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Abstract
Generalized Spatial Modulation is a recently developed technique that is designed to 
enhance the efficiency of transmissions in MIMO Systems. However, the procedure 
for correctly retrieving the sent signal at the receiving end is quite demanding. Spe-
cifically, the computation of the maximum likelihood solution is computationally 
very expensive. In this paper, we propose a parallel method for the computation of 
the maximum likelihood solution using the parallel computing library OpenMP. The 
proposed parallel algorithm computes the maximum likelihood solution faster than 
the sequential version, and substantially reduces the worst-case computing times.
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1 Introduction

Multiple Input Multiple Output (MIMO) wireless communication systems are 
becoming the standard communication mode in most currently existing and 
future systems. Ranging from small systems (routers, cell phones) with a small 
number of antennas to systems with hundreds of antennas, MIMO systems offer 
additional performance compared with traditional single-antenna equipment [1, 
2]. However, the additional performance of MIMO systems comes at the price 
of additional complexity in the detection. The correct detection at the receiving 
end of the signal sent involves finding the solution (exact or approximated) of a 
discrete minimization problem. There are many methods proposed, with the usual 
trade-off between complexity and accuracy [3–7].

The most accurate solution, the so-called Maximum Likelihood (ML) solution 
is obtained by solving the discrete minimization problem exactly. This amounts to 
finding the solution with the smallest error (in a least squares sense) among all of 
the possible solutions. The best methods for this problem belong to the family of 
sphere decoders (SD). These methods can be described as tree search (or branch 
and bound) methods that are adapted to the MIMO detection problem. The best 
SD implementations [3, 8–10] feature an adjustable radius (equal to the error of 
the best solution found), which is used to prune whole branches of possible solu-
tions. The complexity of the sphere decoder (although relatively efficient com-
pared with other methods) grows exponentially with the number of antennas and 
with the cardinality of the constellation used for the digital transmission.

A recent development in MIMO wireless transmission is the Generalized Spa-
tial Modulation (GSM) technique (not to be mistaken with the old GSM cell-
phone technology “Global System for Mobile”) [11–13]. GSM-MIMO has been 
developed for systems with many transmit antennas. The idea behind GSM is 
to use only a subset of the antennas for each transmission, which are called the 
“active” antennas. The subsets of antennas (i.e., configurations) that can be used 
to transmit are fixed, numbered, and known in advance by the receiver. As a con-
sequence, the configuration of active antennas in each transmission is used to 
convey extra bits. Since the ML detection for GSM-MIMO transmission involves 
solving several (possibly many) standard MIMO subproblems, it has a high 
degree of complexity. In fact, the complexity of ML detection is too high to be 
used in actual transmissions. Nevertheless, ML detection provides an important 
benchmark for research. Therefore, it is important for researchers to be able to 
compute the ML solution in large GSM-MIMO setups as a necessary resource for 
the design and development of MIMO GSM communication systems.

Different techniques have been proposed to reduce the cost. A procedure based 
on a sequential detection and adjustable radius was proposed in [14]. The main 
idea is the use of an adjustable radius that is similar to the one used in stand-
ard MIMO sphere decoders, with a previous ordering of the subproblems. In this 
work we propose a modification of the method described in [14] that is designed 
to take advantage of the available cores, using the parallel computing library 
OpenMP [15]. The proposed method sorts the subproblems similarly to what is 
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described in [14]. Then, the subproblems are distributed among the threads. The 
main contribution is that a single radius is used for all of the subproblems, which 
is updated whenever any thread finds a better solution.

We show through simulations that the parallel method greatly reduces the com-
putational cost of the sequential SD, having more influence in the high noise regime.

Section 2 of this work describes the state of the art, including the MIMO prob-
lem, the Sphere Decoder, the GSM problem, and the sequential detector described 
in [14]. Section 3 is devoted to the proposed parallelization, and Sect. 4 describes 
the experiments. Finally, our conclusions are presented in Sect. 5.

2  Problem description and related work

2.1  The Standard MIMO detection problem

The transmission and reception of a signal through a wireless MIMO system is usu-
ally modeled as:

where

– � ∈ ΩnT is the sent signal; nT is the number of transmit antennas.
– Ω ⊂ ℂ is a finite constellation or alphabet, with cardinality L. The cardinality of 

the constellation L is usually an even power of 2. Typical values of L are 4, 16, 
64 or 256.

– � ∈ ℂ
nR is the received signal, nR is the number of receive antennas. In standard 

MIMO systems, nR ≥ nT.
– � ∈ ℂ

nR,nT is the matrix modelling the transmission, known as channel matrix.
– � denotes a white-Gaussian noise (AWGN) complex vector. � is unknown, but 

the statistical properties of the noise are usually known.

Then, the ML MIMO detection problem is modeled as a minimization problem, try-
ing to recover the sent signal �opt when � and � are known:

It is known that the MIMO minimization problem (2) is NP-Hard for arbitrary � 
and � [8, 10]. However, in MIMO problems the received signal is not completely 
arbitrary, because it is obtained perturbing the received signal with noise [16]. This 
has been used to propose some complexity estimates for SD algorithms, for certain 
limited cases [3]. However, it is generally acknowledged that to obtain complexity 
estimates for SD algorithms is intractable [16]. The performance of SD algorithms 
is usually studied through Monte-Carlo simulations.

(1)
� = � ⋅ � + �,

� ∈ ΩnT ⊂ ℂ
nT

(2)�̂ = argmin
�∈ΩnT⊂ℂnT

‖� ⋅ � − �‖2 ,
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There are several suboptimal algorithms for solving (2), with smaller accuracy but 
also with smaller computational complexity. The simplest suboptimal algorithm to 
solve (2) starts by removing the constraint on the components of � (they must belong to 
Ω a finite subset of ℂ ) and solving the continuous least squares problem:

However, the obtained vector � is not a feasible solution because (in the presence of 
noise) its components �� will not belong to Ω . In order to obtain a feasible solution, 
all of the components of � must be rounded to the nearest element of the constella-
tion Ω (this process is called quantization). We denote the vector obtained after this 
process as �̂� . This vector is a feasible solution which is known as the Zero-Forcing 
(ZF) estimator. This estimator may be a good approximation to the ML solution �̂ 
when the noise of the transmission is low, but it is known to give bad results if the 
noise increases. The computation of the � vector requires the QR decomposition of 
the channel matrix as � = � ⋅ � , where � is orthogonal and � is upper triangular. 
Then, � is computed through premultiplication of the received signal � by the matrix 
�T and resolution of the triangular system of equations � ⋅ � = �T

⋅ �.
There are many more methods for approximately solving the problem (2): MMSE, 

Nulling and cancelling [17], K-Best [6], or Fixed Complexity Sphere Decoding [18]. In 
this work, we are only concerned with ML detection and SD methods. To apply the SD 
algorithm, it is necessary to transform problem (2) into an equivalent problem using the 
QR decomposition of the channel matrix:

where � = � ⋅ � , � is upper triangular and � = �T
⋅ � . The solution �̂ is obtained by 

traversing a tree of partial solutions, where the maximum depth of the tree is nT and 
each leaf can have at most L descendants (recall that L is the cardinality of the con-
stellation Ω ). A full search of the tree would generate all of the LnT possible signals, 
which would be very inefficient.

The number of solutions to be visited in the tree can be reduced by selecting a radius 
d so that the solutions � that do not fulfill the condition:

are discarded. In order to have a starting realistic radius for the search, sometimes 

the ZF solution is computed first and its squared distance 
(
d =

‖‖‖� ⋅ �̂� − �
‖‖‖
2
)

 is 

used as the starting radius. A simplified version of this algorithm is given as 
Algorithm 1. 

(3)� = argmin
�∈ℂnT

‖� ⋅ � − �‖2 .

(4)�̂ = argmin
�∈ΩnT⊂ℂnT

‖� ⋅ � − �‖2 ,

(5)‖� ⋅ � − �‖2 ≤ d
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SD algorithms have been described in many papers, with many possible imple-
mentations. Algorithm  1 shows a simplified iterative implementation, which is 
included for the sake of completeness and to illustrate the use of the radius. Algo-
rithm 1 looks for solutions in the form of vectors with nT components, (s1, s2, ..., snT ) , 
where si ∈ Ω . As mentioned above, Algorithm 1 implements a depth-first tree search 
using the best distance obtained (lines 21 to 23 of Algorithm 1.) to prune branches 
of the tree (line  26). The variable Level indicates the depth of the present partial 
solution in the tree. The starting level is Level = nT and the possible solutions 
(“leaves”) are located at Level = 1 . The ���� vector (along with the Level variable) 
is used to keep track of the position of the present partial solution in the tree. At any 
given moment during the execution of Algorithm 1, if ���� = (..., i

Level
, i
Level+1, ..., inT

) , 
it means that the actual partial solution considered is the vector 
(..., siLevel , siLevel+1 , ..., sinT

) .
The performance of SD algorithms can improve through different types of opti-

mizations. The most well-known is the ordering of the symbols of the constellation 
(known as Schnorr-Euchner ordering) [9]. In its simplest form, the Schnorr-Euchner 
ordering computes previously the estimator � solving problem (3), and sorts the ele-
ments of the constellation Ω differently for each antenna: for the i-th antenna, the 
elements of the constellation are sorted by increasing distance of the elements to the 
i-th component of the estimator � . The Schnorr-Euchner ordering has been used in 
the experiments in this work.

The complexity of Algorithm  1 (and nearly all SD versions) worsens notably 
when the noise increases. There are sophisticated bounds that reduce the depend-
ence on noise [19], but these algorithms have a significant computational cost and 
are usually worthwhile mainly for large MIMO problems.

2.2  GSM‑MIMO detection problem

GSM-MIMO is a transmission scheme that is designed to obtain high throughput 
communications in systems with many transmit antennas. Given a system with nT 
transmit antennas and nR receive antennas, with nT >> nR , the distinguishing feature 
of GSM-MIMO systems is that each transmission will use only nA transmit anten-
nas, which are selected among the nT transmit antennas. Of course, nA < nT.

Given that nA is the number of antennas that can be activated in each transmis-
sion, then the total number of possible subsets of active antennas is 

(
nT

nA

)
 . Usually, not 

all of the possible configurations are considered as valid configurations (i.e., not all 
possible configurations are used for transmission). The number of valid configura-
tions nc is usually chosen as 2nA . Typical values of nA are 4, 6, 8. Therefore, realistic 
values of nc are 16, 64, 256. Each configuration can be described as a set of antenna 
indexes, {ik1 , ik2 ,… , iknA

}, 1 ≤ ikj ≤ nT , j = 1,⋯ , nA . These sets are known in 
advance by the receiver.

Let Ω be the constellation of complex symbols of size |Ω| = L . In each transmis-
sion, a symbol vector � = (s1, ..., snA ) is sent (as in standard MIMO transmission). 
However, in GSM-MIMO additional bits are implicitly sent through the selected 
configuration, achieving a higher throughput. This also means that the detection 
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process must include the determination of the configuration (the set of active anten-
nas used for the transmission) .

Let � ∈ ℂ
nR×nT be the MIMO overall channel matrix, with independent elements 

hij ∼ N(�, �) . The k-th antenna configuration (with antennas {ik1 , ik2 ,⋯ , iknA
} ) 

defines its corresponding channel submatrix �� , which is formed by the columns 
{ik1 , ik2 ,⋯ , iknA

} of the overall channel matrix � . If the transmission is carried out 
through the k-th configuration, the received vector can be written as

where � denotes a white-Gaussian noise (AWGN) complex vector. Thus, the ML 
detector for the GSM problem can be described as:

Therefore, the solution is formed jointly by the signal sent and the index of the con-
figuration used for the transmission.

2.3  GSM‑ML detection

Standard ML MIMO detection methods cannot be applied directly to GSM problems 
when nT > nR because it is not possible to obtain the required triangular factoriza-
tion of the channel matrix. In such cases, to the best of our knowledge, the only way 
available for computing the ML GSM-MIMO solution is to decouple the problem in 
nc ML standard MIMO detection subproblems, one for each antenna configuration:

Equation (8) defines the ML estimator for the k-th antenna configuration. A trivial 
approach to GSM-ML detection would be to use a standard ML MIMO SD like the 
one described in Algorithm 1 to solve subproblems (8) for all k. By comparing the 

(6)� = �� ⋅ � + �,

(7){k̂, ŝ} = argmin
k∈{1,...,nc},�∈Ω

nA

‖� −�� ⋅ �‖2.

(8)ŝk = argmin
�∈ΩnA

‖� −�� ⋅ �‖2.

; ...

SD

;

SD

;

SD

Fig. 1  GSM-ML basic detection procedure
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optimal Euclidean distances dk = ‖𝐲 −𝐇𝐤 ⋅ �̂�𝐤‖2 for k = 1, ..., nc , we can obtain the 
minimal distance, which will indicate the optimal configuration and thus the ML 
solution. However, the cost of this procedure is very high because nc different stand-
ard ML MIMO subproblems must be solved.

Figure 1 illustrates the procedure. Each box represents the resolution of a MIMO 
subproblem (8), returning its ML solution and the associated distance. The GSM-
ML solution is the ML solution of the subproblem with the smallest associated 
distance.

2.4  Sequential detection with adjustable radius and ordering of subproblems

The main goal of the idea proposed in [14] is to decrease the computational cost of 
GSM-ML detection through sequential detection and the use of an adjustable radius 
across all of the subproblems (8). The idea of the adjustable radius in GSM-ML 
detection comes from a similar technique that is used in most standard MIMO SD 
detectors.

In MIMO SD detectors, the initial value of the radius is chosen as the squared 
Euclidean distance of the best feasible solution obtained so far. MIMO SD detectors 
search among the possible solutions, looking for the one with the smallest Euclidean 
distance. When a partial solution has a larger distance than the actual radius, this 
partial solution is discarded. When a solution is found with a distance that is smaller 
than the radius, the radius is updated as the squared Euclidean distance of the new 
solution. [3, 8–10].

The selection of the initial radius has a strong impact in the performance of SD 
MIMO detectors. When the initial radius is too large, too many partial solutions are 
examined, with a high computational cost; when the initial radius is smaller than the 
distances of all of the possible solutions, the detection ends very fast and no solution 
is returned [3, 8–10].

...

SD SD SD

...

Fig. 2  Procedure of sequential detection with adjustable radius
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The technique of the adjustable radius was extended to GSM problems in [14], 
combined with sequential detection. An initial radius d is considered, which is ini-
tially chosen as +∞ . Then, the subproblems (8) are solved in order, using a MIMO 
SD detector with adjustable radius. After the k-th subproblem is solved (returning dk 
and ŝk ), the radius d is compared with the radius dk . If dk < d , the radius is updated 
as dk and the best solution obtained is updated as ŝk . The new best radius d is then 
used as the initial radius for the next configuration.

Figure 2 describes the procedure. Let us assume that the solution of the kopt-th 
configuration is the actual GSM-ML solution and has radius dkopt . Then, the dis-
tances of all of the possible solutions in subproblems kopt + 1, ..., nc are larger than 
dkopt . Therefore, the SD detector applied to subproblems kopt + 1, ..., nc will not return 
a new solution (which is correct because the GSM ML solution has already been 
found) and will end very fast.

If the correct configuration (the configuration whose ML solution is the overall 
GSM-ML solution) is among the first positions on the list of configurations (i.e., 
kopt is close to 1), then only a few MIMO ML subproblems must be solved, and the 
process will be quite efficient. On the other hand, if kopt is close to nc , then many 
subproblems must be solved and the process will be slow. Therefore, for the sake of 
efficiency, the configurations must be reordered so that the most likely configura-
tions have a high probability of being located among the first positions.

We have used the ordering method proposed in [20], which was proposed as the 
basis of a suboptimal, non-ML GSM detection method. This method consists of 
obtaining the ZF estimator of each subproblem, as outlined in sect. 2.1. i.e., solving 
the continuous subproblems, analogous to problem (3):

Then, all of the components of �� are rounded to the nearest element of the constel-
lation Ω . We denote the vectors obtained after this process as ̂��� . Then, the squared 
Euclidean distances of these estimators are computed: dzk = ‖� −�� ⋅

̂�� k‖2 . The 
configurations are then sorted according to the distances dzk , from smallest to larg-
est. This method has worked quite well in all of the tested cases.

The sequential algorithm with ordering of subproblems and adjustable radius is 
described as pseudocode in Algorithm 2.

(9)�� = argmin
�∈ℂnT

‖‖�� ⋅ � − �‖‖
2
.
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3  Proposed parallel algorithm

The MIMO subproblems arising in the ML GSM-MIMO problem can be solved 
independently from each other. Therefore, the ML GSM-MIMO problem allows 
a completely straightforward parallelization by solving several MIMO subprob-
lems at the same time, or, if there were more cores available than subproblems, 
all of the subproblems could be solved at the same time. Once the solution of all 
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of the subproblems has been computed, it would be enough to compare the best 
distances of each subproblem and to select the configuration with the minimal 
distance. This would be equivalent to parallelizing the process described graphi-
cally in Fig. 1.

However, it will be shown experimentally in Sect.  4 that this approach is not 
competitive compared with the sequential detection described in Algorithm 2. The 
ordering of subproblems combined with the adjustable radius is relatively quite fast. 
Therefore, any attempt at parallelizing should keep both of these features.

The preprocessing operations in lines 8 to 10 in Algorithm 2 can be easily paral-
lelized. However, for realistic situations, its computational cost is negligible com-
pared with the cost of the main loop (starting in line 14); therefore, we must pay 
attention to the main loop. The main loop can be parallelized using the standard 
OpenMP [15] construct for parallel loops: “#pragma omp parallel for”. However, 
several refinements would be needed so that the the sequential adjustment of the 
radius would work correctly. Specifically, the update of the best distance in line 17 
in Algorithm would need to be in a “critical” sect. [15] in order to avoid race 
conditions.

This suggests a more powerful idea for successful parallelization of Algorithm 2: 
to use a single variable best_distance that is shared across all of the subproblems. 
The variable best_distance is defined as a “local” variable in Algorithm 1. Here, we 
propose changing the definition of this variable to “global” so that it can be shared 
by all of the subproblems, or equivalently, by all of the threads that are solving sub-
problems. Then, when one of the threads finds a better solution (when the condition 
in line 21 in Algorithm 1 becomes true), the best_distance variable is updated for 
all of the threads. Then all of the other threads can use this new value for a tighter 
(faster) pruning.

In order to avoid race conditions, lines 21 to 23 of Algorithm 1 must be modified 
so that the updating of the radius is made within an OpenMP “critical section”. This 
is so that two threads cannot update the best_distance variable at the same time. 
This has been implemented using the “critical” OpenMP pragma.

Another detail is that another shared variable best_configuration is required in 
order to correctly identify the configuration with the minimal distance. This vari-
able must also be updated when the best_distance variable is updated (in the criti-
cal section). Each thread must be capable of identifying the subproblem being 
solved; therefore, the configuration index must be passed as a new input argument 
to Algorithm 1.

A last detail is that it seems possible (although unlikely) that two different threads 
can execute the “if” instruction in line 21 of Algorithm 1 at the same time. If that 
were the case, it might be possible that two threads can enter the critical section 
consecutively, but the second thread could update the best_distance variable with a 
value larger than the set by the first thread. In order to avoid this possibility, the “if” 
instruction in line 21 of Algorithm 1 is replicated inside the critical region.

The modifications to Algorithms 1 and 2 to obtain the parallel algorithm can then 
be summarized as follows: 

1. Define best_distance and best_configuration as global, shared variables.
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2. Modify the header of Algorithm 1 to pass as a new input parameter the configura-
tion index ind.

3. Modify lines 21 to 23 of Algorithm 1 to embed them in a critical section, as 
described above:

4. Parallelize the main loop in Algorithm 2 (line 14) by inserting the OpenMP 
pragma : “#pragma omp parallel for” just above line 14.

5. Use the new, corrected header for Algorithm 1 in Algorithm 2 (line 16), so that 
the configuration index ind is passed to Algorithm  1.

6. Finally, the lines from 17 to 21 in Algorithm 2 are no longer needed. When 
the parallel loop ends, the variable best_distance holds the minimal distance, 
best_configuration holds the index of the configuration where the minimal dis-
tance has appeared, and sol_opt holds the ML solution of the GSM problem.

Please note that any adjustable radius implementation of Sphere Decoder can be 
used, not just the one given as Algorithm 1.

Table 1  Average computing 
times (seconds) for Experiment 
1

SNR Seq. Par. 4 cores Seq. Par. 4 cores

Not ordered Not ordered ordered ordered

5 3.2E+00 1.9E-01 2.6E-01 1.2E-01
10 1.7E+00 7.7E-02 1.3E-01 7.2E-02
15 1.7E+00 5.4E-02 1.8E-02 5.6E-03
20 1.1E+00 4.3E-02 4.7E-03 3.7E-03
25 1.1E+00 3.5E-02 2.4E-03 1.5E-03
30 1.0E+00 2.5E-02 1.5E-03 9.0E-04
35 1.3E+00 3.6E-02 7.0E-04 4.1E-04
40 2.1E+00 4.4E-02 7.0E-04 4.0E-04



7071

1 3

Parallel signal detection for generalized spatial modulation…

4  Experimental evaluation

The computational cost of computing the ML solution of a MIMO (or GSM-
MIMO) detection problem usually increases with noise. Furthermore, even for noise 
with fixed mean and fixed variance, the cost may vary enormously for two different 
received signals. This is why the evaluation of detection algorithms is usually made 
through Monte Carlo simulation, which is the technique used in this work.

All of the algorithms considered return the ML solution of the detection problem. 
Therefore, there is no difference in accuracy among the methods considered, and we 
only show results in terms of computing times. However, it must be stressed that, 
in situations with a low SNR (signal-to-noise ratio) i.e, large noise respect to signal, 
the ML solution may not coincide with the signal sent.

The experiments were carried out varying the SNR between 5 and 40 dB in incre-
ments of 5 dB. These SNR values were achieved by modifying the variance of the 
noise vectors in Eq (1). We generated 5000 complex Gaussian channel matrices for 
each value of the SNR. Each matrix was used for 5 GSM-MIMO signals sent(this 
is similar to what is done in real transmissions), and the computing times that were 
needed to detect each ML solution were recorded. The tests were carried out on 
a computer with 2 Intel Xeon E5-2697 processors (12 cores each) and 128 GB of 
main memory. The operating system was Ubuntu 14.04.3 LTS x86_64, and the 
experiments were run using MATLAB R2018 [21]. Both the sequential and the par-
allel SD were implemented as MATLAB MEX files and were compiled using the 
gcc compiler version 6.5.0. The basic sphere decoder that was used to solve the sub-
problems was very similar to Algorithm 1, but using the Schnorr-Euchnerr ordering 
of the symbols of the constellation [9].

The results are usually presented in terms of the average time needed to detect 
a signal for each SNR. However, as mentioned above, the computing times for 
some signals may be very large, while, for most signals, the detection time is small. 
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Fig. 3  Average computing times increasing the number of cores, with static scheduling
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Occasionally huge detection times are the main reason that ML detection cannot yet 
be used in real transmissions. In order to examine these large cases, we have also 
recorded the maximum detection times for a single signal for each SNR.

For this work, we have chosen a single, relatively large, GSM-MIMO configura-
tion as our base problem, characterized by the following set of parameters: nT = 32 
total transmit antennas, nA = 6 active antennas in each transmission, nR = 6 receive 
antennas, L = 64 cardinal of constellation/alphabet, and nc = 64 configurations/
subproblems. The experiments described below have been designed to evaluate the 
effect of the parallelization. Other similar experiments varying the parameters of the 
GSM-MIMO system have given similar results.

The first experiment is designed to demonstrate the need for the ordering of sub-
problems. To this end, four algorithms were tested: sequential and parallel algo-
rithms without ordering, and sequential and parallel algorithms using the ordering. 
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Fig. 4  Speedups for 2, 4, 8, 16 and 24 cores, static scheduling

Table 2  Maximum computing times (seconds) with 1,2,4,8,16,24 cores, with static scheduling

SNR(dB) 1 core 2 cores 4 cores 8 cores 16 cores 24 cores

5 3.1 × 102 2.9 × 102 2.9 × 102 2.9 × 102 2.9 × 102 2.9 × 102

10 5.8 × 102 5.7 × 102 4.1 × 102 2.4 × 102 1.8 × 101 1.8 × 101

15 2.9 × 101 2.7 × 101 1.9 × 101 1.8 × 101 1.9 × 101 1.8 × 101

20 4.6 2.4 2.1 2.1 6.9 × 10−1 2.3

25 6.0 4.3 7.5 × 10−1 4.7 × 10−1 1.3 × 10−1 1.1 × 10−1

30 3.6 2.5 2.2 2.2 1.1 9.9 × 10−1

35 1.1 × 10−1 9.1 × 10−2 9.3 × 10−2 9.2 × 10−1 8.4 × 10−2 8.3 × 10−2

40 2.1 × 10−1 2.4 × 10−1 1.9 × 10−1 8.3 × 10−2 8.5 × 10−2 6.7 × 10−2
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The technique of adjustable radius was implemented in the four algorithms. Four 
cores were used for the parallel algorithms. The average computing times are shown 
in Table 1.

The results in Table  1 clearly show the effect of the ordering of subproblems. 
In several SNRs the sequential algorithm using ordering is better than the parallel 
algorithm without ordering. Furthermore, the sequential algorithm without order-
ing performs much worse than the others. It is clear that ordering of subproblems is 
needed and all of the experiments described below are carried out using the ordered 
versions.

The next experiment was designed to highlight the effect of increases in the num-
ber of cores, although it also provides valuable insight on how the parallelism helps 
to shorten the computing times. We have solved the same sequence of GSM prob-
lems (generated with the base configuration) using 1, 2, 4, 8, 16 and 24 cores. A first 
experiment was carried out using static scheduling in the “parallel for”; this is the 

Table 3  Maximum computing times (seconds) with 1,2,4,8, 16, and 24 cores, with dynamic scheduling

SNR (dB) 1 core 2 cores 4 cores 8 cores 16 cores 24 cores

5 3.1 × 102 7.0 × 101 6.2 × 101 6.1 × 101 5.9 × 101 5.9 × 101

10 5.8 × 102 2.2 × 102 1.1 × 102 5.2 4.8 4.8

15 2.9 × 101 6.1 2.0 1.8 1.9 1.9

20 4.6 6.7 × 10−1 7.0 × 10−1 7.4 × 10−1 6.6 × 10−1 5.0 × 10−1

25 6.0 4.4 × 10−1 1.4 × 10−1 1.3 × 10−1 1.3 × 10−1 1.0 × 10−1

30 3.6 3.1 × 10−1 3.1 × 10−1 2.7 × 10−1 2.7 × 10−1 2.7 × 10−1

35 1.1 × 10−1 1.2 × 10−1 1.1 × 10−1 1.1 × 10−1 1.1 × 10−1 9.3 × 10−2

40 2.1 × 10−1 4.5 × 10−2 4.1 × 10−2 6.2 × 10−2 6.4 × 10−2 5.9 × 10−2
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Fig. 5  Average computing times increasing the number of cores, with dynamic scheduling
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default scheduling for the “parallel for” construct, and it means that the iterations 
(subproblems) are distributed to the cores at the beginning of the loop in a fixed 
and deterministic manner. The average times are shown in Fig. 3, the speedups are 
shown in Fig.  4, and the maximum detection times are shown in Table 2.

An initial observation is that the results in Table 2 clearly show why this tech-
nique cannot yet be used for actual transmissions. Even though most of the signals 
are detected very fast, some can take unpredictably long times, up to 580 seconds in 
this experiment (in our experiment the worst cases appear with SNR = 10dB).
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Fig. 6  Speedups for 2, 4, 8, 16, and 24 cores, with dynamic scheduling
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Fig. 7  Comparison of maximum computing times to detect a single signal
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It can also be observed that the speedups show a strange form, with a peak in 
SNR = 10dB . It must be remembered that the evaluation of this problem uses ran-
dom generation of matrices and signals. The generated cases occasionally have 
huge detection times. In our simulation, the SNR = 10dB case has worse maximum 
detection times than the SNR = 5dB case. However, examining the maximum detec-
tion times for SNR = 10dB it can be seen that the maximum times decrease much 
more (when increasing the number of cores) than for other SNR values. Therefore, 
it seems clear that that these long cases obtain a greater benefit from parallelization. 
This seems to be the cause of the peak of the speedups at SNR = 10dB.

The results show that the extra cores help to decrease the computing times, 
although the maximum speedups are limited to 2 − 4 (apart from the peak). The rea-
sons for this limitation are the nature of the problem solved and the effectiveness of 
the ordering of the subproblems. If the optimal solution is found in the first subprob-
lem studied, the rest of the subproblems will finish very quickly, regardless of the 
number of threads used. Therefore, in such cases the parallel times will be close to 
the sequential time and the speedup will necessarily be low.

It is also observed in Table 2 that most of the signals were detected very fast, 
while other signals (especially those with low SNR) would take a very long time. 
Nevertheless, the results show that using more processors helps to shorten the 
computing times. Consider the situation where a thread finds a subproblem that 
takes a long time. At the same time, other threads will be solving other subprob-
lems of the same GSM-MIMO problem, and, quite possibly, obtaining a better 
radius. This better radius will help the thread that is solving the difficult problem, 
by allowing more partial solutions to be pruned, and, therefore, will end faster.

These observations led us to change the schedule in the parallel loop from 
“static” to “dynamic” with default behavior, which means that each iteration is 
dynamically assigned to a core. When the core ends this iteration gets another 
iteration. This schedule is recommended in situations where some iterations may 
take much longer than others. In this case, it is even more appropriate because, 
if a thread has to solve such a long, difficult problem, all of the other subprob-
lems of the configuration may be solved by the other threads, helping to lower the 
radius. The average times obtained with dynamic scheduling are shown in Fig.  5, 
the speedups are shown in Fig.  6, and the maximum detection times are shown in 
Table 3.

For visual comparison, Fig. 7 shows the maximum sequential times, the maxi-
mum times with 4 cores and static scheduling, and 4 cores with dynamic scheduling.

The effect of dynamic scheduling is clearly seen by comparing Tables 2 and 3. 
The maximum computing times are strongly reduced for all SNR values by using 
dynamic scheduling. Dynamic scheduling also has a positive effect on the aver-
age computing times (and, hence, on the speedups) for all SNR values. However, 
the speedups remain limited (as mentioned above, the ordering of the subproblems 
causes that the speedups remain low). In this experiment the speedups have values 
around 4 except at SNR = 10dB , where the speedups are significantly higher. The 
high speedup at the peak is a consequence of one or several difficult GSM-MIMO 
problems appearing at SNR = 10dB in this experiment. It seems clear that, when a 
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difficult MIMO subproblem appears, the other cores help to solve it by solving their 
subproblems, thereby reducing the radius.

The maximum times obtained are still very far from the possibility of practical 
implementation. However, the time reduction obtained with the parallel algorithm 
using dynamic scheduling shows that this is an interesting possibility in the way 
toward practical implementation of ML GSM-MIMO detection

5  Conclusion

The results show that the proposed parallel technique obtains an important reduction 
in computing time when compared with sequential detection. The proposed method 
combines techniques used in sequential detection (the ordering of subproblems and 
the adaptive radius), with parallel solving of the subproblems and dynamic schedul-
ing. The ordering of the subproblems is useful for reduction of the sequential and 
parallel computing times, although it causes (as a side effect) the limitation of the 
speedups. The resulting algorithm is especially useful for reduction of the worst-
case computing times, which is a very relevant feature for actual transmissions.

The maximum computing times are still far too high to be used in actual trans-
missions. However, the proposed technique allows larger simulations, which is very 
useful for researchers in communications. Furthermore, the use of other techniques 
for faster pruning, combined with the parallel process described, may allow enough 
complexity reduction so that ML detection in GSM-MIMO systems can become a 
realistic option.
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