takes 1 minute and needs 22.5 MB for data storage, the computation of256

the coupling parameters [L], for one machine and with only one severity degree for a given257

fault, would require 11 days 21 hours and 36 minutes and 376.52 GB for data storage if258

all the FEM results need to be saved; if only the coupling parameters [L] are needed each259

[Lq] (coupling parameters for a rotor position) require 1 kB, so that, the memory resources260

could be reduced to just 1008 kB. It must be highlighted that these resources are needed261

to compute the coupling parameters of just 1 machine and only for 1 severity degree of a262

given fault whereas to fulfil the requirements for developing on-line CM systems and expert263

systems a wide variety of models of different machines and with several severity degrees of264

a given fault are needed.265

2.1.2. Particularizing the method to compute the IM coupling parameters considering the266

static eccentricity fault.267

Sometimes, the particularities of a specific fault enable the use of some simplifications to268

reduce the computing effort for computing the coupling parameter matrix L. To reproduce269

the static eccentricity fault the rotor symmetry axis have to be displaced from the stator270

centre. It allows the definition of different degrees of static eccentricity fault, from 0% for271

healthy conditions to 100% for the maximum displacement of rotor symmetry axis. It results272

in a faulty IM model where the positions of the maximum and minimum air-gap width with273

respect to the stator do not depend on the rotor position. Therefore, each rotor phase (rotor274
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bar) will have the same flux linkage but with a certain geometric offset. As a consequence,275

two main simplifications can be applied; only one rotor phase (or rotor bar) must be fed to276

compute the coupling parameters between rotor phases (or rotor bars) [Lrr]; and this bar277

has to be displaced only along half of all the possible rotor positions, that is to say, between278

[0, π] which, in the case of study, is 504 of the 1008 total positions.279

On the other hand, to compute the coupling parameters between stator and stator phases280

[Lss] and between stator phases and rotor phases (bars) [Lsr] just the positions of a rotor bar281

travelling through a stator slot are required. Therefore, the computation of [Lss] and [Lsr]282

requires just the simulation of the model placing the rotor in the first 36 of the 1008 positions283

while feeding, sequentially, each stator phase. It reduces the required FEM simulations to284

3 · 36 + 504 = 612 FEM simulations with a computing time of 10 hours and 12 minutes and285

a data storage of 13.45 GB. It is a significant improvement but it does not go far enough to286

meet the needs of the development of CM systems as they require to test a wide variety not287

only of IMs but also a wide range of severity degrees of the faults.288

3. Proposed method: sparse identification to compute the parameters of the IM289

model with similar accuracy to FEM290

3.1. The Sparse Subspace Learning (SSL) and the Hierarchical Lagrange interpolation (HLI)291

The SSL in combination with a hierarchical Lagrange interpolation (HLI) as polynomial292

basis introduced in [28] reduces the computing time needed to solve parametric problems293

in FEM software. It proposes a collocation strategy to reduce the time computing require-294

ments of parametric models. The SSL strategy selects specific sampling points in which the295

simulation has to be performed; thereafter, the output of the deterministic solver is used to296

obtain a HLI polynomial basis which allows to compute an approximate low-rank parametric297

solution at new sampling points. This approximated solution is used to initialize the FEM298

solver which speeds up the convergence of the iteration process as the predicted solutions299

are very close to the FEM solution; in fact, in some cases, the iteration process is is not300

even required to be run. In many cases with moderate dimensionality, the iteration process301

is not needed as the hierarchical predicted solution yields precise enough results for most302

engineering problems at a reasonable computational costs [34].303

3.2. Sparse identification to compute the coupling parameter matrix.304

With the sparse identification strategy proposed in [28] the polynomial basis obtains305

a prediction of the solutions in the nodes of the FEM model. Although it reduces the306

computing time for complex models, it keeps the memory requirements for data storage. If307

we contextualize to compute the coupling parameters of a faulty IM, where a magneto-static308

FEM simulation takes just 1 minute, the main benefits of the sparse identification shall not309

have a major impact in the overall computation time. Therefore, what is proposed in this310

paper, is to go one step further by performing the sparse identification to obtain the coupling311

parameters matrix [L] of a faulty IM. This matrix will be computed with a polynomial basis312

built from results of a few FEM simulations. Hence, it will reduce not only the computing313

time but also the memory requirements for data storage.314
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In this case, for a faulty IM model with a specific degree of static eccentricity fault, the315

coupling parameters [L] vary depending on the rotor position θ. This paper proposes the316

SSL strategy to select the rotor positions θ in the parametric space [θmin, θmax] in which the317

FEM simulations have to be performed. Thereafter, the results, i.e. the coupling parameters318

for these specific rotor positions, will be used to compute the polynomial basis with which319

compute the coupling parameters [L] for the remaining rotor positions.320

When using polynomial approximation an optimal choice for the sampling is defined by321

the set of Gauss-Chebyschev-Lobatto (GCL) points:322

P(k) ≡


{θmin, θmax} if k = 0

{θj =

(
θmin + θmax

2

)
·
(

cos

(
2j − 1

2k
π

)
+ 1

)
∀j = 1, . . . 2k−1} ∪ P(k−1)

if k > 0
(9)

where P(k) are the selected points for the hierarchical k level. This means that the corre-323

sponding set of points P(k) for the hierarchical level k has N (k) elements. It implies that324

each level contains the N (k−1) elements of the previous levels plus the N (k) − N (k−1) addi-325

tional points [28]. To build the polynomial basis the Lagrange interpolation is considered.326

Therefore, for a given hierarchical level k and N (k−1) < j < N (k), the HLI polynomial basis327

is constructed as:328

Lkj (θ) =
∏

θi∈P(k),i 6=j

θ − θi
θj − θi

(10)

and the coupling parameter row a column b for the rotor position θ, in the coupling param-329

eter’s matrix with the proposed method LHLIab is computed as:330

LHLI
(k)

ab (θ) =
k∑
1

∑
j∈P(k)

LFEMab (θj)−
∑

i∈P(k−1)

Lk−1i (θj)

 ·Lkj (θ) +
∑
j∈P(0)

LFEMab (θj)Lj(θ) (11)

As stated in section 2.1.2, for the static eccentricity fault the computation of [Lss] and331

[Lsr] only requires the results of the FEM simulations feeding each stator phase for the first332

36 rotor positions which means that the rotor has to be moved between 0 to 2π/1008 · 36 =333

π/14 rad. Hence the parametric space is defined as [0, π/14] rad. In the same way, to334

compute the coupling parameters associated to rotor phases (or rotor bars) one must feed335

a rotor phase and performing the magneto-static FEM simulation for the first 504 positions336

which implies the parametric space [0, π] rad. Tables 2 and 3 show the set of GCL points,337

i.e. the rotor positions θ, for the different hierarchical levels k in which the magneto-static338

FEM simulation should be performed. Thereafter, the polynomial basis according to (11)is339

computed with the results of FEM simulations with the rotor placed in the positions of340

Tables 2 and 3 and used to compute the coupling parameters between stator phases[Lss],341

between stator phases and rotor bars[Lsr] and between rotor bars [Lrr] respectively.342
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However, to compute the polynomial basis for the case of coupling parameters between343

rotor bars a deeper analysis is required. Figure 4 shows the coupling parameters between344

the 1st rotor bar with itself based on FEM simulations. It can be seen as these coupling345

parameters can be computed as a sum of two functions. Due to the slot effect, there346

is a first function with π/14 period associated to the movement of a rotor bar through347

a stator slot. On the other hand, due to the static eccentricity fault, there is a second348

function with a 2π period that behaves similarly to the air-gap width depending on the349

rotor position. It can be seen that the higher fault severity the higher the amplitude of this350

second function. Therefore, as the fault severity degree increases this 2π period function351

becomes more prominent whereas for low severity degrees the slot effect is more prominent.352

Thus, both effects have to be considered to accurately compute the coupling parameters353

between rotor bars. This fact suggests that two parametric spaces should be considered to354

obtain the polynomial basis to compute the rotor rotor coupling parameters: [0, π/14] rad355

to include the slot effect, [0, π] rad to consider the effect of the static eccentricity fault.356

To better illustrate this fact, Figure 5 compares the coupling parameters obtained with357

FEM analysis between those obtained with the polynomial basis obtained in: the [0, π] rad358

parametric space, the [0, π/14] rad parametric space or as proposed, i.e., as a combination359

of both polynomial basis. It can be seen, that the proposed polynomial combination yields360

better results and reflects more accurately the coupling parameters if FEM analysis was361

performed but a lower cost.362

Rotor position

In
d
u
c
ta

n
c
e
 (

m
H

)

Lr1r1

ecc = 0%

ecc = 14.64%

ecc = 30.87%

ecc = 50%

Figure 4: Coupling parameters between rotor bar 1 and itself for different rotor positions for four different de-
grees of static eccentricity fault. These coupling parameters have been computed through FEM simulations.
Zoom of the coupling parameters have been included to show the effect of the slots.

3.3. Results363

To check the effectiveness of the proposed method different polynomial basis have been364

computed considering the different hierarchical levels 0 to 3 of Tables 2 and 3. Considering365

the polynomial basis obtained for each hierarchical level k, the coupling parameter matrix,366

[L], has been computed and compared with the results obtained using the FEM simulations367
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Figure 5: Comparison of coupling parameters between rotor bar 1 and itself for different rotor position and
for a static eccentricity of 50% computed with FEM, HLI considering the parametric space [0, π] rad, HLI
considering the parametric space [0, π/14] rad and with the polynomial basis proposed as a combination of
the HLI obtained with both parametric spaces [0, π/14] rad and [0, π] rad.

Table 2: Set of the GCL points in the parametric space [0, π/14] to compute [Lss], [Lsr] and include the
slot effect in [Lrr].

Level (k) Rotor position θ (P(k)) rad Level (k) Rotor position θ (P(k)) rad

0 0 3 0.0085

0 π/14 = 0.2244 3 0.0693

1 π/28 = 0.1122 3 0.1551

2 0.0329 3 0.2159

2 0.1915

and the procedure depicted in Figure 3 particularized for the case of static eccentricity fault368

described in section 2.1.2.369

Figure 6 shows the evolution of three elements of the coupling parameters matrix [L]370

depending on the rotor position: between the stator phase 1 with itself [Ls1s1 ], between the371

stator phase 1 and the rotor bar 1 [Ls1r1 ] and between the rotor bar 1 with itself [Lr1r1 ]372

for three different levels of static eccentricity (0% (Healthy), 14.64% and 50%). This figure373

compares the results of computing the coupling parameters using the full FEM analysis with374

the results obtained with the proposed method considering different hierarchical levels k to375

compute the polynomial basis LHLI
(k)

according to (11). It must be highlighted that the376

proposed method uses, for each hierarchical level k, just the results of the FEM simulations377

for the rotor positions in the set of the GCL points shown in Tables 2 and 3.378

To check the accuracy of the proposed method the error between the coupling parameters379

computed with FEM LFEM and with the proposed method LHLI
(k)

for each hierarchical level380

k is computed as:381
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Table 3: Set of the GCL points in the parametric space [0, π] to include the static eccentricity effect in the
[Lrr] computation.

Level (k) Rotor position θ (P(k)) rad Level (k) Rotor position θ (P(k)) rad

0 0 3 0.1196

0 π 3 0.9697

1 π/2 3 2.1719

2 0.4601 3 3.0220

2 2.6815

error(%) = mean

∣∣∣∣∣LFEM(θ)− LHLI(k)(θ)
LFEM(θ)

∣∣∣∣∣ · 100 (12)

Figure 6 bottom shows the mean error obtained in the computation of the three coupling382

parameters (Ls1s1 , Ls1r1 , Lr1r1) for the three different levels of static eccentricity depending383

on the hierarchical level k considered. It can be seen that, as the hierarchical level k increases384

the accuracy improves due to the more FEM simulations used to obtain the polynomial basis.385

However, it can be also seen that the level k = 2 could be enough to compute the coupling386

parameters. For this hierarchical level the error is less than the 2% and the use of more387

points (higher hierarchical level) does not significantly improves the accuracy but adds more388

computational effort.389

This, in turn, implies that just with results of the FEM simulations for the rotor placed390

in the five positions for the hierarchical levels k = 0 to k = 2 of Table 2 is enough to compute391

the coupling parameters matrix. Additionally, for the rotor-rotor coupling parameters the392

positions corresponding to levels k = 0 to k = 2 of Table 3 are also required to build the393

two polynomial basis aforementioned.394

Table 4 shows the computational costs in terms of FEM simulations, computation time395

and memory resources for data storage for the generic case (according to the procedure shown396

in subsection 2.1), the generic case particularized for the static eccentricity fault (according397

the procedure shown in subsection 2.1.2) and for the proposed method (depicted in section398

3). In view of the results, it must be highlighted that the proposed method computes the399

coupling parameters 24.48 times faster and requires just one 4.09% of the memory resources400

for the generic case particularized for the static eccentricity fault (Table 4: 3rd column) and401

keeping the accuracy better than 2%.402

4. Simulation403

Once the coupling parameters are computed, they are used in the model shown in Fig-404

ure 2. The model has been implemented in the HIL OP4500 whose main characteristics405

are detailed in the Appendix Appendix A. The HIL runs the model in real time and the406

stator currents as well as other other signals such as the speed can be sampled in real time407
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Table 4: Computational effort and memory resources needed to obtain the coupling parameters of a faulty
IM model in a generic case (1st column), particularizing for the static eccentricity fault (2nd column) and
with the proposed method (3rd column).

Generic case Static eccentricity Proposed method

ner FEM simulations 17, 136 612 25

Computation time 11 days 21 hours 36 min 10 hours 12 min 25 min

Data storage 376.52 GB 13.45 GB 0.55 GB

through the analog outputs. Hence, as shown in Figure 7 these signals can be used to test408

fault diagnosis techniques implemented in embedded devices, to train and test CM systems409

based on artificial neural network (ANN) or to be acquired through a digital oscilloscope410

and processed offline in a pc system to develop other fault diagnosis techniques.411

4.1. Fault diagnosis using the proposed IM running in a HIL simulator412

Transient based fault diagnosis methods have attracted a rising interested due to their413

reliability. They can be used to detect faults in wide variety of working conditions such414

as oscillating loads, inverter-fed motors with changes of speed, start-up transients, supply415

variations, etc. Hence, they allow to reduce misdiagnoses generally associated with steady416

state fault diagnosis techniques due to situations that could be confused with faults [1, 35,417

36, 37, 38, 39]. Indeed, the current analysis during the IM start-up transient is widely used418

because the evolution of the slip is well-known (from 1 to ' 0) and it is possible to identify419

the different patterns followed by the fault harmonic components. Moreover, it does not420

require the speed measurement.421

4.2. Evolution of the static eccentricity fault harmonic components422

For the static eccentricity fault the frequencies of the harmonic components are defined423

by (1). Considering the specific parameters of the motor defined in Table 1 the evolution424

of the fault harmonic components during the start-up transient can be easily computed as425

the slip evolves from 1 to ' 0. Consequently, for the lower side harmonic (LSH), ν = −1,426

its frequency evolves from 50 Hz to ' 650 Hz. Similarly. the upper side harmonic (USH),427

ν = 1, evolves from 50 Hz to ' 750 Hz. Besides, the amplitude of the LSH remains almost428

constant regardless the fault severity degree while in case of the USH its amplitude increases429

as the severity degree increases [40].430

Therefore, to check the usability of the parameters computed with the proposed method,431

in terms of fault diagnosis purposes, three different simulations, with three degrees of static432

eccentricity (Healthy, 30% and 50%) fault have been performed. The simulations have been433

performed during the start-up transient and the currents have been sampled during 2 seconds434

from the analogue outputs of the HIL, OPAL OP4500, at a sampling frequency of 10kHz.435
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The main objective is to compare the results obtained from the model using the coupling436

parameters computed with the proposed method and with the coupling parameters fully437

computed with the traditional FEM analysis following the procedure shown in Figure 3.438

For fault diagnosis purposes, these results have to be compared in terms of the evolution of439

the static eccentricity fault harmonic components during the start-up transient. Figure 8440

shows the spectrogram of the stator current for the simulated machine with the coupling441

parameters computed with the prosed method and compared with those obtained using the442

coupling parameters computed with FEM. As can be seen, the LSH appears regardless the443

machine status and it is a reason why this component is used for speed prediction is some444

control drives. On the other hand, the USH component appears only when the machine is445

under faulty conditions and it becomes more clear as the severity degree increases. As can446

be seen, these results reinforce the validity of the proposed method as it obtains the same447

results, with minor errors, as those obtained with the traditional FEM analysis.448

5. Experimental Validation449

The proposed method has been validated with a commercial 1.1kW IM (whose main450

characteristics are the same as the simulated model and shown in the Table 1) to observe451

the presence of the fault harmonic components. The experimental set up is show in Figure 9.452

To achieve longer startup transients the IM has been feed to reduced voltage through an453

auto-transformer and no external load has been used. To introduce the static eccentricity454

fault the hood fastening holes have been slightly enlarged to achieve a small tolerance in the455

positioning of the rotor axis as shown in Figure 10. The stator currents have been sampled456

using a digital oscilloscope during 10 seconds at a sampling rate of 10 kHz.457

The stator current spectrogram for the IM in the same conditions as bought (considered458

as healthy) and for the IM faulty machine are shown in Figure 11 where the LSH and USH459

harmonic components are highlighted. As can be seen, for the healthy machine the USH is460

also visible as IMs are not ideal and each IM has an inherent eccentricity that should be461

lower than 10% as stated in [10]. However, it should be highlighted that, as the fault severity462

degree increases (faulty machine) the amplitude of the USH also increases as shown in the463

simulation results and confirmed by this experimental validation. Therefore, tracking the464

evolution of this fault harmonic component could be and useful tool for condition monitoring465

of IM.466

6. Conclusions467

This paper proposes the sparse identification to reduce the computational effort required468

to compute the coupling parameters of a FEM-analytical model of a faulty IMs. The,469

proposed method achieves a significant improvement in the computing time and in the470

memory resources while keeping a good accuracy. In fact, it is 24.48 times faster computing471

the coupling parameters and requires just the 4.09% of the memory resources than a full472

FEM analysis. Besides, the actual error between the coupling parameters computed with473

FEM and with the proposed method is less than 2%. The proposed method takes into474
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account the special effects of the geometry of the induction motor such as the slot effect or475

the winding effect. Moreover it can consider the variations the air-gap width due to a fault.476

In this paper, the proposed method has been illustrated for the static eccentricity fault477

with different fault degrees from incipient levels or even inherent levels of the machine478

to more severe scenarios which would help in the aim of correlating the amplitude of the479

fault harmonic components with the fault severity degree. After that, the models have480

been tested with the coupling parameters computed and the fault diagnosis results (fault481

harmonic components) have been compared with those obtained with the models where the482

coupling parameters have been fully computed with FEM software. Besides, these results483

have been confirmed by experimental validation. Following the same reasoning the method484

could be extended to other types of faults or even to simultaneous faults.485

Finally, it must be highlighted that the proposed method would have a major impact486

in the fast development of IM models with different types of fault and/or with different487

degrees of severity of a given fault. Therefore the method will favour the development of488

fault diagnosis systems, especially on-line fault diagnosis system and AI based systems as489

it will help not only to cover a wide variety of scenarios (machines, degrees of severity and490

types of fault, working conditions) but also in establishing thresholds for the early detection491

of a given fault.492

Appendix A. OPAL 4500 main features:493

Real-time target: 4 INTEL processor cores 3.3 GHz (only 1 core activated). Solid state494

disk: 125 Gb. Memory RAM: 4 Gb. Real-time operating system: Linux RedHat. Xilinx495

Kintex 7 FPGA (326.000 Logic cells and 840 DSP slice). Sampling Rate: 200MHz. 96 User496

Inputs/Outputs (I/O): 16 analog inputs and 16 analog outputs, 24 digital inputs and 24497

digital outputs, 8 RS422 digital inputs and 8 RS422 digital outputs.498
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Figure 6: The figure shows the coupling parameters computed with FEM analysis and with the proposed

method, LHLIk

where k is the hierarchical level of the polynomial basis defined in (11) and computed with
the GCL points of tables 2 and 3. From top to bottom: coupling parameters between stator phase 1 with
itself, Ls1s1 , between stator phase 1 and rotor bar 1, Ls1r1 and between rotor bar 1 with itself Lr1r1 for
three different degrees of severity of static eccentricity fault (0% - Healthy, 14.64% and 50%). Finally, the
bottom figure shows the error, computed according (12), committed in the computation of each coupling
parameters with the proposed method depending on the hierarchical level k of the polynomial basis used.
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WORKSTATION

REAL TIME SIMULATOR

EMBEDDED DEVICE

OP 4500

DSP, FPGA, PLC
Developping, testing...

ARTIFICIAL INTELLIGENCE
ANN, SVM...

Developping, testing...

DIGITAL OSCILLOSCOPE

Figure 7: The hybrid FEM- analytical model developed is transferred to the real time simulator. The
real-time signals needed (stator currents, speed) are connected to the analogue outputs of the HIL and
used for different fault diagnosis purposes: to develop, train and test either AI based or continuous on-line
(embedded devices) fault diagnosis systems. On the other hand, these signals can also be acquired through
digital oscilloscope or directly transferred to the pc-station for further processing.
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Figure 8: Stator current spectrogram for the three different levels of static eccentricity using the proposed
method (HLI(2)) and FEM software to compute the coupling parameters of the hybrid FEM-analytical
model. The fault harmonic components LSH and USH due to static eccentricity fault have been highlighted
for both methods.
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Figure 9: Test bed used for the experimental validation. The motor is fed through an autotransformer to
a low voltage to achieve a longer start-up transient. The stator currents have been sampled using digital
oscilloscope with the aid of current clamps.

Figure 10: Detail of the hood fasten holes drilled to introduce the static eccentricity fault.
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Figure 11: Stator current spectrogram for the IM in the same conditions as it was bought, i.e. in healthy
conditions (top) and with the static eccentricity fault (bottom). It can be seee that the start up transients
lasts 5 seconds and can be see both USH and LSH fault harmonic components. It must be highlighted as
the USH increases its amplitude as the fault severity degree increases as shown in the simulation results.
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