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Abstract Forty years and 157 papers later, research on contaminant source iden-
tification has grown exponentially in number but seems to be stalled concerning
advancement towards the problemsolution and its field application.This paper presents
a historical evolution of the subject, highlighting its major advances. It also shows how
the subject has grown in sophistication regarding the solution of the core problem (the
source identification), forgetting that, from a practical point of view, such identification
is worthless unless it is accompanied by a joint identification of the other uncertain
parameters that characterize flow and transport in aquifers.

Keywords Simulation–optimization · Backward tracking · Bayesian approach ·
Machine learning · Surrogate models · Heuristic approaches

1 Introduction

The year 2021 will mark the 40th anniversary of the first work on contaminant source
identification in aquifers: thePh.D. thesis defendedbyStevenGorelick at StanfordUni-
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Fig. 1 Histogramandcumulative histogramof the number of papers publishedon the subject of contaminant
source identification. Total number of papers is 157

versity (Gorelick 1981). The subject attracted some attention in the following decade.
It flourished during the last decade of the previous century, and has grown exponen-
tially during the current century; unfortunately, this growth has not been accompanied
by the breadth of new ideas and approaches that took place between 1991 and 1997.
Figure 1 shows a histogram of the number of works published in the field per year and
its cumulative version. The figure includes a few papers not precisely about identify-
ing contaminant sources in aquifers but in streamflows, lakes, and water distribution
systems, mainly when these papers are based on the findings in aquifer research. As
this paper is being written, the total number of works found is 157, but that number
most likely will have increased by the time the paper is published.
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Ph.D. by Gorelick

Optimization paper by Gorelick et al.

Backward solution by Bagtzoglou et al. 
Joint identification of hydraulic conductivty by Wagner 

Time-varying injection and Tikhonov regularization by Skaggs and Kabala 

Genetic algorithms by Aral and Guan
Bayesian geostatistics by Snodgrass and Kitanidis

McMC and surrogate models by Zeng et al. 

Artificial neural networks by Singh and Datta 

Ensemble Kalman filter by Xu and Gómez-Hernández

Bayesian model selection by Cao et al.
Joint estimation of heterogeneous field by Xu and Gómez-Hernández

Network design by Jha and Datta

Three-dimensional by Woodbury et al.

Minimum relative entropy by Woodbury and Ulrich
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Fig. 2 Timeline with the papers that marked a difference in the solution of the contaminant source identi-
fication problem. The unlisted years are those without any published work. The reddish years correspond
to major breakthroughs and the orangish years to minor ones

The rate at which papers have been published in the last 3 years is above 10 papers
per year, yet very few discuss applications to real problems.

This paper revisits how the subject has evolved after the pioneering work by Gore-
lick (1981), pointing out those papers that, in the authors’ opinion, signified an apparent
breakthrough in the subject. The paper ends with a discussion of why, after 40 years,
the subject is not mature enough to find routine applications to real cases and is still
far from being applied regularly.
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Fig. 3 Time-varying pulse injection used by Skaggs and Kabala (1994) and repeatedly used later as a
benchmark problem
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Fig. 4 Histograms of the number of papers classified by the dimensionality of the case studies

2 The Problem

The problem of identifying a contaminant source in an aquifer using concentration
measurements observed downgradient from the point of contamination falls within
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Fig. 5 Name cloud of all last names of authors signing the papers

the realm of inverse problems (Tarantola 2005; Zhou et al. 2014). Consider, first, a
forward model

d = G(m), (1)

where d is the outcome of themodel providing the state of the system,m represents the
model parameters at large, including both material parameters and those variables that
need to be specified to characterize the system before any prediction is performed,
and G is the function that maps parameters into system states. For example, in an
aquifer where groundwater flow is under study, the state of the system is given by
the piezometric heads, the model parameters are the hydraulic conductivities and
porosities, but also the infiltration rates, boundary conditions, and pumping rates; and
the functionG is the groundwater flow equation, or better, the numericalmodel solving
the groundwater flow equation on a discretized version of the aquifer.
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Fig. 6 Papers by country of first-author institution

Consider, now, that several observations of the state of the system are available,
dobs; one could attempt to guess the values of the model parameters by inverting (1)

m = G−1(d). (2)

This inversion is much more challenging to perform than the forward modeling,
because seldom is the inverse model G−1 explicitly known, or the number of nec-
essary observations available. In such case, the solution is to use the forward model to
try to determine the parameters by means of an optimization or search procedure. Dur-
ing the search, the objective is to find a set of parametersm that produces state values
G(m) that are as close as possible to the observed ones. Issues that must be considered
in solving this problem include taking into account measurement errors—observations
dobs may be corrupted estimates of the true state values—and model errors—G is only
a numerical approximation of a system state equation that may not represent exactly
all relevant processes, and therefore, predictions d may not be exactly of the system
state.

Contaminant source identification is an inverse problemwhere the target parameters
to identify are the number and spacetime locations of the contamination events and their
strengths. As discussed next, focusing on identifying the parameters characterizing
the source results is an interesting and difficult-to-solve problem. Still, it may remain
purely academic if realism is not introduced as part of the solution to the general
problem.
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3 Milestones Along the Timeline

3.1 Early Work: The Simulation–Optimization Approach

The Ph.D. thesis by Steven Gorelick (1981) centers on groundwater pollutionmanage-
ment problems, one of which is determining the location and strength of a contaminant
leaking into an aquifer, making this the first work addressing this problem. The work
was later published (Gorelick et al. 1983) and, to the best of the authors’ knowledge,
is the first paper on the subject.

The problem addressed is identifying the locations and strengths of the leaking
portions of a pipe that is in contact with an aquifer where the contaminant disperses.
The problem is cast as an optimization problem to minimize an objective function
measuring the discrepancy between model-predicted concentrations and those that
are observed

J (m) = w
[|dobs − dcal|p

]T (3)

with
dcal = Hd = HG(m), (4)

where dobs is a vector with the observed concentrations, and dcal is a vector with the
calculated concentrations at the same locations, which are obtained after applying
an observation matrix H to the model outcome G(m); w is a row vector of positive
weights, the exponent p is generally 1 or 2, dependingon the norm tobeminimized, and
the upper-script T stands for transpose. In Gorelick’s work, he uses two optimization
approaches, a linear programming one, in which the exponent is 1, and a least-squares
one, in which the exponent is 2. In both cases, the weights are inversely proportional
to the magnitude of the observations.

The vector of parameters m, on which d depends, includes all the parameters
needed to run the numerical model G, such as the material parameters describing the
aquifer (conductivity, porosity, etc.), the boundary conditions, the external stresses,
and the parameters describing the source. Not all of these parameters are subject
to identification, and in most papers, many of them are considered known without
uncertainty. For example, in the work by Gorelick, all model parameters are known
(and homogeneous) except for the intensities at eight potential pipe leaks. Under these
settings, application of the principle of superposition yields dcal as a linear function
of the unknown parameters m; this allows to write the minimization problem as a
linear programming one. Each observed concentration in time and space acts as a
linear constraint to be satisfied by the parameters. Gorelick et al. (1983) also analyze
the results obtained by multiple regression, which amounts to minimizing (3) with an
exponent p equal to 2 using a least-squares approach. This paper sets the scene for
the papers to come. Gorelick et al. (1983) had identified a new and interesting inverse
problem. He also established a specific way to approach the problem, which is the
combination of simulation—to solve the forward model (1)—and optimization—to
minimize an objective function like (3). For this reason, the papers using this approach
are referred to as simulation–optimization papers.

The Ph.D. thesis by Gorelick (1981) also got the attention of Hwang and Koerner
(1983), who looked for an alternative solution to the problem of source identification

123



Math Geosci

coupled with a dynamic network design. They use system sensitivity theory (a branch
of control theory). Aquifer transport is treated as a dynamic system for which an
initial guess of parameters is made, and feedback is obtained after concentrations are
observed. The mismatch between predicted and observed concentrations is used to
compute a so-called trajectory function that provides a perturbation of the parameters
to be added to their last estimate before making the next prediction. The authors
demonstrated the method in a two-dimensional synthetic aquifer and announced that
a three-dimensional case study would follow, which was never published.

The decade of the 1980s ended with the publication of a research report by Datta
et al. (1989), who use the same approach as Gorelick et al. (1983) to solve the problem.

From here on, the text will focus on the papers that, according to the authors, have
supposed a significant advancement either in the solution of the core problem or in
making the solution closer to its potential application to real cases. These papers are
indicated in the timeline shown in Fig. 2. The text will end with a quick discussion
and classification of the papers published during these 40 years. Two tables, including
all 157 papers, are appended as supplementary material.

3.2 Backward Probability

Bagtzoglou et al. (1991) formulate a probabilistic solution for the problem of source
identification based on the stochastic transport theory by Dagan (1982). In a hetero-
geneous media, solute concentrations resulting from an injection of a contaminant at
location X0 are proportional to the probability that such a particle may be at location
X after some time t . Dagan’s theory revolves around trying to find these probability
functions. Reversing the concept, one can think of finding the probability that a given
particle that has been observed at X at time t was at X0 at time zero. When the release
time is known, running a backward-in-time particle tracking using the current spatial
distribution of the concentrations will yield a map of probabilities. The locations with
the highest values would correspondwith the source locations. As described, this iden-
tification is possible only if the velocity field is perfectly known and if all the sources
start at the same known time. The paper leaves some unresolved issues but opens a new
avenue for the solution of the source identification that will be subsequently explored
by several authors.

Bagtzoglou et al. (1992) addressed some of those problems in their next paper, such
as not knowing precisely the time of the release or the velocity field, and propose the
calculation of location and time probabilities with attached uncertainty.

3.3 Joint Identification of Source and Hydraulic Conductivity

Wagner (1992) is the first author who realizes that assuming that the hydraulic con-
ductivity or the velocity spatial distributions are known is unrealistic and proposes
a maximum likelihood parameter estimation following the steps by Carrera (1984)
and Carrera and Neuman (1986). The forward problem remains the same, but now the
objective function depends not only on the source parameters, but also on other param-
eters such as hydraulic conductivities, dispersivities, and boundary fluxes, which must
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be identified as well. The author demonstrates the application of maximum likelihood
estimation, which had been utilized successfully for aquifer parameter identification
in zoned aquifers, to the simultaneous estimation of material and source parameters.
Our main criticism of this work is that the conceptualization of aquifer heterogeneity
is very simple. It is limited to two zones with homogeneous flow and transport param-
eters. It also assumes that the source location is known, with the only source-related
unknown being the mass load. In total, there are 10 parameters to estimate.

The objective function to minimize in this work is the negative log-likelihood
function, which under the assumption of normally distributed errors has an expression
very similar to (3). Observations d, in this case, were not limited to concentration
values but also included piezometric heads (to help in the hydraulic conductivity
identification).

The simultaneous estimation of aquifer and source parameters will reappear in
several papers published later, but, almost always, with very simplistic representations
of aquifer heterogeneity.

3.4 Time-Varying Injection and Tikhonov Regularization

The next major step was to consider the identification of a continuously time-varying
solute injection function. Until the work by Skaggs and Kabala (1994), the identifica-
tion of a contaminant source was either of a constant pulse of finite duration or a series
of them. Still, no one had contemplated the possibility of identifying a pulse that was
a continuous function of time. In their one-dimensional seminal paper, Skaggs and
Kabala proposed identifying the three-peaked release function represented in Fig. 3;
the identification was formulated by discretizing the span during which the release
occurred into 100 points. They argued that such identification would be bound to fail
due to the ill-posedness of the inversion problem and introduced, for the first time,
the idea of regularizing the solution. Regularization implies modifying the objective
function (3) by adding a term

J (m) = w
[|dobs − dcal|p

]T + α2‖L(m)‖2, (5)

where L is the regularization function and α is a weighting factor controlling its
strength in the objective function. Skaggs and Kabala’s regularization is a function
of the 100 parameters discretizing the input function penalizing rapid oscillations in
time. The authors focus exclusively on identifying the discretized source function,
assuming that all other parameters controlling flow and transport in a homogeneous
aquifer are known, including the source location. The observations are concentrations
sampled in time and space at selected intervals. Two case studies were analyzed, one
with exact observations without observation errors and one with inexact observations
with measurement errors of varying magnitude. The authors conclude that Tikhonov
regularization could be used to solve an inherently ill-posed inverse problem as long
as the observation errors are not too large and the measurements are taken before the
plume has dissipated too much.
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3.5 Minimum Relative Entropy

The year 1996 saw the publication of two significant contributions to the solution of
the source identification problem. One of them is the work by Woodbury and Ulrych
(1996), who shifted the focus of the problem from a deterministic one into a stochastic
one. The other one is described in the next section.

The parametersm to be identified are considered as randomvariableswith unknown
probability distribution functions (pdfs), and the optimization approach is aimed at
determining these pdfs, fromwhich the expected value or themedian could be retrieved
as the model parameter estimate. Let p be the parameter prior pdf, which could be
as uninformative as a uniform distribution between some lower and upper bounds,
and let q be the pdf of the parameters that are consistent with the observation data.
By consistent, it is meant that the expected value of the predicted state at observation
locations be equal to the observed values, E{HG(m)} = dobs. Pdf q will result from
the minimization of the relative entropy

H(q, p) =
∫

q(x) ln
[
q(x)
p(x)

]
dx (6)

subject to several linear constraints that result from the consistency requirement
described above. The authors describe in detail how the minimization is performed,
retrieve q(m), and compute its expected value, which is compared with the reference
injection curve with satisfactory results. The same injection function used by Skaggs
and Kabala (1994) is analyzed, and the impact of observation errors is also studied.
The location of the source is not subject to identification.

3.6 Heuristic Approaches

The work by Aral and Guan (1996) is the second of the landmark papers of 1996.
It is the first paper that uses a heuristic approach to solve the optimization problem.
The problem statement is the same one used by Gorelick et al. (1983), that is, the
minimization of (3) subject to linearity constraints (one for each observed concen-
tration). These constraints can be easily derived from the solute transport equation
when the aquifer is homogeneous and of known parameters. The authors also add the
additional constraint that the parameters to identify (the contaminant fluxes into the
aquifer) must be positive. The originality of the solution is in departing from standard
optimization algorithms and moving into the, then new, heuristic algorithms, of which
a genetic algorithm was chosen. As with all heuristic algorithms, multiple evalua-
tions of the forward model (1) are needed, which makes the method computationally
demanding; as a counterpart, these heuristic algorithms are supposed not to get stuck
in local minima and are capable of obtaining the global minimum for objective func-
tions with potentially many local extremes. Aral and Guan (1996) demonstrate the
application of genetic algorithms to identify the contaminant fluxes from six known
locations time-varying stepwise in three known time intervals. The aquifer is synthetic,
two-dimensional, and of known parameters. Exact and measurement error-corrupted
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observations are used. The authors conclude that genetic algorithms are a viable alter-
native.

3.7 Geostatistical/Bayesian Approaches

Following the path by Woodbury and Ulrych (1996), Snodgrass and Kitanidis (1997)
also use a stochastic approach for the solution of the identification problem. The
authors focus on the solution of the same problem, estimating a contaminant time-
varying release function into an aquifer, assuming that the source location and the
rest of the parameters describing the aquifer are known. Following a standard geo-
statistical approach, the parametersm (which, in this case, are the injection strengths
discretized in time over the injection period) are modeled as a random function with a
stationary but unknown mean value and a stationary but unknown covariance function
whose shape is known (for instance, it may be an exponential function). There are
no observations of the parameters, but there are observations of the concentrations
downgradient from the source, which, for conservative solutes, are linearly related
to the source parameters. This linearity permits the computation of the conditional
expected value and the conditional covariance of the unknown parameters given the
observed concentrations.

The geostatistical approach starts by first estimating the parameters of the multi-
variate random function, which, in this case, are the unknown mean and the unknown
parameters of the covariance function (variance and correlation length for the case
of an exponential isotropic covariance). Then, the estimation is carried out, maxi-
mizing the likelihood of the observations given the structural parameters. Snodgrass
and Kitanidis (1997) argue that simultaneous estimation of both mean and covariance
parameters results in biased estimates, and proceed to maximize the likelihood after
filtering out the unknown mean by integrating over all possible mean values. Once the
parameters have been estimated, the rest is a standard co-kriging estimation to obtain
the conditional (also referred to as posterior) estimate of mean and covariance of the
parameters describing the injection function.

Since kriging cannot enforce non-negativity, Snodgrass and Kitanidis (1997)
describe an iterative approach to the estimation of a nonlinear transform of the input
concentrations (what breaks the linearity between parameters to be estimated and
observations) that ensures that all concentration estimates are positive. The method is
demonstrated using the benchmark injection function by Skaggs and Kabala (1994)
in a one-dimensional aquifer with satisfactory results. An interesting discussion in the
paper is the indication that Tikhonov regularization or thin-plate spline interpolation
would yield the same results as the geostatistical approach for specific shapes of the
covariance of the multivariate random function.

Although not explicitly stated in the paper, this is the first one in which a Bayesian
approach is used.
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3.8 Jumping into Three Dimensions

In 1998, the first paper addressing contaminant source identification in a three-
dimensional domain was published. Woodbury et al. (1998) extend their application
of minimum relative entropy (MRE) in one dimension to the reconstruction of a three-
dimensional plume source. The source is a rectangular patch of knowndimensions, and
in order to maintain the linearity between observations and source concentrations, the
aquifer is considered homogeneous and with known parameters. An analytical solu-
tion of the transport equation is used that relates aquifer concentrations and source
values. The benchmark input function of Fig. 3 is used, and the capabilities of the
MRE in three dimensions are demonstrated. Case studies using observations with and
without errors and the interplay between spatial data and temporal data are analyzed.

The method was also applied to a real case to identify the source of a 1,4-dioxane
plume observed at the Gloucester landfill in Ontario, Canada. The underlyingmodel of
the aquifer had to adhere to the simplifications used for the derivation of the algorithm;
that is, it wasmodeled as homogeneouswith knownflow and transport parameters. The
authors are quite satisfied with the results, since the resulting parameter uncertainty
intervals are smaller than previous estimates.

3.9 Artificial Neural Networks

It is not until 2004 that the first paper appears that explores the potential of machine
learning to identify a contaminant source. Singh et al. (2004) and Singh and Datta
(2004) publish two very similar papers to demonstrate the use of artificial neural
networks to estimate the parameters describing a contamination event and the aquifer
properties. Focusing on the joint identification problem, the authors consider that
aquifer and source can be characterized with 14 parameters: one for the isotropic
conductivity, one for porosity, two for dispersivity (longitudinal and transverse), and
10 for the injection strengths over 5 years at two locations (injections remain constant
within the year). The aquifer is two-dimensional and homogeneous in its parameters
and perfectly known in size and shape; the location of the two sources is also known.
Using a numerical code, the authors generate 8,500 sets of values for the 14 parameters,
which are used to predict concentrations at 40 time intervals at four observation wells.
From these sets, 4,500 are chosen as training sets and 4,000 as testing sets. The authors
consider different artificial neural network architectures until they find the one that
produces the smallest prediction errors. They follow with a demonstration using data
with observation errors and conclude that these models could be used for source
identification, with a warning: the artificial neural network would have to be retrained
for a different case study or if the aquifer system changes in any way.

3.10 Markov Chain Monte Carlo and Surrogate Models

The work by Zeng et al. (2012) marks a new development that goes beyond an
incremental contribution. The problem is cast in a probabilistic framework aimed at
computing the posterior probability of the parameters (location and strength source)
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given the observations (concentration measurements) using a Bayesian framework

p(m|d) = p(m)p(d|m)

p(d)
, (7)

where p(m|d) is the posterior pdf, p(m) is the prior pdf, p(d|m) is the likeli-
hood, and p(d) can be regarded as a normalizing constant. Then, instead of using
the geostatistical approach to determine the posterior pdf, the authors propose two
novelties: one to use Markov chain Monte Carlo (McMC) to sample the poste-
rior distribution, and the other to use a surrogate model for the forward problem
(1) (since McMC requires many evaluations of the likelihood function, which, in
turn, requires many runs of the forward model). In particular, the McMC algo-
rithm chosen is delayed rejection combined with an adaptive Metropolis sampler
as described by Haario et al. (2006). The surrogate model chosen is a sparse grid-
based interpolation using the Smolyak algorithm (Wasilkowski and Wozniakowski
1995), which provides an estimate of the forward model by interpolating the for-
ward model values computed on a sparse grid in parameter space. Let N be the
number of parameters in m; a grid of points is defined within the parameter domain
{mi1,mi2 , . . . ,min ; i1 = 1, . . . , Q1, i2 = 1, . . . , Q2, . . . , iN = 1, . . . , QN }, where
{Q1, Q2, . . . QN } are the number of points along each dimension. The forward prob-
lem is evaluated at each of these points, and then the forward problem is estimated at
any point by interpolating these values using some predefined basis functions

G(m) ≈
Q∑

i=1

fmi(m)G(mi), (8)

where Q is the number of surrounding points to use in the interpolation, and fmi(m)

are the basis functions. How to select the number of points to use, the grid on which
they are defined, and the basis functions is discussed in the paper.

The authors analyze two synthetic two-dimensional case studies, one with five
unknown parameters, namely, location coordinates, beginning and ending times, and
source strength, and the other one with 10 parameters representing the source strength
variability in time. Another difference between the two cases used to test the surrogate
model is that the first case uses a homogeneous aquifer and the second a heterogeneous
one, although conductivities are not subject to identification and therefore assumed
known. Nevertheless, in both cases, the algorithm can retrieve the parameters sought.

3.11 Network Design

Jha and Datta (2014) introduce a component of realism that had only been treated
in a very imprecise way by Hwang and Koerner (1983), and mentioned without any
demonstration in the reviewbyAmirabdollahian andDatta (2013): that of designing the
monitoring network to identify the source at the lowest observation cost possible. Even
though the aquifer was still modeled as homogeneous and perfectly known, the authors
propose a realistic situation in which there is not a network of observation locations
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already in place, but rather, a contaminant is observed in a well during a period. Then,
a network of observations is deployed, maximizing the chances of correctly detecting
the source locations and magnitudes. The method proposed involves two stages. In
the first stage, once the contaminant has been monitored during a specific time in
the detection well, several potential source locations, which are consistent with the
observations, are identified in the aquifer. Then, with this set of potential sources, a
dense grid of potential observation locations is designed out ofwhich a small number of
points are chosen as the observation network. This network is defined to maximize the
possible observed concentrations coming from the potential source locations. Once the
network has been defined, concentrations are collected in the newly designed network
and used as data to solve the source identification problem. This problem is solved by
a simulation–optimization approach in which the objective function (3) is written in
terms of a dynamic timewarping distance, a distance that coincides with the traditional
Euclidean distance when two series of values spanning the same length, with the same
number of samples, and without missing data are compared. The authors demonstrate
the effectiveness of optimal network design for identifying a time-varying contaminant
source in their synthetic aquifer.

3.12 Ensemble Kalman Filter and Joint Identification of Source and Hydraulic
Conductivity

The ensemble Kalman filter (EnKF) (Evensen 2003) had been used for parameter
identification in petroleum engineering and hydrogeology for some time (Aanonsen
et al. 2009; Chen and Zhang 2006; Li et al. 2011a, 2012; Xu et al. 2013a, b), but
focusing on static parameters such as hydraulic conductivities. The EnKF is an assim-
ilation technique based on gathering observations in time and updating the parameter
estimates after each collection step. Comparison of the forward model predictions and
the observations allows the correction of the estimates into a newly updated estimate
for the next forward prediction. However, when the parameter to be estimated is the
location of a contaminant source, an updated location cannot be incorporated into the
model to predict in time unless the forwardmodel is restarted from time zero to account
for the updated location. This procedure is known as the restart EnKF (r-EnKF). Xu
and Gómez-Hernández (2016) demonstrated that the r-EnKF can be used for source
identification and went a step further (Xu and Gómez-Hernández 2018) to prove that a
channelized heterogeneous hydraulic conductivity spatial distribution could be jointly
identified with the contaminant source parameters (location, release time, and source
strength).

At last, after many years, a true leap towards the applicability of contaminant source
identification algorithms was achieved, since, for the first time, a complex, realistic
spatial distribution of hydraulic conductivity was not assumed known and was subject
of identification simultaneously with the source. However, the rest of the parameters
defining the aquifer, such as porosity, dispersivity, boundary conditions, and stresses,
were known.
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3.13 Bayesian Model Selection

The paper by Cao et al. (2019) is the last paper that proposes a new paradigm to
address the problem of contaminant source identification. As most of the papers pub-
lished before that use synthetic experiments, the reference data were obtained adopting
a specificmodel for the aquifer (whether deterministic or probabilistic). Then the same
model was used for the solution of the identification problem. In a real situation, the
uncertainties around the aquifer model are significant, and it is virtually impossible to
claim that the aquifer system is known. Cao et al. (2019) adopt a probabilistic model
to select among a set of potential aquifer models using a Bayesian approach. The
feasibility of the approach will depend on the span covered by the alternative models
proposed. The authors demonstrate their proposal in two synthetic case studies. One is
a two-dimensional aquifer with a zoned spatial distribution for hydraulic conductivity.
The other is a three-dimensional experiment in a laboratory column made up of two
sands arranged in two continuous blocks of very different shapes and sizes. The dif-
ferent models considered are not so different after all; in both case studies, the models
differ only in the size and shape of the zones used to describe the heterogeneity of the
hydraulic conductivity, but the paper marks a route for how to incorporate different
descriptions of the aquifer system and to identify both the model description and the
source parameters that best reproduce the observations.

4 But There Are More Papers

In the previous sections, the papers thatmarked a change in the line of research towards
the solution of contaminant source identification have been discussed. However, there
aremore: all in all, 157 papers have been encountered, and they deserve a short analysis
that will help place the whole research field in perspective. Table 1 in the Supplemen-
tary Material lists the papers and highlights their main contributions, while Table 2,
also in the Supplementary Material, uses the same paper numbering as Table 1 and
includes some characteristic features of the papers of interest. More precisely, Table 2
includes the dimensionality of the problem, the type of source, whether or not the
source is time-dependent (it is marked as time-dependent if it is a continuous function
of time as in Fig. 3 or a step function that changes according to some stress periods;
it is marked as time-independent if it is either a pulse or a continuous injection), the
type of solution algorithm used to solve the identification problem, the state equa-
tion considered with indication of the code used to solve it when available, the type
of case study analyzed (it could be synthetic, laboratory, or field), the parameters
describing the source being identified (the most common parameters are the source
locations and the release functions; in some occasions, the locations are chosen out of
a set of release candidates or the strength of the source changes stepwise according to
predefined stress periods), whether other parameters apart from the ones describing
the source are identified (some papers also identify flow and transport parameters,
although in most of them these parameters are homogeneous or piecewise homoge-
neous within the domain), and finally, whether hydraulic conductivity was considered
as a heterogeneous parameter, and if heterogeneous, whether this heterogeneity was
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piecewise, that is, variable but homogeneous within well-defined zones, and whether
the heterogeneity was known or was subject of identification as well.

Analyzing these attributes for all the papers, we can see an evolution towards appli-
cability that looks more like the upper limb of a logistic curve reaching its asymptote
than the exponential rise in the number of papers published.

Next, the different attributes will be discussed, stressing the potential applicability
of the results to real problems.

4.1 Dimensionality

While the first papers presented applications in two-dimensional aquifers, a substantial
number of papers continue to be published that address the problem in one dimension.
Figure 4 shows the histograms of the papers classified by their dimensionality. It is not
until 1998, with the paper by Woodbury et al. (1998), that the first three-dimensional
analysis is published. The majority of papers are for two-dimensional aquifers, and
only in the past few years have applications in three dimensions increased.

From a practical point of view, solutions are needed in two or three dimensions.
The scale of the problem will determine the need to use a two-dimensional model
(regional flow) or a three-dimensional one (local flow).

4.2 Source

The problems addressed by the different authors can be classified as single or multiple
sources and as point, areal, or volumetric sources. Some authors assume that the source
locations are known or that the source locations should be chosen out of a set of
possible locations. This situation could be plausible in some occasions when the agent
originating the contamination in the aquifer is known, but in many instances this is not
the case, and the location must be treated as an unknown to be identified. The case of
multiple locations where the number and coordinates of the sources have to be jointly
identified has not been addressed. When multiple sources are considered, there are
some potential source locations to choose from,what transforms a difficult continuous-
mixed-integer optimization problem into a not much simpler combinatorial one.

The papers for which the type of source is identified as areal consider the shape of
the area to identify as known and only seek the release strength, except for Ala and
Domenico (1992), Mahinthakumar and Sayeed (2005), Hosseini et al. (2011), Ayvaz
(2016), and Zhou and Tartakovsky (2021) who also attempt to find the shape of the
areal source. Only two of these consider an unknown generic shape.

Of the papers addressing a volumetric source, all assume that the shape is known,
except for Mahinthakumar and Sayeed (2006), Mirghani et al. (2009), Aghasi et al.
(2013), Jin et al. (2014), and Yeh et al. (2016), who also attempt to identify the shape
of the source, with most using a simple prismatic parameterization.

From a practical point of view, it does not seem feasible (because of its difficulty) to
ask for a solution in which the sources are unknown in number, locations, and shapes,
but some degree of lack of knowledge regarding these three attributes will always be
present, and methods should aim to address all three in the most general way possible.
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4.3 Time Dependency

When the source varies in time, even if it is a single point at a known location, the
difficulty of the identification problem increases dramatically, unless the variation
is very simple and can be parameterized with a few unknowns (as is the case of a
rectangular pulse or a train of pulses that only needs each pulse beginning and end
times and the pulse concentrations).

A substantial number of papers consider that the source is either an instantaneous
injection or a continuous one of constant intensity, in which case only two parameters
are needed to describe it: the (initial) time of the release and its concentration.Adopting
this type of release means that there is good knowledge of what happened, as it could
be the case of an illegal overnight dump into an abandoned well or continuous leakage
out of a deposit. These cases are labeled as not being time-dependent.

Another important number of papers assume that the concentration history varies
stepwise in time according to several stress periods. The duration of each stress period
is known, and during each period, the concentration remains constant. Unless the stress
periods are considered relatively short in time, the number of parameters to describe
the time dependency is relatively small; adopting this formulation also implies that
there is essential knowledge about the history of the release and the time periods
during which the release remained constant. In Table 2, care has been taken to indicate
when the case study assumes that the source strengths are identified at specified stress
periods.

Finally, another group of papers attempts to identify an unknown continuous-time
function that describes the release. This group starts with the one-dimensional case
by Skaggs and Kabala (1994) for which the location was known, and continues with
papers in higher dimensions and the simultaneous identification of the source location
(Todaro et al. 2021).

4.4 Solution Approach

As already noted in the section describing the landmark papers, there are three main
approaches to address contaminant source identification: the simulation–optimization
approach, the backward probability tracking approach, and the probabilistic approach.

Most of the efforts over these 40 years since the first paper was published have
focused on solving the identification problem under the premise that some concentra-
tion observations are available (in space and time), and there is a need to determine
the parameters that describe the originating contamination, with little consideration of
trying to account for other uncertainties inherent to groundwater flow and mass trans-
port. Many refinements have been proposed concerning the initial papers, with the
latest papers making use of the most sophisticated techniques regarding optimization
by heuristic approaches, machine learning to build surrogate models, and innovative
applications of Markov chain Monte Carlo.

It can be concluded that the identification problem is solved provided that there is
perfect knowledge of the underlying aquifer in which the contamination has occurred.
However, when uncertainties about the parameters describing the aquifer are consid-
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ered, no approach has been able to get close enough to real conditions to warrant its
routine application to field cases.

4.5 State Equation

The state equation information included in Table 2 highlights whether flow and trans-
port were solved, or just transport assuming the flow velocity is known; it makes
reference to the codes used to solve the state equation, when known, and in the most
recent years, whether surrogate models have been used to speed up the multiple eval-
uations of the forward problem needed by most of the solution algorithms.

4.6 Case Study

Five papers have used laboratory data, 28 papers used field data, and 113 papers used
synthetic data. Although the number of papers using field data has increased in the
last few years, the corpus of the subject is mainly based on results using synthetic
aquifers.

While synthetic aquifers are necessary to test new algorithms and techniques, the
subject should be mature enough to prove the latest development in closer-to-field
conditions. Besides, most of the papers using field data do not use the most elaborate
techniques at the time, but generallymake rather simplistic approximations,weakening
the contribution of the field case demonstration.

More research with field data is needed. A task that on most occasions is hindered
by the difficulty in having access to data that can be shared publicly. This may explain
the relatively low number of field papers, but that does not explain the even lower
number of papers using laboratory data.

4.7 Source Parameters Being Identified

It is important to note that not all papers attempt to identify the source location; many
assume it is known, and many assume that it could be one of a small set of candidates.
The rest of the papers identify the source coordinates, either a point in space or a small
set of parameters that identify an areal or volumetric source.

The time distribution of the source strength was already discussed above.
The hardest problem is the simultaneous identification of the number and the loca-

tions of multiple sources, and it has not yet been addressed by anyone. Only a very
recent paper considers the problem of identifying the location of two sources (the
number of sources is therefore known) and the parameters describing them (Zhou and
Tartakovsky 2021).

4.8 Other Parameters Being Identified

In practical terms, the aquifer parameters are never known, and therefore they should
be subject to identification. Some authors consider that all parameters other than the
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source ones are known, without entering into any consideration of whether or not this
decision is meaningful; some authors argue that they work with previously calibrated
aquifer models, not using the additional concentration data to further refine the aquifer
model calibration; finally, a few of the authors do perform a simultaneous identification
of source and aquifer parameters.

When in Table 2 it is indicated that other parameters are identified, these additional
parameters are described in Table 1.

4.9 Hydraulic Conductivity Heterogeneity

Hydraulic conductivity heterogeneity is of paramount importance for the proper pre-
diction of contaminant transport (Capilla et al. 1999; Gómez-Hernández and Wen
1994; Li et al. 2011b). For this reason, it is necessary to include a realistic represen-
tation of conductivity if the techniques developed are to be applied in practice. The
papers have been classified as not accounting for heterogeneity (N), accounting for
heterogeneity using a zonation with constant conductivities within each zone (Z), and
accounting for heterogeneous conductivity using a stochastic realization (Y).

However, using a heterogeneous conductivity is not enough to make the analysis
realistic. The conductivity field cannot be perfectly known, so an additional set of
papers is tagged as accounting for heterogeneity but not fully knowing the hydraulic
conductivity spatial distribution (YN). Of these papers, the subset that additionally
attempts to identify the unknown conductivity field contains the ones closest to appli-
cability. The number of papers meeting these latter conditions—that is, that assume
that conductivity is fully heterogeneous in space, unknown (except for a few sampling
points), and subject to identification—is only 11. The techniques described in these
papers are closer to being applicable in field conditions.

4.10 Additional Information

Figure 5 shows a word cloud with the last names of all authors signing the papers.
While some of the last names of the Chinese authorsmay correspond to several people,
it is clear that some authors have made an imprint in the field, with Datta being the
leader and responsible for the fact that India and Australia are in third and fourth
positions in the number of papers published by country, respectively.

Figure 6 shows a histogram of the number of papers published by the country of the
first author institution. The United States has produced the largest number of papers
overall, but if these numbers are broken down by year of publication, it is noticeable
that China is the leader in the most recent years.

5 Conclusions

The productivity in terms of the number of papers published in the subject has grown
exponentially in the 40 years since the first work. Unfortunately, this exponential
growth in number is not paralleled by similar growth in added value. The field seems
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to be stalled, with only minor incremental advances towards a solution that can be
applied with reasonable expectations to field cases.

From a practical point of view, it seems unreasonable to attempt to solve a source
contamination identification without any prior knowledge about the source itself. The
optimal method should identify all parameters at once: the number of contaminant
events, their locations, their extent, and their time history. However, no one has tried
to do it, and likely no one will, since it is too complex a problem. Therefore, it must be
admitted that some information about the source is available, such as the number of
sources, their potential locations, whether or not it is punctual, and if it is not punctual,
some idea about the shape or the duration of the contamination event.

At the same time, from a practical point of view, it seems unreasonable to develop
new techniques that do not incorporate the inherent uncertainties involved in ground-
water flow andmass transport modeling. Thus, whatever technique that wishes to have
a chance of being applied in practice has to incorporate the uncertainty on the param-
eters describing flow and transport and other variables such as infiltration, pumping,
or boundary conditions. Also, these techniques should consider proper data acquisi-
tion, since many of the papers assume dense networks of observations already existing
before detecting the contaminant.

There is still room for improvement, and for new papers on the subject, but they
should either propose a radically new approach to solving the problem or recognize
the limitations of previous work regarding its applicability and advance towards it.
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