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Abstract. A Lambert Conformal Conic (LCC) projection with two true-scale parallels of 

latitudes l and u can be recast in a LCC projection with one standard parallel of latitude 

0 and scale k0, having the practical advantage that the same type of definition can be used 

for the two conformal projections universally used: LCC and Transverse Mercator (TM). 

While equations giving 0 and k0 in terms of l and u can be found in the literature, 

inverse relationships are not readily found. They are derived in the present paper. These 

may be necessary in views of the planned future definition of the United States State Plane 

Coordinate System (SPCS) 2022 for the users of particular mapping software requiring to 

specify the two latitude values instead of the central latitude and central scale. While map 

projection parameters are customary selected to minimise ellipsoid-to-grid distortions for a 

region, in some cases it could be more convenient to study and minimise ground-to-grid 

distortions. Also bearing in mind the design of SPCS 2022, we discuss the advantages and 

disadvantages of working with each type of distortion definition.  

Keywords: Map projections; distortion; Lambert Conformal Conic (LCC); State Plane 

Coordinate System (SPCS). 

Introduction 

A Lambert Conformal Conic (LCC) projection is usually defined to preserve scale in two 

parallels usually referred to as the lower true-scale parallel l and the upper true-scale parallel u. 
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A LCC projection defined by its pair of true-scale parallels l and u can be alternatively defined 

by the latitude of its central parallel 0 and its corresponding scale factor k0 (Fig. 1). 

Figure 1 here 

This fact is true for the LCC projection due to its conformal character but not for other widely 

used projections such as Albers Conic Projection (which is equal-area but not conformal), and it 

is acknowledged in the literature (e.g. Snyder 1987, p. 105) although many surveyors and 

cartographers may be unaware of it, as exemplified in the illuminating webinar by Dennis 

(2018a). By contrast a TM can be defined by means of 0 and k0 but cannot be alternatively 

defined by two true-scale meridians (of longitudes 1 and 2) since the true-scale lines do not 

exactly follow any meridian. 

As Snyder (1987) mentions, the choice of standard parallels l and u in a LCC projection has 

the effect of reducing the scale k0 of the central parallel 0 by an amount which cannot be 

expressed simply in exact form. The formulas to obtain both the latitude of the central parallel 

and its scale from the true-scale parallel latitudes, i.e. 0 and k0 from l and u can be found in 

the literature (e.g. Dennis 2019, p. 31), but this is not the case of the reverse formulas, i.e. l and 

u from 0 and k0, which some surveyors and cartographers may need for their mapping software 

once the SPCS 2022 is defined by means of 0 and k0 both for TM and LCC projections (Dennis 

2018b). In the following section both types of formulas are given for the sake of completion. 

 

2LCC to 1LCC plus scale 

Direct formulation 
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The expressions to obtain o and ko in terms of l and u can be derived using some 

formulas in Snyder (1987). Given a latitude  on an ellipsoid whose first eccentricity is e, the 

corresponding quantities m and t can be obtained as 

𝑚 =
cos𝜑

√1 − 𝑒2sin
2𝜑

 

(1) 

𝑡 =
tan (

𝜋
4 −

𝜑
2)

𝑞
 

(2) 

being 

𝑞 = (
1 − 𝑒sin𝜑

1 + 𝑒sin𝜑
)
𝑒/2

 

(3) 

We will use subscripts 0, l and u to denote the corresponding values for these equations for o 

(still unknown), l and u latitudes, that is: m0, t0 and q0, ml, tl and ql, and mu, tu and qu, 

respectively. 

Now we give an easy demonstration to quickly find simple expressions for o and ko in terms of 

l and u.  

The scale factor for a parallel of latitude  can be given (Snyder 1987, p. 108) as  
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𝑘 =
𝑚𝑙𝑡

𝑛

𝑚𝑡𝑙
𝑛 

(4) 

with  

𝑛 =
ln𝑚𝑙 − ln𝑚𝑢
ln 𝑡𝑙 − ln 𝑡𝑢

 

(5) 

This is true, in particular, for the parallel of latitude o (still unknown) 

𝑘0 =
𝑚𝑙𝑡0

𝑛

𝑚0𝑡𝑙
𝑛 

(6) 

Now, an LCC projection with two standard parallels l and u is exactly the same as an LCC 

projection with one standard parallel o plus a scale factor k0. As Snyder (1987, p.108) mentions, 

in the case of only one standard parallel (of latitude o) Eq. (5) becomes indeterminate and it has 

to be replaced by 

𝑛 = sin𝜑0 

(7) 

As said, both LCC projections, one defined by two standard parallels and the other with one 

standard parallel plus a scale factor, give the same results exactly. This is true not only for the 
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final coordinates but also for the intermediate n value having a direct influence on both x and y 

coordinates (we refer the reader again to Snyder 1987, p.107-108, for inspection of the entire 

formulation). Therefore, we can obtain the central latitude as 

𝜑0 = asin⁡(𝑛) 

(8) 

using the n obtained in Eq. (5). 

Eq. (8), first, and then Eq. (6) solve the desired problem of obtaining o and ko in terms of l and 

u. These equations use the intermediate variable definitions given in Eqs. (1), (2), (3) and (5). 

 

Some users may prefer, however, compact expressions that do not require the computation of 

intermediate variables. Such explicit expressions in terms of only l, u and the ellipsoid's 

eccentricity e can be obtained for o and ko by introducing the definitions of all intermediate 

variables in Eqs. (8) and (6), resulting in 

𝜑0 = 𝑎𝑠𝑖𝑛

(

 
 
 
 
 ln

𝑐𝑜𝑠𝜑𝑙
√1 − 𝑒2𝑠𝑖𝑛2𝜑𝑙

− ln
𝑐𝑜𝑠𝜑𝑢

√1 − 𝑒2𝑠𝑖𝑛2𝜑𝑢

ln
tan (

𝜋
4 −

𝜑𝑙
2 )

(
1 − 𝑒sin𝜑𝑙
1 + 𝑒sin𝜑𝑙

)
𝑒/2 − ln

tan (
𝜋
4 −

𝜑𝑢
2 )

(
1 − 𝑒sin𝜑𝑢
1 + 𝑒sin𝜑𝑢

)
𝑒/2

)

 
 
 
 
 

 

(9) 
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𝑘0 =

𝑐𝑜𝑠𝜑𝑙
√1 − 𝑒2𝑠𝑖𝑛2𝜑𝑙

𝑐𝑜𝑠𝜑0
√1 − 𝑒2𝑠𝑖𝑛2𝜑0 (

 
tan (

𝜋
4 −

𝜑0
2 )

tan (
𝜋
4 −

𝜑𝑙
2 )

(
1 − 𝑒sin𝜑𝑙
1 + 𝑒sin𝜑𝑙

)
𝑒/2

(
1 − 𝑒sin𝜑0
1 + 𝑒sin𝜑0

)
𝑒/2

)

 

sin𝜑0

 

(10) 

These are equivalent and similar in complexity to the ones given in Dennis (2019, p.31). 

 

Inverse formulation 

The problem now is to obtain l and u in terms of 0 and k0. 

From Eq. (6) we obtain 

𝑡𝑙 = (
𝑚𝑙
𝑚0𝑘0

)
1/𝑛

𝑡0 

(11) 

Equating the right-hand side of this equation with the right-hand side of Eq. (2), now to be used 

with latitude l, and operating to extract l from the numerator of the latter we can obtain 

𝜑𝑙 =
𝜋

2
− 2 atan [(

𝑚𝑙
𝑚0𝑘0

)
1/𝑛

𝑡0𝑞𝑙] 

(12) 

An iterative calculation can now be proposed. Before, we want to give two critical suggestions, 

however:  



7 

 

• The starting value l to be used for the computation of ml and ql on the right-hand side of 

Eq. (12) has to be sufficiently close to the final solution. Since for the General Conic 

projection with spherical earth of radius of curvature R (Fig. 2) we have 

 

Figure 2 here 

 

cos 𝛼 =
𝑑

𝑅
= 𝑘0 

(13) 

that is 𝛼 = acos 𝑘0, and 𝜑𝑙 = 𝜑0 − 𝛼, 𝜑𝑢 = 𝜑0 + 𝛼, one can use as an initial suitable 

value 𝜑𝑙 = 𝜑0 − acos 𝑘0 

• Being the convergence of the process relatively slow, one may want to improve it with 

the help of Aitken's method (e.g. Burden and Faires 2011). 

The algorithm can be summarized in: 

Step 1. Obtain an initial value 𝜑𝑙1⁡by means of 𝜑𝑙1 = 𝜑0 − acos 𝑘0. In this iteration we define 

𝜑𝑙1
′ = 𝜑𝑙1⁡ 

Step 2. Use this approximate value to compute ml1 and ql1 and introduce them in the right-hand 

side of Eq. (12) to obtain an improved value 𝜑𝑙2. In this iteration we define 𝜑𝑙2
′ = 𝜑𝑙2⁡ 

Step 3a. Use this value to compute ml2 and ql2 and introduce them in the right-hand side of Eq. 

(12) to obtain 𝜑𝑙3  
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Step 3b. Use values 𝜑𝑙1
′ , 𝜑𝑙2

′  and 𝜑𝑙3 to obtain an improved value 𝜑𝑙3
′  by means of 

𝜑𝑙3
′ = 𝜑𝑙3 −

(𝜑𝑙3 − 𝜑𝑙2
′ )2

𝜑𝑙3 − 2𝜑𝑙2
′ +𝜑𝑙1

′  

(14) 

Return to Step 3a and iterate. That is, use this value to compute ml3 and ql3 and introduce them in 

the right-hand side of Eq. (12) to obtain 𝜑𝑙4 and then by Eq. (14) with 𝜑𝑙2
′ , 𝜑𝑙3

′  and 𝜑𝑙4 (instead 

of 𝜑𝑙1
′ , 𝜑𝑙2

′  and 𝜑𝑙3, respectively) obtain 𝜑𝑙4
′ , and so on. The iterations may be stopped when the 

differences between successive latitudes are negligible. 

In the following table an example of application is given. 

Table 1 here 

Similarly, the upper true-scale parallel latitude u can be obtained by using the initial 

approximation 𝜑𝑢1 = 𝜑0 + acos 𝑘0 in Step 1 and introducing upper latitudes instead of lower 

latitudes in Eqs. (12) and (14). 

Using these formulas, the defining parameters for the LCC projections for the different zones of 

the SPCS 83 have been computed and are given in the Appendix; not only the lower and upper 

standard parallel latitudes l and u, as usual, but also the latitude and scale of the central 

parallel, 0 and k0. 

 

Ellipsoid-to-grid and ground-to-grid distortions 
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Given a point and an infinitesimally small surrounding region on the ellipsoid surface 

there can be defined a scale distortion factor k which brings the original distance ds on the 

ellipsoid to the resulting distance ds' on the grid 

𝑘 =
𝑑𝑠′

𝑑𝑠
 

(15) 

Prior to the projection onto the grid, the surveyor has to reduce every measured distance from the 

ground (dg) to the ellipsoid surface (de). This can be done by means of the computation for every 

particular distance of the correction to the chord, followed by the chord-to-normal-section 

correction (Meyer 2010, p.123) which can be assumed coincident in length with the geodesic 

line, or, alternatively, with an "approximate method [that] serves most surveyors and engineers 

well" (Stem 1990, p. 49) which uses an elevation factor – encapsulating these corrections for a 

mean elevation and mean geoid height – to reduce from ground to ellipsoid (Dennis 2019, Meyer 

2010, Stem 1990): 

𝑑𝑒 = (
𝑅

𝑅 + 𝐻 + 𝑁
)𝑑𝑔 = 𝑘𝑒𝑑𝑔 

(16) 

where 

𝑘𝑒 =
𝑅

𝑅 + 𝐻 + 𝑁
 

(17) 
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is the elevation factor in terms of mean elevation H (orthometric height), mean geoid height N 

and a mean radius of curvature R (say the geometric mean of the principal radii of curvature). 

This correction of distances from the ground to the ellipsoid, be it rigorous or approximate as in 

Eq. (16), has often been left out of the process of customization of a map projection except for 

the definition of low distortion projections and special cases in the history of usage of the SPCS, 

e.g. the Montana Department of Transportation use SPCS scaled to ground to minimize linear 

distortions in projects with tight tolerances (Dennis 2018c).  

For these latter cases a combined scale and elevation factor k' can be used 

𝑘′ = 𝑘 × 𝑘𝑒 

(18) 

The next section analyzes the advantages and disadvantages of designing a map projection for 

minimizing the scale factor distortion Eq. (15), i.e. the ellipsoid-to-grid distortion, versus the 

design minimizing the combined factor Eq. (18), i.e. the ground-to-grid distortion. Then a tool is 

presented and made available to the reader for evaluating and optimizing map projections for 

user-defined areas of interest in terms of both types of distortion, and some examples are 

commented on. 

 

Pros and cons 

First of all, one must acknowledge that the ground-to-grid distortion factor, Eq. (18), is 

approximate due to the fact of the elevation factor being an approximate correction itself. This is 

so because of the approximation in reducing to the ellipsoid by means of a mean elevation and a 
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mean geoid height, first, and, second, because of the use of a mean radius of curvature, when this 

radius changes not only with location but also with the bearing of the line. 

It is clear that the smaller the area of use and the smoother the relief the better the results 

obtained by the ground-to-grid factor. But how small and how smooth? How can the degree of 

approximation be known for a particular case? As Dracup (1974) already pointed out, "The 

simplest approach is to examine the scale factors at the extremities and the range of elevations 

and compare these values with those computed for the center of the system and at the mean 

elevation of the project". 

As clear advantages in favor of the ground-to-grid distortion factor, we must first mention its 

ease of use. It also avoids a quite common oversight: users may (more than often!) forget the fact 

that field measurements have to be conveniently reduced to the ellipsoid before using the 

projection scale factor. Finally, the reader should never forget that no ground-to-grid 

transformation can be made conformal, that is, no ground-to-grid transformation exists for which 

linear distortion is the same in every direction from a point. Among other things this means that 

a rigorous ground-to-grid "factor", not the one in Eq. (18) which is only an approximation, would 

not be a single value for a point on the earth's surface but rather a varying quantity depending on 

the orientation of the line of interest. Even worse, we could not always expect smooth variations 

along a point's neighborhood (or in other words, expect the rigorous ground-to-grid distortion to 

be represented by an analytic function) inasmuch as the earth relief is not smooth nor possible to 

be represented by an analytic function (just think of the earth's relief and the occasional 

discontinuities in some of its slopes). 

 

Practical computation of ground-to-grid distortions 
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For the general evaluation of ground-to-grid distortions in the present paper, we propose 

to use the ETOPO1 1-arc-minute global relief model (Amante and Eakins 2009) to obtain 

elevations along with the EGM2008 earth gravitational model (Pavlis et al. 2012) to obtain geoid 

heights so that the ellipsoid height of every point given by its latitude and longitude coordinates 

can be computed. 

We will use a new release of the TestGrids software for Evaluating and Optimizing Map 

Projections which was presented in Baselga (2019) and makes use of Fibonacci lattices for 

efficiently sampling distortion functions over the geographic domain of interest. The latest 

release of this tool, Fig. 3, permits to choose between evaluation and optimization of distortions 

from ellipsoid-to-grid or distortions from ground-to-grid. The application also computes 

automatically both types of possible defining parameters for LCC projections (standard parallels 

l and u, as well as the equivalent central parallel and scale, 0 and k0). The application can be 

downloaded from the author’s personal web page at 

http://personales.upv.es/serbamo/TestGrids_r2/index.htm. 

Figure 3 here 

 

Example of application 

We analyze here the SPCS 83 Colorado Central, which uses a LCC projection with lower 

standard parallel l = 38º27' = 38.45º and upper standard parallel u = 39º45' = 39.75º (Dennis 

2018c). It is also known as projection EPSG:3501 in the International Association of Oil & Gas 

Producers (OGP) database (EPSG 2019), which has become a standard for the definition of 

coordinate reference systems. The corresponding geographic area, denoted as EPSG:2183, is 

limited by parallels 38.14ºN and 40.09ºN and meridians 109.06ºW and 102.04ºW. 
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Using these defining values we compute by using TestGrids the distortion statistics for the 

ellipsoid-to-grid and the ground-to-grid transformations, using 10 million points for the sampling 

Fibonacci lattice. The results are shown in the first columns of Table 2 (for ellipsoid-to-grid) and 

Table 3 (for ground-to-grid). In each case we have also optimized the latitudes of the standard 

parallels to minimize the resulting typical distortion (see second columns of Tables 2 and 3) or 

the extreme distortion (third columns of Tables 2 and 3). 

Table 2 here 

Table 3 here 

In Table 2, ellipsoid-to-grid transformation, we can see that the defining latitudes for the 

standard parallels are already quite well optimized both in the sense of minimum typical 

distortion as well as minimum extreme distortions. In fact, these latitudes u = 39.75º and l = 

38.45º represent a compromise between those yielding the minimum average distortion u = 

39.6776º and l = 38.5523º and the ones resulting in the minimum extreme distortions u = 

39.8054º and l = 38.4280º also in terms of the respective statistics for typical, average, 

maximum and minimum distortions. 

The ground-to-grid transformation is analyzed in Table 3. We can see that the typical distortion 

amounts to 366 ppm, that is, more than 3 cm for a distance of 100 m, which recalls that the 

surveyor should normally not forget the reductions from field distance measurements to grid 

values. As a result of the significant differences in relief for the area of use of the projection, the 

modification of the defining values of the standard parallels do not improve much the situation: 

the typical distortion for the entire area cannot be decreased below 306 ppm, and the minimum 

existing distortion cannot be better than -611 ppm. The values of the standard parallels, or 
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equivalently for the central parallel and its scale, optimizing typical and extreme distortions are 

relatively similar and considerably far from the current defining values. 

 

Conclusions 

Apart from simple relationships for obtaining the defining parameters 0 and k0 that 

permit to recast a 2 standard parallel LCC projection in a one standard parallel LCC plus scale 

projection, a handy formulation for solving the inverse problem (l and u in terms of 0 and k0) 

has being obtained. 

The differences in performance evaluation and optimization of projections in terms of ground-to-

grid and ellipsoid-to-grid distortions were also discussed. A tool for general use in a user-defined 

arbitrary region was prepared for evaluation and optimization in terms of both types of scale 

distortion. It is available for the readers. Examples of application were finally provided. 

All these ideas and methods may play an important role in the forthcoming definition of the new 

SPCS2022. 

 

Appendix. LCC projection defining parameters for SPCS 83 

Table A1 here 
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Tables 

Table 1. Latitudes of the lower true-scale parallel 'l in successive iterations for 0 = 42º and k0 

= 0.99995 (GRS80 ellipsoid). 

Iteration 

No. 
l 'l 

1 41.427039817518° 41.427039817518° 

2 41.427018236228° 41.427018236228° 

3 41.426996894787° 41.425097964315° 

4 41.425098000955° 41.425098000955° 

5 41.425098037186° 41.425101255574° 

6 41.425101255511° 41.425101255511° 

7 41.425101255448° 41.425101249927° 

8 41.425101249927° 41.425101249927° 
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Table 2. Statistics for ellipsoid-to-grid distortions in Colorado Central SPCS 83 (EPSG:3501). 

 

Current definition Optimized for min. 
typical distortion 

Optimized for min. 
extreme distortion 

u 39.75° 39.6776° 39.8054° 

l 38.45° 38.5523° 38.4280° 

0 39.1010° 39.1158° 39.1178° 

k0 0.999936 0.999952 0.999928 

Typical distortion (ppm) 46 43 49 

Average distortion (ppm) -16 0 -24 

Maximum distortion (ppm) 85 96 72 

Minimum distortion (ppm) -64 -48 -72 
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Table 3. Statistics for ground-to-grid distortions in Colorado Central SPCS 83 (EPSG:3501). 

 

Current definition Optimized for min. 
typical distortion 

Optimized for min. 
extreme distortion 

u 39.75° 39.1150° 39.1150° 

l 38.45° 39.1148° 38.9411° 

0 39.1010° 39.1149° 39.0280° 

k0 0.999936 1.000000 0.999999 

Typical distortion (ppm) 366 306 307 

Average distortion (ppm) -345 -281 -281 

Maximum distortion (ppm) 0 0 7 

Minimum distortion (ppm) -678 -615 -611 
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Table A1. Defining parameters for LCC projection for the different zones of the SPCS 83: (l, 

u) are the lower and upper standard parallel latitudes, respectively, (k0, 0) are the scale and 

latitude of the central parallel, respectively. 

Zone 

abbrev 

Zone 

code 
l u  k0 0 

Alaska (AK): SPCS 83  

AK10 5010 51°50'N 53°50'N 0.999848060 52°50'13.95273"N 

Arkansas (AR): SPCS 83   

AR  N 301 34°56'N 36°14'N 0.999935935 35°35'03.22204"N 

AR  S 302 33°18'N 34°46'N 0.999918470 34°02'03.873752"N 

California (CA): SPCS 83 

CA  1 401 40°00'N 41°40'N 0.999894637 40°50'6.38205"N 

CA  2 402 38°20'N 39°50'N 0.999914673 39°05'04.862119"N 

CA  3 403 37°04'N 38°26'N 0.999929179 37°45'03.849971"N 

CA  4 404 36°00'N 37°15'N 0.999940762 36°37'33.09351"N 

CA  5 405 34°02'N 35°28'N 0.999922127 34°45'03.799131"N 

CA  6 406 32°47'N 33°53'N 0.999954142 33°20'02.122601"N 

Colorado (CO): SPCS 83 

CO  N 501 39°43'N 40°47'N 0.999956846 40°15'02.561233"N 

CO  C 502 38°27'N 39°45'N 0.999935910 39°06'03.654042"N 

CO  S 503 37°14'N 38°26'N 0.999945398 37°50'02.976973"N 

Connecticut (CT): SPCS 83  

CT 600 41°12'N 41°52'N 0.999983140 41°32'01.046165"N 

Florida (FL): SPCS 83  

FL  N 903 29°35'N 30°45'N 0.999948433 30°10'02.112795"N 

Iowa (IA): SPCS 83  

IA  N 1401 42°04'N 43°16'N 0.999945368 42°40'03.525435"N 

IA  S 1402 40°37'N 41°47'N 0.999948370 41°12'03.167141"N 

Kansas (KS): SPCS 83  

KS  N 1501 38°43'N 39°47'N 0.999956851 39°15'02.47301"N 

KS  S 1502 37°16'N 38°34'N 0.999935918 37°55'03.504219"N 

Kentucky (KY): SPCS 83 

KY1Z 1600 37°05'N 38°40'N 0.999904942 37°52'35.19065"N 

KY  N 1601 37°58'N 38°58'N 0.999962080 38°28'02.114288"N 

KY  S 1602 36°44'N 37°56'N 0.999945402 37°20'02.924351"N 

Louisiana (LA): SPCS 83 

LA  N 1701 31°10'N 32°40'N 0.999914741 31°55'03.740121"N 

LA  S 1702 29°18'N 30°42'N 0.999925745 30°00'03.022354"N 

LASH 1703 26°10'N 27°50'N 0.999894794 27°00'03.784619"N 

Maryland (MD): SPCS 83  

MD 1900 38°18'N 39°27'N 0.999949848 38°52'32.83682"N 

Massachusetts (MA): SPCS 83  
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Zone 

abbrev 

Zone 

code 
l u  k0 0 

MA  M 2001 41°43'N 42°41'N 0.999964550 42°12'02.251034"N 

MA  I 2002 41°17'N 41°29'N 0.999998483 41°23'00.09366394"N 

Michigan (MI): SPCS 83 

MI  N 2111 45°29'N 47°05'N 0.999902834 46°17'07.100223"N 

MI  C 2112 44°11'N 45°42'N 0.999912706 44°56'36.09153"N 

MI  S 2113 42°06'N 43°40'N 0.999906878 42°53'06.054488"N 

Minnesota (MN): SPCS 83 

MN  N 2201 47°02'N 48°38'N 0.999902817 47°50'07.490779"N 

MN  C 2202 45°37'N 47°03'N 0.999922023 46°20'05.707721"N 

MN  S 2203 43°47'N 45°13'N 0.999922040 44°30'05.35829"N 

Montana (MT): SPCS 83 

MT 2500 45°00'N 49°00'N 0.999392636 47°00'45.52353"N 

Nebraska (NE): SPCS 83 

NE 2600 40°00'N 43°00'N 0.999658595 41°30'21.1692"N 

New York (NY): SPCS 83 

NY  L 3104 40°40'N 41°02'N 0.999994900 40°51'00.3090314"N 

North Carolina (NC): SPCS 83 

NC 3200 34°20'N 36°10'N 0.999872592 35°15'06.330961"N 

North Dakota (ND): SPCS 83 

ND  N 3301 47°26'N 48°44'N 0.999935842 48°05'04.98783"N 

ND  S 3302 46°11'N 47°29'N 0.999935852 46°50'04.776813"N 

Ohio (OH): SPCS 83 

OH  N 3401 40°26'N 41°42'N 0.999939140 41°04'03.716122"N 

OH  S 3402 38°44'N 40°02'N 0.999935908 39°23'03.690642"N 

Oklahoma (OK): SPCS 83 

OK  N 3501 35°34'N 36°46'N 0.999945409 36°10'02.804168"N 

OK  S 3502 33°56'N 35°14'N 0.999935942 34°35'03.105994"N 

Oregon (OR): SPCS 83 

OR  N 3601 44°20'N 46°00'N 0.999894583 45°10'07.413463"N 

OR  S 3602 42°20'N 44°00'N 0.999894608 43°10'06.919559"N 

Pennsylvania (PA): SPCS 83 

PA  N 3701 40°53'N 41°57'N 0.999956840 41°25'02.667447"N 

PA  S 3702 39°56'N 40°58'N 0.999959500 40°27'02.420495"N 

South Carolina (SC): SPCS 83 

SC 3900 32°30'N 34°50'N 0.999793657 33°40'09.672498"N 

South Dakota (SD): SPCS 83 

SD  N 4001 44°25'N 45°41'N 0.999939112 45°03'04.264566"N 

SD  S 4002 42°50'N 44°24'N 0.999906870 43°37'06.209699"N 

Tennessee (TN): SPCS 83 

TN 4100 35°15'N 36°25'N 0.999948401 35°50'02.618685"N 

Texas (TX): SPCS 83 
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abbrev 

Zone 

code 
l u  k0 0 

TX  N 4201 34°39'N 36°11'N 0.999910876 35°25'04.455416"N 

TXNC 4202 32°08'N 33°58'N 0.999872623 33°03'05.833995"N 

TX  C 4203 30°07'N 31°53'N 0.999881744 31°00'05.007016"N 

TXSC 4204 28°23'N 30°17'N 0.999863244 29°20'05.41983"N 

TX  S 4205 26°10'N 27°50'N 0.999894794 27°00'03.784619"N 

Utah (UT): SPCS 83  

UT  N 4301 40°43'N 41°47'N 0.999956841 41°15'02.652047"N 

UT  C 4302 39°01'N 40°39'N 0.999898821 39°50'05.918907"N 

UT  S 4303 37°13'N 38°21'N 0.999951297 37°47'02.650647"N 

Virginia (VA): SPCS 83 

VA  N 4501 38°02'N 39°12'N 0.999948385 38°37'02.893135"N 

VA  S 4502 36°46'N 37°58'N 0.999945401 37°22'02.927838"N 

Washington (WA): SPCS 83 

WA  N 4601 47°30'N 48°44'N 0.999942253 48°7'04.494517"N 

WA  S 4602 45°50'N 47°20'N 0.999914598 46°35'06.305232"N 

West Virginia (WV): SPCS 83 

WV  N 4701 39°00'N 40°15'N 0.999940741 39°37'33.44126"N 

WV  S 4702 37°29'N 38°53'N 0.999925678 38°11'04.102788"N 

Wisconsin (WI): SPCS 83 

WI  N 4801 45°34'N 46°46'N 0.999945345 46°10'03.977587"N 

WI  C 4802 44°15'N 45°30'N 0.999940705 44°52'34.12811"N 

WI  S 4803 42°44'N 44°04'N 0.999932547 43°24'04.464095"N 

Puerto Rico and U.S. Virgin Islands (PR and VI): SPCS 83 

PRVI 5200 18°02'N 18°26'N 0.999993944 18°14'00.1413267"N 
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Figure captions 

Fig. 1. True-scale parallels l and u, central parallel 0 and corresponding scale factor k0 in an 

LCC projection. 

Fig. 2. General Conic projection with spherical earth. 

Fig. 3. TestGrids release 2.0 layout. 

 


