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A B S T R A C T 

Industrial Internet of Things (IIoT) plays an important role in increasing productivity 

and efficiency in heterogeneous wireless networks. However, different domains such as 

industrial wireless scenarios, small cell domains and vehicular ad hoc networks 

(VANET) require an efficient machine learning/intelligent algorithm to process the 

vertical handover decision that can maintain mobile terminals (MTs) in the preferable 

networks for a sufficient duration of time. The preferred quality of service parameters 

can be differentiated from all the other MTs. Hence, in this paper, the problem with the 

vertical handoff (VHO) decision is articulated as the process of the Markov decision 

aimed to maximize the anticipated total rewards as well as to minimize the handoffs’ 

average count. A rewards function is designed to evaluate the QoS at the point of when 

the connections take place, as that is where the policy decision for a stationary 

deterministic handoff can be established. The proposed hybrid model merges the 

biogeography-based optimization (BBO) with the Markov decision process (MDP). The 

MDP is utilized to establish the radio access technology (RAT) selection’s probability 

that behaves as an input to the BBO process. Therefore, the BBO determines the best 

RAT using the described multi-point algorithm in the heterogeneous network. The 

numerical findings display the superiority of this paper’s proposed schemes in 

comparison with other available algorithms. 

 

1. Introduction 

Heterogeneous wireless networks that are used for seamless mobility often face prominent problems in the industrial 

internet of things (IIoT), a system in which different networks and technologies are working together. This is because there 

are different factors that would significantly affect the various technologies used for accessing the network, such as the 

optimized handovers or vertical handovers. Some of these factors are congestion, load, strength of the signals, bandwidth, 

connection stability, battery life as well as other factors that are temporal and spatial. A mobile user in a heterogeneous 

wireless network might have to carry out the handovers over various network domains to sustain the connection of data and 

QoS. The VHO process can be categorized into 3 stages consisting of the information gathering handover, decision-making 

of the handoff, and the execution of the handoff. The information that is acquired is utilized to identify the present and most 

suitable networks for specific applications in the following stage which is known as the stage of handover decision-making. 

The industrial IoT is an emerging application of IoT technologies in several situations such as automation, intelligence 

controls, smart buildings, intelligent transportations, and smart grids [1, 2]. Without the creation of an infrastructural 

network, the adoption of industrial IoT solutions will be impossible. It is important to consider specific IoT characteristics 

while adapting these techniques for wireless IoT networks. One of the important features of IoT networks is the 

collaboration among heterogeneous IoT devices. With rapid improvement in digital electronics and wireless 

communications, the application areas of the Internet of Things (IoT) have increased significantly. It now supports a wide 
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range of applications including industrial automation, intelligent transportations, medical and eHealth care services [3]. 

Low-weight efficient communication between sensing devices and interoperability between different communications 

mechanisms are the critical problems faced by the IoT. 

Several challenges are present in the wireless multi-hop networks [4– 7] as well as in the decision stage of the vertical 

handover while the handover procedure is going on. At certain times, the terminal is rapidly moving in its path. Thus in this 

type of robust scenarios, the algorithm that supports the VHO decision stage must also be quick and offer solutions as close 

to real-time as possible. In fact, in the future, mobility and ubiquitous network access are the main drivers for the Internet. 

However, the existing algorithms for decision making use many parameters for the loading-point mathematical 

measurements, and several parameters for the QoS or the discovered networks which are available during terminal 

movement. The high computations are in contrary to the low response time, especially in low performance processors that 

are found within most mobile devices. Thus, there is a need to design an efficient algorithm capable of performing 

intelligent decision-making and dynamic adaptation to different situations in a proper time frame due to rapid changes in 

the wireless environment. 

Existing algorithms for the vertical handover decision such as those that include computational intelligence methods 

were proposed in recent studies [8–13]. Wilson et al. [14] reported that certain algorithms are based on multiple criteria [15, 

16] which need assistance from artificial intelligence mechanisms including fuzzy logic [17], neural networks, as well as 

algorithms that genetically suffered from problems of modularity and scalability. These were not able to easily manage the 

increasing number of RATs as well as the criteria for heterogeneous wireless networks. This type of algorithms engage the 

entire input of the various RATs simultaneously to a single fuzzy logic block, which resulted in problems of modularity and 

scalability when RATs or functions of membership were increased given the tremendous rise of the amount of inference 

rules [14]. 

In addition, [18] suggested a mobile node (MN) prediction scheme that was mobile. In particular, they first utilized the 

probability as well as the process of the Dempster–Shafer to predict the tendency of the following destination for mobile 

network users that are arbitrary according to the habits of the users, such as locations that were often visited. Next, at every 

junction of the road, the chain process of the second-order Markov was applied to predict the tendency of the following 

road transition segment, based on the route of the original trip to that particular junction of the road as well as the 

destination direction. The proposed scheme was assessed based on actual mobility traces and the simulation’s findings 

showed that this proposed method outperformed other conventional methods. 

In this research, the Markov models are used to analyze the systems according to the real life system of actual behavior, 

which results in trustworthiness as well as cost-effective estimation for the prediction of performance and mobile system 

optimization.  In this work, we proposed an algorithm for decision making on vertical handoff for networks that are 

wireless and heterogeneous, and used MDP as a strong technique for making decisions in developing an adaptable 

algorithm. This issue is articulated as a process of the Markov decision that is integrated with the BBO. A link reward 

function is proposed to model the properties of the QoS. In addition, a cost function for the signaling overhead as well as 

the processing load during the occurrence of the vertical handoff is proposed. Moreover, the mobile QoS relates to the 

packet loss, delay in the VHO and the cost of signaling. The total cost for signaling is highly dependent on the information 

as well as the information gathering method. Hence, an analytical model which involves the metrics that describes the 

handoff as well as the cost of signaling, packet loss, and the VHO delay is presented to assess performance.  

The proposed technique for the dynamic handoff is based on the Markov decision process and is used to improve the 

network’s performance as inspired by [19]. It assists in finding the overall cost function. Furthermore, Markov models are 

analytical methodologies for the analysis of such systems based on actual real life system behaviors, leading to both 

credible and cost-effective approximations for performance prediction and optimization of mobile systems. Hence, the 

Markov process is utilized in the performance modeling of wireless and mobile communication systems.  

This study presents a vertical handover decision algorithm based on two main schemes, namely the BBO [20-22] as well 

as the MDP [23]. The process of the Markov decision formulates the problem. The Markov chain method is preferable 

when developing the cost model. The QoS optimal values can also be established in the wireless networks by utilizing the 

Markov process to minimize the cost function. Thus, this study’s objective is to propose a new optimized algorithm with 

the benefit of two current approaches that address the requirements stated above.  

There are recent relevant cases that can be adopted by our proposed hybrid model. The cases with utility potential can be 

categorized into four main classes namely industrial wireless scenarios, vehicular ad hoc network (VANET), wireless 

backhaul for small cell domains and unmanned aerial vehicles (UAV) deployment scenarios for disaster management. In 

industrial scenarios, the manufacturing cells and factories with multiple access points are serving multiple mobile robots. In 

these cases, mobile communications need to conduct vertical handovers to use robust links with low latency and higher 

mobility among multiple access points. Also, vehicular networks require seamless mobility designs because coverage is 
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often incomplete with very short communication which needs high-speed transmission over heterogeneous networks that 

have different access technologies. Even though the backhaul is point-to-point, it requires a vertical handover to use the 

parallel radio links with low latency for 5G and the Internet-of-things (IoT). The usage of UAVs in disaster management 

has some networking-related research challenges such as handover among the UAVs. A handover consists of replicating 

the exact operational state in each UAV such as forwarding tables, packets in the buffer, and data fusion rules which 

increases messaging between the UAVs. Motivated by these observations, we have proposed an efficient algorithm to 

perform intelligent decision-making during the vertical handover process. 

The rest of the paper is organized as follows. The related work is carried out in Section 2. Section 3 describes the 

network model and Section 4 formulates the problem of the VHO as the Markov decision process.  Section 5 describes the 

process of biogeography based on optimization and presents the designed solution. Section 6 discusses the proposed 

scheme and the results obtained are expounded in this section. Finally, Section 7 will present the conclusion. 

2. Related work 

In most of the existing studies, a wireless environment is limited to a notebook or a mobile phone used over a pedestrian 

mobility scenario or a model with low mobility levels. In addition, many of these studies assess the VHO by just utilizing 

two technologies namely the WiFi and the UMTS, and only a few studies have even taken into consideration more than 

three technologies [24]. In the past decade, vehicular communication has been enhanced to include communication devices 

of short and long distances, the GPS, as well as vehicle sensing systems. The capabilities of communication utilize an 

extremely robust vehicular environment [25]. Using GPS information to enhance the process of handover and the selection 

of network within the parameter of a single wireless network has also been widely studied [26–28]. 

Existing algorithms in [29] take into account the service charges, information on received signal strength indicator 

(RSSI) and user preferences. As opposed to the conventional RSSI based algorithm, the algorithm that is proposed 

significantly improves the outcomes for users and the network due to the proposed fuzzy-based handover techniques. 

Furthermore, a fuzzy-based algorithm greatly lowers the number of handovers in comparison to a SAW-based algorithm. 

This algorithm is able to switch between GSM, WiFi, UMTS, and WiMAX. Nevertheless, this algorithm has several 

disadvantages cased by its high execution duration that could cause high handover latency. In addition, interface engine 

inputs could be become more accurate by utilizing artificial intelligence approaches, such as the neural network. The 

research excluded the effects of other environmentally linked determinants and findings in order to examine the mobile 

parameters of the QoS including the delays in handover as well as packet loss.  

Given the emergence of new wireless technologies over the last decade, certain researches [30-33] have attempted to 

address the issue of VHO over various types of wireless technologies including WiFi, UMTS, LTE, ZigBee, wireless 

broadband, RFID, multimedia broadcast/multicast service, digital video broadcasting and low Earth orbit  (LEO) satellite 

[34].  

Wang et al. [35] proposed a VHO approach, which utilizes certain factors including the data rate, RSS, the trend of 

movement, and the bit error rate (BER) that enables the selection of the best-suited network along with the parameter of the 

prioritized decisions. The decision tree is utilized in this approach according to the selected parameter at each node of the 

decision-making process, where it could stop or continue at that point accordingly. Moreover, this approach takes into 

consideration the underlying connecting technology including IEEE 802.11p, 3G, or WiMAX. 

Cross layer handover strategies can be projected to offer services that are seamless for mobile terminals within the 

heterogeneous networks that are wireless [36-38]. By intending to lower the delay period during handovers, the link layer 

ought to activate the handover protocols of the 3 layers in a timely manner. This would enable them to complete the 

handover processes before the present wireless link terminates. Due to the restricted power of computing within the mobile 

terminal as well as a bigger rate of packet loss in the vertical handover [39], a novel mechanism for triggering based on 

gray predictions was proposed. First, the duration needed to perform the handover was projected. Second, the time to 

trigger a Link_Going_Down was identified based on the convex optimization theory, where both the signal strength 

received from the presently linked network as well as the targeted access network was taken into account. Simulation 

findings proved that the mechanism could achieve more accurate predictions using the similar prediction method [40]. 

Besides that, the rate of packet loss could be controlled to 5% where the moving speed of the terminal was 5m/s or less.  

In [41], Nadembega et al. proposed a novel dynamic access network selection algorithm which was capable of adapting 

to prevailing network conditions. Their algorithm was a dual stage estimation process where network selection was 

performed using the sequential Bayesian estimation which relied on the dynamic QoS parameters that were estimated 

through bootstrap approximation. Simulations demonstrated the effectiveness of the proposed algorithm which 

outperformed static optimization approaches in a highly efficient manner. However, this algorithm suffers from high 

computation times. Moreover, according to Ong et al. [42] the network selection problem in heterogeneous wireless 
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networks with incomplete information was formulated as a Bayesian game. Every user has to decide on an optimal network 

selection based on only partial information about the preferences of other users. The dynamics of network selection were 

applied using the Bayesian best response dynamics and aggregated best response dynamics. The Bayesian Nash 

equilibrium was considered to be the solution of this game, and there was a one-to-one mapping between the Bayesian 

Nash equilibrium and the equilibrium distribution of the aggregate dynamics. The other dynamics of the network selection 

were applied using the maximization scoring function [43], designing an algorithm and protocol that takes into account the 

QoS parameters when the end user is receiving IPTV [44] and scheming depending on the requirements of the IPTV client 

[45].  Also, other proven algorithm types for the decision phase included multiple criteria decision-making (MCDM) 

algorithms, such as simple additive weighting (SAW) and technique for order preference by similarity to ideal solution 

(TOPSIS) [46]. There have been evaluations on the workings of the proposed scheme against the TOPSIS [47] and grey 

relational analysis (GRA) [48] decision-making models. 

Researchers in [49] developed an algorithm which could reduce computing time by preventing large and slow 

computing due to direct search techniques. The selection of an optimal wireless network to set the link required a metric, 

one that could relay the quality level of the network that was available within a fixed duration. The network quality was 

measured using certain weights allocated to the quality of service parameter based on user preferences. The function of 

fitness (F) was responsible for providing this measure as inputted in the phase for VHO decision making. Some of the 

algorithms in this research included the SA that was based on an adaptive method and GA which was based on an 

evolutionary method. The SEFISA is a heuristic proposition derived from the SEFI based on the Simulated Annealing (SA) 

algorithm. The algorithm for SA was instigated from the process of cooling metal, which includes searching for a final 

minimum energy structure. After going through several stages, the final structure which has a more cooled structure is 

achieved. Researchers in [49] introduced an algorithm using the Genetic Algorithms (GAs) to get a higher level of 

performance compared to the SEFISA. They managed to work through certain limitations including the generation of 

numbers, the emergence of the stop factor, overflow of limits for search space, stagnation in the optimized solution, etc. In 

the end, the Genetic Algorithms had the best performance in terms of computing time and precision even when compared 

against the better performing algorithms. 

In conclusion, based on the literature review, the hybrid VHD algorithm utilizes certain forms of intelligence for 

decision-making and it is able to robustly adapt to situations regularly due to the necessary dynamic changes in the wireless 

environment. In the next section, we mainly describe the network models involved in network selection during the vertical 

handover process in heterogeneous wireless networks. 

3. Network model 

Wireless heterogamous networks consist of different types of networks such as wireless personal area (WPAN) networks, 

wireless wide area (WWAN) networks, as well as Wireless Local Area (WLAN) networks. The various networks in this 

situation that are using both 3GPP (HSPA, EDGE, LTE, UMTS) as well as non-3GPP (WiFi, WiMax) standards must be 

inter-linked optimally in order to ensure the Quality of Service provided to the users. This research offers three settings that 

define handover signaling to achieve integrated WiMAX, WiFi, as well as UMTS networks. The first setting demonstrates 

the signaling in which the MT is found in the overlapping area and is able to select a connectivity that is better, hence 

utilizing the ABC concept. Fig. 1. reveals the MT in the overlapping area between WiFi and WiMAX. The next setting 

denotes the signaling for a user who is obliged to implement the handover since the present connectivity will be lost as it is 

moving into a tunnel or a subway, as shown in Fig. 1. through the WiMAX movement to the UMTS. The third setting 

demonstrates the signaling whereby the MT is found in the overlapping area and is able to select a connectivity that is 

better, utilizing the concept of ABC. Fig. 1. reveals the MT in the overlapping area between UMTS and WiFi. 

There are two factors tha should be taken into consideration when making a decision on the handoff. Firstly, the MT 

should aim to maximize using a high bandwidth with a low network access cost while reducing the amount of handovers 

that are not needed. This would prevent the degradation of the QoS of the present communication as well as prevent 

overloading the network with signaling traffic. 

All mobile connectivity would undergo a certain amount of vertical handoffs within its lifetime connectivity. It is 

assumed that the mobile terminal receives information from the networks that are located within regular receiving ranges. 

The information that is advertised from the networks could engage with usable bandwidth with a delay time that is 

acceptable, which the IETF IP performance metrics process is able to estimate. At each point in time, the terminal for the 

mobile establishes whether the connectivity should utilize the network that has been presently chosen or if it should route to 

some other network with a higher level of performance with reduced cost and a guarantee of a higher QoS. The 

connectivity re-routing involves a complicated and challenging process, which would in turn cause the signaling load as 

well as the processing to go up. Therefore, a tradeoff occurs between the connection’s QoS and the signaling load as well 

as the processing [50]. 
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4. A Markov decision process used for the VHO decision problem 

The subsequent sections will describe the methods used to design the decision problem of the vertical handoff as the 

process of a Markov decision [51]. A decision model using the Markov process has certain main elements. These include 

the decision epoch, state, action, transition probabilities, and the rewards. The MT establishes the course of action when it 

has passed the particular time duration. As the MT velocity has physical property constraints and its future speed is not 

influenced by past speeds, this study has adopted the Gauss-markov model suggested by [52] to define the mobility model. 

Shadow fading as well as the mobility of the MT might result in signal attenuation in a wireless environment. The RSS is 

described in dBm in discrete time [53]: 

𝑅𝑆𝑆[𝑡] =  𝑃𝑇 − 𝐿 − 10𝑛 log(𝑑) + 𝑁[𝑡] (1) 

Fig. 1.  Heterogeneous wireless networks. 

Where 𝑡 represents the discrete time index, 𝑃𝑇 represents the power transmission of AP, 𝐿 represents the pass loss that is 

fixed, 𝑛 represents the pass loss factor, 𝑑 represents the distance in the WLAN’s MT as well as the AP, and 𝑁[𝑡] represents 

the fading of the shadow. The MT is able to interact with the present network when the value of the RSS is above the 

threshold. The average RSS is defined as shown in the following: 

 𝑅𝑆𝑆 ̅̅ ̅̅ ̅̅ ̅ =  
∑ 𝑅𝑆𝑆

𝑆𝑎𝑣−1
𝑖=0 [𝑡 − 𝑖]

𝑆𝑎𝑣
 (2) 

Where 𝑆𝑎𝑣 represents the average size of the window in the slope estimation and 𝑅 [𝑡] represents the changing rate of the 

RSS. The threshold for handoff is a significant parameter that directly affects the performance of the network. As the 

threshold value of the handoff is fixed and not able to adapt to the network conditions that vary according to time, we have 

designed the relationship between the velocity of the MT and the threshold value of the handoff as: 

𝑇𝐻 [𝑡 + 1]  =  𝑇𝐻 +  𝜔 ×
𝑉𝑡

𝑉
 (3) 

Where 𝑇𝐻 represents the basic threshold for the handoff, 𝜔 represents the adjusting weight that is linked to the present state 

of the network, 𝑉𝑡 represents the present MT velocity while 𝑉 represents the original velocity. The sampling size of the 

window is considered when calculating the RSS average value and changes based on the mobility of the MT by using the 

equation 𝑆𝑎𝑣 and 𝑆𝑗 as 𝑆𝑎𝑣 = ⌊
𝐷𝑎𝑣

𝑉𝑇𝑗
⌋ and 𝑆𝑗 = 2 ⌊

𝐷𝑠

𝑉𝑇𝑗
⌋ in [6]. 𝐷𝑎𝑣 and 𝐷𝑆 represents the window’s average and the window’s 

slope distance, respectively. The probabilities of the transition are described in Table 1. 

The conditional probabilities of 𝑃Mobile input/output  [t + 1] depend on the decision approach. In line with [54], these 

probabilities are also defined as: 
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𝑃Mobile input/output  [𝑡 + 1] = 𝑃(𝑆𝑁 |𝑃𝑁)
[𝑡 + 1]𝑃𝐶𝑁[𝑡] (4) 

Where 𝑃𝑆𝑁|𝑃𝑃𝑁[t] represents MT’s probability of linking to the chosen network at the t instant as it is related to the past 

network at the t-1 time instant. The amount of handoffs, represented by 𝑁𝐻𝑂, has an effect on the flow of the signaling, and 

it is the sum total of the Mobile’s input as well as output. Thus, 𝑁𝐻𝑂 is represented by the instant probability of Mobile 

input and output as per Equation (4). The equation for 𝑁𝐻𝑂 is: 

𝐸{𝑁𝐻𝑂} = 𝐸 {∑ 𝑁Mobile input/output } =  ∑ (𝑃Mobile input/output[t])
𝑡𝑚𝑎𝑥

𝑡=1
 (5) 

Where  𝑡𝑚𝑎𝑥 represents the time instant as the MT reaches the edge, and it is represented by the velocity of the MT and the 

present network’s coverage. 𝑁Mobile input/output represents the expected numbers of 𝑁Mobile input/output. 

 

Table 1 Transition probabilities. 

Parameter Description 

𝑃𝑊𝑖𝐹𝑖[𝑡] MT’s probability of connecting with the Wi-Fi at the 𝑡 time instant. 

𝑃𝑊𝑖𝑀𝐴𝑋[𝑡] MT’s probability of connecting with the WiMax at the 𝑡 time instant. 

𝑃𝑊𝑖𝑀𝐴𝑋|𝑃𝑊𝑖𝐹𝑖[𝑡] MT’s probability of connecting with the WiMax at the 𝑡 time instant given that it is associated with the Wi-Fi at 𝑡 − 1 time 

instant. 

𝑃𝑊𝑖𝐹𝑖[𝑡 + 1] 𝑃𝑊𝑖𝐹𝑖|𝑃𝑊𝑖𝑀𝐴𝑋[𝑡 + 1]𝑃[𝑡] + (1 − 𝑃𝑊𝑖𝑀𝐴𝑋|𝑃𝑊𝑖𝐹𝑖[𝑡 + 1])𝑃𝑊𝑖𝐹𝑖[𝑡] 

𝑃𝑊𝑖𝑀𝐴𝑋[𝑡 + 1] 𝑃𝑊𝑖𝑀𝐴𝑋|𝑃𝑊𝑖𝐹𝑖[𝑡 + 1]𝑃[𝑡] + (1 − 𝑃𝑊𝑖𝐹𝑖|𝑃𝑊𝑖𝑀𝐴𝑋[𝑡 + 1])𝑃𝑊𝑖𝑀𝐴𝑋[𝑡] 

𝑃𝑊𝑖𝑀𝐴𝑋[𝑡] MT’s probability of connecting with the WiMax at the 𝑡 time instant. 

𝑃𝐿𝑇𝐸[𝑡] MT’s probability of connecting with the LTE at the 𝑡 time instant. 

𝑃𝐿𝑇𝐸|𝑃𝑊𝑖𝑀𝐴𝑋[𝑡] MT’s probability of connecting with the LTE at the 𝑡 time instant given that it is associated with the WiMAX at 𝑡 − 1 time 

instant. 

𝑃𝑊𝑖𝑀𝐴𝑋[𝑡 + 1] 𝑃𝑊𝑖𝑀𝐴𝑋|𝑃𝐿𝑇𝐸[𝑡 + 1]𝑃[𝑡] + (1 − 𝑃𝐿𝑇𝐸|𝑃𝑊𝑖𝑀𝐴𝑋[𝑡 + 1])𝑃𝑊𝑖𝑀𝐴𝑋[𝑡] 

𝑃𝐿𝑇𝐸[𝑡 + 1] 𝑃𝐿𝑇𝐸|𝑃𝑊𝑖𝑀𝐴𝑋[𝑡 + 1]𝑃[𝑡] + (1 − 𝑃𝑊𝑖𝑀𝐴𝑋|𝑃𝐿𝑇𝐸[𝑡 + 1])𝑃𝐿𝑇𝐸[𝑡] 

𝑃𝐿𝑇𝐸[𝑡] MT’s probability of connecting with the LTE at the 𝑡 time instant. 

𝑃𝑊𝑖𝐹𝑖[𝑡] MT’s probability of connecting with the Wi-Fi at the 𝑡 time instant. 

𝑃𝑊𝑖𝐹𝑖|𝑃𝐿𝑇𝐸[𝑡] MT’s probability of connecting with the Wi-Fi at the 𝑡 time instant given that it is associated with the LTE at 𝑡 − 1 time 

instant. 

𝑃𝐿𝑇𝐸[𝑡 + 1] 𝑃𝐿𝑇𝐸|𝑃𝑊𝑖𝐹𝑖[𝑡 + 1]𝑃[𝑡] + (1 − 𝑃𝑊𝑖𝐹𝑖|𝑃𝐿𝑇𝐸[𝑡 + 1])𝑃𝐿𝑇𝐸[𝑡] 

𝑃𝑊𝑖𝐹𝑖[𝑡 + 1] 𝑃𝑊𝑖𝐹𝑖|𝑃𝐿𝑇𝐸[𝑡 + 1]𝑃[𝑡] + (1 − 𝑃𝐿𝑇𝐸|𝑃𝑊𝑖𝐹𝑖[𝑡 + 1])𝑃𝑊𝑖𝐹𝑖[𝑡] 

 

𝑇 =  {1, 2, . . . , 𝑁} sequence demonstrates the moments of successful decision making time. 𝑁, which is the random 

variable, represents the duration taken for the connection to terminate. The terminal that is mobile has to establish decisions 

at each point of time for the connection to  utilize the network that is presently selected or it would face re-routing to other 

networks.  

𝑀  represents the sum of networks that are collocated. The 𝐴  action 𝑠𝑒𝑡 =  {1, 2,· · ·, 𝑀}  as well as the 𝑌𝑡  random 

variable represents the action selected during the decision epoch 𝑡. The terminal that is mobile selects an action according 

to the present state of information as represented by 𝑆. In every 𝑠 ∈  𝑆 state, the state information involves the network’s 

number of identification or the address to which the terminal that is mobile is presently linked to the bandwidth that is 

available, the average delay and the probabilities of packet loss offered by all the available networks collocated in the area.  

The random 𝑋𝑡 variable represents the state at which the 𝑡 decision epoch is made. The present state is represented with 

an 𝑠 while the action that is selected is represented by 𝑎. Thus, the probability of the transition function for state at the next 

𝑠′state is represented with a 𝑃 [𝑠′| 𝑠, 𝑎]. This can be identified as 𝑎 Markovian function as it relies solely on the present 

state as well as action. 
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The function for the rate of transition at 𝑓 (𝑋𝑡, 𝑌 𝑡) represents the QoS that is offered by the network that is selected to 

connect at intervals of (𝑡, 𝑡 + 1). Function of cost, which is 𝑐 (𝑋𝑡 , 𝑌 𝑡) represents load for signaling as well as the processing 

that occurs during the time when the connectivity moves from one network to the other. If the connection maintains the 

utilization of a similar network over the duration of the intervals, (𝑡, 𝑡 + 1), thus c (𝑋𝑡 , 𝑌 𝑡) would be equivalent to zero. It is 

defined as follows for easy interpretation: r ( 𝑋𝑡 , 𝑌 𝑡) = f ( 𝑋𝑡 , 𝑌 𝑡) - c ( 𝑋𝑡 , 𝑌 𝑡). 

The decision rules offer the process of choosing the actions at every state of particular decision epochs. Decision rules 

that are Markovian in nature are functions of  δt:  S → A, as it identifies the action choice while the system possesses the s 

state at the decision epoch of t. The policy of π = (δ1, δ2, … , δN) represents the sequence for the decision rule that is utilized 

at all the decision epochs. 

If 𝑣𝜋(s) denotes the total reward that is expected of the first decision epoch up until the conclusion of this connectivity 

while the 𝜋 policy is utilized with the initial 𝑠 state, the following is expected: 

𝑣𝜋 (𝑠) =  𝐸𝑠
𝜋 [𝐸𝑁 {∑ 𝑟(𝑋𝑡 , 𝑌𝑡)

𝑁

𝑡=1

}] (6) 

Where 𝐸𝑠
𝜋 represents the expectation in terms of policy 𝜋 and the initial 𝑠 state and 𝐸𝑁 represents the expectation in terms 

of random 𝑁 variable. It should be noted that a different policy 𝜋 and the initial 𝑠 state would change the selected 𝑎 action. 

It could also lead to different probability functions for state transitions at 𝑃 [𝑆′|𝑠, 𝑎]for utilization in the anticipated  𝐸𝑠
𝜋. 

The 𝑁 random variable representing the termination point of the connectivity is presumed to have a geometric distribution 

with a mean of 1/ (1-λ). It can be written as follows based on [55]:  

𝑣𝜋 (𝑠) =  𝐸𝑠
𝜋[{𝐸𝑠

𝜋 [{∑ 𝜆𝑡−1 𝑟(𝑋𝑡, 𝑌𝑡)}

∞

𝑡=1

}] (7) 

Where 𝜆 is inferred as the model’s discount factor at 0 ≤  𝜆 <  1. 

The state space of 𝑆 is described as follows in the proposed decision algorithm for vertical handoff: 

𝑆 = {1,2, … , 𝑀} × 𝐵1 × 𝐷1 × 𝑃1 × 𝑇𝐻1 × 𝐵𝐸𝑅1 × 𝐶1 × 𝑆𝑒𝑐1 × 𝐽1 × 𝐵2 × 𝐷2 × 𝑃2 × 𝑇𝐻2 × 𝐵𝐸𝑅2 × 𝐶2 × 𝑆2

× 𝐽2 × … × 𝐵𝑀 × 𝐷𝑀 × 𝑃𝑀 × 𝐵𝐸𝑅𝑀 × 𝐶𝑀 × 𝑆𝑀 × 𝐽𝑀 
(8) 

Where 𝑀 is the quantity of available networks that are collocated and 𝐵𝑚 , 𝐷𝑚, 𝑃𝑚 , 𝑇𝐻𝑚, 𝐵𝐸𝑅𝑚 , 𝐶𝑚 ,  𝑆𝑚 and 𝐽𝑚  are 

the set of bandwidths, packet loss, delay, throughput, cost of bit error rate, security, and jitter that are available from the 𝑚 

network (𝑚 =  1, 2, … , 𝑀), accordingly. Given the present s state as well as the selected 𝑎 action, the function of the link 

reward𝑓 (𝑠, 𝑎) is described as follows:    

𝑓(𝑠, 𝑎) = 𝜔𝑓𝑏(𝑠, 𝑎) + 𝜔𝑓𝑑(𝑠, 𝑎) + 𝜔𝑓𝑝 (𝑠, 𝑎) + 𝜔𝑓𝑡ℎ(𝑠, 𝑎) + 𝜔𝑓𝑏𝑒(𝑠, 𝑎) + 𝜔𝑓𝑐(𝑠, 𝑎) + 𝜔𝑓𝑠(𝑠, 𝑎) + 𝜔𝑓𝑗(𝑠, 𝑎)  (9) 

Where 𝜔 represents the factor of weight and 0 ≤  𝜔 ≤  1, 𝑎  suitable weight factor represents every parameter in the 

significance of the vertical handoff decision. Based on Equation [9], fb(𝑠, 𝑎) represents the function for bandwidth whereas 

fd(𝑠, 𝑎)represents the function of delay, 𝑓𝑝(𝑠, 𝑎) represents the function of packet loss, 𝑓𝑡ℎ(𝑠, 𝑎) represents the function of 

throughput, 𝑓𝑐(𝑠, 𝑎) represents the function of monetary cost, 𝑓𝑠(𝑠, 𝑎) represents the function of security, 𝑓𝑗(𝑠, 𝑎) represents 

the function of jitter, and 𝑓𝑏𝑒 ( 𝑠, 𝑎)  represents the function of bit error rate. The following is utilized for every 

𝑄𝑜𝑆 parameter: 

𝑓𝑄𝑜𝑆(𝑠, 𝑎) = {

1,                                                             0 < 𝑄𝑜𝑆𝑎 ≤ 𝐿𝑄𝑜𝑆  

(𝑈𝑄𝑜𝑆 – 𝑄𝑜𝑆𝑎) (𝑈𝑄𝑜𝑆 − 𝐿𝑄𝑜𝑆)⁄ ,   𝐿𝑄𝑜𝑆 < 𝑄𝑜𝑆𝑎 < 𝑈𝑄𝑜𝑆

0,                                                                   𝑄𝑜𝑆𝑎 ≥ 𝑈𝑄𝑜𝑆     

  (10) 

Where the constants 𝐿𝑄𝑜𝑆 and 𝑈𝑄𝑜𝑆 represent the minimum as well as the maximum e 𝑄𝑜𝑆 rate needed by the connectivity. 

The reward function r (𝑠, 𝑎) of the two continuous handoff decision epochs that are vertical can be described as follows: 

𝑟(𝑠, 𝑎) = 𝑓(𝑠, 𝑎) − 𝑐(𝑠, 𝑎) (11) 

The total cost function is given by, 
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𝑐(𝑠, 𝑎) = 𝑤𝑔 𝑔(𝑠, 𝑎) + 𝑤𝑣𝑉(𝑠, 𝑎) (12) 

and the factors of weighting fulfill 𝑤𝑔+ 𝑤𝑣 =1. The 𝑔(𝑠, 𝑎) function for signaling cost is represented in the following: 

𝑔(𝑠, 𝑎) =  {
𝑆𝐶𝑖,𝑎,        𝑖 ≠ 𝑎

0,          𝑖 = 𝑎
 (13) 

Where 𝑆𝐶𝑖,𝑎  represents the switching cost (involving the signaling load as well as the re-routing operations) from the 

present i network to the new a network. Furthermore, 

𝑣(𝑠, 𝑎) =  {

𝑣 − 𝑣𝑚𝑖𝑛 𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛, 𝑖𝑓 𝑖 ≠ 𝑎,     𝑣𝑚𝑖𝑛 < 𝑣 < 𝑣𝑚𝑎𝑥⁄

1,                                         𝑖𝑓 𝑖 ≠ 𝑎, 𝑣 ≥ 𝑣𝑚𝑎𝑥                   
0,                                          𝑂𝑡ℎ𝑒𝑟𝑠                                      

 (14) 

Where 𝑣𝑚𝑖𝑛and 𝑣𝑚𝑎𝑥 are the minimum and maximum velocity threshold, accordingly. A bigger velocity will lead to more 

call droppings while the process of vertical handoff is going on. Lastly, due to the present state, 𝑆 =  [i, 𝑏1 , 

𝑑1,𝑝1, 𝑡ℎ1, 𝑏𝑒1, 𝑐1, 𝑠𝑒𝑐1, 𝑗1,…,𝑏𝑀, ,𝑑𝑀, 𝑝𝑀, 𝑡ℎ𝑀, 𝑏𝑒𝑀, 𝑐𝑀, 𝑠𝑒𝑐𝑀, 𝑗𝑀] as well as the chosen action 𝑎, the probability function of 

the following state would be:         

𝑆′ =  [𝑗, 𝑏1
′ , 𝑑1

′ , 𝑝1
′ , 𝑡ℎ1

′ , 𝑏𝑒1
′ , 𝑐1

′ , 𝑠𝑒𝑐1
′ , 𝑗1

′ , … , 𝑏𝑀
′ , 𝑑𝑀

′ , 𝑝𝑀
′ , 𝑡ℎ𝑀

′ , 𝑏𝑒𝑀
′ , 𝑐𝑀

′ , 𝑠𝑒𝑐𝑀
′ , 𝑗𝑀

′ ] (15) 

is given by 

𝑃[𝑆′|𝑠, 𝑎] =  {
∏ 𝑃[𝑏𝑚

′ , 𝑑𝑚
′ , 𝑝𝑚

′ , 𝑡ℎ𝑚
′ , 𝑏𝑒𝑚

′ , 𝑐𝑚
′ , 𝑠𝑚

′ , 𝑗𝑚
′ |𝑏𝑚, 𝑑𝑚, 𝑝𝑚, 𝑡ℎ𝑚, 𝑏𝑒𝑚

′ , 𝑐𝑚
′ , 𝑠𝑚

′ , 𝑗𝑚
′ ]

𝑀

𝑚=1

      𝑗 = 𝑎

0,                                                                                                                                        𝑗 ≠ 𝑎

 (16) 

The issue of the decision with the VHO is defined as a Markov decision. Rewards that are appropriate as well as flexible 

with the functions of cost are determined to embody the trade-off among the resources of the network utilized by the 

connectivity (the QoS-based bandwidth that is available, packet loss, delay, bit error rate, as well as throughput) besides the 

processing load that takes place and the network signaling when executing the VHO. The goal of the formulation of the 

Markov decision is in maximizing every connection’s anticipated total reward. This kind of problem with the optimization 

is defined as: 

𝑣(𝑠) =  {r(s, a) + ∑ λ

ś∈ S

P [s′| s, a] 𝑣(𝑠′)}

a∈A

max

 (17) 

Where 𝑣(𝑠) stands for the anticipated reward, 𝑎 stands for the set with the potential action (such as the network to utilize), 

r(𝑠, 𝑎)  stands for the function of reward, and P [s′| s, a]  stands for the state transition probability in various access 

technologies. Moreover, 𝑣𝑇+1(𝑠) [17] stands for the anticipated reward at (𝑇 + 1):  

𝑣𝑇+1(𝑠) =  { r(s, a) + ∑ λ

ś∈ S

P [s′| s, a] 𝑣(s′)}

a∈A

max

 (18) 

The norm function contains several definitions. The norm function in this study can be described with 𝑣 =  𝑚𝑎𝑥 |𝑣(𝑠)| 

for 𝑠 ∈  𝑆. According to the IEEE 802.21 standard [13], a terminal that is mobile and establishes this proposed decision 

algorithm for vertical handoff can regularly gain information about the networks that are collocated in its receiving path by 

utilizing the present network interface. The provided information by the MIIS from the MIHF is utilized to project the 

parameters of the linked reward functions as seen in Equation (11) as well as the cost function as in Equation (12). The 

information regarding the bandwidth available and the average network delay is calculated through standardized processes 

for performance metrics of the Internet service as described by the Internet Engineering Task Force IP Performance Metrics 

Working Group [56]. The processes are developed so that they could be introduced by the network operators to offer 

precise as well as non-biased quantitative measurements with this type of metrics. The standardized metrics’ examples 

include connectivity, packet loss and delay, variation of packet delay, as well as linked capacity of bandwidth. 
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Thus, 𝑎 framework is proposed here to integrate the vertical handoffs with the preferences of the user. Firstly, we 

categorize Bm  ,and Dm,  Pm, and 𝑇𝐻𝑚, and 𝐵𝐸𝑅𝑚 from the network 𝑚 as QoS parameters that are network-based as well 

as parameters that are user-based, such as the cost of access and security. A screening phase is invoked if the mobile 

terminal discovers itself in the vicinity of the collocated coverage area due to information gathered from the IEEE 802.21 

MIIS. This phase is able to filter networks that are not appropriate for carrying out vertical handoff according to the user-

based QoS parameters. Only the appropriate candidate networks would be taken into consideration for the vertical handoff 

decision. 

A list of current and future available point of attachments (PoAs) was retrieved and locally stored to be used by the 

decision-making branch. This database contains information about the present neighborhoods in the units on board. The 

MIIS PoA information database offers information including the ID of the network, the ID of the PoA, location, coverage, 

monetary cost per MB, the offered nominal rate of data, achieved rate of data by the most current users and bandwidth 

offered. 

Every input in the neighborhood’s database keeps the properties for every PoA in the neighborhood and the PoA’s 

beneficial time of coverage. The beneficial time of coverage is the time spent by the mobile in the area of cell coverage 

with the ability to gain the peak rate of data from that particular cell. This time could differ based on certain factors 

including whether the itinerary crosses the area of coverage in a tangent or if there is an overlap in the area of coverage on 

the itinerary route. In addition, the beneficial time for coverage could also differ because of the fluctuations in the QoS at 

the cells edge that is linked to faulty wireless signals including fading and path loss. The cost function module will be 

utilized to measure the border cell of the QoS, which assures that the QoS is up to a certain distance along the route.  

When approaching the end, the vertical handoff decision is based on the MDP optimal policy 𝑉T+1 (𝑠) which takes into 

consideration the QoS parameters that are network-based such as 𝐵𝑚and , 𝐷𝑚, 𝑃𝑚,  𝑇𝐻𝑚 and 𝐵𝐸𝑅𝑚. Fig. 2. shows the 

integrated process of BBO with MDP to determine the best RAT using the described multi-point algorithm in the 

heterogeneous networks. 

Fig. 2. Hybrid model of BBO with MDP to select the best network 

The MDP-BBO algorithm utilizes real-time dynamic information because information changes rapidly and is updated 

constantly. This real-time dynamic information is retrieved from network and mobile sides. For real-time applications, the 

integrity of information is more important. By extensions in MIH, the MDP-BBO algorithm accesses critical real-time 

parameters used when selecting the target network to hand off the MN. This research proposes an evolution of the MIH 

with the capability to store, process and manage real-time dynamic information obtained from both the network and the 

terminal side entities. 
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As the MDP-BBO algorithm is established in the serving point of service (PoS), it is easier to use in real applications. 

The PoS decides the target of the handover based on the available resource status at candidate networks. The network, 

according to this study, initiates the process of handover by signaling to the MN when a handover is deemed necessary. In 

this case, the policy function of the network selection remains in the network. The network utilizes the MIH_Net_HO_*** 

set along with the commands from the MIH_N2N_HO_*** to initiate the handover. The network can utilize these 

commands for querying the currently used resources list from the MN; the service network is able to reserve the necessary 

resources at the candidates target network while the network is able to command the mobile node to perform the handover 

to a particular network. 

5. Proposed Biogeography-based Optimization 

This section discusses the details of the MDP-BBO algorithm. Biogeography refers to the study of geographical 

distribution of species over geological time frames. There is extensive literature on biological subjects. In 2008, Simon [20] 

first utilized the biogeography analogy to the concept of engineering optimization and introduced the BBO approach. This 

is a method based on a population that works with a set of candidate solutions across generations. It examines the combined 

big solution spaces using a stochastic method as used by most other evolutionary algorithms [57-59].  

It copies the species’ geographic distribution to present the problem and the solution to candidates in the search location 

by utilizing the species mutation and migration process to re-distribute the solution instances over the search location in 

search of the solutions that are almost globally optimal. BBO as it is or in differing form has been examined in different 

combinations and constrained/unconstrained optimization challenges [60] involving such as the Traveling Salesman 

Problem [61-62], classification of satellite images [63], as well as sensor selection [20] among others. Nevertheless, since 

2012, research using BBO as a technique for choosing genes for data analysis of micro-array gene expression has not been 

reported. This study attempts to examine the BBO for selection and categorization of genes. There is an ecosystem or 

population in the BBO that possesses certain island habitats. Every habitat contains the index of habitat suitability that is 

the same as the fitness function and relies on most of the island’s traits or attributes. When a value is given to every trait, 

habitat H’s HSI is this value’s function. These variables that collectively characterize the suitability of the habitat formulate 

the ‘suitability index variables’ (SIVs).  

Therefore, in terms of the issues related to the gene selection, a habitat’s SIVs (solution candidate) are the chosen subset 

of the genes derived from the grouping of the entire genes. Therefore, the ecosystem is a randomized group of gene 

candidate subsets. A proper solution is analogous to a proper HSI and vice versa. Proper solutions of HSI are likely to share 

the SIVs with weak solutions of HSI. This type of sharing, which is known as migration, is governed by the habitats’ rates 

of immigration and emigration. This model has been purposefully maintained to be uncomplicated as it follows the original 

simple linear migration model. 

The BBO algorithm [20, 64] contains two main stages, namely migration as well as mutation. A mechanism for 

mutation in the proposed MDP-BBO is engaged to improve the capability of investigating in the search location. A detailed 

algorithm for the BBO can be retrieved from [20]. The subsequent sub-sections report the proposed algorithm of the MDP-

BBO for optimization of the weight coefficients when choosing the best RAT in heterogeneous networks. 

In general, studies normally apply different ideas to generate a feasible solution by managing the quantity of diversity. 

The process of mutation in the BBO improves the population diversity. It should be realized that the rate of the mutation 

changes the SIV of the habitat in a randomized approach according to the rate of mutation. In addition, the rate of mutation 

is inversely in proportion to the species count probability. Therefore, in a fundamental BBO, if a solution is chosen for 

mutation, it will be replaced using a random method to develop a new set of solution. Thus, this randomized mutation has 

an effect on the investigation of the basic BBO capability. The process of mutation is modified to enhance the investigating 

ability of the BBO as detailed in Section 3 in order to refine the habitat and to reach an optimal solution using a better 

method. For the BBO algorithm, a short introduction is provided; then, the operation is explained with a pseudo code. 

The species selection (Ps) probability changes from one specific time to another as shown in Equation (16) in this paper. 

Changes are not performed in the migration potion of the proposed MDP-BBO algorithm to sustain the ability to exploit. 

The modification performed in the mutation section with the MDP improved the capability for investigation.  Therefore, 

the proposed MDP-BBO leads to a balanced investigation and the ability to exploit the algorithm. The proposed MDP-BBO 

algorithm’s pseudo code is presented in Table 2. The proposed MDP-BBO algorithm is used in this study to perform the 

optimization of weight in an algorithm with multi-point decision making and to choose the best RAT for the considered 

networks that are heterogeneous, where 𝐸 and 𝐼 represent the maximum rates of emigration as well as immigration, which 

are normally fixed at 1. Individual rates of immigration as well as emigration (𝜆 and µ, accordingly) are measured using a 

similar formula as the simple linear model suggested by [20]. 
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6. Results and discussion 

We utilized MATLAB and OMNET++ to evaluate network performance. OMNET++ is a well-designed, component-

based, modular and open-architecture simulation environment with strong GUI support and an embeddable simulation 

kernel.  

Table 2. Pseudo code for the proposed MDP-BBO algorithm 

𝑭𝒖𝒏𝒄𝒕𝒊𝒐𝒏 𝑴𝑫𝑷 − 𝑩𝑩𝑶 ( )   

𝑰𝒏𝒊𝒕𝒊𝒂𝒍𝒊𝒛𝒆_𝒓𝒂𝒏𝒅𝒐𝒎𝒍𝒚(𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏)   

𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆_𝒇𝒊𝒕𝒏𝒆𝒔𝒔()// ……………………………………………….............................………………………………….by Eq. (12) 

𝑺𝒐𝒓𝒕_𝒂𝒔𝒄_𝒃𝒆𝒔𝒕_𝒕𝒐_𝒘𝒐𝒓𝒔𝒕(𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏)   

𝑪𝒐𝒖𝒏𝒕_𝑷𝒓𝒐𝒃𝒂𝒃𝒊𝒍𝒊𝒕𝒚(𝒇𝒐𝒓 𝒂𝒍𝒍 𝑯𝒂𝒃𝒊𝒕𝒂𝒕)   

If   termination criteria is not achieved    then   

 𝒂𝒓𝒓𝑬𝒍𝒊𝒔𝒕𝒊𝒎[ ]  ←  𝑺𝒂𝒗𝒆 𝒕𝒉𝒆 𝒃𝒆𝒔𝒕 𝑯′𝒔   

 𝑴𝒂𝒑 𝒔𝒖𝒊𝒕𝒂𝒃𝒊𝒍𝒊𝒕𝒚 𝒐𝒇 𝑯 𝒊𝒏𝒅𝒆𝒙(𝑯𝑺𝑰)𝒇𝒐𝒓 𝒂𝒍 𝑯𝒂𝒃𝒊𝒕𝒂𝒕  

 𝑷𝒆𝒓𝒇𝒐𝒓𝒎 𝑴𝒊𝒈𝒓𝒂𝒕𝒊𝒐𝒏  

 𝑷𝒆𝒓𝒇𝒐𝒓𝒎 𝑴𝒖𝒕𝒂𝒕𝒊𝒐𝒏 // …………………………………………………………………………….by Eq. (16) 

 𝑪𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆_𝒇𝒊𝒕𝒏𝒆𝒔𝒔()  

 𝑺𝒐𝒓𝒕_𝒂𝒔𝒄_𝒃𝒆𝒔𝒕_𝒕𝒐_𝒘𝒐𝒓𝒔𝒕(𝒑𝒐𝒑𝒖𝒍𝒂𝒕𝒊𝒐𝒏)  

 𝑼𝒑𝒅𝒂𝒕𝒆 𝒃𝒆𝒔𝒕 𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏 𝒆𝒗𝒆𝒓 𝒇𝒐𝒖𝒏𝒅  

Endif   

BestCost = Choose(Best Costs)   

End   

   

Standard Pseudo Code for Migration 

For      i = 1    to    NP    do   

 Select  𝐻𝑖  with probability based on  𝜆𝑖 

 If   𝐻𝑖 is selected  Then  

  For    j = 1    to    NP    do 

  Select   𝐻𝑗  with probability based on  𝜇𝑗 

  If   𝐻𝑗 is selected  Then 

  Randomly select a  SIV(s)  from  𝐻𝑗 

  Copy them   SIV(s)   in    𝐻𝑗 

  End if 

  End for 

 End if 

End for 

 

 

Standard Pseudo Code for Mutation 

For      i = 1    to    NP    do 

 Use  𝜆𝑖 and 𝜇𝑖 to compute the probability 𝑃𝑖  

 Select   SIV  𝐻𝑗(𝑗) with probabi;lity  ∝  𝑃𝑖  

 If       𝐻𝑗(𝑗)  is selected    Then  

 Replace 𝐻𝑗(𝑗)  with a randomly generated SIV 

 End if  

End for   
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OMNET++ is a general-purpose simulator capable of simulating any system composed of devices interacting with each 

other. Although the original implementation did not offer a great variety of protocols, it did provide a hierarchical nested 

architecture which enabled developers to model and modify all layers of the protocol stack accurately. The simulations 

were made in the OMNET++ simulator using the network address translation (NAT) add-on. Notice that the 

OMNET++/INET module, by default, does not provide make-before-break handover mechanisms but rather break-before-

make. Therefore, modifications were made to the NAT module, such as support for network-side 802.21 entities and 

control of the link layer access technologies to obtain seamless handovers. A cross-layer module was implemented in 

OMNeT++ with NAT functionality to provide a seamless handover. It contributed to the INET framework of OMNeT++ 

by implementing the NAT operation in network layers with an update mechanism achieved through a cross layer module. 

Tables 3 and 4 show the parameters of the Markov-VHO. The average time for decision epochs that are continuous is set 

at 15 s. The unit for bandwidth is 16 kb/s, the unit for jitter is 2.5 ms, and the unit for traffic is 0.5 erl.  

The highest as well as the lowest velocities are 5 units and 1 unit respectively as suggested by [65-67].  The cellular area 

is 3 times bigger than the WLAN while the MTs’ special density in the cellular network is 8 times bigger than the WLAN. 

Rates of peak data in the Wimax are DL: 75 Mbps UL: 25 Mbps and in the LTE DL: 100 to 324.6 Mbps UL: 50 to 86.4 

Mbps. The algorithm for the Markov-VHO that is proposed in this study is evaluated with other schemes in terms of 

average number of handoffs, available bandwidth, etc. Figures 4 to 10 show the performance of the network during the 

handoffs. 

The average time of the continuous decision epoch is 15 s. The unit of bandwidth is 16 kb/s, the unit of jitter is 2.5 ms 

and the unit of traffic is 0.5 erl. The highest as well as the lowest velocities are 5 units and 1 unit as suggested by [23]. The 

cellular area is 3 times bigger than the WLAN and the MTs’ special density in the cellular network is 8 times bigger than 

the WLAN.  

The released signals propagate on the module hierarchy up to the root (network module). As a result of this, a radio 

listener registered at a compound module can receive signals from all modules in its sub-module tree. To record simulation 

results based on the signals mechanism in OMNET++, we have added one or more @statistic properties in a module’s 

NED definition. In terms of RSSI, we have considered the following declaration of a statistic by recording the average 

RSSI value measured by nodes in a wireless network: @statistic[statRSSI](source="rssiSignal";record=mean). However, 

placing the statement on network level would result in a single RSSI value averaged over all RSSI measurements made by 

the nodes in the network. 

MiXiM, a simulation framework for OMNeT++ is able to simulate wireless networks, mobile networks and energy 

consumption. MiXiM can maintenance wireless and mobile simulations. It can provide several ready-to-use modules such 

as Log Normal Shadowing, Simple Path loss and Rayleigh-Fading using the Jakes-model. This model is applied by a 

maximum Doppler shift based on the carrier frequency 𝑓𝑐and velocity 𝑣 of the object with the highest level of velocity 

which can be applied in the propagation environment, e.g. a moving user. This model of fading is established by utilizing 

Rayleigh distributed signal domains that lead to rapidly expanding the distributed SNR 𝛾𝑖,𝑗 for the channel from mobile 

terminal 𝑖  to mobile terminal 𝑗  rapidly. We have investigated the path loss, the log-normal shadowing with standard 

deviation of 8 dB and Rayleigh fading. The path loss models between the base station and mobile station as well as 

between relay station and mobile station links, 31 + 40 log 10 d(dB), are acquired from the models in [68] which have the 

carrier frequency of 2.5 GHz, where d (meters) is the distance from the transmitter to the receiver. For shadowing, the 

correlation model in [69] is used with the decorrelation length of 50 m and the Rayleigh fading is applied using a Jakes 

spectrum model. 
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Table 3. Parameters of Simulation for Markov-VHO 
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𝒅𝒎𝒂𝒙
𝒊  Delay maximum in network i 8 units 8 units 𝑫𝒂𝒗 Average window 0.5 m  

𝒋𝒎𝒂𝒙
𝒊  Jitter maximum in network i 4 units 2 units 𝑫𝒔 Slope distance window 5m 8m 

𝒑𝒎𝒂𝒙
𝒊  Packet loss maximum in network i 6 units 4 units 𝑻𝐦𝐨𝐛𝐢𝐥𝐞 𝐈𝐧𝐩𝐮𝐭 Predefined threshold mobile input -85dbm - 

𝒕𝒉𝒎𝒂𝒙
𝒊  Throughput maximum in network i 8 units 8units 𝑻𝐦𝐨𝐛𝐢𝐥𝐞 𝐨𝐮𝐭𝐩𝐮𝐭 Predefined threshold mobile output - -80dbm 

𝒃𝒆𝒎𝒂𝒙
𝒊  

Bit error rate maximum in network 

i 
4 units 2 units NRANs Number of RANs 5 

𝒄𝒎𝒂𝒙
𝒊  Cost maximum in network i 2 units 4 units NMN Number of MNs (per SN) 10 100 

𝒔𝒎𝒂𝒙
𝒊  Security maximum in network i 4 units 4 units λ 

Rate of VHO triggers per mobile 

node 
In range [0.01, 0.1] 

𝒏𝟏 
Cost of switching from network 1 

to network 2 
0.3 - BWL Wired Link Bandwidth (Mbps) 1000 

𝒏𝟐 
Cost of switching from network 2 

to network 1 
- 0.3 BWWL Wireless Link Bandwidth (Mbps)  10 

𝒄𝟏 Cost of access to network 1 1 - P Packet Length: (bits)  12000 (1500 × 8) 

𝒄𝟐 Cost of access to network 2 - 1 DIS Mean IS Delay: (sec)  0.01 

𝑷𝑻 Transmission power network 100 mW 120 mW DCN Mean Process Delay (CN): (sec) 0.030 0.300 

n Pass loss factor 3.3 3.3 𝒖𝒘𝒊𝒓𝒆𝒅 
Cost of unit packet transmission for 

the wired links 
0.1 

𝑫𝒂𝒗 Average window 0.5 m  𝒖𝒘𝒊𝒓𝒆𝒍𝒆𝒔𝒔 
Cost of unit packet transmission for 

the wireless links 
3.84 x 106 

 

Table 4. Reward function Parameters 
Notations Definition of Parameter  CBR FTP 

𝑳𝑩 Accessible minimum bandwidth 

required 

2 units 2 units 

𝑼𝑩 Accessible maximum bandwidth 

required 

4 units 16 units 

𝑳𝑫 Required Minimum delay  2 units 8 units 

𝑼𝑫 Required Maximum delay  4 units 16 units 

𝑳𝑷 Required Minimum packet loss  2 units 4 units 

𝑼𝑷 Maximum packet loss required 4 units 16 units 

𝑳𝑻𝑯 Minimum throughput required 2 units 4 units 

𝑼𝑻𝑯 Maximum throughput required 4 units 16 units 

𝑳𝑩𝑬𝑹 Required Minimum bit error rate  2 units 8 units 

𝑼𝑩𝑬𝑹 Required Maximum bit error rate  4 units 16 units 

𝑳𝑪 Minimum cost required 2 units 4 units 

𝑼𝑪 Maximum cost required 4 units 6 units 

𝑳𝑺 Minimum security required 2 units 4 units 

𝑼𝑺 Maximum security required 4 units 8 units 

𝑳𝑱 Minimum jitter required 2 units 8 units 

𝑼𝑱 Maximum jitter required 4 units 16 units 

 

The basic concept of the TOPSIS method is that the chosen alternative should have the shortest distance from the 

positive ideal solution and the farthest distance from the negative ideal solution. The positive ideal solution is a solution 
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that maximizes the benefit criteria and minimizes the cost criteria, whereas the negative ideal solution maximizes the cost 

criteria and minimizes the benefit criteria [70]. 

Several assessments exist based on the workings of the proposed scheme versus the TOPSIS [44, 45] decision-making 

models. The proposed scheme performance is examined in different mobility settings based on TOPSIS and GRA. Both 

these techniques offer rankings to the networks that are available according to multiple parameters, such as the network 

traffic load, mobile speed and type of service. Based on these parameters, the highest-ranked network is chosen. In terms of 

mobile communications, these techniques could be utilized to consolidate the information received during the network 

discovery stage to rank all the available candidate networks wisely according to the present requirements of the application 

[71]. 

Fig. 3. demonstrates the simulated results of the total reward using various handoff signaling loads. The total reward 

reduces as the handoff signaling load rises, as the signaling load increases each time the connection causes a drop in the 

actual reward. This proposed algorithm reduces the call dropping probability as well as the signaling and processing cost by 

considering the velocity of the MT. Thus, the decrease in the total reward is less compared to the other algorithms. 

Fig. 3. Comparisons of total reward under various velocity of the MT 

Fig. 4. shows the average number of HOs using various signaling loads. It is observed that when the signaling load for 

the handoff goes up, the number of average handoffs goes down. The signaling load for the handoff that keeps rising leads 

to the candidate network’s real total reward. This is significantly reduced compared to the present one in which the MT 

stays. Thus, the algorithm that is proposed is able to prevent many unnecessary handoffs.  

In addition, several tests were performed at various MN speeds. In the initial simulation, the amount of the MNs was not 

much however at the time of simulation, the researchers tried to increase the MNs slowly to examine the functioning of the 

model that is proposed in a high traffic environment. The number of handovers are recorded with the proposed scheme, 

GRA, as well as TOPSIS. The handoff rates using GRA and TOPSIS increased as more MNs joined the network. 
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Fig. 4. Comparisons of average numbers of HOs under various signaling loads 

The handoff rates in the proposed scheme in comparison with GRA and TOPSIS are demonstrated in Fig. 5. 

Fig. 5. Analysis of handoff rates 

Among the reasons seen during the simulation is the unsuitable handover that is triggered because of the RSS in relation 

to GRA and TOPSIS. The technique for the proposed handover triggering lowers the rate of handoff significantly. We have 

conducted performance comparisons between our algorithm MDP-BBO and other algorithms structured in the literature, 

namely SEFISA [49] and FMADM [72]. In a study by Jaraiz-Simon et al. [49], the proposed algorithm was designed to 

decide on the best network to establish connection in a vertical handover process as the SEFISA is based on the simulated 

annealing (SA) algorithm. In addition, the FMADM is a fuzzy multiple attribute decision making algorithm that selects a 

suitable wireless access network during the vertical handover process. 

Likewise, the packet loss is minimized significantly in the proposed scheme. GRA and TOPSIS have high packet losses 

in comparison to the proposed scheme due to the regular switching of various networks. In general, a scheme with a multi-

criteria decision needs a high amount of handover time in comparison to a model with a single criteria decision. However, 

because of the proposed MDP-BBO method, the MN has additional time to scan as well as choose an optimized network in 

a heterogeneous network setting. Fig. 6. demonstrates the packet loss ratio comparison. 

Fig. 6. Packet losses during handovers 

The scheme that is proposed has also enabled the computation of the throughput gain. The throughput relies on the 

indirect loss of the packets. The GRA and TOPSIS possess high loss of packets and as such, they offer a low throughput 

gain due to unsuitability in the selection of the handover network. However, the proposed scheme also faces a lower packet 

loss due to the optimal network selection and the proposed handover triggering method. The throughput relies on the delay 

of the handover and the needed time to redirect the data via a new network. The handover that is proposed offers the MN 



16  

 

sufficient time while the handover occurs. Thus, the data is redirected via a network that is new and as such, the MN goes 

through a high level of throughput. Fig. 7. shows the throughput gain comparison in the proposed scheme, GRA, and 

TOPSIS decision models. At first, the MN has a low level of throughput, however after a certain duration, the throughput 

increases. Two reasons for this increase include i) the previous throughput (bytes) arriving through the present AP/BS is 

added to the new bytes arriving from the new AP/BS; ii) the suggested triggering as well as selection of network offers the 

MN with a suitable AP/BS that increases the throughput. 

Fig. 7. Throughput gains 

The proposed scheme outperforms in the area of minimizing the rate of handoff and in maximizing the throughput with 

the decision models of GRA and TOPSIS. Simulation results in Fig. 8. corresponds to the best costs for TOPSIS, GRA, 

SEFISA, FMADM and MDP-BBO for number of networks = 4 and number of QoS = 15. The datasets consist of several 

networks characterized by the following QoS parameters: B = bandwidth (kbps), E = BER (dB), D = delay (ms), S = (dB), 

C = cost (eur/MB) , L = network latency (ms), J = jitter (ms), R = burst error, A = average retransmissions/packet, P = 

packet loss (%), G = received signal strength indication RSSI (dBm), N = network coverage area (km), T = reliability, W = 

battery power requirement (W), and V = mobile terminal velocity (m/s). 

Fig. 9. shows the impact of mobile speed on handover latency. In this simulation, the total number of mobiles is fixed at 

50 nodes. Whenever the mobile node speed rises, the handover latency also rises. The MDP-BBO and SEFISA models 

have better performance than the TOPSIS, GRA and FMADM models because they have high levels of handover time and 

thus, increase the handover latency. 

Fig. 8. Best costs 
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Fig. 9. Handover latency vs Mobile speed 

Fig. 10. shows the impact of various mobile nodes densities on handover latency. The number of mobile nodes are 

adjusted between (10 -100) per mobile node when moving at a fixed speed (50 m/s). In place of the mobile node density 

rise, the handover latency also rises as density causes more congestion. Thus, the handover latency will be increased. The 

MDP-BBO and SEFISA models show the best performance followed by the TOPSIS, GRA and FMAMD models. 

Fig. 10. Handover latency vs. Mobile nodes densities 

The scheme utilized when selecting a network is based on different parameters namely jitter, delay, BER, loss of 

packets, cost of communication, time to respond, and network loading. A comparison is made in the proposed scheme as 

well as the TOPSIS and GRA decision models in the context of failed attempts at handovers, handovers that are frequent, 

ratio of packet loss, as well as the throughput. The proposed scheme outperforms in the area of minimizing the rate of 

handoff and in maximizing the throughput with the decision models of GRA and TOPSIS. Among these algorithms, the 

one based on the hybridization of MDP and BBO demonstrated the best performance, in terms of precision and cost 

function. 

Fig. 11. shows the signalling overhead versus average session arrival rate. Based on the handover procedure for each 

option, the signalling overhead was evaluated. From the figure, as the average session arrival rate increases, the signalling 

overhead for all the possible options increase. This is because more handovers occur with the increase of the session 

arrivals. The figure also shows that MDP-BBO and SEFISA scenario have lower signalling overhead than TOPSIS, GRA 

and FMADM. This is because the handovers in MDP-BBO and SEFISA do not involve routing delays and the IEEE 802.21 

interface introduced between nodes also shortens the delay required to send a signalling message. 
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Fig. 11. Signalling overhead versus average session arrival rate 

The QoS requirements of real-time audio and video streaming traffic are the factors considered when determining the QoS of the 

available networks to provide uninterrupted services to mobile users. Real-time applications such as voice over IP (VOIP) and video 

conference (VC) are used in the scenario. The holding time of the real-time service is set as 10 min. For each setting, the simulation is 

conducted 100 times and the average is obtained. The proposed model can be used for real-time simulations up to a data rate of 16 kbps. 

It can simulate up to 100 nodes without losing its real-time capabilities. For simplicity, voice and streaming data traffic are simulated, all 

bandwidth is assumed to be completely shared by all traffic flows, and real-time traffic has priority over the data. Simulations show that 

voice and streaming traffic have similar performance results. Since the voice traffic requires low bandwidths, it has higher trunking 

efficiencies and speed degradation abilities compared to the audio/video streaming traffic at the same traffic load. The results indicate 

that speed increases the delay as QoS of the real-time traffic. Speed degradations are effective in increasing real-time traffic delays, and 

high speed levels are involved in delayed degradations.  

Fig. 12. and Fig. 13. represent the handover delays for audio and video services respectively. From the simulation results, it is not 

surprising that the handover delay increases in the MDP-BBO, SEFISA, TOPSIS, GRA and FMADM as the moving speed of the MN 

increases. The original MIH scheme is coupled with an MDP-BBO mechanism that updates the audio/video encoding parameters in real-

time, allowing audio/video QoS adaptation. The simulation results indicate that the proposed enhanced MIH framework achieves a lower 

delay for audio and video applications of 30% and 47%, respectively, compared to other scenarios. In this experiment, simulation results 

show that this research can improve the QoS of real-time applications by integrating the MDP-BBO algorithm with the MIH to make 

accurate decisions. 

Fig. 12. Handover delays for audio versus moving speed of MNs 
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Fig. 13. Handover delays for video versus moving speed of MNs 

7. Conclusion 

Wireless communication systems in the future will encompass different forms of networks with wireless access. 

Accordingly, seamless vertical handoffs from various networks are a challenging issue for IIOT. Although several 

algorithms for vertical handoff decisions based on machine learning are being suggested, many of these do not take into 

account the effect of call drops that occur while the vertical handoff decision is taking place. Furthermore, many of the 

present multi-attributed vertical handoff algorithms are not able to dynamically project the circumstances of the MTs. To 

ensure the QoS of various MTs, this study has proposed a MDP-based algorithm for vertical handoff decisions in single and 

multi-attributed conditions, in order to maximize the anticipated total rewards and reduce the average amount of handoffs. 

Our work took into consideration the velocity of the MT, the cost of the network access, the cost of switching in the vertical 

handoff decision and developed a reward function that modeled the properties of the QoS. We applied the MDP to measure 

the weight of every QoS determinant in the reward function, and an iterative algorithm was adopted using the Markov 

decision procedure to gain the maximum value for total reward and the related optimal policy. Moreover, by considering 

the velocity of the MT, unnecessary handoffs were prevented. We also compared our algorithm with other recent related 

algorithms to evaluate the performance of the network. The findings revealed that the MDP-BBO algorithm is able to 

outperform other algorithms in terms of number of handoffs, bandwidth availability, and decision delays. The proposed 

algorithm displayed better expected total rewards as well as a reduced average account of handoffs compared to current 

approaches. 

With regards to future work, we are planning to conduct studies about the usability of the proposed work for vehicular 

ad hoc networks (VANET). First, we plan to improve the MDP-BBO optimized code for infrastructure-based VNs rather 

than VANET-based solutions. Then, we want to use car-to-car communications protocols such as DSRC and IEEE 

802.11pto deliver information to the MIIS databases. Furthermore, different types of available wireless access networks 

with their corresponding QoS values for mobile terminals will be identified and MDP-BBO will be used to evaluate 

performance, behaviors and other possibilities. As part of future work, we will further explore sophisticated methods of 

network selection based on fog computing. We will extend our mobility management framework to support more 

complicated use cases along with diverse devices in order to measure the effectiveness of our approach with more realistic 

test-beds in fog computing environments. 

As another consideration for the future, we aim to propose a hybrid model for handover management between the 

UAVs. Due to its good maneuverability, low cost and versatile preparation, remote-controlled UAVs have recently 

attracted significant interest in the field of wireless communication. 
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