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Abstract The LoRa technology enables long distance links with reduced9

power consumption at low cost, the main limitation being the low bandwidth10

that it offers. With LoRa, remote locations, like rural areas, can benefit from11

connectivity based services that would otherwise be impossible. In this work,12

we describe a LoRa architecture that can include generic external data sources13

using an MQTT-based interface. We particularly focus on audio sources aiming14

to two basic services: a voice messaging system that allows users who cannot15

read or write to send voice notes, and an audio compression service to extract16

the main features from the audio input to use it for developing intelligent17

ML-based audio analytics.18

Keywords LoRa, MQTT, IoT, Sound analytics, Deep Learning, Autoencon-19

der20

1 Introduction21

The global penetration rate of Internet usage increased from nearly 17% in22

2005 to over 53% in 2019, according to the ITU/UNESCO Broadband Com-23

mission for Sustainable Development (2019) report. However, this ratio is not24

balanced on the planet. In fact, only 19% of the population in developing coun-25

tries, such as many regions of Africa, are connected to the Internet while this26

ratio reaches up to 87% in most of the developed countries such as Europe.27
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In places with low connection rates there are many remote areas where28

providing connection services is a challenge. Therefore, citizens cannot benefit29

from any application with minimum bandwidth requirements such as simple30

messaging services. For example, Buehler et al. (2013) provides an analysis of31

the communication needs in rural health care in several developing countries.32

An example application is for pregnant women with cell phones who regu-33

larly receive regular SMS text messages, reminding them of appointments and34

allowing them to call health care providers for advice on specific problems,35

avoiding patients in isolated areas spending a lot of time and resources to36

reach the nearest hospital.37

In this paper, we introduce LADEA, a generic software infrastructure for38

deliverying audio messages and enabling audio analytics. LADEA is partially39

based on our previous work (Nakamura et al. (2020)), where we introduced40

a voice messaging system based on LoRa (Chaudhari BS (2020)), with the41

possibility to include generic external sources of data using an MQTT based42

interface. There are in the literature other works that combine these technolo-43

gies to provide connectivity related services, like Bhawiyuga et al. (2019) who44

proposed the design of the LoRa-MQTT gateway device for supporting the45

sensor-to-cloud data transmission in smart aquaculture IoT application, but46

also Spinsante et al. (2017); Huang et al. (2019); Paolini et al. (2020); Lachtar47

et al. (2020). In this work, we focus particularly on audio sources aiming to48

two basic services: a voice messaging system that allows users who cannot read49

or write to send voice notes, and an audio compression algorithm to extract50

the main features from the original audio to be used for developing intelligent51

cloud-based applications based on machine learning methods. We describe how52

the system was integrated in the existing platform and present some results53

on its performance.54

The inclusion of illiterate people, i.e. people that cannot read and write,55

in this type of systems is still a critical goal. Our proposal combines a visual56

interface with an edge solution for data compression to include voice messages57

in the system. Audio analytics ML-based solutions are growing too, allowing58

the design of application like noise pollution (e.g., Cornelius et al. (2020)) or59

sound levels forecasting (e.g., Navarro et al. (2020)). We consider that these60

results are promising and describe a tool that can provide a useful service at61

a low cost. The paper is organized as follows. Section 2 describes the existing62

LoRa based messaging system providing details of the integration of a MQTT63

proxy in the system. It shows the architecture of the voice recording source and64

the data compression strategy used for machine learning analysis. Section 365

shows the experimental results of our architecture before concluding the paper66

and providing some direction for future work in Section 4.67

2 LADEA description68

This section introduces the architecture and main modules of LADEA. First of69

all, the software infrastructure based on LoRa is presented. Then, we briefly70
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Extending a low cost Lora based... 3

describe the module in charge of integrating external sources such as audio71

before introducing the main algorithms and applications developed for (1)72

sending audio messages to strength human interactions and (2) enabling fur-73

ther audio analytics.74

2.1 System architecture75

The overall architecture of the messaging system is detailed in Nakamura et al.76

(2020). At the core there are dedicated devices, called hubs, that create the con-77

nectivity spot inside an area. The hubs have both a WiFi (IEEE 802.1b/g/n),78

and a LoRa transceiver. The hubs work as standard WiFi access point to79

provide connectivity to close by devices. The interface with the messaging ap-80

plication is a web based system. The user can decide whether to send a text81

message to either a specific destination or to all reachable users, or to check82

for incoming messages stored in the hub. The hubs offer a REST interface to83

the connected devices to either send a message, or return previously received84

and locally stored ones.85

Every user needs to “register” before exchanging any message. Registra-86

tion is required to allow the system to localize end-points. When a user sends87

a message, the local hub “learns” that that user is connected through it, and88

creates an entry in a table. The first step is to discover where the destina-89

tion user is located. To this end, the hub sends a broadcast message to all90

the surrounding devices and waits for the searched one to respond. A special91

broadcast user was included for messages that are to be delivered to all the92

registered users.93

At this point, using a reliable unicast protocol, messages are transferred and94

stored in the destination hub. Once the user to whom the message is addressed95

to checks for available messages, he or she will receive the one stored in the96

local hub. The unicast protocol is based on a stop-and-wait ARQ approach97

with a dynamic and adaptive value for the re-transmission delay. The protocol98

ensures that information is not lost due to dropped packets and that packets99

are received in the correct order.100

2.2 Integration of external sources101

We integrated in the platform described before the data collection from exter-102

nal sources by introducing data from anything from any external source such103

as a simple temperature sensor or an audio/voice recorder. Actually, the latter104

has been the objective of this work. A dedicated service called MQTTproxy is105

defined in the platform. This service is attached to the system as a specific106

client. The general idea is that the external source has to package the con-107

tent it is providing as a structured piece of information, and send it to the108

MQTTproxy as a message. The MQTTproxywill then (1) unpack the message,109

(2) build a proper MQTT message, and (3) publish it to the broker being110

used. The device that executes the MQTTproxy service has to be connected to111

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



4 Nakamura et al.

a hub using WiFi and must clearly have a connection to the used broker, either112

through the Internet or through a direct TCP/IP link.113

The set-up required is the one shown in Figure 1. The external source is114

attached to the “Hub 1” through a WiFi link. It is important to note that115

Bluetooth connection could be also possible. External sources are integrated116

in the platform and “talk” with hubs using a REST interface. The sequence117

is basically the same used by regular clients: there is first a registration phase118

followed by a “Push” phase. The transferred data is structured as a JSON119

object with the format indicated in Listing 1.120

Fig. 1: Connections structure between the external source and the MQTTproxy.

1 {

2 'DEV_ID': 'voice_recorder',

3 'QOS': 0,

4 'TOPIC': 'rasp1095/voicemessage',

5 'VALUE': {'sender': 'pietro',

6 'receiver': 'miguel'

7 'message': <data file>}

8 }

Listing 1: The structure of the messages interchanged.

The data contained in the JSON object can have a variable size, limited121

only by low bandwidth of LoRa channel though. Topics average length can122

range between 10 to 50 bytes, while values can have a variable size, from a few123

bytes to hundreds of kilobytes, as in our case with the audio sources. Actually,124

Section 3 will show performance evaluation of our architecture with messages125

of up to 100kbytes.126

The localization of the MQTTproxy is based on an “anycasting” approach.127

This means that there can be several MQTTproxys available in the area covered128
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Extending a low cost Lora based... 5

by any hub. As for regular clients, the hub that received the JSON message129

will start the search for an MQTTproxy as if they were regular end users. If130

multiple replays are received, the first one is selected. Other strategies could131

be adopted based, for example, on the detected load of a certain MQTTproxy132

device. The hub will forward the JSON message sent to it to the selected133

MQTTproxy hub using the standard procedure used by the messaging system.134

The MQTTproxywill periodically probe, using the REST endpoint, the hub135

that is connected with to obtain the data. Figure 2 graphically describes this136

operation.137

Fig. 2: The MQTTproxy getting data from the hub.

Once the message is obtained, the MQTTproxy will extract the JSON and138

create a proper “publish” message to the connected broker. Published messages139

will be received by a specific “messaging service” available in the cloud (see140

Figure 1) that will forward it to the destination through email or other means.141

The obtained reply will be handled in the same way, by having the “messaging142

service” publish it to the broker and the MQTTproxy sending it back to the143

sender.144

2.3 Sending audio message for human interactions145

This section details the design and user interface of an external voice recording146

source. One of the main objectives of our infrastructure is to allow people who147

cannot read or write to send voice messages. To this end, we design an easy-148

to-use and effective interface. The prototype was designed on a Raspberry Pi149

3 Model B+ device with an add-on 3.5-inch LCD touchscreen (LcdWiki1) (see150

1 https://www.lcdwiki.com/
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6 Nakamura et al.

Fig. 3: Screens sequence when identifying the sender and the receiver.

Fig. 4: Icon to play the voice clip (left) and icon to send (right) enableds.

Figure 3). This prototype has a graphical interface that displays a series of151

icons that will be enabled when necessary, to guide the user step by step.The152

user has to identify the source and destination of the recording for the message153

to be sent. With the help of the ’up’ and ’down’ icons, the user will navigate154

through a series of pictures of the already registered users. The user will first155

identify the sender, by clicking on their own picture, and then, in the same156

way, select the destination user (see Figure 3).157

After identifying the source and destination users, the recording icon will158

be activated. Clicking it starts the recording process. The recording time is159

displayed and the icon is activated to stop this process. Voice clips of up to 50160

seconds or less can be recorded. This value has been set based on the trade-off161

between the information that can be sent and the total time needed to send162

it. Once the message is recorded, the icons are activated to play the voice clip163

or to send it (see Figure 4).164

The voice clip is stored in the microSD memory of the Raspberry as a WAV165

file; a 50 seconds message typically has a size of 1 MB. To compress the WAV166

file, we used the FFmpeg2 framework to produce an mp3 file. The advantage167

of mp3 files is that they do not lose audio quality and their size decreases up168

to a factor of ten. The compression time clearly grows as the recording time169

increases. Tests were performed with audio clips of 10 s, 20 s, 30 s, 40 s and 50170

2 https://ffmpeg.org/
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s; a 10 sec WAV file requires 0.69 sec up to the 1.40 sec required to compress171

a 50 seconds audio clip.172

At this point the system already have all the required information, namely173

the source, the destination and the voice message, so that the JSON file can174

be prepared to be sent to the MQTTproxy.175

2.4 Sending audio for data analytics176

Compressing audio for data analytics is necessary to send it through a low-177

bandwidth connection like LoRa. The goal is to extract the main features178

from the original audio to use these features for developing intelligent applica-179

tions based on machine learning methods. To this end, it is necessary to train180

a model capable of characterizing, compressing and reconstructing an audio181

recording. With the approach used in the previous subsection, the audio file182

suffers a quality loss that is not perceivable by the human ear, but can lead to a183

loss of performance in machine learning models (see Das (2020)). Therefore, we184

developed a lightweight deep learning auto-encoder model which compresses185

the sound stream from the original WAV audio so that limited “data loss” is186

obtained.187

x Encoder z Decoder x̂

Fig. 5: The schema of the used Hinton and Salakhutdinov autoencoder.

An autoencoder Hinton and Salakhutdinov (2006) is a type of multi-layer188

neural network characterized by a certain structure formed by layers that189

decrease its dimensionality from the input layer to the central layer, and then190

symmetrically increase the number of neurons per layer until it ends up in an191

output layer of the same size as the initial one (see Figure 5). The central layer192

of an autoencoder can also serve as the input layer of a neural network that is193

trained for a different purpose than data compression. Moreover, autocoders194

are trained in an unsupervised way. The sender encodes the message so that195

it is smaller in size than its input. The main objective of the receiver is to196

reconstruct, in the best possible way, the data being received. Therefore, it is197

an online technique that has been used with files containing audio, to work198

by musical audio modeling by compressing the spectrogram Vedal (2019). The199

complete model is shown in the Figure 6. It is formed by linear layers totally200

connected with a normalization layer between each one of them in order to201

use a higher training rate and get the model to converge as soon as possible.202
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8 Nakamura et al.

The training stage of the neural network previously described has been203

performed in a HPC server with two GPUs GeForce RTX 2080 using Py-204

Torch lirabry3. The main parameters of the training procedure were 1280205

epochs, Adam optimizer and learning rate of 1e4. The model has a total size206

of 256076000 trained parameters. The data used for the training has been207

taken from CSS10 dataset Park and Mulc (2019), which is a collection of sin-208

gle speaker speech datasets for 10 languages. Each of them consists of audio209

files recorded by a single volunteer and their aligned text sourced from Lib-210

riVox. All 6515 audio samples extracted for the training are made up of audios211

of about 10 seconds, which have been divided into sub-samples that fit the size212

of the input layer of the network.
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Fig. 6: Architecture of the autocoder sound compressor.

213

Each of the input audios has been preprocessed using the discrete Fourier214

transform of a real sequence to convert the sample data into time to frequency.215

The transformation into the frequency domain shows how the amplitude varies216

with frequency. This is often referred to as the frequency spectrum of the217

signal. A single frequency sine wave in the time domain will give a single line218

to that frequency in the frequency domain. A peak in the time domain will219

give a spread of frequencies in the frequency domain. And the reverse process220

has been performed for the reconstruction of the audio file after it has been221

processed by the auto-encoder222

Once the model has been trained, it is compiled on the Raspberry Pi based223

platforms in order to run on these ARM architectures. After the training stage,224

the model is serialized and deployed simultaneously in the emitter and receiver225

(see Figure 6). In this way, the emitter will run the compression from the input226

layer to the smallest layer to compress the information. The receiver will run227

the part of the model from the middle layer normalization layer to the network228

output.229

3 https://pytorch.org
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3 Evaluation and discussion230

This section analyzes and discusses two different experiments. First, the per-231

formance results obtained with the vocal messaging system are presented by232

varying the distance between the hubs and the size of the sent messages.233

Second, the data compression strategy for machine learning development is234

evaluated under different compression rates.235

3.1 Evaluation of the vocal messaging system236

Two hubs were used to analyze the performance of our system as shown in237

Section 2. We tested various distances, namely 1m, 750m, and 6000m (6km).238

The 1m test is provided to have reference values to be compared with the239

longer distance tests. The 750m tests where performed in the “Ciudad de las240

Artes y las Ciencias” (Valencia, Spain), while the 6km test where performed241

between two viewpoints in Chiapas, Mexico. These scenarios are located in242

areas with a clear line of sight between the two points.243

The system performance was measured using the successful transfer time244

(STT) metric. This metric measures the transfer time of a message from the245

sender’s point of view, and is computed from the moment the first message246

fragment is sent, to the moment the last ACK of the last message fragment247

is received. All tests were conducted using a spreading factor of 7 (SF7) to248

minimize the time in the air. With this in mind, bursts of 10 messages were sent249

to determine the stability of the system. The system performance was stable250

and almost identical to that of the shorter distance tests. Re-transmissions251

were rare, even in the long-range experiments, having a negligible impact on252

the STT. It should be noted that delays are of the order of hundreds of seconds253

and therefore few more seconds do not affect the usability of the system, thus254

no effect was seen in the delivery of the voice messages.255

Fig. 7: Behavior of the STT versus distance between two nodes.
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10 Nakamura et al.

Figure 7 shows the behavior of the STT versus the distance between two256

nodes. An almost constant behavior can be observed in the results, although257

the STT clearly grows as long as the message size increases. The system is258

quite stable at increasing distance and very few re-transmissions were required259

during the experiments. For instance, the maximum delay obtained for 100KB260

messages was 457.56 seconds and the minimum delay was 451.49 sec (i.e. about261

7.5 minutes).262

Certainly, the worst aspect is the low performance obtained due to the use263

of the LoRa. This is compensated by the long range obtained and the low264

energy cost required by these devices, which makes it a frugal solution to a265

clear problem. We are aware of the limitations imposed by LoRa in relation266

to the use of the channel, which is called ”duty cycle”. 100kB messages may267

violate this rule if the duty cycle is applied to 1 hour slots, as suggested. In268

our case, we suppose, without loss of generality, that the targeted areas will269

not be too crowded; i.e. there will not bee too high density of devices, thus270

limiting the possible impact of these long messages. There is anyway the need,271

as future work, to provide some form of sending scheduling to avoid possible272

interference with other LoRa sources.273

3.2 Evaluation of the audio compression274

This section analyzes the data compression algorithm introduced in Section275

2.4. The artificial neural network model designed was 980 MB in total. This276

is divided in two different neural networks that were deployed in the emitter277

and receiver respectively. The first neural network encodes the message and,278

therefore, it is deployed in the sender. The second neural network decodes279

the message and is deployed in the receiver. This means that each platform280

requires less than 500 MB for running the compression model, which is small281

enough to be run on a Raspberry-like platform. Our method provides up to282

40% of compression rate of the original WAV file and this rate is kept constant283

as the size of input file increases.284

Figure 8 shows the normalized waveform of the original audio record and285

the one obtained after decompression with our approach. It is important to286

note that the regenerated audio matches almost 95% the original record. More-287

over, this procedure enables machine learning analysis a posterior, and thus288

additional data mining procedures could be developed.289

Finally, the compression and decompression procedures with our approach290

have similar execution time, and they scale linearly along with the audio record291

size. For instance, for an audio of 29 seconds, with sample rate of 11025 and292

final sampling of 320828 values the encoder phase takes 32,21 seconds and the293

decoder needs 40 seconds.294

4 Conclusions295

In this paper we described a LoRa architecture that can include generic ex-296

ternal data sources using an MQTT-based interface. We particularly focused297

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Extending a low cost Lora based... 11

0 50000 100000 150000 200000

−0.4

−0.2

0.0

0.2

0.4

0.6

Original audio
Regenerated audio

Fig. 8: Normalized waveform of original and predicted .

on audio sources aiming to two basic services: a voice messaging system that298

allows users who cannot read or write to send voice notes, and an audio com-299

pression service to extract the main features from the original audio to be used300

for developing intelligent ML-based audio analytics. The inclusion of illiterate301

people, that is people that cannot read and write, in this type of systems is302

still a critical goal, and simplifying the user interactions is highly demanded.303

Audio analytics ML-based solutions are growing too, allowing the design of304

application like noise pollution or sound levels forecasting. We described how305

the system was integrated in the existing platform and presented some results306

on its performance. We consider that these results are promising and describe307

a tool that can provide a useful service at a low cost.308
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eral de Ciéncia i Investigació, Proyectos AICO/2020”, Spain, under Grant316

AICO/2020/302.317

References318

Bhawiyuga A, Amron K, Primanandha R, Kartikasari DP, Arijudin H, Pra-319

bandari DA (2019) Lora-mqtt gateway device for supporting sensor-to-cloud320

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



12 Nakamura et al.

data transmission in smart aquaculture iot application. In: 2019 Interna-321

tional Conference on Sustainable Information Engineering and Technology322

(SIET), pp 187–190323

Buehler B, Ruggiero R, Mehta K (2013) Empowering community health324

workers with technology solutions. IEEE Technology and Society Magazine325

32(1):44–52, DOI 10.1109/MTS.2013.2241831326

Chaudhari BS BS Zennaro M (2020) LPWAN technologies: Emerging appli-327

cation characteristics, requirements, and design considerations. Future In-328

ternet 12(3)329

Cornelius K, Kumar NK, Pradhan S, Patel P, Vinay N (2020) An efficient330

tracking system for air and sound pollution using iot. In: 2020 6th Inter-331

national Conference on Advanced Computing and Communication Systems332

(ICACCS), pp 22–25, DOI 10.1109/ICACCS48705.2020.9074301333

Das S (2020) Impact of Dithering in Compressed and Spectrally Distorted334

Speech for Emotion Recognition. International Journal of Advanced Re-335

search in Basic Engineering Sciences and Technology (IJARBEST) (Au-336

gust), DOI 10.20238/IJARBEST.2020.0610005337

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality338

of data with neural networks. Science 313(5786):504–507, DOI339

10.1126/science.1127647340

Huang A, Huang M, Shao Z, Zhang X, Wu D, Cao C (2019) A practical marine341

wireless sensor network monitoring system based on LoRa and MQTT. In:342

2019 IEEE 2nd International Conference on Electronics Technology (ICET),343

pp 330–334344

ITU/UNESCO Broadband Commission for Sustainable Development (2019)345

The state of broadband 2019. ITU/UNESCO, Report346

Lachtar A, Val T, Kachouri A (2020) Elderly monitoring system in a smart city347

environment using lora and mqtt. IET Wireless Sensor Systems 10(2):70–77348

Nakamura K, Manzoni P, Zennaro M, Cano JC, Calafate CT (2020) Adding349

voice messages to a low-cost long-range data messaging system. In: Pro-350

ceedings of the 6th EAI International Conference on Smart Objects and351

Technologies for Social Good, Association for Computing Machinery, New352

York, NY, USA, GoodTechs ’20, p 42–47, DOI 10.1145/3411170.3411238353

Navarro JM, Mart́ınez-España R, Bueno-Crespo A, Mart́ınez R, Cecilia JM354

(2020) Sound levels forecasting in an acoustic sensor network using a deep355

neural network. Sensors 20(3):903356

Paolini C, Adigal H, Sarkar M (2020) Upper bound on lora smart metering357

uplink rate. In: 2020 IEEE 17th Annual Consumer Communications Net-358

working Conference (CCNC), pp 1–4359

Park K, Mulc T (2019) CSS10: A collection of single speaker speech datasets360

for 10 languages. CoRR abs/1903.11269361

Spinsante S, Ciattaglia G, Del Campo A, Perla D, Pigini D, Cancellieri G,362

Gambi E (2017) A LoRa enabled building automation architecture based363

on MQTT. In: 2017 AEIT International Annual Conference, pp 1–5364

Vedal AH (2019) Unsupervised Audio Spectrogram Compression using Vector365

Quantized Autoencoders366

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 


