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Abstract Methods of tissue engineering continue to

advance, and multiple clinical trials are underway eval-

uating tissue engineered vascular grafts (TEVGs).

Whereas initial concerns focused on suture retention

and burst pressure, there is now a pressing need to de-

sign grafts to have optimal performance, including an

ability to grow and remodel in response to changing

hemodynamic loads. Towards this end, there is simi-

larly a need for computational methods that can de-

scribe and predict the evolution of TEVG geometry,

composition, and material properties while accounting

for changes in hemodynamics. Although the ultimate

goal is a fluid-solid-growth (FSG) model incorporating

fully 3D growth and remodeling and 3D hemodynam-
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ics, lower fidelity models having high computational ef-

ficiency promise to play important roles, especially in

the design of candidate grafts. We introduce here an

efficient FSG model of in vivo development of a TEVG

based on two simplifying concepts: mechanobiologically

equilibrated growth and remodeling of the graft and an

embedded control volume analysis of the hemodynam-

ics. Illustrative simulations for a model Fontan conduit

reveal the utility of this approach, which promises to

be particularly useful in initial design considerations

involving formal methods of optimization which other-

wise add considerably to the computational expense.

Keywords Tissue engineering · Fontan procedure ·
TEVG · Neovessel · Fluid-Solid-Growth

1 Introduction

Tissue engineering seeks to repair, replace, or regener-

ate tissues and organs, often using biodegradable poly-

meric constructs to guide cell-mediated neotissue for-

mation. Now 20+ years later, its early promise to pro-

vide functional vascular conduits on demand (Nikla-

son et al., 1999) is becoming a reality and multiple

designs are under investigation via clinical trials (Hi-

bino et al., 2010; Bockeria et al., 2020; Niklason and

Lawson, 2020). With feasibility established, it is now

time to advance from conceptualization and assessment

to optimization. Although current achievements have

been realized largely via trial-and-error empirical ap-

proaches, the current knowledge base provides data suf-

ficient to inform computational models of neotissue for-

mation having clinical utility (Drews et al., 2020; Blum

et al., 2022), which in turn promise to enable formal op-

timization of both scaffold design (Szafron et al., 2019;

Tamimi et al., 2019) and clinical use of implanted con-

structs (Yang et al., 2013).
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Among others, we have shown that a constrained

mixture theory (Humphrey and Rajagopal, 2002) can

be used to model soft tissue growth and remodeling

(G&R) and be specialized to describe (Miller et al.,

2014) and predict (Khosravi et al., 2015) the long-term

in vivo development of a functional tissue engineered

vascular graft (TEVG). We have shown further that

such models can be used to perform numerical parame-

ter sensitivity studies (Miller et al., 2015) or combined

with numerical optimization techniques (Szafron et al.,

2019) to provide new insights into the design-driven

natural history of TEVG geometry, composition, and

material properties as it develops in vivo. Before op-

timization studies can reach their full potential, how-

ever, there remains a need for an additional theoret-

ical advance – development of a fully 3D fluid-solid-

growth (FSG) framework that accounts for the effects

of hemodynamic changes as the TEVG develops, in-

cluding possible transient luminal thrombus formation

as well as local narrowing or dilatation of the graft.

Notwithstanding the theoretical advantages of full con-

strained mixture models, which allow one to account

for the separate rates of removal and production of dif-

ferent constituents having individually evolving natu-

ral configurations and material properties, the associ-

ated computational expense motivates the search for

reduced models.

We thus introduce here a fast, efficient, reduced

model for performing exploratory FSG simulations that

can help focus the more computationally intensive sim-

ulations that will be needed for final design optimiza-

tion. Advancing such a multi-fidelity modeling approach

promises to be both time- and cost-efficient, with fur-

ther promise of providing insight into the in vivo de-

velopment of TEVGs that may be less evident in more

complex simulations. Toward this end, we extend and

couple a mechanobiologically equilibrated constrained

mixture model of tissue G&R (Latorre and Humphrey,

2018, 2020a) with a control volume based analysis of

luminal flow (Baek et al., 2007) which together enable

the first simulations of in vivo TEVG development to

include direct feedback from the changing hemodynam-

ics. For completeness, we summarize key aspects of the

framework and workflow in the next section.

2 A mechanobiologically equilibrated

framework for in vivo TEVG development

2.1 Mass balance

In a continuum theory of constrained mixtures for G&R

(Humphrey and Rajagopal, 2002), properties at a ma-

terial point in configuration κ (s) are represented in

a locally averaged sense in terms of multiple struc-

turally significant constituents α = 1, ..., N , to satisfy

mass balance in spatial form ∂ρα/∂s + div (ραvα) =

m̄α, where ρα is the homogenized apparent mass den-

sity (mass of constituent α per unit current volume of

mixture), s is the G&R time, vα the velocity (con-

strained to equal the velocity v of the mixture), and

m̄α the net rate of mass density production or removal,

which must be prescribed constitutively. Let m̄α be de-

fined in terms of true rates of mass density produc-

tion mα > 0 and removal nα > 0 as m̄α = mα − nα,

both of which must be prescribed constitutively. Be-

cause div (ραvα) = ρα divvα+vα· grad ρα, then ∂ρα/∂s

+ vα· grad ρα = ρ̇α, with ρ̇α the material time deriva-

tive of ρα, and divvα = divv= J̇/J , with J = detF the

Jacobian determinant of a deformation gradient F de-

fined at the mixture level, which conveniently describes

(measurable) deformations between an initial configu-

ration κo := κ (0) and current configuration κ (s). Mass

balance can thus be written in terms of the referen-

tial mass density ραR = Jρα (defined per unit reference

volume of mixture) as

ρ̇αR
J
≡ ρ̇α + ρα

J̇

J
= mα − nα . (1)

Here, consider two types of load-bearing constituents,

denoted by superscripts α = p (polymer) and α = c

(collagen-dominated neotissue) within a TEVG that

evolve differently for s > 0. The polymeric constituent

p can only degrade, with half-lives on the order of weeks

to years depending on the material, with its intermit-

tent response described by hyperelasticity and possibly

damage mechanics. In contrast, neotissue constituents

c = 1, .., N c (with 1 + N c = N) can turnover contin-

uously, thus contributing to local changes in mass and

microstructure, with their response described herein by

(rate-independent) G&R, examples of which are colla-

gen fibers arising from inflammation-driven or mechano-

mediated synthesis, which have a half-life of days to

months.

2.1.1 Polymeric scaffold

With mp = 0 and np > 0, we have

ρ̇pR
J
≡ ρ̇p + ρp

J̇

J
= −np . (2)

2.1.2 Immuno-mechano-mediated neotissue

For collagen-dominated neotissue that turns over, it

proves useful to define a stimulus function Υ c = mc/nc >

0, which enhances (Υ c − 1 > 0), reduces (Υ c − 1 < 0),

or balances (Υ c − 1 = 0) mass production with respect
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to mass removal. Prescribing mc and nc is thus tanta-

mount to prescribing nc and Υ c, with

ρ̇cR
J
≡ ρ̇c + ρc

J̇

J
= mc − nc = nc(Υ c − 1) . (3)

2.2 Linear momentum balance

For negligible body forces and (excess) exchanges of

momentum, spatial linear momentum balance for con-

stituent α, with vanishing interactive forces among con-

stituents due to their constrained motion, can be writ-

ten

ραv̇α = divσαt (4)

where σαt is the total Cauchy stress tensor (i.e., in-

cluding a contribution σα derived from a strain energy

function and others arising from kinematic constraints,

such as transient incompressibility) for a constituent at

the mixture level.

Summation of mass, Eqs. (2) and (3), and momen-

tum, Eq. (4), balances over all α = polymer+neotissue

constituents yields

ρ̇R

J
≡ ρ̇+ ρ

J̇

J
= −np +

Nc∑
c=1

nc(Υ c − 1) (5)

and

ρv̇ = divσ (6)

where ρR =
∑
ραR = J

∑
ρα = Jρ and σ =

∑
σαt .

2.3 Mechanobiological (quasi-)equilibrium

We observe from Eqs. (2), (3) and (5) that a suffi-

cient (hypothetical, purely mathematical) condition for

a TEVG to be in mechanobiological equilibrium (to

preserve its mixture mass, composition, and proper-

ties; Latorre and Humphrey, 2018) at G&R time s is

np ≡ 0 (i.e., the polymer does not degrade) and Υ c ≡
1 ∀c (i.e., production of neotissue precisely balances

removal), whereby ρ̇αR ≡ 0 ∀α and ρ̇R = 0. Impor-

tantly, however, because the polymer degrades contin-

uously until exhausted, and because this degradation

may stimulate turnover of both immuno- and mechano-

mediated neotissue, a suitable approximation for evolv-

ing, mechanobiologically quasi-equilibrated G&R pro-

cesses is possible if

np > 0 and Υ c ' 1 ∀c , (7)

for which ρ̇R > 0, which is most stringent, yields from

Eq. (5)

Nc∑
c=1

nc(Υ c − 1) > np , (8)

that is, if characteristic rates of turnover of neotissue

are greater than rates of degradation of polymer (i.e.,

the “adaptation” timescale is shorter than the “stimu-

lation” timescale). In particular, for N c = 1, this last

condition reduces to np/nc < Υ c − 1 ' 0, which holds

for nc � np. Note that if, as commonly assumed, degra-

dation of neotissue constituents follows a first-order de-

cay throughout the evolution (with nc proportional to

ρc), this condition would hardly hold at early times af-

ter implantation of the graft (when ρc � ρ), suggesting

that transient G&R effects could be important during

an initial (typically short) phase, which this formula-

tion disregards to a first approximation. Finally, quasi-

static mechanical equilibrium in evolving in vivo states

(pseudo-homeostatic, denoted by subscript h) addition-

ally requires 0 ' ρv̇ = divσ from Eq. (6), with F ≡ Fh
describing deformations between configurations κo and

κh, see Fig. 1.

2.4 Mechanobiologically equilibrated volume (and

mass) fractions

Let constituents have different true mass densities ρ̂α

(i.e., current mass of constituent per unit current vol-

ume of constituent). We have shown previously (Latorre

and Humphrey, 2018) that rule-of-mixture expressions

are then given in terms of constituent-specific volume

fractions Φα (i.e., current volume of constituent per unit

current volume of mixture). Noting that Φco = 0 ∀c for

a pure polymeric scaffold, the initial volume fraction Φpo
satisfies Φpo +

∑
Φco = Φpo = 1. Let also ρ̂α remain con-

stant, a plausible approximation for (highly hydrated)

neotissue constituents and also polymeric scaffolds that

degrade via surface erosion, though not necessarily for

polymers undergoing bulk degradation (which, even if

the present formulation could describe via evolving ρ̂p

are not considered here due to a current lack of data).

Because their differential production and removal con-

tribute to changes in mass and volume of the mixture,

both types of constituents can present evolved volume

fractions Φph 6= Φpo and Φch 6= Φco at any (new) equilib-

rium state κh, satisfying Φph +
∑
Φch = 1, with

Φαo =
ραo
ρ̂α

, Φαh =
ραh
ρ̂α

(9)

for all constituents α = 1, ..., 1 + N c, where ραo and

ραh are equilibrated homogenized mass densities (de-

fined locally as original o or updated h homeostatic,
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respectively). Mass (φα) and volume (Φα) fractions re-

late through

φαh =
ραh
ρh

= Φαh
ρ̂α

ρh
(10)

where the, generally evolving, current mass density ρh
of the overall tissue is

ρh =

N∑
α=1

ραh =

N∑
α=1

Φαh ρ̂
α (11)

whereby ρh = (
∑
φαh)ρh, that is, 1 =

∑
φαh . For the

particular case ρ̂α = ρ̂ ∀α, then ρh = (
∑
Φαh)ρ̂ = ρ̂ = ρo

remains constant and volume and mass fractions coin-

cide (Latorre and Humphrey, 2018).

2.4.1 Polymeric scaffold

Based on our previous study (Drews et al., 2020), let

the mass of polymer degrade via the following decay

function

Qp (sh) =
1 + e−k

pχp

1 + ekp(sh−χp)
=: Qph (12)

where kp and χp are associated rate and shape param-

eters. With ρpRo = ρpo = Φpoρ̂
p = ρ̂p,

ρpRh = ρpRoQ
p
h = ρ̂pQph (13)

and

ρph =
ρpRh
Jh

=
ρ̂pQph
Jh

=⇒ Φph (Jh) =
Qph
Jh

. (14)

Thus, the referential volume fraction of polymer ΦpRh =

JhΦ
p
h (current volume of polymer per unit reference vol-

ume of mixture) equals the mass decay Qph. Consistent

with Eq. (2),

ρ̇pRh = ρ̂pQ̇ph = − kp

1 + e−kp(sh−χp)
ρ̂pQph

= − kp

1 + e−kp(sh−χp)
ρpRh = −npRh (15)

where npRh = Jnph < 0. Note that the G&R time sh
plays the role of a parameter within this formulation;

that is, one can compute an equilibrated state for each

level of polymer degradation (or pseudo-time sh).

2.4.2 Immuno-mechano-mediated neotissue

To delineate differential changes in mass of constituents

c under mechanobiological equilibrium, one needs first

to describe how they evolve with respect to each other

under general G&R. For example, without explicitly

prescribing nc and Υ c in Eq. (3), let these constituents

respond to changes in stimuli with proportional out-of-

equilibrium stimulus functions and mass-specific rates

for removal: Υ i − 1 = ηijΥ (Υ j − 1) and ni/ρi = ηijq n
j/ρj

for c = i 6= j = 1, ..., N c, with ηijΥ and ηijq respec-

tive proportionality ratios. Then, from Eq. (3), local

changes in mass of neotissue constituents per respec-

tive unit mass satisfy

ρ̇iR
ρiR

= ηij
ρ̇jR
ρjR

, c = i 6= j = 1, ..., N c (16)

with ηij = ηijq η
ij
Υ (no sum). Exact integration of Eqs.

(16) from state κo (where ρcRo = Joρ
c
o = ρco) to κh

(where ρcRh = Jhρ
c
h) yields N c−1 independent relations

among the mass densities ρch

Jhρ
i
h

ρio
=

(
Jhρ

j
h

ρjo

)ηij
, c = i 6= j = 1, ..., N c (17)

which, by noting that ρco = 0, can be rewritten as

JhΦ
i
h = ΦiRh = %ijo (ΦjRh)η

ij

= %ijo (JhΦ
j
h)η

ij

(18)

where we used Eqs. (9) and defined

%ijo :=
ΦiRh

(ΦjRh)ηij

∣∣∣∣∣
sh→0+

=
Φih

(Φjh)ηij

∣∣∣∣∣
sh→0+

(19)

which are parameters to be determined from experi-

mental data. Eqs. (18) are similar to those obtained in

Latorre and Humphrey (2018) between the two evolving

constituents considered therein (smooth muscle cells

“m” and collagen fibers “c”, with a single η = ηqηΥ ).

Finally, the constraint
∑
Φαh = 1, with Φph (Jh) from

Eq. (14), requires

Qph
Jh

+

Nc∑
c=1

Φch = 1 (20)

which, along with Eqs. (18), form a system of N c inde-

pendent equations that provide implicit expressions for

Φch (Jh) = ρch (Jh) /ρ̂c. If mass fractions φαh = Φαh ρ̂
α/ρh

are needed, the evolving ρh is determined via Eq. (11),

with ρ̂ := ρ̂c ∀c and
∑
Φch = 1−

∑
Φph,

ρh (Jh) =
Qph
Jh

ρ̂p +

(
1−

Qph
Jh

)
ρ̂ . (21)
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2.5 Mechanobiologically equilibrated deformation

gradients

In a full constrained mixture theory, constituents are

assumed to be deposited within the mixture at depo-

sition time τ ≤ s in intermediate configurations, rela-

tive to their own possibly evolving natural configura-

tions καn (τ), via symmetric and volume-preserving de-

position stretch tensors Gα (τ). Since the motion of

each constituent, once deposited, equals that of the

soft tissue, the deformation experienced by the mate-

rial deposited at time τ that survives at s is Fαn(τ) (s) =

F (s)F−1 (τ)Gα (τ) (Baek et al., 2007). Because newly

deposited constituents at time τ satisfy Fαn(τ) (τ) =

Gα (τ), one notices (Latorre and Humphrey, 2020a)

that καn (τ) can be interpreted as natural configurations

that evolve with the configuration of the mixture κ (τ),

with Gα playing the role of a (spatial) left (pre)stretch

tensor when referred to a rotated natural configuration

καN (τ) that evolves while attached to the rotated con-

figuration of the mixture κR (τ). In that case, let an

associated deformation gradient

FαN(τ) (s) = F (s)F−1 (τ)FαG (τ) (22)

map line elements (fibers) from the rotated natural

configuration καN (τ) to the current configuration κ (s),

where

FαG (τ) := Gα (τ)R (τ) = R (τ)Gα
N (τ) (23)

is a constituent-specific deposition tensor at τ , with R

the rotation tensor from a polar decomposition of F,

thus

Gα
N (τ) := RT (τ)Gα (τ)R (τ) (24)

is the associated (symmetric, volume-preserving) right

(pre)stretch tensor defined in configuration καN (τ). We

then obtain mechanobiologically equilibrated deforma-

tion gradients for all constituents α from their respec-

tive equilibrated natural configurations to the equili-

brated current configuration of the mixture κh, described

by F (s) = Fh (see Fig. 1).

2.5.1 Polymeric scaffold

Constituents p are placed at τ = 0 and possibly pre-

stretched with Gp (τ = 0) = Gp = const (indeed, de-

pending on the fabrication process, residual stresses

may exist in the scaffold prior to implantation). Hence,

their natural configurations κpo := κpn (0) = κpN (0) do

not evolve over time, but are fixed and attached to the

reference configuration for the mixture κo. Equation

(22) specialized to a mechanobiologically equilibrated

state, with F (τ = 0) = I, yields (see Fig. 1)

Fph := FpNh = Fpnh = FhG
p . (25)

2.5.2 Immuno-mechano-mediated neotissue

Deposition stretches arise when synthetic cells act on

the newly-secreted matrix via actomyosin activity,

with magnitudes becoming constitutive parameters and

so too the orientation of the new tissue when deposited

(Valent́ın et al., 2013). We assume that the magni-

tude of Gc
N in Eqs. (22)-(24) remains constant over

G&R time scales (including mechanobiologically equi-

librated evolutions), but not its referential orientation

(Latorre and Humphrey, 2020b). Furthermore, Gc
h =

RhG
c
NhR

T
h accounts for rotations that may arise as the

TEVG evolves, particularly in cases of local narrowing.

Equation (22) specialized for constituents that turnover

within a “homeostatic” state, with F (τ) = F (s) = Fh
∀τ , yields (see Fig. 1)

FcNh = FhF
−1
h FcGh = FcGh = RhG

c
Nh , (26)

which proves useful when computing mechanobiologi-

cally equilibrated (rotated) Cauchy stresses subject to

material frame indifference (Latorre and Humphrey,

2020a).

2.6 Mechanobiologically equilibrated strain energy

2.6.1 Polymeric scaffold

Consider a strain energy function Ŵ p per unit reference

volume of the natural configuration κpo. Since polymeric

constituent p is deposited within κo, but degrades over

time, its contribution at the mixture level (per unit ref-

erence volume of mixture) is weighted directly by its

respective evolved referential volume fraction ΦpRh as

W p
Rh = ΦpRhŴ

p
h (27)

where ΦpRh = Qph and Ŵ p
h = Ŵ p(Cp

h), which depends

on the equilibrated polymeric constituent-specific right

Cauchy–Green tensor Cp
h = FpTh Fph = GpChG

p, from

Eq. (25), with Ch = FT
hFh the right Cauchy–Green

tensor for the equilibrated mixture.

2.6.2 Immuno-mechano-mediated neotissue

Consider strain energy functions Ŵ c per unit reference

volume of their natural configurations κcNh ≡ κcN(s),

with κcNh(s) 6= κcnh(s) in general. Since neotissue con-

stituents c are deposited within κh ≡ κ(s), contribu-

tions at the mixture level (per unit current volume of

mixture) are weighted by evolved volume fractions Φch
as W c = ΦchŴ

c, whereupon W c
R = JhW

c = JhΦ
c
hŴ

c,

or

W c
Rh = ΦcRhŴ

c
h (28)
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where ΦcRh = JhΦ
c
h and Ŵ c

h = Ŵ c(Cc
Nh) depends on the

equilibrated neotissue constituent-specific right Cauchy–

Green tensor Cc
Nh = FcTNhF

c
Nh = (Gc

Nh)2, from Eq. (26).

2.6.3 Evolving TEVG

A rule-of-mixtures relation for WRh = JhWh, defined

per unit volume in κo is

WRh =

N∑
α=1

Wα
Rh = ΦpRhŴ

p
h +

Nc∑
c=1

ΦcRhŴ
c
h . (29)

The mechanobiologically equilibrated strain energy for

the TEVG (i.e., mixture) thus reads

WR(Ch) = QphŴ
p(Cp

h) +

Nc∑
c=1

ΦcRh (Jh) Ŵ c(Cc
Nh) (30)

with ΦcRh(Jh), c = 1, ..., N c, from Section 2.4.2. This

energy defines that stored by the TEVG within its cur-

rent, pre-stretched, mechanobiologically equilibrated in

vivo state. An extension of Eq. (30) that allows compu-

tation of hyperelastic responses with respect to the con-

figuration κh is given in Latorre and Humphrey (2020a).

2.7 Mechanobiologically equilibrated stresses

The second Piola–Kirchhoff stress for the mixture S

during transient loading reads

S =− JhpC−1 + Sp +

Nc∑
c=1

Sc

=− JhpC−1 +QphG
pŜp(Cp)Gp

+

Nc∑
c=1

ΦcRh (Jh)U−1
h Gc

NhŜ
c
N(Cc

N)Gc
NhU

−1
h (31)

with Uh the equilibrated right stretch tensor and the

appropriate C, Cp(C), and Cc
N (C) are given in Latorre

and Humphrey (2020a). Note, too, that the mixture-

level Lagrange multiplier p associates with the (inter-

mittently imposed) constraint J = Jh, and

Ŝp(Cp) = 2
∂Ŵ p(Cp)

∂Cp
, ŜcN(Cc

N) = 2
∂Ŵ c(Cc

N)

∂Cc
N

(32)

are second Piola–Kirchhoff stresses at the constituent

level for both types of constituents. Straightforward

specialization of these expressions to F = Fh provides

mechanobiologically equilibrated stresses at the current

in vivo state.

2.7.1 Polymeric scaffold

In the mechanobiologically equilibrated state, Cp re-

duces to Cp
h = GpChG

p 6= const, Ŝp to Ŝph = Ŝp(Cp
h) 6=

const (in general), and Sp in Eq. (31) to

Sph = QphG
pŜphG

p . (33)

Associated equilibrated Cauchy stresses read

σph =
1

Jh
FhS

p
hF

T
h = ΦphF

p
hŜ

p
hF

pT
h , (34)

where we used Eqs. (14) and (25) (see Fig. 1).

2.7.2 Immuno-mechano-mediated neotissue

Similarly, Cc
N reduces to Cc

Nh = Gc2
Nh 6= const, ŜcN to

ŜcNh = ŜcN(Cc
Nh) 6= const, and Sc in Eq. (31) to

Sch = ΦcRhU
−1
h Gc

NhŜ
c
NhG

c
NhU

−1
h . (35)

Associated equilibrated Cauchy stresses read

σch =
1

Jh
FhS

c
hF

T
h = ΦchF

c
NhŜ

c
NhF

cT
Nh = ΦchRhσ̂

c
NhR

T
h

(36)

where we used FhU
−1
h = Rh, Eq. (26) (see Fig. 1), and

a rotated Cauchy stress tensor for constituent c at the

constituent level

σ̂cNh = Gc
NhŜ

c
NhG

c
Nh 6= const , (37)

which may reorientate/adapt during mechanobiologi-

cally equilibrated evolutions (Latorre and Humphrey,

2020b).

2.7.3 Evolving TEVG

Hence, at current in vivo states F = Fh, equilibrated

second Piola–Kirchhoff stresses for the mixture are

Sh = −JhphC−1
h + Sph +

Nc∑
c=1

Sch (38)

with Sph and Sch given in Eqs. (33) and (35), respectively.

Associated Cauchy stresses specialize to the following

evolved rule-of-mixtures relation

σh =

N∑
α=1

σαth = −phI + σph +

Nc∑
c=1

σch

= −phI +
Qph
Jh

FphŜ
p
hF

pT
h +

Nc∑
c=1

ΦchF
c
NhŜ

c
NhF

cT
Nh (39)

with σch given alternatively in terms of Rh and σ̂cNh in

Eq. (36). Note that σαth in Eq. (4) includes σαh , derived

from the strain energy, and an associated reaction from

the Lagrange multiplier −phI.



In Vivo Development of Tissue Engineered Vascular Grafts: A Fluid-Solid-Growth Model 7

2.8 Mechanobiologically equilibrated stimulus function

and Lagrange multiplier

The hyperelastic stresses σph are computed from the

equilibrated deformation gradient Fh, Jacobian-depen-

dent volume fraction Φp(Jh) = Qph/Jh, and equilibrated

stresses Ŝph = Ŝp(Cp
h), in Eq. (34); in contrast, σch, in

Eq. (36), are computed from the unique equilibrated

rotation Rh from Fh, Jacobian-dependent volume frac-

tion Φc(Jh), in Section 2.4.2, and the tensor σ̂cNh, in Eq.

(37). Hence, only the Lagrange multiplier ph in Eq. (39)

remains unknown at each sh > 0, which one obtains by

invoking mechanobiological equilibrium conditions.

Motivated by Fung’s call for mass-and-structure

growth-stress relations (Fung, 1995), and consistent

with previous constrained mixture models, let stimulus

functions Υ c account for changes in collagen-dominated

production in response to cell-perceived changes in

stress relative to homeostatic baseline values. In partic-

ular, among other possible equilibrated stimuli, let Υ ch
depend on a set of invariants σ̃ih of the total Cauchy

stress tensor σh, and perhaps structural tensors, that

include the extent of ph, that is σ̃ih(ph) from Eq. (39).

Moreover, let the out-of-equilibrium stimulus functions

Υ c−1 be proportional to each other, as in Section 2.4.2,

so equilibrium conditions lead to a single nonlinear al-

gebraic equation Υh = 1 ∀c. Finally, let Sxh :=
∑

Sαh =

Sph+
∑

Sch be the total “extra”(Humphrey, 2002), with

superscript x, second Piola–Kirchhoff stresses, with as-

sociated Cauchy stresses σxh = 1
Jh

FhS
x
hF

T
h given in

Eq. (39), which allows invariants σ̃ih to be expressed

in terms of scalar products involving the second-order

tensors Ch, Sxh, scalars Jh, ph, and their couplings, that

depend on Ch and ph. Thus

Υh
(
σ̃1
h (Ch, ph) , ..., σ̃Ih (Ch, ph)

)
= 1 =⇒ ph(Ch) (40)

which is a generally implicit relation that yields the

(a priori unknown) volumetric contribution to stress

at the mixture level in Eq. (39). As noted in Latorre

and Humphrey (2020a), the stress field for mechanobi-

ologically equilibrated G&R given by Eq. (39), comple-

mented by (40), depends only on the current state of

deformation and, hence, is path-independent.

2.9 A stimulus function with mechano- and

immuno-mediated contributions

In previous implementations of the concept of mechano-

biologically equilibriated G&R including inflammatory

effects, we analyzed G&R of uniform cylindrical arteries

using stimulus functions for mass production

Υ ch = 1 +Kc
σ∆σh −Kc

τw∆τwh +Kc
%ϕ∆%ϕh (41)

where ∆σh = (σ̃h − σ̃o)/σ̃o, ∆τwh = (τwh − τwo)/τwo,
and∆%ϕh = (ρRϕh − ρRϕo)/ρRϕmax, with σ̃ = σI = trσ

' σθθ+σzz the first principal invariant of the mean wall

stress (ignoring the radial component, which tends to be

much less than in-plane components), τw = 4µQ/πa3 a

measure of the wall shear stress over the endothelium

for a fully developed Newtonian flow through a long

cylindrical sector (with µ the viscosity of blood, Q the

volumetric flow rate, and a the current luminal radius),

and ρRϕh a characteristic measure for inflammatory cell

density, with Kc
σ, Kc

τw , and Kc
%ϕ associated gains.

While we easily compute σ̃ = σI = trσ in the present

case using 3D finite element methods given appropriate

hemodynamic boundary conditions, with σ now defined

pointwise through Eq. (39), local values of τw will need

to be computed for more complex geometries, for which

one could solve the Navier-Stokes equations for the lu-

minal blood flow (Figueroa et al., 2009). In Latorre and

Humphrey (2020a), however, we allowed τw = 4µQ/πa3

to locally approximate changes in flow-induced shear

stress for axisymmetric arteries within a finite element

G&R framework. Below, we introduce a control vol-

ume based method that estimates axial variations in

blood pressure and mean flow in limited cases relevant

to TEVGs. As in previous studies, the time course of

inflammatory cell density (e.g., CD45+ staining) can be

prescribed based on either direct experimental measure-

ments or prior (indirect) determination via Eq. (41).

In the latter case, assume a uniform narrowing of the

TEVG and let deviations in pressure- and axial force-

induced intramural stress and flow-induced shear stress

be known from changes in inner radius and thickness.

Then, an equilibrated Υ ch = 1 in Eq. (41) yields

∆%ϕh = − Kc
σ

Kc
%ϕ

∆σh +
Kc
τw

Kc
%ϕ

∆τwh (42)

which can be prescribed locally (at the integration point

level) for the non-uniform finite element computations.

Note that the ratios of gains can also be estimated us-

ing this last relation given (at least) two sets of values

{∆σh, ∆τwh, ∆%ϕh}.

3 Hemodynamic coupling

The control volume energy equation for steady flow

between any two points, u (upstream) and d (down-

stream), in a tube states that the loss in total (i.e.,

static plus dynamic) pressure is given by viscous/fric-
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tional and geometric/minor losses, that is(
Pu
ρf

+ αf
v2
u

2

)
−
(
Pd
ρf

+ αf
v2
d

2

)
=
∑
e

Ffe
le
ae

v2
e

4

+
∑
g

Kfg

v2
g

2
(43)

where P is blood pressure, v is mean blood velocity, ρf
is blood mass density, αf is a kinetic coefficient, l is

axial length; moreover Ff and Kf are viscous and geo-

metric loss coefficients, with the index e accounting for

different characteristic regions along the tube and the

index g representing different characteristic (typically

local) changes in geometry along the tube. Variables

with these subscripts represent characteristic magni-

tudes within their respective regions. With Ff = 64/Re

= 32µ/ρfva for a laminar flow, Pu ≡ P (z = 0), and

v = Q/πa2, we can write, for each region zE ≥ z1 > 0

P (zE) = P1 −
αfρfQ

2

2π2

(
1

a4
E

− 1

a4
1

)
− 8µQ

π

ze<zE∑
e

le
a4
e

− ρfQ
2

2π2

zg<zE∑
g

Kfg

a4
g

(44)

which, given the input venous pressure Pu ' P1 and the

value of the flow Q through the TEVG, depends on in-

ner radii and lengths of these characteristic regions ex-

clusively, which are not expected to change appreciably

during a computation of the fluid mechanics given the

extreme structural stiffness of the evolving TEVG and

the modest changes in blood pressure within a Fontan

conduit over a cardiac cycle (Blum et al., 2022; Schwarz

et al., 2021). Hence, this last equation is discretized in

terms of geometric factors that can be extracted from

finite element simulations of the TEVG, with each el-

ement (e = 1, ..., nez) and expansion/contraction re-

gions (g = 1, ..., ngz) along the the axial direction in-

terpreted as (local) characteristic regions. In particular,

le = l/nez for a uniform discretization along the axial

direction, thus

P (zE) = P1−A
(

1

a4
E

− 1

a4
1

)
−B

ze<zE∑
e

1

a4
e

−C
zg<zE∑
g

1

a4
g

(45)

where A = αfρfQ
2/2π2 (with αf = 2 for a fully devel-

oped laminar flow),B = 8µQl/πnez, and C = KfρfQ
2/

2π2 are (dynamic, viscous, and geometric) parameters

that, along with given axial distributions of elemental

inner radii ae and ag, determine the elemental pressures

P (zE) acting on elemental faces that define the inner

surface of the graft. With units of kg for mass, mm for

length, and s for time, these parameters divided by a4

result in pressures in kPa.

Equation (44) (or (45)) is valid for quasi-steady-

state, quasi-laminar (with possible secondary flow ef-

fects accounted for by the loss factors) flows, that is,

generally non-turbulent flows for which the character-

istic time for changes in flow properties is longer than

the residence time of fluid particles within the tube.

Assuming that the mean flow of blood is quasi-steady,

with Q its net flow rate, is particularly relevant for

flow in a Fontan conduit, for which the present deriva-

tion is intended (see Drews et al., 2020). Therefore, one

can couple this equation with simultaneous mechanobi-

ologically equilibrated G&R computations for the solid,

leading to a simplified (1D fluid - 3D solid), fully rate-

independent, FSG formulation. Under these conditions,

and in particular for the present TEVG application,

consider initially (iteration 0) a uniform distribution of

blood pressure. Then, the following iterative procedure

can be followed (see an extended flowchart in Fig. 2):

I. 3D solid computation: Given an axial distribution

of pressure, compute the mechanobiologically equi-

librated G&R evolution of the TEVG over a given

number of load (pseudo-time) FE steps (including,

in particular, flow-induced shear stress-dependent

effects on the mechanobiology via Eq. (41)).

II. In postprocessing, extract the inner radius at each

axial location (i.e., average elemental values) for each

converged time step.

III. 1D fluid computation: Update the distribution of

pressure for each time step via Eq. (44) (or (45))

(to modify, in particular, the pressure-induced in-

tramural stresses to be re-computed in (I)) for given

hemodynamic boundary conditions (see Remarks 1

and 2 below).

IV. Repeat from (I) if the error for the input local pres-

sure for (I) and the output pressure from (III), for

any time step, is greater than a prescribed tolerance.

Stop otherwise (the solution has converged).

We have automated this procedure using Matlab

scripts and functions that call a slightly modified ver-

sion of the open source finite element code FEBio (Ver-

sion 2.8.21; Maas et al., 2012) with the G&R model

for the TEVG implemented via a material plugin (step

I), postprocess output files (step II), re-compute pres-

sures and their relative errors between consecutive it-

erations (step III), and write new input files for (I) un-

til the FSG computation converges (step IV). For the

1 Modified, as noted previously (Latorre and Humphrey,
2020a), to support materials with tangents having only minor
symmetries (an output from our material plugin), including
extended procedures within the FEBio source code as well as
a new class of matrices and associated algebraic operators.
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current parameters, FE mesh (1512 3D quadratic ele-

ments), and load steps (20, converged to machine preci-

sion via global Newton–Raphson iterations showing an

asymptotic rate of quadratic convergence, cf. Latorre

and Humphrey, 2020a), four-to-five FSG iterations give

a final (relative) local error in computed blood pressure

over the whole (axial) fluid domain of ∼10−3 (∼0.5Pa),

with a total elapsed time of ∼1 hour on a single pro-

cessor Intel Xeon E5 at 3 GHz in a Workstation Dell

Precision 5810 with 32GB RAM.

Remark 1: Note that P1 ' Pu (input venous pres-

sure) and Q (flow rate through the TEVG) in Eq. (44),

hence the parameters A, B, and C in Eq. (45), need

not remain constant throughout TEVG development

(Blum et al., 2022). To account for changes in both

global and local hemodynamic conditions within the

present FSG framework, evolving Pu(sh) and Q(sh)

could be prescribed in step (III) via Eq. (44) for each

(quasi-equilibrated) load step / pseudo-time sh. Global

changes in upstream pressure and mean flow would

stimulate further G&R of the TEVG and, in particular,

of its adjacent (host) venous segments.

Remark 2: Alternatively, Eq. (43) can be solved for

Pd ≡ P (z = l) ' Pnez known, that is, for zE < znez < l

PE = Pnez −A
(
a−4
E − a

−4
nez

)
+B

zE≤ze<znez∑
e

a−4
e + C

zE≤zg<znez∑
g

a−4
g

(46)

which, again, is particularly relevant for flow in a Fontan

conduit, where Pnez ' Pd (output venous pressure) re-
mains nearly constant (Drews et al., 2020; Blum et al.,

2022), as we consider below.

4 Uniform G&R computations of the TEVG

Consider first an analysis of G&R evolution using a

uniform, thin-wall-equivalent, cylindrical model of the

TEVG, details of which are given in Appendix A. The

primary results from this simplified study prove very

useful to inform the non-uniform FE simulations per-

formed subsequently.

4.1 Native / host vessel

For the case of an interposition TEVG within the in-

ferior vena cava (IVC), prior mechanical characteriza-

tion of the native vessel is needed for two main rea-

sons. First, recall that we assume that neotissue forma-

tion is driven by both mechano- and immuno-mediated

mechanisms that seek to restore target stresses towards

homeostatic (probably reset) values while the polymer

degrades in the presence of inflammation, see Eq. (41);

we thus define original homeostatic values from a na-

tive IVC under in vivo conditions of blood pressure,

flow rate, axial stretch, and inflammation. Second, our

FE model computes the in vivo development of a TEVG

while it is attached to, and interacts with, the host IVC

at both ends; the FE model/mesh thus includes two ad-

jacent segments of the IVC, which we also let adapt in

vivo in response to the altered hemodynamics and wall

mechanics.

The passive mechanical behavior of the vein is de-

scribed by a four-fiber-family constitutive relation (Lee

et al., 2013; Sokolis, 2013; Miller et al., 2014; Szafron

et al., 2018). This model considers different load-bearing

constituents within the venous wall which, for simplic-

ity, are lumped into three main groups: amorphous

elastin matrix, circumferentially oriented smooth mus-

cle, and circumferentially, axially, and diagonally ori-

ented collagen fibers. The stored energy function for

elastin has a neo-Hookean form whereas collagen and

smooth muscle have a Fung-type exponential form. Pa-

rameters for this model of the native vein have been

determined directly from experimental measurements

(e.g., initial wall geometry and mass fractions) and non-

linear regressions from consistent biaxial mechanical

data (including pressure-diameter and axial force-ex-

tension tests) and are listed in Table 1. Besides these pa-

rameters for the IVC (to perform G&R computations of

the adjacent segments to the TEVG), we prescribe the

associated in vivo blood pressure (P IVC
o = 4.4 mmHg)

and axial force (f IVC
zo = 257 mN) as well as circumfer-

ential (σIVC
θθo = 6.77 kPa) and axial (σIVC

zzo = 6.16 kPa)

stresses to initialize the TEVG computation for a model

lamb implant (Drews et al., 2020; Blum et al., 2022).

4.2 Initial equilibrium of the polymeric scaffold

Current grafts may be made up of several polymeric

constituents. For the present study, however, we con-

sider a single polymeric constituent that phenomeno-

logically describes the combined response of a mixture

of polymers to a first approximation. Its stored energy

function Ŵ p(Cp
h) in Eq. (30) is described by a neo-

Hookean form

Ŵ p(Cp
h) =

cp

2
(Cp

h : I− 3) (47)

where cp is the associated shear modulus, which we es-

timate from experimental data. Noting that only one

polymeric constituent is considered, the unloaded con-

figuration coincides with the natural (stress-free) con-
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figuration of the scaffold, which is the reference con-

figuration for Ŵ p in Eq. (47). Thus, let {λpr , λ
p
θ, λ

p
z} =

{1/λpθ, λ
p
θ, 1} be the radial (by incompressibility), cir-

cumferential (free), and axial (fixed) total stretches dur-

ing a standard pressure-distension test (that is, with-

out the need to specify the pre-stretch tensor Gp at

this stage). For the in vivo value of blood pressure

P = P IVC
o , for example, λpθ = 1.0138. Hence, with the

associated Lagrange multiplier obtained from the radial

equation σprr ≈ 0, the circumferential (Laplace) stress

at the experimentally loaded state under consideration

is

σpθθ = cp

(
λp2θ −

1

λp2θ

)
= Pλp2θ

A

H
(48)

where A and H are the unloaded inner radius and thick-

ness of the experimentally tested scaffold. With P and

λpθ known, this last equation serves to determine a rep-

resentative value cp = 125.7 kPa for the polymer, which

we consider constant for all the computations in this

work (i.e., losses of stiffness will be accounted for via

losses in mass).

Next, the pre-stretch tensor Gp, see Eq. (25), is

defined by two biaxial (circumferential Gpθ and axial

Gpz) stretches that describe the in-plane stretching of

the scaffold at the time of implantation (namely, ac-

counting for the surgeon possibly stretching the scaf-

fold axially when suturing the anastomoses plus the

effect of pressurization when the distal and proximal

cross-clamps are released and the scaffold is pressur-

ized), with the stretch in the radial direction given by

the incompressibility constraint GprG
p
θG

p
z = 1. We thus

determine Gpθ and Gpz by enforcing (ideal) equilibrium

conditions upon implantation. To this end, let a poly-

meric scaffold, made of this material (i.e., neo-Hookean

with a representative cp = 125.7 kPa), be stretched and

(ideally) implanted in vivo such that the circumferen-

tial and axial stresses equal the respective in vivo val-

ues of the host IVC. Since this Cauchy stress state cor-

responds to G&R time sh = 0 for the TEVG, then

Fh = Fo = I (i.e., Jh = Jo = 1), Qph = Qpo = 1 (i.e.,

Φph = Φpo = 1 and Φch = Φco = 0), and Fph = Fpo = Gp in

Eq. (39), whose circumferential and axial components,

with the Lagrange multiplier obtained again from the

radial component, are

σTEVG
θθo = σpθθo = cp

(
Gp2θ −

1

Gp2θ G
p2
z

)
= σIVC

θθo (49)

σTEVG
zzo = σpzzo = cp

(
Gp2z −

1

Gp2θ G
p2
z

)
= σIVC

zzo (50)

which serve in this case to determine the requisite pre-

stretches Gpθ = 1.0103 and Gpz = 1.0079. Note, from the

values computed for cp, Gpθ, and Gpz (compare to ce, Geθ,

and Gez; Table 1), that the polymeric scaffold is much

stiffer than the elastin within the native IVC. Albeit not

required by our FE model below, the unloaded thick-

ness, inner radius, and length of the particular graft

being (ideally) implanted are {HTEVG, ATEVG, LTEVG}
= {hIVC

o /Gpr , a
IVC
o /Gpθ, l

IVC
o /Gpz} ≈ {hIVC

o , aIVC
o , lIVC

o },
where hIVC

o , aIVC
o , and lIVC

o are the thickness, radius,

and length of the portion of the IVC that is removed

(which the graft replaces; note: hIVC
o and aIVC

o are, too,

the thickness and radius of the host IVC adjacent to

the TEVG).

4.3 Evolving TEVG

For the collagen-dominated neotissue that forms as the

polymer degrades, we also consider a four-fiber-family

model, with circumferential smooth muscle cells (c =

m) and circumferential (c = θ), axial (c = z), and sym-

metric diagonal (c = d) collagen fibers described via

Fung-type exponentials, which under mechanobiologi-

cal equilibrium specialize to

Ŵ c(Gc) =
cc1
4cc2

(
exp

(
cc2
(
Gc2 − 1

)2)− 1
)
, (51)

where cc1 (in kPa) and cc2 are material parameters. The

turnover of these constituents is both mechano- and

immuno-mediated. Noting that the neotissue proper-

ties need not remain constant throughout TEVG evo-

lution, we allow some of the material parameters to

evolve accordingly. In particular, we assign to neotis-

sue constituents the same parameter values as for the

native vessel, except for cθ1 = cz1 = cd1 and the orien-

tation angle α0 at which diagonal fibers are deposited,

which we let evolve to phenomenologically capture the

evolving collagen fiber microstructure observed experi-

mentally, see Table 1. Importantly, under these assump-

tions, these two evolving parameters can be uniquely

determined from longitudinal experimental data as we

explain next. Preliminary calculations showed, however,

that assigning values for cθ2 = cz2 = cd2 from native col-

lagen gave rise to an excessively high biaxial stiffness

during the evolution of the TEVG. Interestingly, letting

them gradually increase over G&R time (from vanishing

to native related values) yielded more realistic results,

again reflecting the evolving microstructure (Birk et al.,

1995; Miller et al., 2014; Szafron et al., 2018).

Figure 3 shows average values of inner radius a (panel

A), wall thickness h (B), and polymer degradation Qp

(C) measured from implanted TEVGs at different times

over the course of 52 weeks (Drews et al., 2020; Blum

et al., 2022). From these data, we have adjusted the
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parameters in the degradation function for the polymer

scaffold in Eq. (12), see Table 1, to yield the continuous

function Qph shown in C. In addition, let the continu-

ous curves (smooth interpolants) for ah and hh shown

in A and B approximate the continuous evolution of

inner radius and thickness. Based also on experimen-

tal observations at week 52, let %o ≈ 0.1 and η = 1

approximate the evolution of the ratio between referen-

tial volume fractions of smooth muscle cells and colla-

gen fibers in Eq. (18). Moreover, consider the stress- and

inflammation-dominated set of gains {Kc
σ,K

c
τw ,K

c
%ϕ} =

{1.00, 0.10, 0.89}, noting that only their ratios (e.g.,

Kc
τw/K

c
σ,K

c
%ϕ/K

c
σ) are important for mechanobiologi-

cally equilibrated evolutions, with the former assumed

to contribute to Υ ch less than normal (0.1 versus 0.3 for

the native vein, see Table 1) and the latter scaled a

posteriori to yield ∆%ϕmax = 1 (see panel F). Finally,

let blood pressure Ph = Po = P IVC
o , volumetric flow

rate ratio Qh/Qo = 1, axial stretch with respect to the

initial in vivo reference state λzh = λzo = 1, and axial

force fzh = fzo = f IVC
zo remain constant during the evo-

lution of the TEVG (note that “experimental” values

for axial length and force, the latter assumed constant

owing to our current inability to measure it in vivo,

can be simultaneously prescribed at this stage to deter-

mine yet unknown model parameters for the TEVG).

Hence, let the evolution of the collagen-dominated pa-

rameters cθ1 = cz1 = cd1 and α0 as well as the inflamma-

tion ∆%ϕh be determined by enforcing a mechanobio-

logically quasi-equilibrated evolution (see expanded ex-

pressions in Appendix A)

∆σh −
Kc
τw

Kc
σ

∆τwh +
Kc
%ϕ

Kc
σ

∆%ϕh = 0 (52)

N∑
α=1

σαrrh − ph = −Ph
2

(53)

N∑
α=1

σαθθh − ph =
Phah
hh

(54)

N∑
α=1

σαzzh − ph =
fzh

π (2ah + hh)hh
, (55)

which, effectively, constitute a set of 4 equations with

4 unknowns (cθ1 = cz1 = cd1, α0, ∆%ϕh, ph) for each level

of polymer degradation Qph (or pseudo-time sh; recall

Section 2.4.1). The computed evolution for cθ1 = cz1 =

cd1, α0, and ∆%ϕh is shown in Fig. 3, panels D to F.

Finally, panels G to I in Fig. 3 show biaxial (in-

plane) components of stress and material stiffness as

well as stored energy per unit current volume for the

evolving TEVG. In particular, note the marked decrease

in stresses, consistent with the luminal narrowing and

marked thickening (under assumed constant pressure

and axial force), but increased stored energy and biax-

ial stiffness, consistent with a degrading polymeric con-

stituent being elastically deformed during the evolution

of the TEVG and the computed peak in stiffness param-

eter cc1 for the continuously deposited (and removed)

collagen. Indeed, stresses, computed directly from equi-

librium, gradually return toward normal in parallel to

the geometry, whereas elastic energy and stiffness, ad-

ditionally depending on material properties and com-

position, do so only after the polymer completely de-

grades beyond week 26. Importantly, all the metrics

defined at the tissue level (Fig. 3, panels A, B, F, G, H,

and I) are respectively comparable (of the same order

of magnitude) at initial (week 0) and final (week 52)

times, despite the material composition of the TEVG

being strikingly different, namely, an all-polymer scaf-

fold (week 0) versus a neovessel mostly comprised of

smooth muscle and collagen fibers (week 52).

5 Non-uniform FSG computations of the

TEVG attached to the host IVC

In the previous Section we determined the requisite

G&R model parameters from the available experimen-

tal data from a native IVC and evolving grafts. These

parameters are either constant (Table 1) or evolve over

G&R (pseudo)time sh (for the neotissue, see Fig. 3,

panels D and E). We let pressure and flow as well as

axial length and force remain constant, but not inflam-

mation, which was computed as part of the geometri-

cally and materially uniform solution (Fig. 3, panel F).

In this Section we perform FSG computations for an

axially nonuniform, axisymmetric TEVG that evolves

over time while attached to adjacent tissue (i.e., the

host IVC) distally and proximally, for which we em-

ploy the 1D-fluid/3D-solid formulation detailed in the

preceding Sections as follows.

5.1 Native / host vessel

Consider a 3D cylindrical mesh with dimensions cor-

responding to the IVC of a lamb: aIVC
o = 8.573 mm,

hIVC
o = 0.743 mm, and an original IVC segment of to-

tal length lIVC
o = 60 mm; see the left mesh in Figure 4.

With the associated parameters in Table 1, we compute

the original in vivo state of the IVC subject to uniform

blood pressure P IVC
o = 4.4 mmHg and fixed axial dis-

placements at both IVC ends, for which we follow the

(hyperelastic solid) initialization phase referred to as

“Stage I” in Latorre and Humphrey (2020a) (see Sec-

tion 4 and Box III therein). Computed displacements
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yield no appreciable change in geometry; see the cen-

tral, now pre-loaded, mesh in Figure 4. We associate

this initially pre-stressed (circumferentially and axially,

with collagen deposition stretches greater for a vein

than an elastic artery, but also radially to a less extent)

equilibrium state for the IVC, for which G&R or chang-

ing hemodynamics effects have not been yet considered,

with sh = s−o = 0−. As explained previously (Latorre

and Humphrey, 2020a), original homeostatic values of

target (volumetric) stress σ̃o = σvo = 1
3σo : I are stored

at the material points throughout the FE mesh, which,

as assumed above for the uniform computations as well,

will dictate, in part, the subsequent turnover of neotis-

sue within the TEVG, now in the presence of axially

nonuniform hemodynamics effects.

5.2 Initial equilibrium of the polymeric scaffold

attached to both adjacent IVC segments

At sh = so = 0, the TEVG (i.e., the polymeric scaffold)

is elastically pre-stretched upon implantation (recall

Section 4.2). To numerically simulate this (otherwise

complex) process as ideally, yet realistically, as possi-

ble, we preserve the cylindrical FE mesh and change

the IVC material parameters (i.e., a mixture of elastin,

smooth muscle, and collagen, with respective volume

fractions and deposition stretches) at material points

between the axial locations zo = lo/4 and zo = 3lo/4

to those for the scaffold (i.e., a single polymeric con-

stituent with Qpo = 1 and associated pre-stretch Gp),

whose initial in vivo dimensions are [aTEVG
o , hTEVG

o ,

lTEVG
o ] = [aIVC

o , hIVC
o , lIVC

o /2]; see the right, also pre-

loaded, mesh in Figure 4. Let both IVC-TEVG (phys-

ical) interfaces be defined by elemental (mesh) inter-

faces. Indeed, following a mesh convergence study for

the FSG solution, we employ a uniform mesh with 36

solid elements in the axial direction (i.e., 9(IVC)+

18(TEVG)+9(IVC) to account for the proximal and

distal host tissue), 42 in the circumferential direction,

and 1 in the radial direction (the last capturing well,

with full quadratic interpolation and full Gauss integra-

tion, the transmural gradient of stresses for a unilayered

vessel with low thickness-to-radius ratio and nearly ho-

mogenized in-plane pre-stresses through the thickness;

Latorre and Humphrey, 2020b).

For illustration, and to consider the ideal case, scaf-

fold parameters are prescribed such that [σTEVG
θθo , σTEVG

zzo ]

= [σIVC
θθo , σ

IVC
zzo ], recall Eqs. (49) and (50), thus global

(and local) mechanical equilibrium under in vivo pres-

sure and fixed axial displacements at the FE model

boundaries (i.e., zo = 0 and zo = 60 mm) is again eas-

ily enforced within our FE framework (including small

radial variations) without appreciable changes in mesh

dimensions (i.e., nodal displacements) or local stresses

(e.g., σv ≈ σvo throughout both IVC and TEVG seg-

ments); compare different meshes in Figure 4.

Finally, let the IVC-scaffold-IVC model (i.e., with

Qph = Qpo = 1 for the interposition TEVG) adapt to

an initial axial pressure drop computed in a coupled

fashion via the iterative FSG procedure in Section 3.

For an initially straight cylindrical vessel (even if ma-

terially nonuniform), the 1D fluid computation induces

only small variations in dynamic pressure and frictional

losses (with Kf = 0 at this point), hence also small

variations in pressure and G&R related deformations.

This FSG solution (at sh = so = 0), with both fluid

and solid domains resolved and coupled, constitutes

the starting point for all remaining FSG computations

for the development of the IVC-TEVG-IVC segment

as the polymer degrades and recruited cells synthesize

neotissue (sh > 0). In particular, to facilitate adapta-

tions of newly produced collagen within the TEVG and

both IVC segments, we let symmetric diagonal families

locally reorient following a stretch-dependent adapta-

tion based on the referential deposition stretch tensors

present in Eq. (37), cf. Latorre and Humphrey (2020b).

5.3 Evolving TEVG attached to both adjacent IVC

segments

For sh > 0, we advance the mechanobiologically equili-

brated solution of the structural IVC-TEVG-IVC model

by prescribing Qph, cθ1 = cz1 = cd1, cθ2 = cz2 = cd2, α0,

and ∆%ϕh, as given in Fig. 3 and Table 1, throughout

the TEVG segment, whose composition and 3D geome-

try evolve accordingly, whereas the adjacent IVC grows

and remodels only as a reaction (computed via “Stage

II” in Latorre and Humphrey, 2020a), both doing so

in the presence of the changing hemodynamics (with

Pd = P IVC
o and Q = QIVC

o prescribed in Eq. (46)).

Noting, however, the strong discontinuity at the IVC-

TEVG interfaces in both wall properties (which evolve

for the TEVG) and potentially evolving geometry (with

a dramatic narrowing and thickening of the TEVG for

sh ∼ [5, 25] weeks, see Fig. 3), it proves numerically con-

venient to prescribe different (less dramatic) evolutions

from scaffold (Qph = 1) to neovessel (Qph = 0) proper-

ties for TEVG material points located within two short

(6mm-long) axial transition regions at the ends of the

TEVG mesh, for which uniform computations proved

again useful. To do so, we computed different sets of

evolving parameters cc1, α0, and ∆%ϕh for the same Qph
in Figure 3 but reduced deviations in both inner ra-

dius and thickness for the uniform model (i.e., grad-

ually scaled between a minimal deviation, such that
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the TEVG cross-sections adjacent to the IVC poten-

tially evolve with constant radius and thickness, and a

nearly maximal (∼70%) deviation, such that the asso-

ciated TEVG cross-sections potentially experience sub-

stantial narrowing and thickening), which were then

prescribed in the FE model to yield the desired smooth

transition in cross-sectional geometry (i.e., computed

as part of the FSG solution). Fig. 5 shows this partic-

ular (quasi-equilibrated mechanobiologically) progres-

sive TEVG evolution due to the gradually increasing

formation of collagen-dominated neotissue as the poly-

mer degrades (cf. panel C in Fig. 3), with the max-

imal degree of computed narrowing for the lumen of

the TEVG (relative to the proximal IVC) indicated be-

tween parentheses. Likewise, to facilitate convergence

of the yet highly nonuniform (materially and geometri-

cally, particularly at the IVC-TEVG interfaces) evolv-

ing structural model shown in Fig. 5, and owing to the

rate- and path-independent nature of the present FSG

method, we computed the TEVG evolution via a ficti-

tious linear degradation profile Qp∗h (s∗h) and associated

(re-computed, not shown) evolving parameters cc∗1 , α∗0,

and ∆%∗ϕh, with s∗h a computational (pseudo)time to

drive the FE simulation. Lastly, converged results as-

sociated with an actual time sh were identified from

Qph (sh) = Qp∗h (s∗h).

Figs. 6 and 7 show associated regional values of

evolving wall stretch, wall stress, material stiffness and

stored energy, as well as inflammation and the axial

distribution of blood pressure, at four representative

times, all superimposed on the evolving IVC-TEVG-

IVC segment (noting that blood pressure acts as a trac-

tion on the inner surface of the vessel only). Impor-

tantly, all of these metrics (except axial stretch and

pressure) qualitatively follow the main temporal results,

either prescribed or obtained, from the uniform compu-

tations shown in Fig. 3. Indeed, besides the appreciable

thickening computed at week 12 (Fig. 6, second col-

umn, first row) and luminal narrowing (second row) of

the TEVG, with associated decreases in mean circum-

ferential (fourth row) and axial (fifth row) stresses and

increase in inflammation (Fig. 7, fourth row), of par-

ticular interest is the additional prediction of a local

axial shrinking of the TEVG (Fig. 6, third row; with

an associated G&R-related lengthening of the adjacent

IVC) as well as lower peaks in material stiffness (Fig.

7, first and second rows) and elastically stored energy

(third row) relative to the uniform simulation with fixed

TEVG length (cf. panels H and I in Fig. 3). The key

difference between uniform G&R and non-uniform FSG

is the ability of the latter to incorporate feedback from

the changing hemodynamics conditions, especially axial

variations in blood pressure (Fig. 7, fifth row) via Eq.

(46) that further affect the remodeling through addi-

tional changes in intramural stresses (note that changes

in flow-induced shear stress are predicted in both uni-

form / non-uniform solutions via the change in uniform

/ non-uniform inner radius). For blood flow properties

given in Table 1, a maximal drop in static pressure

of ∼25% (∼1.2mmHg) relative to upstream pressure

is predicted within the TEVG segment at the time of

maximal narrowing (second column), with the input

venous pressure increasing ∼15% (∼0.6mmHg) relative

to baseline due to the TEVG narrowing-induced viscous

and geometric losses (i.e., an increased pressure gradi-

ent emerges as part of the FSG solution to overcome the

increased resistance to flow; compare with the modest

and gradual increase in upstream pressure for the initial

and mostly cylindrical IVC-scaffold-IVC, first column,

and the final but not yet fully resolved IVC-neovessel-

IVC, fourth column). Consistent with the ∼15% in-

crease in upstream pressure, the proximal IVC segment

wall thickens ∼15%, tending to restore the local intra-

mural stresses back to normal (for constant flow and in

the absence of inflammation, as in certain cases of hy-

pertension). Interestingly, this pressure gradient, pre-

dicted for the model lamb implant, reached a clinical

definition for intervention (≥ 0.5 mmHg, defined even

more conservatively for greater reference venous pres-

sures of ∼13mmHg; Schwarz et al., 2021). Both ex-

perimental data and Computational Fluid Dynamics

(CFD) simulations suggest, however, that grafts with

even greater pressure gradients perform well within nor-

mal ranges for hemodynamic metrics (Schwarz et al.,

2021; Blum et al., 2022). Indeed, using representative

grown and remodeled IVC-TEVG-IVC geometries, ex-

tracted from the converged FSG solution at times sh =

0 (initially cylindrical, first column) and sh = 12 weeks

(maximally stenosed, second column), we computed re-

spective CFD solutions for steady 3D blood flow and

rigid walls in the open source code SimVascular (Sup-

plemental Figure S1; Updegrove et al., 2017), which

confirmed the (favorable, almost uniform, and first fa-

vorable and then adverse, respectively) pressure gradi-

ents computed via Eq. (46), though with greater pres-

sure gradients for the stenosed geometry. Importantly,

more realistic 3D flow solutions of this type could al-

ternatively be coupled to our 3D G&R formulation for

TEVG development, which would require a different

FSG strategy to (loosely) couple, especially, the wall

shear stress (computed via CFD) to the G&R solution

(informed via Eq. (41)), at the expense of a substan-

tially higher computational cost (hours versus a fraction

of a second) along with potential mesh adaptations for

the flow simulations to converge (Supplemental Table

S1). Considering the total cost of these different FSG
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approaches to perform, for example, optimization stud-

ies, ∼50 1D-fluid/3D-solid FSG simulations (∼1 hour

each, where the G&R computation takes most of the

wall time) could be run for each 3D-fluid/3D-solid FSG

simulation (where the CFD computation takes most of

the wall time). Finally, note that the IVC-neovessel-

IVC segment (fourth column), for which inflammation

has almost completely resolved, recovers nearly uniform

properties throughout despite the lack of elastin (see

sh = 52 weeks in Fig. 4) and slightly different collagen

properties (stiffness and orientation of diagonal fibers,

recall Fig. 3) for the neovessel relative to the adjacent

IVC.

Finally, because of the predicted axial shrinkage of

the TEVG and associated lengthening of the host IVC,

we repeated these simulations for an idealized case of

a TEVG with an initial length:diameter ratio of 6.4

(Supplemental Figures S2-S4), in contrast to the actual

(smaller) length:diameter ratio of 1.6 (Figures 5-7). As

it can be seen in Supplemental Figures S2-S4, the over-

all predictions were similar, with nearly identical maxi-

mal narrowing in the central region, though with lower

axial gradients predicted for the longer graft. Although

there may be mechanical advantages to a longer graft,

this must be contrasted with likely biological disadvan-

tages, including the need to remove more native tissue

and the need to endothelialize a larger luminal surface.

6 Discussion

As noted earlier, continuing advances in the develop-

ment of novel biomaterials (Stowell and Wang, 2018)

and methods of tissue engineering (Matsuzaki et al.,

2019) have been spectacular, resulting in many viable

approaches and multiple clinical trials of TEVGs

(Syedain et al., 2017; Kirkton et al., 2019; Drews et al.,

2020). Current research is thus turning towards the

need to optimize the grafts, both the biomechanical de-

sign of the scaffold and the immuno-modulation (Harri-

son et al., 2016; Tamimi et al., 2019; Szafron et al., 2019;

Wissing et al., 2020; Furdella et al., 2021). Computa-

tional models complement experimental investigations

(Emmert et al., 2018; Drews et al., 2020; Loerakker and

Ristori, 2020), promising to provide a path forward to-

ward optimization.

Multiple approaches are available for modeling soft

tissue G&R, with the two most common stemming from

the theory of kinematic growth or the theory of con-

strained mixtures (Cyron and Humphrey, 2017; Am-

brosi et al., 2019). Despite the computational efficiency

of kinematic growth models, the composite nature of

TEVGs – typically including multiple biodegradable

polymeric constituents having different mechanical prop-

erties and degradation kinetics as well as diverse emerg-

ing extracellular matrix constituents – suggests that

mixture-based models are both natural and essential.

As noted earlier, full heredity integral-based constrained

mixture models are often computationally expensive

except for cases of membranes or axisymmetric bod-

ies. Hence, reduced constrained mixture models have

been derived, including temporally homogenized (rate-

dependent) and mechanobiologically equilibrated (rate-

independent) formulations (Cyron et al., 2016; Latorre

and Humphrey, 2018). Given their increased computa-

tional efficiency, both are well suited for otherwise com-

putationally intensive simulations, including fluid-solid-

growth (FSG) and formal optimization. Herein, we pre-

sented a new FSG model based on the mechanobiologi-

cally equilibrated approach. This approximate method

for computing evolving G&R within in vivo homeostatic

configurations requires that the time scale for the adap-

tation must be less than the time scale for the stimula-

tion. In the graft considered here, scaffold degradation

has been shown to occur over periods in excess of 1 year

(cf. Fig. 3 in Blum et al., 2022), while the half-life of

collagenous neotissue is typically on the order of 1 to

3 months. Thus, this framework appears reasonable for

our TEVG as well as for those cases of neovessel devel-

opment where the polymeric scaffolds have relatively

slow degradation profiles. Conceptually, of course, the

present model can be extended to TEVGs having either

more complex polymeric or biological scaffolds, with the

primary need being identification of constituent-specific

constitutive relations for mass production and removal

as well as stored energy.

As seen in Table 1 and Figure 3, we were able to pa-

rameterize the model based on available data, includ-

ing in vitro biaxial mechanical data for the native IVC

and initial scaffold as well as in vivo measurements of

evolving geometry (cf. Fig. 4 in Drews et al., 2020) and

flow (cf. Fig. 6 in Blum et al., 2022) and preliminary

immunohistological quantification of pan-leukocyte in-

filtration and resolution (cf. Fig. 4 in Blum et al., 2022).

Although such data were sufficient, additional data,

both in vivo and in vitro, will be needed to better in-

form the model, particularly during the period of rapid

changes (2 to 20 weeks for this graft). There is simi-

larly a need for more data on the possible G&R of the

host tissue, proximal and distal IVC herein. Neverthe-

less, the model captured the data well (Figure 2), thus

enabling the first FSG simulations of in vivo TEVG de-

velopment. Most importantly, the model predicted the

previously observed narrowing and spontaneous rever-

sal of the TEVG, as seen in Figures 5-7. Whereas our

uniform G&R model had similarly predicted a narrow-
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ing and spontaneous resolution (Drews et al., 2020), the

present results provide the first spatio-temporal pre-

dictions, including G&R of the host IVC. Examining

the host IVC response revealed persistent changes to

the adjacent vessel segments, as the axial and circum-

ferential stretches remain different from those in the

homeostatic state after 52 weeks of remodeling (Figure

6), highlighting the need to consider the potential for

TEVG effects on native tissue in designing scaffolds.

Furthermore, the FSG model predicted axial shorten-

ing of the TEVG segment during the period of stenosis

formation (Figure 6), which recapitulated the shorten-

ing observed experimentally (cf. Fig. 9 in Blum et al.,

2022). This emerged naturally as a result of the problem

setup. As such, the additional spatial information can

allow better fidelity to the overall geometric changes ob-

served in vivo and can facilitate predictions that are not

possible in simulating simple cross-sections. Coupling

of the hemodynamics to graft evolution similarly al-

lows more realistic predictions; differences in upstream

and downstream pressures were found to stimulate dif-

ferent adaptation processes by the adjacent IVCs on

either side of the TEVG (Figures 6 and 7). In agree-

ment with past work, we found a substantial increase

in matrix stiffness during the period of immuno-driven

neotissue formation that resolved with the depletion of

the scaffold material (Szafron et al., 2018). Interest-

ingly, the predicted narrowing occurred in the central

region of the graft, which has been observed in vivo.

Although the FSG model yielded coupled information

on axial differences in blood pressure and flow, both

the vein and TEVG are relative stiff when distended

by venous pressures, and the pressure drop along the

TEVG was a modest ∼1mmHg. Unpredictable more

distal or more proximal narrowing has also been ob-

served in vivo; however, this does not appear to re-

late simply to the axial pressure gradient for the degree

of narrowing observed here. Other factors, perhaps in-

cluding details of the surgically created anastomosis,

perivascular adhesions following surgery, differences in

cellular infiltration rates along the graft length, or even

graft imperfections may give rise to such spatial hetero-

geneities. We did not attempt to explore these possible

factors parametrically given the lack of data.

In addition to the need for more data, there is clearly

a need for a fully coupled 3D FSG model, one coupling

a full constrained mixture model with full unsteady

Navier-Stokes solutions to characterize graft behavior

during the cardiac cycle, such as in exercise, as well as

to capture transient remodeling behavior for promising

polymer scaffolds that degrade rapidly (Wang et al.,

2002). Such is not trivial (Figueroa et al., 2009), but

there have been similar related advances, particularly

in the study of aneurysms (Sheidaei et al., 2011; Wu

and Shadden, 2015; Grytsan et al., 2015; Teixeira et al.,

2020; Mousavi et al., 2021). Nevertheless, the high com-

putational cost of such models suggests that multi-fi-

delity approaches, with many simulations using a lower

cost algorithm, can guide parameter estimation or op-

timizations of a higher cost algorithm (Fleeter et al.,

2020). Therefore, the present methods can also serve

to accelerate simulations that use a fully coupled FSG

framework. Additional limitations of the present model

will also need to be addressed. We did not model ex-

pected platelet activation / adhesion to the luminal

surface during the early post-operative period, which

could stimulate the accumulation of a thin thrombus

with attendant biological activity, including plasmin

production (Wu et al., 2018; Reinhardt et al., 2019).

We similarly did not model progressive endothelializa-

tion (Sánchez et al., 2018), which likely occurs from the

proximal and distal ends of the graft toward the cen-

tral region. A progressive development of a functional

endothelium would not only prevent thrombus, it would

also be expected to attenuate inflammation and even-

tually allow a flow-induced, paracrine control of smooth

muscle cell function, both synthetic and contractile. Fi-

nally, we did not account for perivascular tissue, in-

cluding fibrotic adhesions that arise post-operatively.

Clearly, much remains to be understood and modeled

in order to have a complete understanding of in vivo

neovessel development.

Notwithstanding the ongoing lack of important ex-

perimental information and limitations to the compu-

tational models, we emphasize that multi-fidelity ap-

proaches can provide increased insight as well as com-

putational advantages. Whereas there remains a need

to couple full constrained mixture models with Navier-

Stokes solvers and formal methods of optimization, the

present reduced FSG model represents a fast, efficient

model that can be used to perform initial optimiza-

tion studies that include new functional targets, such

as minimizing native vessel remodeling, and that can

then be finalized via the more complete, but expensive,

full simulations.
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A Specialization: a thin-wall-equivalent TEVG

We reformulate and extend here the main algebraic equations
derived in Latorre and Humphrey (2018) to show their con-
sistency with the general boundary value formulation above.
Indeed, one can alternatively solve an equivalent system of
nonlinear algebraic equations formed by mechanobiological
equilibrium Υh = 1 plus mechanical equilibrium along the
radial, circumferential, and axial directions, namely

Υh = 1 +Kσ

(
σrrh + σθθh + σzzh

σrro + σθθo + σzzo
− 1

)
−Kτw

(
Qha3o
Qoa3h

− 1

)
+K%ϕ

ρRϕh

ρRϕmax

= 1 (56)

σrrh =

N∑
α=1

σαrrh − ph =
Qph
Jh

ŜprrhG
p2
r λ2

rh − ph =−
Ph

2
(57)

σθθh =
N∑
α=1

σαθθh − ph =
Qph
Jh

ŜpθθhG
p2
θ λ2

θh

+

Nc∑
c=1

Φchσ̂
c
θθ − ph =

Phah

hh
(58)

σzzh =

N∑
α=1

σαzzh − ph =
Qph
Jh

ŜpzzhG
p2
z λ2

zh

+
Nc∑
c=1

Φchσ̂
c
zz − ph =

fzh

πhh(2ah + hh)
(59)

where the primary unknowns are ah, hh, ph, and fzh, noting
in Eqs. (56) and (57) the consideration of a mean radial stress
−Ph/2 for more accurate comparisons with FE analyses. In
particular, the evolved homeostatic Lagrange multiplier ph
can be obtained in this case from the mechanobiological equi-
librium equation (recall Eq. (40)), which enables substitution
of ph in expressions for stresses (recall Eq. (39)), hence, rep-
resenting a generalized (numerical) resolution procedure for
a cylindrical TEVG consistent with the general formulation
derived above.

To obtain analytical solutions, however, it may still be
convenient to obtain ph from the radial equilibrium equation
(as in Latorre and Humphrey, 2018). Of particular interest
here, with Ph = Po and Qh = Qo, as well as ρRϕh → 0 and
Qph → 0 for the TEVG at sh � 0, one gets for the neovessel

Kσ

(
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− 1

)
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πhh(2ah + hh)

With Φmh = %o(Φcθh +Φczh +Φcdh ) and Φmh +Φcθh +Φczh +Φcdh = 1,
then Φcθh + Φczh + Φcdh = 1/ (1 + %o), Φmh = %o/ (1 + %o), and
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πhh(2ah + hh)

from which we obtain the final cylindrical geometry and axial
force explicitly in terms of the material properties of smooth
muscle and collagen fibers in the final state, namely: ah(sh �
0) from

1 +
Kσ

Kτw

(
3σrro + 1

1+%o
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and fzh(sh � 0) from

1

1 + %o

(
βz + βd cos2 α0

)
σ̂c + σrro=

fzh

πhh(2ah + hh)
. (62)
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Native/Host Inferior Vena Cava

Inner Radius, Thickness, Length ao, ho, lo 8.573 mm, 0.743 mm, 60 mm

Volume (≡mass) fractions Φeo, Φ
m
o , Φ

c
o 0.100, 0.081, 0.819

Collagen Fractions βθ, βz, βd+, βd− 0.017, 0.167, 0.408, 0.408

Diagonal Collagen Orientation α0 41.94o

Elastin Parameter ce 9.913 kPa

Elastin Deposition Stretches Ger, G
e
θ, G

e
z 1/GeθG

e
z, 1.219, 1.428

Muscle Parameters cm1 , c
m
2 48.33 kPa, 1.02

Collagen Parameters cθ1 = cz1 = cd1 , c
θ
2 = cz2 = cd2 2.696 kPa, 14.92

Deposition Stretches Gm, Gθ = Gz = Gd 1.200, 1.167

G&R Parameters η,Kτw/Kσ, K%ϕ/Kσ 1.0, 0.3, 0.0

Polymeric Scaffold

Neo-Hookean Parameter cp 125.7 kPa

Pre-stretches Gpr , G
p
θ , G

p
z 1/GpθG

p
z , 1.0103, 1.0079

Degradation Parameters kp, χp 0.285 weeks−1, 15 weeks (Fig. 3 (C))

Neovessel

Muscle/Collagen Ratio %o 0.1

Collagen Fractions βθ, βz, βd+, βd− 0.017, 0.167, 0.408, 0.408

Diagonal Collagen Orientation α0 Evolving (Fig. 3 (E))

Muscle Parameters cm1 , c
m
2 48.33 kPa, 1.02

Collagen Parameters cθ1 = cz1 = cd1 , c
θ
2 = cz2 = cd2 Evolving (Fig. 3 (D)), 14.92 · (sh/52)3

Deposition Stretches Gm, Gθ = Gz = Gd 1.200, 1.167

G&R Parameters η,Kτw/Kσ, K%ϕ/Kσ 1.0, 0.1, 0.89

Inflammation ∆%ϕh Evolving (Fig. 3 (F))

Blood

Mass Density ρf 1050 kg m−3

Dynamic Viscosity µ 0.0037 kg m−1 s−1

Kinetic / Geometric Coefficients αf , Kf|min, Kf|max 2, 0, 0.5

Mean Velocity vo 0.232 m s−1

Table 1 Model parameters for the host thoracic IVC (adjacent segments to the TEVG) and the TEVG constituents: polymeric
scaffold (initially present, then degrading; see Fig. 3, panel C) and collagen-dominated neotissue (initially absent, then produced
/ turning over). Baseline “native/host IVC” parameters are obtained/fitted for a representative lamb thoracic IVC (see Section
4.1); “polymeric scaffold” parameters are obtained from a representative biodegradable scaffold (Drews et al., 2020; Blum et al.,
2022; see Sections 4.2 and 4.3); “neovessel” parameters (including evolving cc1, α0 and inflammation ∆%ϕh, shown in Fig. 3,
panels D to F respectively) are determined from implanted TEVGs (Drews et al., 2020; Blum et al., 2022; see Section 4.3). In
particular, deposition stretches of collagen fibers for both the IVC and the neovessel (higher than many reported for arteries,
noting that the IVC has little elastin and so too the TEVG), have been estimated from (axial) in vivo stretches reported
for these TEVGs (Table 1 in Blum et al., 2022) and then adjusted via a nonlinear regression to improve the fitting of data
for the IVC. For the FE simulations, it is assumed that the initially loaded (pressurized and axially stretched) cross-section
geometry (inner radius and thickness) of the scaffold precisely matches the initial in vivo cross-section geometry (ao and ho)
of the host vessel. Also given are “blood” flow parameters required to perform FSG computations coupled via Eq. (46), with
the narrowing-dependent geometric loss factor Kf varying gradually between Kf|min (no narrowing) and Kf|max (maximal
narrowing); note that Pd = Po = 4.4 mmHg, Q = Qo = voπa2o ≈ 53.5 mL s−1, and Re = 2ρfvoao/µ ≈ 1125, which qualifies as
laminar flow in a tube (Re < 2100).
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Fig. 1 Schematic representation of different configurations
κi involved in mechanobiologically equilibrated TEVG G&R,
with c ≡ collagen-dominated neotissue (including smooth
muscle and collagen fibers) experiencing continuous turnover
and p ≡ polymer only degrading over time. Note that κo
(TEVG at sh = 0, i.e., scaffold) and κh (TEVG at sh > 0) are
both “homeostatic”; all configurations are in vivo. Subscripts
o and h denote original and evolved homeostatic; subscripts N
and n denote Lagrangian and Eulerian natural configurations;
subscript R denotes the (un)rotated current configuration of
the TEVG.
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START
  Uniform blood pressure

  PI(s,z) = Po for:
- n G&R time steps
- nez axial elements

I. 3D FE G&R SOLUTION
 Compute IVC-TEVG-IVC evolution for prescribed:
- Scaffold degradation
- Evolving neotissue parameters
- Inflammatory burden

 with:
- Pressure- and axial force-induced intramural stress
- Flow-induced shear stress

 computed as part of the G&R solution (via Eq. (41))

II. GEOMETRIC POSTPROCESSING
 Extract inner radius a(s,z) for:
- n G&R time steps
- nez axial elements

III. 1D ENERGY-BASED FLUID SOLUTION
 Compute non-uniform blood pressure PIII(s,z)
 (downwards via Eq. (45) or upwards via Eq. (46)) for:
- n time steps
- nez axial elements

 given flow and (upstream, in Eq. (45), or downstream,
 in Eq. (46)) pressure boundary conditions

IV. CHECK
Perr < tol ?

Perr = max[(PIII(s,z)-PI(s,z))/PI(s,z)]

PI(s,z) = PIII(s,z)

NoYes
STOP

 Converged FSG solution

Fig. 2 Schematic of the work flow for the (1D) Fluid- (3D)
Solid-Growth strategy (FSG). Note the direct embedding of
the fluids within the solids code in Step I, with the (inner
radius-dependent) wall shear stress τw = 4µQ/πa3 computed
as part of the G&R FE solution to satisfy Υh = 1 in Eq. (41)
(Latorre and Humphrey, 2020a). Scaffold degradation, evolv-
ing neotissue parameters, and inflammatory cell density, for
Step I, are previously obtained based on a uniform G&R de-
scription of the TEVG (see Section 4.3, Fig. 3, and Table
1). This framework allows one to prescribe evolving hemody-
namic boundary conditions for the fluid pressure computation
in Step III, which need not remain constant over TEVG de-
velopment (Blum et al., 2022).
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Fig. 3 Inverse material characterization of an idealized geometrically and materially nonlinear but uniform TEVG that evolves
subject to constant blood pressure, flow rate, in vivo length, and axial force. Dashed lines represent interpolated geometry
(A,B) or fitted polymer degradation (C) from experimental data (open circles) collected at weeks 1, 6, 26, and 52 (Drews
et al., 2020; Blum et al., 2022). These continuous curves informed our uniform G&R model to determine evolving parameters
(solid lines) for newly produced collagen (D,E) and inflammation (F), with resulting circumferential and axial components of
stress (G) and material stiffness (H) and stored energy per unit current volume (I). Properties at G&R time sh = so = 0
associate with the polymeric scaffold whereas those at sh = 52 weeks associate with the collagen-dominated neotissue (see
panel C). IVC, scaffold, neotissue, and blood parameters in Table 1, complemented with the evolving (neotissue) parameters
and inflammation in panels D to F, subsequently inform our nonuniform FSG FE model of the TEVG. Note the original

homeostatic values for the IVC (i.e., at s = s−o = 0−, not shown): c
c|IVC
1 = 2.696 kPa, αIVC

0 = 41.94o, σIVC
θθo = 6.772 kPa,

σIVC
zzo = 6.155 kPa, cIVC

θθθθo = 0.094 MPa, cIVC
zzzzo = 0.133 MPa, and W IVC

o = 0.855 kPa.
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Fig. 4 Initially unloaded (left) and pre-loaded (center) geometry and mesh (including nr × nθ × nz = 1 × 22 × 60 3D
quadratic elements with full 3×3×3 Gauss integration; see the expanded finite element on the left) for the initially cylindrical
thoracic IVC segment into which the polymeric scaffold is subsequently pre-stretched biaxially and implanted (right; replacing
a previously removed IVC central partial segment). Inner pressure Po = 4.4 mmHg and axial force fzo = 257 mN for all pre-
loaded cross-sections, hence mean biaxial stresses σθθo = 6.772 kPa and σzzo = 6.155 kPa throughout, consistent with host
vessel and scaffold parameters in Table 1. Shown in the central and right meshes is the combined volume fraction of collagen

and smooth muscle, with the remaining amount up to 1.00 comprising elastin (Φ
IVC|e
o = 0.1) within the IVC segments and

polymer alone (Φ
TEVG|p
o = 1.0) within the initial scaffold.
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Fig. 5 Mechanobiologically quasi-equilibrated, progressive development (clockwise from the upper right mesh) of the initially
pre-loaded IVC-TEVG-IVC≡IVC-scaffold-IVC segment (0 weeks, right mesh in Fig. 4) with increasing degradation of the
polymeric constituent (see panel C in Fig. 3), evolving properties of collagen and infiltration/clearance of inflammatory cells
(see panels D to F in Fig. 3) in the presence of changing hemodynamic conditions computed with the present FSG formulation
(see bottom row in Fig. 7). Shown in all meshes is the combined volume fraction of collagen and smooth muscle (elemental

averages), with the remaining amount up to 1.00 comprising elastin (Φ
IVC|e
h ≈ 0.1) within the host IVC lateral segments and

degrading polymer (Φ
TEVG|p
h → 0) within the central TEVG. The percentage between parentheses indicates the degree of

maximal narrowing for the lumen of the TEVG (whose wall also thickens markedly), expressed as the percent reduction in
luminal area relative to the proximal IVC. See the evolution of other metrics in Figs. 6 and 7.
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Fig. 6 Progressive, mechanobiologically quasi-equilibrated, development (left to right) of an interposition TEVG (central
segment in all the meshes), attached to adjacent IVC segments (proximal and distal, which adapt to the changing environment
via G&R as well), induced by the gradual degradation of the initially implanted polymeric scaffold (see Fig. 4, right panel,
and Fig. 5), with evolving properties of neotissue in response to a gradual infiltration and then loss of inflammatory cells (see
panels D to F in Fig. 3) as well as changing hemodynamics (computed by the FSG solution). Shown superimposed on the
IVC-TEVG-IVC segment are the regional values (elemental averages, to facilitate comparisons with uniform results in Figure
3) of radial and biaxial stretches (first to third rows) as well as biaxial wall stresses (fourth and fifth rows). The G&R model
predicted the experimentally observed thickening (radial stretch > 1), narrowing (circ. stretch < 1), and axial shrinking (axial
stretch < 1) of the TEVG, along with the associated marked reductions in circumferential and axial stress, all followed by
respective partial resolution of geometry and properties (see also Fig. 7).
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Fig. 7 As in Fig. 6, but showing regional values (elemental averages) of biaxial material stiffness (first and second rows),
stored energy density (third row), inflammation (fourth row), and the axial distribution of blood pressure within the lumen
(fifth row) resulting from the coupled FSG solution, with the output (downstream) venous pressure Pd = P IVC

o = 4.4 mmHg
prescribed via Eq. (46).


