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Abstract. In this paper, we completely characterize, only in terms of the data, the
well-posedness of a fourth order abstract evolution equation arising from the Moore–
Gibson–Thomson equation with memory. This characterization is obtained in the scales
of vector-valued Lebesgue, Besov and Triebel–Lizorkin function spaces. Our character-
ization is flexible enough to admit as examples the Laplacian and the fractional Lapla-
cian operators, among others. We also provide a practical and general criteria that
allows Lp–Lq-well-posedness.
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1 Introduction

In recent years, there has been considerable interest in mathematical models that are close to
practical situations of the real life. In the context of acoustics, and in order to gain a better
understanding of the nonlinear model, a typical and standard reference is the linearized part
of the Westervelt equation [25] i.e.

δ

c4
0

u′′′(t) + ∆u(t)− 1
c2

0
u′′(t) = 0, t ≥ 0,

where u denotes the sound pressure, c0 is the small signal sound speed, δ is the sound dif-
fusivity and ∆ denotes the Laplacian operator. An extension of the Westervelt equation that
takes into account second sound effects and the associated thermal relaxation in viscous fluids
is the Moore–Gibson–Thomson (MGT) equation

τu′′′(t) + u′′(t)− c2∆u′(t)− b0∆u(t) = 0, t ≥ 0, (1.1)
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where b0 = δ + τc2, see [16, 27–29, 35]. The MGT equation with memory

u′′′(t) + au′′(t)− b∆u′(t)− c∆u(t) +
∫ t

0
g(t− s)∆u(s)ds = 0, t ≥ 0, (1.2)

has been treated in [13, 20, 32, 33]. When g 6= 0, the memory term introduces further dis-
sipation. From the physical point of view, the most relevant case in connection with (1.2)
is

g(s) = de−`s, d, ` > 0.

Motivated by the above kernel, the following model

u′′′′(t) + αu′′′(t) + βu′′(t)− γ∆u′′(t)− δ∆u′(t)− ρ∆u(t) = 0, t ≥ 0, (1.3)

has been recently proposed [21, 34]. It can be obtained from (1.2) summing ∂t(1.2) + `(1.2).
It should be pointed out that third and fourth order derivatives in time are observed in var-

ious areas of research. In physics and engineering third and fourth order derivatives should
always be considered when vibration occurs and particularly when this excitation induces
multi-resonant modes of vibration [6]. They should also be considered at all times when a
transition occurs such as: start up and shutdown; take-off and landing; and accelerating and
decelerating [23]. Fourth order derivatives in time appear, for instance, in the study of chaotic
hyperjerk systems [17], in the Taylor series expansion of the Hubble law [37] and in the kine-
matic performance of long-dwell mechanisms of linkage type, which are used in automatic
machines to generate intermittent motions [24].

The model (1.3) was introduced and first studied by Dell’Oro and Pata [21] in their abstract
version

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t) = 0, (1.4)

where A is a strictly positive unbounded linear operator with domain D(A) densely embed-
ded in a separable real Hilbert space H and α, β, γ, δ, ρ ∈ R. In such abstract model, the equa-
tion (1.3) corresponds to the choice H = L2(Ω) and A = −∆ with D(A) = H2(Ω) ∩ H1

0(Ω).
In [21] it was established the well-posedness for (1.4) by means of the existence of the solution
semigroup, providing a detailed description of the spectrum of its infinitesimal generator and
its relation with the growth bound. The stability properties of the related solution semigroup
were then investigated and, in particular, a necessary and sufficient condition for exponential
stability was established, in terms of the values of the stability numbers

χ = γ− δ

α
, v = β− ρα

δ
,

where α, β, γ, δ and ρ are strictly positive. Later, Liu et al. [34] discussed the well-posedness of
the solution for (1.4) with an additional memory term like in (1.2) by using the Faedo–Galerkin
method. Then, the authors in [34] proved general decay results for the case χ > 0 and v > 0
based on the perturbed energy method and on some properties of convex functions.

However, we note that all above mentioned references studied (1.4) in the context of Hilbert
spaces, and they do not include the important cases of the Lebesgue spaces Lq(Ω) except,
of course, the case q = 2. Furthermore, the class of operators A studied so far does not
allow the admissibility of more general types of differential operators like the Stokes operator,
the fractional Laplacian operator or the biharmonic ∆2, equipped with suitable boundary
conditions.
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On the other hand, using the method of operator-valued Fourier multipliers due to Arendt
and Bu [4, 5], well-posedness of the solutions for the nonhomogeneous MGT equation (1.2) in
the class of HT (or UMD) spaces, that includes the scale of Lebesgue spaces Lq(Ω) among
others, has been studied by Poblete and Pozo [36], Bu and Cai [7] and Conejero et al. [19].
This method allows the admissibility of very general linear operators A but, depending on the
regularity on the time variable, sometimes needs a more restrictive condition on the associated
operator-valued symbols, namely: R-boundedness [4, 10]. This restrictive condition can be
replaced by uniform boundedness if we assume, for instance, that time-regularity is needed
in the scales of Besov spaces (that includes the class of Hölder continuous functions) [5,11,12]
or the scale of Triebel–Lizorkin spaces [8, 9, 14].

In this paper we will take this last approach as method. We succeed in obtaining a com-
pletely new characterization of strongly well-posedness for the nonhomogeneous equation
(1.4) in the the scales of Lebesgue, Besov and Triebel–Lizorkin spaces. For that purpose, we
take advantage of a recent result proved in [19, Theorem 1.1] in order to simplify complex
computations on the operator-valued symbols associated to the corresponding nonhomoge-
neous model (1.4). In the case of the scale of Lebesgue spaces, our result reads as follows:
Assume that A is a closed linear operator with (not necessarily dense) domain D(A) defined
on a UMD space X. The following assertions are equivalent:

(i) The equation

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t)= f (t), t∈T := [0, 2π], (1.5)

is strongly Lp-well-posed, i.e. for each f ∈ Lp(T, X), there exists a unique solution

u ∈W4,p
per (T, X) ∩W2,p

per (T, [D(A)]).

(ii) Z ⊂ ρs(A) and the set {k4[k4− αik3− βk2−γk2A+ δikA+ ρA]−1 : k ∈ Z} is R-bounded.

Moreover, if (i) (or (ii)) holds, then the following maximal regularity estimate

‖u‖Lp(T,X) + ‖u′′‖W2,p
per (T,X)

+ ‖u′′′‖W3,p
per (T,X)

+ ‖u′′′′‖W4,p
per (T,X)

+ ‖Au‖Lp(T,[D(A)]) + ‖Au′‖W1,p
per (T,[D(A)])

+ ‖Au′′‖W2,p
per (T,[D(A)])

≤ C‖ f ‖Lp(T,X),

holds. The last estimate has many important applications. It is the central tool in the study of
the following problems: existence and uniqueness of solutions of nonautonomous evolution
equations; existence and uniqueness of solutions of quasilinear and nonlinear partial differ-
ential equations; stability theory for evolution equations; maximal regularity of solutions of
elliptic differential equations; existence and uniqueness of solutions of Volterra integral equa-
tions; and uniqueness of mild solutions of the NavierâĂŞStokes equations. In these applica-
tions, a maximal regularity estimate is frequently used to reduce, via a fixed-point argument,
a nonautonomous (resp. nonlinear) problem to an autonomous (resp. linear) problem. In
some cases, maximal regularity is needed to apply an implicit function theorem. According
to the literature, there has been a substantial amount of work, as one can see, for example, in
Amann [2], Denk, Hieber and Prüss [22], Clément, Londen and Simonett [18], the survey by
Arendt [3], and the bibliography therein.

Our new characterization of strongly Lp-well-posedness shows to be flexible in certain
combination of strictly positive parameters α, β, γ, δ and ρ, and that is amenable enough to
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allow fractional powers of operators. In fact, as a consequence of our results we deduce that
if A is an R-sectorial operator of angle π/2 on Lq(Ω), Ω ⊂ RN , 1 < q < ∞ and

ρ + βγ < αδ

then for any given f ∈ Lp(T, Lq(Ω)), 1 < p < ∞, the initial value problem (1.5) admits a
unique solution u ∈ W4,p

per (T, Lq(Ω)) ∩W2,p
per (T, [D(A)]). As a consequence, we obtain optimal

results, that we illustrate with two examples: A = ∆ the Laplacian, and A = −(−∆)s the
fractional Laplacian of order 1/2 < s < 1.

2 Preliminaries

We start this section introducing the notion of Lp-Fourier multiplier. We will denote the space
of bounded linear operators from X into Y endowed with the uniform operator topology as
B(X, Y). If X = Y we simply abbreviate B(X).

Definition 2.1. Let X and Y be Banach spaces and 1 ≤ p < ∞. We say that (Mk)k∈Z ⊂ B(X, Y)
is an Lp-Fourier multiplier if, for each f ∈ Lp(T, X), there exists u ∈ Lp(T, Y) such that
û(k) = Mk f̂ (k) for all k ∈ Z, where

f̂ (k) :=
1

2π

∫ 2π

0
e−ikt f (t)dt

denotes the k-th Fourier coefficient of f .

Our characterization will be provided in terms of the R-boundedness of certain sets of
operators. For that purpose, we need to recall the notion of R-boundedness.

Definition 2.2. Let X and Y be Banach spaces. A set T ⊂ B(X, Y) is called R-bounded if there
is a constant c ≥ 0 such that

‖(T1x1, . . . , Tnxn)‖R ≤ c‖(x1, . . . , xn)‖R, (2.1)

for all T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X, n ∈N where

‖(x1, . . . , xn)‖R :=
1
2n ∑

εj∈{−1,1}n

∥∥∥ n

∑
j=1

εjxj

∥∥∥.

The least c such that (2.1) is satisfied is called the R-bound of T and is denoted R(T ).

The property of R-boundedness is preserved under sum or product by a constant. More-
over, if X and Y are Hilbert spaces, R- boundedness is equivalent to uniform boundedness.
More information about these properties are summarized in [22].

The class of Banach spaces X such that the Hilbert transform defined by

(H f )(t) = lim
ε,R→∞

1
π

∫
ε≤|s|≤R

f (t− s)
s

ds, t ∈ R,

is bounded in Lp(R; X) for some p ∈ (1, ∞) is denoted by HT . The basic reference for the
class HT is the survey article by Burkholder [15], where two other characterizations for the
class HT are also given, a probabilistic one, and a geometrical one. To describe the latter,
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recall that a Banach space X is termed ξ-convex, if there is a function ξ : X× X → R which is
convex in each of its variables and such that ξ(0, 0) > 0 and

ξ(x, y) ≤ |x + y| for all x, y ∈ X with |x| = |y| = 1.

A Banach space X belongs to the class HT if and only if X is ξ-convex if and only if X has the
unconditional martingale difference property (UMD) [15]. The UMD spaces include Hilbert
spaces, Sobolev spaces Hs

p(Ω), 1 < p < ∞, Lebesgue spaces Lp(Ω, µ), `p, 1 < p < ∞, vector-
valued Lebesgue spaces Lp(Ω, µ; X) where X is a UMD space, Hardy spaces, Lorentz and
Orlicz spaces, any von Neumann algebra, and the Schatten–von Neumann classes Cp(H); 1 <

p < 1; of operators on Hilbert spaces. On the other hand, the space of continuous functions
C(K) does not have the UMD property.

We need to recall the notion of M-bounded sequence (MR-bounded sequence) of opera-
tors.

Definition 2.3 ([31]). We say that a sequence {Tk}k∈Z ⊂ B(X, Y) is M-bounded of order n
(n ∈N∪ {0}), if

sup
0≤l≤n

sup
k∈Z

‖kl∆lTk‖ < ∞, (2.2)

where
∆0Tk := Tk, ∆Tk := ∆1Tk := Tk+1 − Tk

and for n ∈N with n ≥ 2 we have

∆nTk := ∆(∆n−1Tk).

Remark 2.4.

(i) Given {Mk}k∈Z and {Nk}k∈Z be such that they are both M-bounded of order n, then
the sum is also M-bounded of the same order. Moreover, if {Mk}k∈Z and {Nk}k∈Z are
sequences in B(Y, Z) and B(X, Y) that are M-bounded of order n, then {Mk Nk}k∈Z ⊂
B(X, Z) is also M-bounded of the same order.

(ii) If we replace condition (2.2) in Definition 2.3 by the condition that the set

{kl∆l Mk : k ∈ Z }, (2.3)

is R-bounded for each 0 ≤ l ≤ n, then we say that {Mk}k∈Z ⊂ B(X, Y) is MR-bounded
of order n.

We also recall the definition of n-regular scalar sequences which was first considered in
[31].

Definition 2.5. A sequence {ck}k∈Z ⊂ C is called n-regular if the set {kp ∆pck
ck
}k∈Z is bounded

for all p = 1, . . . , n.

We finally recall the following result recently shown in [19] which provides an important
criterion for MR-boundedness in the context of maximal regularity for abstract evolution
equations.
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Theorem 2.6. Let T : D(T) ⊂ X → X be a closed linear operator defined in a Banach space X. For
each k ∈ Z let Hk : X → D(T) be a sequence of bounded and linear operators such that 0 ∈ ρ(Hk) for
all k ∈ Z. Suppose that (sk)k∈Z ⊂ C is a 1-regular sequence and denote

Mk := skTHk, (2.4)

and
Lk := (H−1

k − H−1
k+1)Hk. (2.5)

If {Mk : k ∈ Z} and {kLk : k ∈ Z} are R-bounded (uniformly bounded) sets, then {Mk : k ∈ Z} is
MR-bounded (M-bounded) of order 1. If, in addition, (sk)k∈Z is 2-regular and the set {k2∆Lk : k ∈ Z}
is R-bounded (uniformly bounded), then {Mk : k ∈ Z} is MR-bounded (M-bounded) of order 2.

3 Well-posedness in Lp-spaces

Let 1 ≤ p < ∞ and X be a Banach space. In this section, we want to give optimal conditions
that can describe the well-posedness of the problem

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t) = f (t), t ∈ T := [0, 2π] (3.1)

in 2π-periodic vector valued Lp-spaces. In other words, we want to obtain a complete char-
acterization on the existence, uniqueness and well-posedness of the problem only in terms of
the data of the problem. Here A is a closed linear operator with domain D(A).

We now introduce the notion of the following set denoted as ρs(A) as follows:

ρs(A) :=
{

s ∈ R : s4 − αis3 − βs2 − γs2A + δisA + ρA : [D(A)]→ X

is invertible and [s4 − αis3 − βs2 − γs2A + δisA + ρA]−1 ∈ B(X)
}

, (3.2)

where [D(A)] denotes a Banach space under the norm ‖x‖[D(A)] := ‖x‖+ ‖Ax‖.
For any n ∈N and 1 ≤ p < ∞ we define the vector-valued function spaces [7, Definition 2.4]:

Wn,p
per (T, X) := {u ∈ Lp(T, X) : there exists v ∈ Lp(T, X), v̂(k) = (ik)nû(k) for all k ∈ Z}.

Remark 3.1. It is important to point out that the following properties hold

(i) Given n, m ∈N, if n ≤ m then Wm,p
per (T, X) ⊂Wn,p

per (T, X).

(ii) If u ∈Wn,p
per (T, X) then for all 0 ≤ k ≤ n− 1 it follows that u(k)(0) = u(k)(2π).

Note that [4]:

Wn,p
per (T, X) = {u ∈ Lp(T, X) : u is n-times differentiable a.e.,

u(n) ∈ Lp(T, X) and u(k)(0) = u(k)(2π), 0 ≤ k ≤ n− 1}.

We refer to [4, Lemma 2.1] and [7] for more information about these spaces. In order to
consider maximal regularity for our problem we need to define the following space:

Sp(A) := W4,p
per (T, X) ∩W2,p

per (T, [D(A)]).

The space Sp(A) is a Banach space with the norm

‖u‖Sp(A) :=‖Au‖p + ‖Au′‖p + ‖Au′′‖p + ‖u‖p + ‖u′′‖p + ‖u′′′‖p + ‖u′′′′‖p.

We now introduce the following definition.
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Definition 3.2. Let 1 ≤ p < ∞ and f ∈ Lp(T, X) be given. We say that u ∈ Sp(A) is a strong
Lp-solution of equation (3.1) if it satisfies (3.1) for almost all t ∈ T. We say that equation (3.1)
is strongly Lp-well-posed if for each f ∈ Lp(T, X), there exists a unique strong Lp-solution of
equation (3.1).

As a very important consequence, we obtain the following: There exists a constant C > 0
such that for each f ∈ Lp(T, X), we have

‖u‖Sp(A) ≤ C‖ f ‖Lp .

Before we provide our main result, we need the following two theorems from [4] that
establish the equivalence between R-boundedness and the fact of being an Lp-multiplier. They
will be needed in order to characterize Lp-well-posedness for equation (3.1).

Theorem 3.3. Let X, Y be UMD spaces. If a sequence {Mk}k∈Z ⊂ B(X, Y) is MR-bounded of
order 1, then (Mk)k∈Z defines an Lp-Fourier multiplier whenever 1 < p < ∞.

Theorem 3.4. Let X, Y be Banach spaces, 1 ≤ p < ∞ and let (Mk)k∈Z ⊂ B(X, Y) be an Lp-Fourier
multiplier. Then the set {Mk : k ∈ Z} is R-bounded.

Let A be a closed linear operator such that Z ⊂ ρs(A). We denote

Nk := [ak − αbk − βck − γck A + δikA + ρA]−1, ak = k4, bk = ik3, ck = k2, k ∈ Z, (3.3)

where α, β, γ, δ, ρ ∈ R are fixed constants.
The following proposition will be an important tool for proving the main result of this

section.

Proposition 3.5. Let A be a closed linear operator defined on a UMD space X and α, β, γ, δ, ρ ∈ R.
If Z ⊂ ρs(A) and {k4Nk : k ∈ Z} and {k2ANk : k ∈ Z} are R-bounded sets, then (k4Nk)k∈Z,
(ik3Nk)k∈Z, (k2Nk)k∈Z, (k2ANk)k∈Z, (kANk)k∈Z and (ANk)k∈Z are Lp-Fourier multipliers.

Proof. We first point out that the R-boundedness of {k4Nk : k ∈ Z} immediately implies the
R-boundedness of the sets {ik3Nk : k ∈ Z} and {k2Nk : k ∈ Z}. Similarly, if by hypothesis
{k2 ANk : k ∈ Z} is R-bounded then the sets {kANk : k ∈ Z} and {ANk : k ∈ Z} are so.
Let Mk := k4Nk. In order to show that Mk is an Lp-multiplier we only need to show that
{k∆Mk : k ∈ Z} is R-bounded. We apply Theorem 2.6 with sk = k4, which is 1-regular,
Hk = Nk and T = I. By hypothesis {Mk : k ∈ Z} is R-bounded, then we only need to show
that {kLk : k ∈ Z} is R-bounded. Indeed, we have

kLk = k(Nk
−1 − N−1

k+1)Nk

= k[−∆ak + α∆bk + β∆ck + γ∆ck A− δiA]Nk

= − k∆ak

ak
Mk + α

k∆bk

bk
(bkNk) + β

k∆ck

ck
(ckNk) + γ

k∆ck

ck
(ck ANk)− δikANk.

By hypothesis then it follows that {kLk : k ∈ Z} is R-bounded. The R-boundedness of
{k∆(ik3Nk)}k∈Z and {k∆(k2Nk)}k∈Z follows similarly applying Theorem 2.6 with sk = ik3,
T = I and Hk = Nk in the first case, sk = k2, T = I and Hk = Nk in the second case.
As a consequence of Theorem 3.3 they are Lp-Fourier multipliers. On the other hand, the
R-boundedness of {k∆(k2ANk)}k∈Z, {k∆(kANk)}k∈Z and {k∆(ANk)}k∈Z also follows from
Theorem 2.6 with sk = k2, T = A and Hk = Nk in the first case, sk = k, T = A and Hk = Nk in
the second case and sk = 1, T = A and Hk = Nk in the last case.
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We now show the main result of this section that provides a computable criterion to char-
acterize the well-posedness of equation (3.1).

Theorem 3.6. Let 1 < p < ∞ and α, β, γ, δ, ρ ∈ R be given with (γ, δ, ρ) 6= (0, 0, 0). Assume that
A is a closed linear operator defined on a UMD space X. The following assertions are equivalent:

(i) Equation (3.1) is strongly Lp-well-posed;

(ii) Z ⊂ ρs(A) and the set {k4Nk : k ∈ Z} is R-bounded.

Proof. We first prove (i) =⇒ (ii). Given k ∈ Z and y ∈ X we define the function f ∈ Lp(T, X)

as f (t) = eikty. It is not difficult to check that f̂ (k) = y and 0 otherwise. By hypothesis,
equation (3.1) is Lp-well-posed and then there exists a unique u ∈ Sp(A) which solves equation
(3.1). If we take

Fourier transform in both sides of (3.1) we get:

[ak − αbk − βck − γck A + δikA + ρA]û(k) = y, (3.4)

and
[an − αbn − βcn − γcn A + δinA + ρA]û(n) = 0, n 6= k. (3.5)

This shows that [ak − αbk − βck − γck A + δikA + ρA] is surjective. On the other hand, let
x ∈ D(A) be such that

[ak − αbk − βck − γck A + δikA + ρA]x = 0.

We define u ∈ Sp(A) as u(t) = eiktx for t ∈ T. It is not difficult to see that u is a solution
for equation (3.1) when f = 0. By uniqueness, then it necessarily follows that x = 0 and then
[ak− αbk− βck−γck A+ δikA+ ρA] is bijective from D(A) onto X. Moreover, [ak− αbk− βck−
γck A + δikA + ρA]−1 ∈ B(X). Indeed, given y ∈ X and k ∈ Z let f (t) = eikty and let u be
the corresponding solution of (3.1) for f . Then û(k) = [ak − αbk − βck − γck A + δikA + ρA]−1y
and 0 otherwise.

This implies u(t) = −e−ikt[ak − αbk − βck − γck A + δikA + ρA]−1y by uniqueness. As a
consequence, there exists a positive constant C > 0 independent of y and k such that

‖u‖Sp(A) ≤ C‖ f ‖Lp ,

which implies
‖[ak − αbk − βck − γck A + δikA + ρA]−1‖ ≤ C

for all k ∈ Z. This proves the claim. We have shown that Z ⊂ ρs(A). Let Mk = k4Nk with
k ∈ Z, where Nk is defined in (3.3). To finish this implication it only remains to show that
(Mk)k∈Z is Lp-Fourier multiplier. Given f ∈ Lp(T, X), there exists u ∈ Sp(A) which is a
solution of equation (3.1) by assumption. Taking Fourier transforms on both sides of (3.1), we
get that û(k) ∈ D(A) and

[ak − αbk − βck − γck A + δikA + ρA]û(k) = f̂ (k), k ∈ Z.

Due to the invertibility of [ak − αbk − βck − γck A + δikA + ρA] we can assert that û(k) =

Nk f̂ (k), k ∈ Z. As u ∈ Sp(A) we obtain that

[̂u′′′′](k) = k4û(k) = k4Nk f̂ (k) = Mk f̂ (k).
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Finally, since u′′′′ ∈ Lp(T, X) we get that (Mk)k∈Z is Lp-Fourier multipliers and, by Theo-
rem 3.4, we conclude that the set {Mk : k ∈ Z} is R-bounded, proving (ii).

Let now show (ii) =⇒ (i). We assume that Z ⊂ ρs(A) and the set {k4Nk : k ∈ Z} is
R-bounded. A simple calculation shows the following identity

k2 ANk =
k2

γk2 − ρ− iδk

[
1− β

k2 −
iα
k

]
k4Nk −

k2

γk2 − ρ− iδk
, k ∈ Z \ {0}, (3.6)

proving that the set {k2ANk : k ∈ Z} is R-bounded, too. Let Mk = k4Nk and Sk = k2ANk. It
follows from Proposition 3.5 that (Mk)k∈Z, (ik3Nk)k∈Z and (k2Nk)k∈Z are Lp-Fourier multipli-
ers.

Note that the R-boundedness of the set {k4Nk}k∈Z implies that {kNk}k∈Z is R-bounded
and then the set {k(Nk+1− Nk)} is also R-bounded. It follows from Theorem 3.3 that {Nk}k∈Z

is an Lp-Fourier multiplier. In particular, Nk ∈ B(X, [D(A)]).
Then, for all f ∈ Lp(T, X) there exist w, u1, u2, u3 ∈ Lp(T, [D(A)]) satisfying:

ŵ(k) = Nk f̂ (k), û1(k) = Mk f̂ (k), û2(k) = −ik3Nk f̂ (k), û3(k) = −k2Nk f̂ (k).

Consequently, û1(k) = k4ŵ(k) when k ∈ Z. This implies that w ∈ W4,p
per (T; [D(A)]) [4, Lemma

2.1] and w′′′′(t) = u1(t) a.e. [4, Lemma 3.1]. In particular, w′′′′ ∈ Lp(T, [D(A)]). Similarly, we
obtain:

û2(k) = (ik)3ŵ(k) = ŵ′′′(k), û3(k) = (ik)2ŵ(k) = ŵ′′(k)

and then w′′′(t) = u2(t) and w′′(t) = u3(t). In particular, w′′, w′′′ ∈ Lp(T, [D(A)]).
By hypothesis and Proposition 3.5, it follows that {Sk}k∈Z, {kANk}k∈Z and {ANk}k∈Z are

Lp-Fourier multipliers, and then we can ensure that there exist u4, u5, u6 ∈ Lp(T, X) such that

û4(k) = −k2ANk f̂ (k) = Aŵ′′(k) = Âw′′(k),

and

û5(k) = ikANk f̂ (k) = Aŵ′(k) = Âw′(k),

as well as

û6(k) = ANk f̂ (k) = Aŵ(k) = Âw(k),

where we have used that A is closed. It follows from [4, Lemma 3.1] that w(t), w′(t), w′′(t) ∈
D(A) and Aw′′(t) = u4(t), Aw′(t) = u5(t) and Aw′(t) = u6(t). In addition, Aw, Aw′, Aw′′ ∈
Lp(T, X). As a consequence, w ∈ Sp(A). Moreover, the following identity holds:

IX = k4Nk − αik3Nk − βk2Nk − γk2ANk + δikANk + ρANk, (3.7)

and then we obtain

f̂ (k) = [k4Nk − αik3Nk − βk2Nk − γk2ANk + δikANk + ρANk] f̂ (k)

= ŵ′′′′(k) + αŵ′′′(k) + βŵ′(k) + γÂw′′(k) + δÂw′(k) + ρÂw(k).

This implies that

w′′′′(t) + αw′′′(t) + βw′′(t) + γAw′′(t) + δAw′(t) + ρAw(t) = f (t),

by the uniqueness theorem (see [4, p. 314]). It only remains to prove that the solution is
unique. Indeed, for a given w ∈ Sp(A) that satisfies equation (3.1) for f = 0, if we take
Fourier transform we get that [ak − αbk − βck − γck A + δikA + ρA]ŵ(k) = 0 for all k ∈ Z.
Hence w = 0 since Z ⊂ ρs(A). Thus, equation (3.1) is strongly Lp-well-posed.
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We point out that Lp-well-posedness does not depend on the parameter p, that is, if equa-
tion (3.1) is strongly Lp-well-posed for some 1 < p < ∞, then it is strongly Lp-well-posed for
all 1 < p < ∞.

4 Well-posedness in Besov and Triebel–Lizorkin spaces

In this section, we now analyze the well-posedness of equation (3.1) in periodic Besov spaces
Bs

p,q(T, X) and periodic Triebel–Lizorkin spaces Fs
p,q(T, X). The definition and properties of

vector-valued periodic Besov spaces can be found in [5].
Given 1 ≤ p, q ≤ ∞ and s > 0, we define the maximal regularity space that describes the

strongly Bs
p,q-well-posedness of the equation (3.1) by

Sp,q,s(A) := Bs+4
p,q (T, X) ∩ Bs+2

p,q (T, [D(A)]).

The vectorial space Sp,q,s(A) is a Banach space with the norm

‖u‖Sp,q,s(A) :=‖u′′‖Bs
p,q
+ ‖u′′′‖Bs

p,q
+ ‖u′′′′‖Bs

p,q
+ ‖Au‖Bs

p,q
+ ‖Au′‖Bs

p,q
+ ‖Au′′‖Bs

p,q
.

Analogously to the case Lp we can define the strongly Bs
p,q-well-posedness for equation

(3.1) as follows.

Definition 4.1. Let 1 ≤ p, q < ∞, s > 0 and f ∈ Bs
p,q(T, X) be given. We say that u ∈ Sp,q,s(A)

is a strong Bp,q-solution of (3.1) if it satisfies (3.1) for all t ∈ T. We say that (3.1) is strongly
Bs

p,q-well-posed if for each f ∈ Bs
p,q(T, X), there exists a unique strong Bs

p,q-solution of (3.1).

Note that if (3.1) is strongly Bs
p,q-well-posed, by the Closed Graph Theorem, there exists a

constant C > 0 such that for each f ∈ Bs
p,q(T, X), we have

‖u‖Sp,q,s(A) ≤ C‖ f ‖Bs
p,q

.

We now introduce the following notion that corresponds to Bs
p,q-Fourier multiplier (see [4]).

Definition 4.2. Let X, Y be Banach spaces, 1 ≤ p, q < ∞, s ∈ R and (Mk)k∈Z ⊂ B(X, Y). We say
that (Mk)k∈Z is a Bs

p,q-Fourier multiplier if, for each f ∈ Bs
p,q(T, X) there exists u ∈ Bs

p,q(T, Y)
such that

û(k) = Mk f̂ (k)

for all k ∈ Z.

The following theorem contained in [5] states that M-boundedness of order 2 is sufficient
for an operator valued symbol to be a Bs

p,q- Fourier multiplier.

Theorem 4.3. Let X, Y be Banach spaces. If (Mk)k∈Z ⊂ B(X, Y) is M-bounded of order 2, then for
1 ≤ p, q ≤ ∞, s ∈ R the set (Mk)k∈Z is a Bs

p,q-Fourier multiplier.

The following result provides necessary conditions for certain sets which will be needed
to characterize strongly Bs

p,q-well-posedness.

Proposition 4.4. Let A be a closed linear operator defined on a UMD space X and α, β, γ, δ, ρ ∈
R. If Z ⊂ ρs(A) and the sets {k4Nk : k ∈ Z} and {k2ANk : k ∈ Z} are uniformly bounded,
then (k4Nk)k∈Z, (ik3Nk)k∈Z, (k2Nk)k∈Z, (k2ANk)k∈Z, (kANk)k∈Z and (ANk)k∈Z are Bs

p,q-Fourier
multipliers.
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Proof. Let Mk = k4Nk. In order to show that Mk is a Bs
p,q-Fourier multiplier and according to

Theorem 4.3, we need to prove that supk∈Z(‖Mk‖+ ‖k∆Mk‖) < ∞ and supk∈Z ‖k2∆2Mk‖ < ∞.
The first inequality holds as a consequence of the hypothesis and Proposition 3.5. Therefore,
we only need to show the second one which will be done applying Theorem 2.6 to sk = k4,
which is clearly a 2-regular sequence, Hk = Nk and T = I. By hypothesis, supk∈Z ‖Mk‖ < ∞.
Moreover, by Proposition 3.5 it follows that supk∈Z ‖kLk‖ < ∞, then it only remains to show
that supk∈Z ‖k2∆Lk‖ < ∞. Indeed, we have

Lk = (Nk
−1 − N−1

k+1)Nk = [−∆ak + α∆bk + β∆ck + γ∆ck A− δiA]Nk.

Then,

k2∆Lk = k2[(ak+1 − ak+2)Nk+1 − (ak − ak+1)Nk]

+ αk2[(bk+2 − bk+1)Nk+1 − (bk+1 − bk)Nk]

+ βk2[(ck+2 − ck+1)Nk+1 − (ck+1 − ck)Nk]

+ γk2[(ck+2 − ck+1)ANk+1 − (ck+1 − ck)ANk]

− δi(ANk+1 − ANk), (4.1)

where ak = k4 and bk = ik3 and ck = k2. We only need to prove that each term is bounded.
First of all, a simple calculus shows that:

(ak+1 − ak+2)Nk+1 − (ak − ak+1)Nk = −(∆2ak)Nk+1 +
∆ak

ak

[
(akNk − ak+1Nk+1) + Nk+1(∆ak)

]
.

Therefore

k2[(ak+1 − ak+2)Nk+1 − (ak − ak+1)Nk] =

− k2 (∆
2ak)

ak

ak

ak+1
(ak+1Nk+1) + k

∆ak

ak

[
k(akNk − ak+1Nk+1) + ak+1Nk+1

ak

ak+1

{
k(∆ak)

ak

}2
]

.

Since the sequence ak is 2-regular, Mk = akNk and k∆Mk are bounded, the above identity
shows that

sup
k∈Z

‖k2[(ak+1 − ak+2)Nk+1 − (ak − ak+1)Nk]‖ < ∞.

Analogously and following the same procedure as above, using the fact that bk is also 2-
regular, bkNk and k∆(bkNk) are bounded, we obtain that

sup
k∈Z

‖k2[(bk+2 − bk+1)Nk+1 − (bk+1 − bk)Nk]‖ < ∞.

Following the same idea we get that

sup
k∈Z

‖k2[(ck+2 − ck+1)Nk+1 − (ck+1 − ck)Nk]‖ < ∞

and
sup
k∈Z

‖k2[(ck+2 − ck+1)ANk+1 − (ck+1 − ck)ANk]‖ < ∞

since ck is 2-regular and Sk = ckNk and k∆Sk are bounded in the first case, meanwhile Rk =

ck ANk and k∆Rk are bounded for proving the second inequality. Finally, the fact that k∆Rk is
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bounded immediately implies the boundedness for the last summand −δi(ANk+1 − ANk) in
(4.1). Consequently, (k4Nk)k∈Z is a Bs

p,q-Fourier multiplier.
We now consider Mk = ik3Nk. In order to prove that it is a Bs

p,q-Fourier multiplier it
only remains to show again that supk∈Z ‖k2∆2Mk‖ < ∞, which can be do using the sec-
ond part of Theorem 2.6 with sk = ik3, Hk = Nk and T = I. By hypothesis and Proposi-
tion 3.5 it follows that supk∈Z ‖Mk‖ < ∞ and supk∈Z ‖kLk‖ < ∞, respectively. The inequality
supk∈Z ‖k2∆Lk‖ < ∞ has already been shown since Lk is exactly the same that in the above
computation. Therefore, (ik3Nk)k∈Z is a Bs

p,q-Fourier multiplier. Similarly, we obtain that
(k2Nk)k∈Z is a Bs

p,q-Fourier multiplier.
Let now Mk = k2ANk. From Proposition 3.5 it follows that supk∈Z(‖Mk‖+ ‖k∆Mk‖) < ∞.

To prove that supk∈Z ‖k2∆2Mk‖ < ∞ we apply Theorem 2.6 with sk = k2, Hk = Nk and T = A.
It remains to show that supk∈Z ‖k2∆Lk‖ < ∞, where Lk is the same that in the above calculus.
Therefore, (k2ANk)k∈Z is a Bs

p,q-Fourier multiplier. The same procedure can be applied to
Mk = kANk with sk = k, Hk = Nk and T = A and Mk = ANk with sk = 1, Hk = Nk and
T = A. The conclusion then holds and consequently (kANk)k∈Z and (ANk)k∈Z are Bs

p,q-
Fourier multipliers.

We now enunciate the main result of this section. The proof follows essentially the same
steps than the one of Theorem 3.6. However, we include here the essential changes of the
proof that differ from Theorem 3.6 in order to make it clear to the reader.

Theorem 4.5. Let 1 ≤ p, q ≤ ∞, s > 0 and α, β, γ, δ, ρ ∈ R be given with (γ, δ, ρ) 6= (0, 0, 0).
Assume A is a closed linear operator defined on a Banach space X. The following assertions are
equivalent:

(i) The equation

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t) = f (t), t ∈ [0, 2π]

is strongly Bs
p,q-well-posed;

(ii) Z ⊂ ρs(A) and supk∈Z ‖k4Nk‖ < ∞.

Proof. (i) =⇒ (ii) follows the same lines of Theorem 3.6 and therefore is omitted. We prove
(ii) =⇒ (i). We assume that Z ⊂ ρs(A) and the set {k4Nk : k ∈ Z} is uniformly bounded.
The identity (3.6) shows that the set {k2ANk : k ∈ Z} is uniformly bounded.

Analogously, the identities kNk =
1
k3 (k4Nk) and k2Nk =

1
k2 (k4Nk) show that the sets {kNk :

k ∈ Z} and {k2Nk : k ∈ Z} are also uniformly bounded. Therefore the sets {k(Nk+1−Nk)}k∈Z

and {k2(Nk+2 − 2Nk+1 + Nk)}k∈Z are uniformly bounded and hence, by Theorem 4.3, the set
{Nk}k∈Z is a Bs

p,q-Fourier multiplier. Moreover, by hypothesis and Proposition 4.4 it follows
that (k4Nk)k∈Z, (ik3Nk)k∈Z, (k2Nk)k∈Z, (k2ANk)k∈Z, (kANk)k∈Z and (ANk)k∈Z are Bs

p,q-Fourier
multipliers.

Let f ∈ Bs
p,q(T, X) be given. Since (k4Nk)k∈Z, (ik3Nk)k∈Z, (k2Nk)k∈Z are Bs

p,q multipliers,
there exist w, u1, u2, u3 ∈ Bs

p,q(T, [D(A)]) satisfying:

ŵ(k) = Nk f̂ (k), û1(k) = k4Nk f̂ (k), û2(k) = −ik3Nk f̂ (k), û3(k) = −k2Nk f̂ (k). (4.2)

Consequently, û1(k) = k4ŵ(k) when k ∈ Z. This implies that w ∈ Bs+4
p,q (T; [D(A)]) and

w′′′′(t) = u1(t). In particular, w′′′′ ∈ Bs
p,q(T, [D(A)]). Similarly, we obtain:

û2(k) = (ik)3ŵ(k) = ŵ′′′(k), û3(k) = (ik)2ŵ(k) = ŵ′′(k),
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and then w′′′(t) = u2(t) and w′′(t) = u3(t). In particular, w′′, w′′′ ∈ Bs
p,q(T, [D(A)]).

By hypothesis and Proposition 4.4 the sets {k2ANk}k∈Z, {kANk}k∈Z and {ANk}k∈Z are
Bs

p,q-Fourier multipliers, and then we have that there exist u4, u5, u6 ∈ Bs
p,q(T, X) such that

û4(k) = −k2ANk f̂ (k) = Aŵ′′(k) = Âw′′(k),

û5(k) = ikANk f̂ (k) = Aŵ′(k) = Âw′(k), (4.3)

û6(k) = ANk f̂ (k) = Aŵ(k) = Âw(k).

where we have used that A is closed. It follows from [4, Lemma 3.1] that w(t), w′(t), w′′(t) ∈
D(A) and Aw′′(t) = u4(t), Aw′(t) = u5(t) and Aw′(t) = u6(t) a.e. In addition, Aw, Aw′,
Aw′′ ∈ Bs

p,q(T, X). Replacing (4.2) - (4.3) in the following identity:

f̂ (k) = k4Nk f̂ (k)− αik3Nk f̂ (k)− βk2Nk f̂ (k)− γk2ANk f̂ (k) + δikANk f̂ (k) + ρANk f̂ (k),

we obtain by the uniqueness of the Fourier coefficients that w solves equation (3.1). The
uniqueness follows the same lines as in Theorem 3.6.

We point out that the second assertion in Theorem 4.5 does not depend on the parameters
p, q and s, and then strongly Bs

p,q-well-posedness for equation (3.1) holds for some 1 ≤ p, q ≤
∞, s > 0 if and only if it is strongly Bs

p,q-well-posed for all 1 ≤ p, q ≤ ∞, s > 0. To finish this
section, we consider well-posedness in periodic Triebel–Lizorkin spaces Fs

p,q with 1 ≤ p < ∞,
1 ≤ q ≤ ∞, s ∈ R. We do not include the formal definition of these spaces but we refer the
reader to [14] for the details and properties of these spaces.

Using a similar argument as the one in the proof of Theorem 4.5, we obtain the following
characterization of the strongly Fs

p,q-well-posedness of equation (3.1). In order to prove this
result we use the operator-valued Fourier multiplier theorem proved in [14]. We omit the
details.

Theorem 4.6. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 and α, β, γ, δ, ρ ∈ R be given with (γ, δ, ρ) 6=
(0, 0, 0). Assume that A is a closed linear operator defined on a Banach space X. The following asser-
tions are equivalent:

(i) The equation

u′′′′(t) + αu′′′(t) + βu′′(t) + γAu′′(t) + δAu′(t) + ρAu(t) = f (t), t ∈ [0, 2π]

is strongly Fs
p,q-well-posed;

(ii) Z ⊂ ρs(A) and supk∈Z ‖k4Nk‖ < ∞.

As it was pointed out for Bs
p,q-well-posedness, the problem (3.1) is strongly Fs

p,q-well-posed
for all 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0 if it is so for some 1 ≤ p < ∞, 1 ≤ q ≤ ∞, s > 0.

5 Sufficient conditions: Lp–Lq-well-posedness

Based on the previous abstract results, we give in this section a practical criteria to widely
solve the following Cauchy problem in Lp–Lq spaces with periodic boundary conditions:{

∂ttttu(x, t) + α∂tttu(x, t) + β∂ttu(x, t) + γAx∂ttu(x, t) + δAx∂tu(x, t) + ρAxu(x, t) = f (x, t),

u(x, 0) = u(x, 2π), ∂tu(x, 0) = ∂tu(x, 2π), ∂ttu(x, 0) = ∂ttu(x, 2π), ∂tttu(x, 0) = ∂tttu(x, 2π),
(5.1)
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where x ∈ Ω ⊂ RN and t ∈ (0, 2π). We begin with some preliminaries on R-sectorial oper-
ators. Given any θ ∈ (0, π), we denote Σθ := {z ∈ C : | arg(z)| < θ, z 6= 0}. Recall that a
closed operator A : D(A) ⊂ X → X with dense domain D(A) is said to be R-sectorial of angle
θ if the following conditions are satisfied:

(i) σ(A) ⊆ C \ Σθ ;

(ii) The set {z(z− A)−1 : z ∈ Σθ} is R-bounded in B(X).

The permanence properties for R-sectorial operators are similar to those for sectorial op-
erators. For instance, they behave well under perturbations. Sufficient conditions for R-
sectoriality are studied in the monograph [22, Chapter 4]. As a consequence of our main
theorem, we obtain the following remarkable result.

Theorem 5.1. Assume that X is a UMD space, 1 < p < ∞, α, β, γ, δ, ρ ∈ (0, ∞) and let A be an
R-sectorial operator on X of angle π/2. If ρ + βγ < αδ then equation (5.1) is strongly Lp-well-posed.

Proof. Define dk =
(k4−βk2)−iαk3

(γk2−ρ)−iδk and we note that

<(dk) =
k2[γk4 − k2(ρ + βγ− αδ) + ρβ]

(γk2 − ρ)2 + δ2k2 > 0,

since ρ + βγ < αδ. Therefore dk ∈ Σπ/2. The R-sectoriality of angle π/2 of the operator A
ensures the invertibility of dk I − A and the set {dk(dk − A)−1}k∈Z is R-bounded. Finally, we
note the following identity

k4Nk =
k4

(k4 − βk2)− iαk3 dk(dk − A)−1, k ∈ Z,

which proves that the set {k4Nk}k∈Z is R-bounded. By Theorem 3.6 we conclude that the
problem (3.1) is strongly Lp-well-posed.

Example 5.2. Let 1 < p < ∞ and α, β, γ, δ, ρ be strictly positive real numbers satisfying ρ +

βγ < αδ. We consider the following equation in a bounded smooth domain Ω ⊂ RN :
[∂ttttu + α∂tttu + β∂ttu + γ∆∂ttu + δ∆∂tu + ρ∆u](x, t) = f (x, t), for (x, t) ∈ Ω× (0, 2π);

u(x, t) = 0, for (x, t) ∈ ∂Ω× (0, 2π);

u(x, 0) = u(x, 2π), ∂tu(x, 0) = ∂tu(x, 2π), ∂ttu(x, 0) = ∂ttu(x, 2π), ∂tttu(x, 0) = ∂tttu(x, 2π),
(5.2)

where ∆ denotes the Laplacian operator. By [26, Appendix] we have that the Lq realization
∆q in X = Lq(Ω) of ∆ is an R-sectorial operator in X with arbitrary angle θ ∈ (0, π), and
that ∆q coincides with ∆ in the domain D(∆q) of ∆q. Therefore, we can denote (∆q, D(∆q)) by
(∆, Dq(∆)). Thus, Theorem 5.1 implies that for any given f ∈ Lp(T, Lq(Ω)) the solution u of
the problem (5.2) written in abstract form as:[∂ttttu + α∂tttu + β∂ttu + γ∆∂ttu + δ∆∂tu + ρ∆u](t) = f (t), for t ∈ (0, 2π);

u(x, 0) = u(x, 2π), ∂tu(x, 0) = ∂tu(x, 2π), ∂ttu(x, 0) = ∂ttu(x, 2π), ∂tttu(x, 0) = ∂tttu(x, 2π),
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exists, is unique and belongs to the space W4,p
per (T, Lq(Ω)) ∩W2,p

per (T, [D(∆q)]). Moreover, for
any 1 < p, q < ∞ the estimate

‖u‖Lp(T,Lq(Ω)) + ‖u′′‖W2,p
per (T,Lq(Ω))

+ ‖u′′′‖W3,p
per (T,Lq(Ω))

+ ‖u′′′′‖W4,p
per (T,Lq(Ω))

+ ‖Au‖Lp(T,[D(∆q)]) + ‖Au′‖W1,p
per (T,[D(∆q)])

+ ‖Au′′‖W2,p
per (T,[D(∆q)])

≤ C‖ f ‖Lp(T,Lq(Ω))

holds.

We finish with the following example that considers the fractional Laplacian operator.

Example 5.3. Let 1 < p < ∞, 1
2 < s < 1 and α, β, γ, δ, ρ be strictly positive real numbers sat-

isfying ρ + βγ < αδ. Consider the following nonlocal equation in a bounded smooth domain
Ω ⊂ RN :

[∂ttttu + α∂tttu + β∂ttu

−γ(−∆)s∂ttu− δ(−∆)s∂tu− ρ(−∆)su](x, t) = f (x, t), for (x, t) ∈ RN × (0, 2π);

u(x, t) = 0, for (x, t) ∈ ∂Ω× (0, 2π);

u(x, 0) = u(x, 2π), ∂tu(x, 0) = ∂tu(x, 2π), ∂ttu(x, 0) = ∂ttu(x, 2π), ∂tttu(x, 0) = ∂tttu(x, 2π),
(5.3)

where the fractional Laplacian −(−∆)s is defined by

(−∆)sv := F−1
ξ ( |ξ| (Fv)(ξ) ), v ∈ H1,q(Ω).

For X = Lq(Ω) and Dq((−∆)s) := H1,q(Ω), 1 < q < ∞, the fractional operator −(−∆)s :
H1,q(Ω) → Lq(Ω) is also R-sectorial of angle θ for an arbitrary θ ∈ (0, sπ), see [1, Proposi-
tion 2.2]. Hence, by Theorem 5.1, for any f ∈ Lp(T, Lq(Ω)) there exists a unique solution
u ∈ W4,p

per (T, Lq(Ω)) ∩W2,p
per (T, H1,q(Ω)) of the problem (5.3) and satisfies the following maxi-

mal regularity estimate

‖u‖Lp(T,Lq(Ω)) + ‖u′′‖W2,p
per (T,Lq(Ω))

+ ‖u′′′‖W3,p
per (T,Lq(Ω))

+ ‖u′′′′‖W4,p
per (T,Lq(Ω))

+ ‖Au‖Lp(T,H1,q(Ω)) + ‖Au′‖W1,p
per (T,H1,q(Ω))

+ ‖Au′′‖W2,p
per (T,H1,q(Ω))

≤ C‖ f ‖Lp(T,Lq(Ω)).

Analogous examples hold for the cases of the scales of Besov and Triebel–Lizorkin spaces,
replacing R-sectorial operator by sectorial operator and R-boundedness by uniform bounded-
ness. For instance, from Theorem 4.5 we obtain the following result.

Theorem 5.4. Let X be a Banach space, 1 < p < ∞, α, β, γ, δ, ρ ∈ (0, ∞) and let A be a sectorial
operator on X of angle π/2. If ρ + βγ < αδ then equation (5.1) is strongly Bs

p,q-well-posed.
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