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Abstract Many current System-on-Chip (SoC) devices are composed of low-
power multicore processors combined with a small graphics accelerator (or
GPU) offering a trade-off between computational capacity and low-power con-
sumption. In this context, spatial audio methods such as Wave Field Synthesis
(WFS) can benefit from a distributed system composed of several SoCs that
collaborate to tackle the high computational cost of rendering virtual sound
sources. This paper aims at evaluating important aspects dealing with a dis-
tributed WFS implementation that runs over a network of Jetson Nano boards
composed of embedded GPU-based SoCs: computational performance, energy
efficiency, and synchronization issues. Our results show that the maximum
efficiency is obtained when the WFS system operates the GPU frequency at
691.2 MHz, achieving 11 sources-per-Watt. Synchronization experiments us-
ing the NTP protocol show that the maximum initial delay of 10 milliseconds
between nodes does not prevent us from achieving high spatial sound quality.
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2 Jose A. Belloch et al.

1 Introduction

In the last decade, parallel systems are being employed in all segments of the
industry in the form of multicore processors and many-core hardware acceler-
ators. Digital signal processing is one of the fields which has largely benefited
from these devices, and more specifically the synthesis of the spatial audio.

One of the spatial audio technologies available today is Wave Field Syn-
thesis (WFS) in which a sound field is synthesized in a wide area by means of
loudspeaker arrays. WFS is usually tackled via digital signal processing tech-
niques to reproduce complex auditory scenes consisting of multiple acoustic
objects. The WFS concept was introduced at the Delft University of Technol-
ogy in the 1980s by Berkhout [1].

A large-scale WFS system requires performing costly computational op-
erations in real time since it involves multiples input and output channels.
In recent years, several efforts have aimed at implementing efficiently a WFS
system [2]. Some of the authors of the present work carried out an implemen-
tation that enhanced the audio quality by offloading the additional computa-
tional cost to Graphics Processing Units (GPUs) [3]. To this end, in addition
to rendering virtual sound sources, the aforementioned implementation took
into account the computational cost that appears when a Room Compensa-
tion (RC) block is added to the system. Common RC blocks are based on
multichannel inverse filter banks and their purpose is to correct the room ef-
fects or echoes at selected points within the listening area [4,5]. The proposed
system provided high performance in terms of computational and acoustic as-
pects [3]. However, this WFS implementation was designed for an specific room
that required a centralized system with a dedicated power-hungry GPU. This
fact limits the flexibility and scalability of the system, because any change in
the number of loudspeakers and/or the hall distribution involves necessarily a
reconfiguration of the system.

Nowadays, there exist System-on-Chips (SoCs) that deliver notable com-
putational capacity while partially retaining the appealing low power con-
sumption. This high performance capability is often provided by an embedded
graphics accelerator (GPU) that is integrated in the SoC. One example of this
type of system is the NVIDIA Jetson Nano board [6] which contains a high-
performance 128-core Nvidia Maxwell GPU. One of its main features is its
low power consumption combined with several levels of parallelism yielding a
very high performance per Watt. Moreover, there exist also the possibility of
adjusting its energy consumption by reducing the frequency of the CPU cores
or the GPU.

This work introduces a distributed system containing multiple NVIDIA
Jetson Nano boards, where each one of them is in charge of managing the
output processing signal of a batch of loudspeakers. As the main result from
this work, we are build an environment-adaptable and quickly-reconfigurable
dynamic WFS system. From the computational point of view, the total cost
is shared among the embedded GPUs of the Jetson boards. In this work we
analyze the performance of the system in terms of audio processing (virtual
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Many-core SoC for WFS 3

sound sources and sizes of RC filters), use of different GPU and CPU operat-
ing frequencies, and energy consumption. The aim of this work is to find an
efficient implementation that exhibits a proper trade-off between performance
and energy consumption taking into account real-time constraints.

From the acoustic point of view, each Jetson Nano acts as a node inside
a network of acoustic nodes. All nodes aim to generate collaboratively sound
fields with natural temporal and spatial properties within a volume or area
bounded by secondary sources (arrays of loudspeakers). Therefore, in a dis-
tributed system, the secondary sources are distributed among the different
acoustic nodes. As a consequence, besides considering the computational and
energy aspects, a good synchronization between the nodes is essential in order
to reproduce in unison through the loudspeakers of the system and thus, to
offer a correct spatial audio sensation. Perceptual tests show that the NTP
synchronization protocol provides a fair sensation. In order to support this
outcome, we carried out a quantitative experiment using multi-channel audio
cards that were devoted to acquire the audio outputs of all acoustic nodes
(Jetson Nano audio outputs). The proposed experiment allowed us to measure
real output delays among nodes by means of cross-correlations.

This paper is structured as follows. Section II offers a brief overview of
distributed algorithms in the field of audio as well as some background in
WFS theory together with a RC filters block. Section III analyzes the node
synchronization in the distributed WFS system. In Section IV, we explore
the performance of the distributed system in terms of maximum number of
sound sources that can be rendered in real time; provide a detailed analysis
of the power dissipation; and analyze the energy efficiency of different hard-
ware configurations. Finally, Section V closes the paper with a few concluding
remarks.

2 Audio distributed systems

Distributed systems provide a cheap, flexible and efficient solution for environ-
mental and habitat monitoring, as well as for monitoring and maintenance of
industrial equipment [7]. These systems often involve acoustic applications [8].
Among them, we highlight the use of distributed systems for building huge 3D
spatial audio systems, where the acoustic node is focused on the design of the
output signals. In addition to producing spatial audio effect, the output signals
control the sound field by reducing possible acoustic artifacts that are intro-
duced by external agents. To this end, our designed audio system implements
the WFS technique together with a RC filter block.

2.1 Wave Field Synthesis

WFS is a sound rendering method based on the Huygens’ principle [9]. The
propagation of a wave front can be described by adding the contribution of a
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4 Jose A. Belloch et al.

number of secondary-point sources (arrays of loudspeakers) distributed along
the wave front, as shown in Fig. 1(a). Following a model-based rendering with
point sources and plane waves [10], the field rendered by a sound source m at
a point R, within the area surrounded by N loudspeakers, can be expressed
as

P (xR, ω) =

N−1∑
n=0

Qn(xm, ω)
e

−jωrnR
c

rnR
, (1)

where c is the speed of the sound, xm is the position of the virtual sound
source m, xR is the position of the point R, and rnR =| xn − xR | is the
distance between the n-th loudspeaker and the point R.

The signal to be reproduced by the n-th loudspeaker is represented by
Qn(xm, ω), which is given by

Qn(xm, ω) = S(ω)

√
jω

2πc
K

1
√
rmn

cos(θmn)e
−jωrmn

c , (2)

where K is a geometry-dependent constant, rmn =| xm − xn | and xn is the
position of the loudspeaker n. Fig. 1(b) shows the geometry of the system,
where θmn denotes the angle between the line that connects xm and xn and
the normal vector n of the loudspeaker n. The guitar represents the sound
source m.

The computed signal (2) consists of several elements that aim to add spatial
audio properties to the original source signal whose frequency-domain charac-
teristic is represented by the term S(ω). More details on this technique can be
found in [10].

2.2 Room Compensation Filters

The synthesized sound field can be altered with new echoes introduced by the
listening room, reducing the spatial effect. In [5,11], the authors designed and
validated a multichannel inverse filter bank that corrects these room effects at

n

Sound
Source

(a)

Loudspeaker 0

x
Sound

Loudspeaker N-1..................... Loudspeaker n

m

xn

xR

rθ

θ

mn

rnR

mn

mnn

Source

(b)

Fig. 1 (a) Theoretical basis for WFS that are based on Huygens’ principle. (b) Geometry of
a WFS system with the sound source m (guitar), N loudspeakers, and the distances among
the sound source, the loudspeakers, and the listener (R).
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Many-core SoC for WFS 5

selected points within the listening area. However, in a WFS system composed
of N loudspeakers, this implies inserting N2 FIR filters to the system, con-
siderably increasing its computational demand. It is important to highlight
that the length of the filters can be customized before the execution of the
WFS distributed system so that we can select higher lengths, which involves
a more accurate synthesized signal. In this sense, large lengths avoid that the
generated spatial sound is affected by external aspects such as room effects or
loudspeakers setup, and provide high spatial sound quality [5]. Unfortunately,
this also constrains the number of sound sources that can be rendered in real
time.

3 Distributed system set-up and synchronization issues

In order to tackle synchronization issues, we set a small distributed WFS
system as a testbench (see Fig. 2(a)) composed of the following components:

WFS Master: Its role is to send the audio samples to all WFS nodes.
Wireless Access Point: It is used for connecting the different network ele-

ments.
Reference Time Server: It broadcasts the reference clock to all WFS nodes.
Audio nodes: They are devoted to synthesize and reproduce the audio through-

out their corresponding loudspeakers.

Figure 2(b) shows a detail of a WFS node based on a NVIDIAR© Jetson
NanoTM device with an external Wi-Fi and audio USB adapters. Additionally,
Figure 2(c) shows the Reference Time Server, implemented with Raspberry
Pi 3B+. We use an independent device to guarantee that all nodes are in the
same tier level and are affected by the same delays. By choosing a Raspberry
Pi we also reduce the economic cost of the system. Finally, Figure 2(d) shows
three WFS nodes.

A Client-Server application based on stream sockets was implemented to
coordinate the different elements of the system. The server allows a dynamic
interaction between the clients, indicating them when to start the reproduction
of one or more sound sources on a given position; when to change the position of
a source; or when to stop its reproduction. All clients read from a configuration
file the number and location of the audio files; the number of loudspeakers and
sound sources; as well as their positions in the system. Each node automatically
computes its own outputs based on equation (2).

It is important to note that traditional centralized systems have a com-
mon clock source, so that synchronizing their DACs and audio data signals
is straightforward. Conversely, the distributed strategy proposed in this work
poses the problem that each node has its own clock. Hence, a synchronization
mechanism between the nodes must be enforced. There are different synchro-
nization procedures for networks in the literature, with the most used pro-
tocol for time synchronization being the Network Time Protocol (NTP) [12].
However, there are more accurate alternatives. The Precision Time Protocol
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6 Jose A. Belloch et al.

Audio
Node N

Audio
Node 1

WFS Master

Ref. Time 
Server

Wireless 
Access 
Point

Audio channel
Wireless comunication 

(a)

(b)

(c)

(d)

Fig. 2 Proposed distributed WFS architecture: (a) Interconnection diagram and elements.
(b) Acoustic node based on NVIDIAR© Jetson NanoTM. (c) NTP server based on Raspberry
Pi 3B+. (d) Distributed WFS system prototype; three nodes and six loudspeakers.

(PTP) [13,14] is also a very widespread option; and for applications with very
high precision requirements, a synchronization through GPS signal is used [15].
Unfortunately, the last two options require additional hardware support. Also,
even though PTP can be emulated via software, its performance gets signifi-
cantly worse [16]. Due to this, we selected NTP as the synchronization proto-
col.

We initially carried out perceptual tests when the whole system was settled
in order to evaluate the quality of the spatial sound. The people participating
in these tests were able to locate easily the origin of the sound source. They
highlighted the quality of the sound source movement which was really very
smooth. Test results were similar to the tests of the centralized WFS system
carried out in [3], so that the audio quality of distributed system resembles
that of the centralized system.
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Many-core SoC for WFS 7

3.1 Synchronization analysis

Several tests were carried out to test the usefulness of the proposed system as
well as the effects of the synchronization. In these tests, the final elements of
the system (loudspeakers) were replaced by a multi-channel audio card, which
allows us to acquire the different outputs from the WFS nodes; see Figure 3(a).
Specifically, Figure 3(b) shows a small prototype with three nodes and an audio
card used for the test.

Audio
Node N

Audio Sound Card

Audio
Node 1

Audio channel
Wireless comunication 

(a)
(b)

Fig. 3 Proposed synchronization test-beds: (a) Audio card connection to the WFS nodes
under test. (b) Small prototype set-up with three WFS nodes.

To validate the NTP synchronization method, we configured all the nodes
to generate the same audio pattern at their output. Then, we performed a cor-
relation of each captured signal with the pattern signal in order to determine
the delay between nodes. Figure 4 shows the delays between the three test-bed
nodes for 3,000 test cycles. Each cycle plays a 10 second audio pattern (with
a logarithmic sweep track), introducing a random pause of duration between
1 and 5 minutes after it.

As it is shown in Figure 4(a), the delay between nodes in all test was
always under 10 milliseconds. Furthermore, by analyzing the dispersion of the
results (see Fig. 4(b)), we observes that 97.67%, 98.27% and 97.33% of the
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Fig. 4 Synchronization test results: (a) Recorded delays. (b) Delays distribution.
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8 Jose A. Belloch et al.

delays between nodes N1-N2, N1-N3 and N2-N3, respectively, were under 5
milliseconds.

This quantitative analysis confirms the results obtained with the percep-
tual tests: The NTP protocol provides a precise synchronization method to
implement a distributed WFS system.

4 Computational and energy performance

The NVIDIA Jetson Nano Developer Kit is a board that comprises a SoC
based on a quad-core ARM Cortex-A57 CPU at 1.43 GHz with 4 Gbytes of
LPDDR4 memory, and a 128-core Nvidia Maxwell GPU. One of the main
features of this board is its low-power consumption combined with different
levels of parallelism, which provides a very high performance-per-Watt. A sec-
ond appealing feature of this platform is the possibility of adjusting its energy
consumption by reducing the frequency of the CPU cores or the GPU. The
CPU power management strategy uses dynamic frequency scaling with dy-
namic voltage scaling. The CPU frequency is dynamically adjusted depending
on how busy is the device. However, the GPU and CPU frequencies can be
modified by from inside a user’s code using some features of the Linux kernel.

In our experiments, we measured the power dissipation of the Jetson Nano
using the pmlib framework [17] to collect the instantaneous power readings
from the internal energy-monitoring sensors [6]. The Jetson Nano board em-
beds real-time current sensors that can be sampled to obtain the power con-
sumption of three separate power domains: main module, GPU and CPU.

4.1 Experimental evaluation

The following experiments evaluate the computational performance, energy
consumption, and energy efficiency of the CUDA-based implementation of
WFS and RC filter block proposed in [3] on one of the Jetson Nano devices
shown in Figure 2(d). As the a performance metric, we adapt the maximum
number of sound sources that can be rendered in real time.

First, we analyze the evolution of the execution time of the CUDA algo-
rithm with the number of sound sources and the effect of parameters such
as the size of RC filters or the number of samples. Figure 5 shows that the
execution time increases linearly with the number of sound sources and that
we can process a large number of sound sources in real time. We use an audio
buffer size of 256 samples, which implies a real-time threshold of 5.8 ms (sam-
pling frequency of 44,1 kHz). The figure shows that the size of the applied RC
filters only affects the execution time slightly and allows us to process around
100 sources in real time using filters with lengths that range from 256 to 1536
coefficients. It is important to highlight that there is an upper bound on the
number of sound sources that can be processed due to the memory size of the
GPU. As illustrated in the figure, the use of RC filters with a length of 1,536
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Fig. 5 Evolution of the execution time of the CUDA implementation with the number of
sources using different sizes of the RC filters and an audio buffer of 256 samples at a sample
frequency of 44.1 kHz

fills the GPU memory when the implementation handles more than 110 sound
sources.

We may not be interested in processing a very large number of sound
sources in real time, but instead in processing a smaller number of sound
sources in real time while reducing the energy consumption. To this end we
can diminish the frequency of the GPU as well as that of the CPU core that
is used as host for the CUDA program. To obtain the results in the following
figures, we used an audio buffer consisting of 256 samples, RC filters of size
1,024 and 16 loudspeakers. For example, Figure 6 shows that we can process
10 sources in real time even when reducing substantially the GPU and CPU
frequencies. Only if we set the lowest frequency of the GPU (76.8 MHz), we
cannot process 10 sources in real time for any CPU frequency. However, we
can reduce the frequency of the GPU to its second lowest value and process 10
sound sources in real time even with a very small CPU frequency: 403.2 kHz.
In general terms, given a fixed GPU frequency, initially the execution time of
the algorithm decreases quickly when we increase the CPU frequency from its
lowest value. However, when we increase the CPU frequency above 403.2 kHz,
the execution time decreases very slowly.

A deeper understanding of the effect of the GPU and CPU frequencies on
the computational efficiency of the algorithm can be obtained by analyzing
the maximum number of sound sources that can be processed in real time for
every GPU-CPU frequencies combination. Figure 7 shows that the maximum
number of sound sources increases both with the CPU-GPU frequencies. Once
more, it increases very quickly for the lowest frequencies, and more slowly as
we approach the highest frequencies.

We are not only interested in maximizing the number of sound sources that
can be rendered in real time, but also in reducing the energy consumption of
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Fig. 7 Maximum number of sources processed in real time for the different combinations of
GPU and CPU frequencies. Values are only shown when at least one source can be processed
in real time.

the system. Therefore, we next analyze the energy consumed by the different
configurations in order to maximize the sources-per-Watt that can be rendered
in real time.

We obtain the energy consumed by the application by performing the prod-
uct of the power dissipated by the whole platform and the execution time. In
all cases, we report the “application energy consumption” obtained by sub-
tracting the observed idle power at minimum CPU-GPU frequencies from the
total energy consumption observed during the application execution. We prefer
to analyze its energy efficiency by using the sources-per-Watt metric. Figure 8
shows that the maximum number of sources that we can process per Watt
increases slowly with the CPU-GPU frequencies. This parameter is between
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Fig. 8 Energy efficiency of the CUDA code computed as the maximum number of sources-
per-Watt that can be processed in real time. Values are only shown when at least one source
can be processed in real time.

10 and 11 for an ample range of the highest frequencies of both components
of the platform, which shows that it is not necessary to use the highest CPU-
GPU frequencies to maximize the energy efficiency of the WFS application in
the Jetson Nano.

5 Conclusions

In this paper we have shown that it is possible to realize a flexible and efficient
distributed spatial audio system based on WFS using low-power SoC devices
as audio nodes. Specifically, we have leveraged the GPU of several Jetson Nano
boards to distribute the audio processing of the sound sources.

We have shown that the application of the NTP synchronization protocol
at the acoustic nodes allows us to render spatial sound with sufficient quality,
as asserted by the subjective tests and the delay measurements among nodes.

A thorough analysis of the performance of the Jetson Nano device shows
that it can process more than 100 of sound sources in real time even using room
compensation filters with a huge number of coefficients. We have leveraged the
possibility of reducing the frequencies of the GPU and CPU components of the
Jetson Nano to reduce the energy consumption of the application. Employing
lower frequencies increases very slowly the processing time. The results show
that we can reach the maximum number of sources-per-Watt even reducing
substantially the frequencies of both components.
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