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From traffic data to GHG emissions: a novel bottom-up
methodology and its application to Valencia city

Abstract

Sustainable cities will only be possible with effective local measures tackling

Greenhouse Gas (GHG) emissions. Transport and mobility represent the main

sources of these emissions, particularly in urban settings. National and lo-

cal public administrations need accurate and more responsive tools to quantify

GHG emissions. Digitisation and ICTs are key elements in the development of

such tools, which, additionally, have to be based on robust methodologies vali-

dated by the scientific community. This research presents a bottom-up method-

ology for the quantification of road traffic’s GHG emissions with higher levels

of immediacy and spatial resolution when compared to other already exist-

ing methods. The methodology uses data from the urban traffic control and

monitoring systems as a baseline to calculate emissions. A pilot test has been

conducted in Valencia city (Spain). Its results show a highly detailed picture

of GHG emission in the city with high temporal (hour) and space (street) res-

olutions. The emission patterns reflect the dynamics of the city and its citi-

zenship mobility. Since the tools developed for the pilot test can be adapted to

other cities, public decision-makers could benefit from a precise diagnosis system

based on traffic data to offer and evaluate solutions to reduce road transport

GHG emissions.

Keywords: GHG; Urban Road Transport; Real time emission monitoring;

Climate Change; Decision Making Tool.
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1. Introduction

Climate change is one of the most pressing global challenges the international

community is facing today. This challenge leads decision-makers to adopt ac-

tions and policies to reduce climate change causes and mitigate its effects. In

this context, greenhouse gases (GHG) emissions reduction policies are key in

any long-term plan tackling climate change. For example, the European Union

(EU) has recently set out a clear vision in the European Green Deal on how

to achieve climate neutrality by 2050. The EU aims to increase its reduction

targets of GHG emissions in 2030 by at least 50% (around 55% as compared to

1990 levels) (European Commission, 2020).

In order to meet these EU and national policy framework goals, mitigation

actions must be efficiently converted into the immediate local level (Wilson,

2006). Consequently, more than 300 cities inside and outside of the EU, signed

the Covenant of Mayors for Climate and Energy (European Commission, 2019),

signalling their engagement to reduce GHG emissions by at least 40% by 2030

(European Commission, 2018).

Decision-makers need to ensure that local government plans can be fully un-

derstood, supported and monitored by the general public as well as other ad-

ministrations. However, often, public decision-makers at the local level lack the

necessary tools to support their strategic planning in a quantitative, objective,

and transparent manner. Climate change mitigation measures must be based

on a rigorous, accurate and up-to-date quantification of GHG sources. This is

a basic requirement from the European Commission to support local govern-

ment administrations (European Commission, 2014). Despite this requirement

(Intergovernmental Panel on Climate Change (IPCC), 2006), the current GHG

calculation methods are best-suited to the national than to the local level (Engo,

2019).

Current action plans and measures are based on Base Emissions Inventories

(BEI) and Monitor Emissions Inventories (MEI) (European Commission, 2019)
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most commonly developed with top-down methodologies (Dai et al., 2016).

Whilst top-down inventories are rigorous and complete on a year-average and

country-wide basis, statistically, its extrapolation to a local scale is often not

tenable. Local action also calls for a higher temporal resolution to allow policy

measures to be followed and supported by citizens. Spatially and temporally

disaggregated emission inventories are specially required for reliable and accu-

rate air quality predictions (Leonidas & Zissis, 2019) and GHG monitoring. For

example, the emissions’ air concentration in an urban hotspot2 cannot be cal-

culated using year-long average data, since concentrations depend on both to

the emission rate profile as well as the weather conditions.

Road transport emissions have important impacts on urban air quality and

global warming (Colvile et al., 2001), accounting for about 20% of total fossil

fuel consumption (International Energy Agency, 2014). In the European Union

(EU), road transport contributes one-fifth to total GHG emissions, with pas-

senger cars being the main contributor to CO2 emissions with 75% of the total

(European Commission, 2015; European Environment Agency, 2012, 2015). The

transport and mobility sector is furthermore the only major sector in EU that

continues increasing its GHG emissions (European Commission, 2016b) despite

strong political and social mitigation efforts. This highlights the potential of this

sector to reducing EU’s emissions and deliver to the EU’s commitment under

the Paris Climate Change Agreement (see (European Commission, 2016a)).

To estimate GHG emissions from road transport and mobility, the Intergov-

ernmental Panel on Climate Change (IPCC) puts forward two alternative ap-

proaches based on independent data sets: 1) Fuel sold in the field study area

and 2) Vehicle Kilometres Travelled (VKT) (Intergovernmental Panel on Cli-

mate Change (IPCC), 2006). The first method is a good approach to quantify

emissions at wider regional or national levels, whereas the consumed and sold

fuel in a specific geographical area may be considered to be approximately equal.

2A hotspot is a place characterised by substantially above-average levels of emissions.

3



The second method, VKT, needs more variable and data sets to estimate GHG.

Typical data needed by these method includes the number and characteristics of

vehicles, the kilometres travelled by each vehicle and how those kilometres were

made (velocity, acceleration, etc.). The estimation of GHG can be done both

nationally and locally if sufficiently disaggregated data are available. When

some of the VKT method inputs are obtained from a statistical sample of ob-

servations, the extrapolation of the result to a whole area has been traditionally

regarded as a serious limitation to apply the VKT methodology.

In addition to the above mentioned limitations of the two IPCC approaches, traf-

fic variability represents another challenge when using GHG calculation method-

ologies. Firstly, traffic conditions vary depending on city areas as well as the day

times when emissions are measured. In order to meet existing mobility needs,

spatial and temporal resolutions of road transport emissions are key not only to

assess air pollution (Leonidas & Zissis, 2019) and monitor GHG emissions, but

also to offer evidence to local policy-makers when preparing proposals for GHG

reduction plans or evaluating the already ongoing ones.

IPCC estimations based on the fuel sold in a specific study area lack enough

spatial resolution to be effective in city-level GHG calculation. Furthermore,

IPCC estimations do not differentiate emissions originated between different

type of vehicles. This differentiated information is crucial in regards to urban

sustainability policies. Thus, these important limitations call into question the

usefulness of this type of estimations at the urban level.

This paper proposes a bottom-up methodology to quantify urban traffic emis-

sions with high spatial and temporal resolution. In addition to this, the proposed

methodology addresses the GHG measurement problem at the city level. The

recommended method is based on IPCC VKT datasets and the automated in-

formation gathering from traffic management systems. The methodology has

been applied to Valencia city (Spain) as a proof of concept, which have implied

the developing of new tools to acquire and filter the data and to estimate the

GHG from the resulting information. The results obtained from the pilot imple-
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mentation portrays a detailed picture on the spatial and temporal distribution

of actual emissions in the city.

The paper is structured in six sections. Following the introduction, a selec-

tion of related works are explained and discussed (Section 2). The developed

methodology is described in Section 3, including its implementation in the pilot

city. Section 4 includes some representative results obtained from the analysis

of a four-year dataset (2016-2019) and discusses briefly some of the conclusions

that can be outlined. These elements and their representativity are discussed in

Section 5. Finally, main conclusions and future work are presented in Section 6.

2. Related works

Road traffic emission inventories can follow either “top-down” or “bottom-up”

approaches. These approaches will be used depending on geographical scope,

level of data’s detail as well as its availability (Colvile et al., 2001). On one

hand, top-down approaches are aimed to high geographic level, e.g. nationwide,

using aggregated statistical data. A spatial disaggregation process is necessary

to determine local emissions from original spatial level, usually nationwide. Lo-

cal level data has lower accuracy than nationwide because the approximations

used in the disaggregation process. On the other hand, bottom-up approaches

require large data sets (total kilometres travelled, number of vehicles, vehicle

characterisation, GHG measurements, etc.) and advanced computing processes

that summarise the data sets. When data sets are not accessible, several as-

sumptions to get data approximations need to be undertaken affecting whole

process accuracy.

In regards to the top-down approach, inventories are the commonly used tools

in Europe. These are made mainly using software systems such as various COP-

ERT versions (Computer Program to Calculate Emissions from Road Traffic)

(Leonidas & Zissis, 2019) and MOBILE (Environmental Protection Agency,

2002). COPERT based methodologies have been used to estimate and compare

air pollutant emissions in Spain (Burón et al., 2004; Burón et al., 2005), Sardinia
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(Italy) (Bellasio et al., 2007), Ireland (Ryan et al., 2009) and two different areas

in China (Song & Xie, 2006). MOBILE has been used to assess the vehicular

emissions in Shanghai city (China)(Li et al., 2003).

A hybrid methodology resulting from the two approaches is used in other works

to develop air pollutant emission inventories, namely the travelled vehicle kilo-

metres (VKT) from a bottom-up approach and variables from wide areas (e.g,

population or road lengths) typical from top-down approaches. Examples of

such works are (Ramachandra & Shwetmala, 2009) and (Saija & Romano, 2002).

In any case, results obtained following this methodology show low spatial reso-

lution.

Several studies using tools for urban simulation of traffic behaviour (to calcu-

late road traffic emissions), adopt a bottom-up approach. For example, (Beelen

et al., 2009) obtained a mapping of background air pollution across the EU on

a 1 × 1 km spatial resolution. (Daniel de la Hoz & Shepherd, 2010) carried out

a study on the evolution of CO2 emissions in Madrid (Spain) defining traffic be-

haviour based on data from 1990s to plan different strategies at the local level

to achieve proposed GHG emission reduction targets aiming to predict several

2030 scenarios. In (P. Iodice & Migliaccio, 2010), an emissions inventory of the

main environmental pollutants in Napoli (Italy) using mobile fleet distribution

was obtained using COPERT. Elena and Christidis propose a unified scheme to

assess the GHG emissions impact of road transport infrastructure plans to es-

timate transport demand with associated energy consumption (Elena López &

Christidis, 2010). This scheme aimed to help decision-makers. The authors used

a system based on a Geographical Information System (GIS), origin-destination

matrices, length and journey time, and other variables. In (Perez-Lopez et al.,

2013) the EMEP/EEA Tier 3 methodology is used to determine the evolution

of GHG emissions from the road transport sector. Specifically, the study is per-

formed in Spain for the 2005-2010 period quantifying emission of 12 polluting

gases according to IPCC standards. This quantification is based on measure-

ments of traffic intensity in stretches, vehicle characteristics of the circulating
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fleet, driving modes, and VKT.

However, the previous works discussed show different limitations regardless of

the approach used such as: (a) the use a fuel balance from national extrapola-

tions to calculate the energy consumption of road transport in a city; (b) the

maximum accuracy achieved for observed spatial resolution is square kilome-

tres; (c) emission inventories are made using standardised software for specific

periods, not continuously over time; and (d) use of simulations to estimate

hard-to-measure variables.

To overcome these limitations, an innovative bottom-up methodology has been

developed. The main improvements of the methodology can be summarised as

follows:

a. not based on simulations.

b. mainly based on actual data, minimising the use of disagregation pro-

cesses.

c. quantify emissions by using a novel calculation model.

d. quantify emissions by taking into account the local mobile fleet charac-

teristics.

e. the process has to be done in real time, so the model can act on alarm

situations in sectors or neighbourhoods of the city.

f. the spatial resolution has to reach a level of accuracy at street level,

even distinguishing different sections in the same street.

g. the emissions can be categorised by type of vehicle and type of fuel.

3. Material and methods

This section explains the proposed methodology and the pilot test implemen-

tation process. As in any other bottom-up methodology, the results of our

methodology will be based in fine grain measurements, in our case data from
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the pilot city traffic control system. This raw data will be filtered to increase

its quality and then transformed into equivalent CO2 kilograms. These data

transformations are based on several formulas in which data from other sources

will be needed (like vehicle fleet information).

3.1. Pilot test city

Valencia city has almost 800 000 inhabitants and is the centre of an extensive

metropolitan area with more than one and a half million inhabitants. It is

located on the East coast of Spain. 83% of employees in Valencia work in

service sectors. However, the city has an important industrial base with 14% of

employment.

The pilot city has declared a special interest in the mitigation and adaptation to

Climate Change. On February 10, 2009, the municipality of Valencia joined the

Covenant of Mayors with a commitment to reduce 40% of GHG emissions by

2030 with respect to the GHG emissions in 2007. Within this policy framework,

it must be pointed out that the road transport and mobility sector represents

about 60% of the total BEI quantified GHG emissions. However, BEI quantifi-

cation is based on a top-down approach and aggregated data with low temporal

and spatial resolution. This poses a huge limitation to a swift and efficient

decision–making. Moreover, the monitoring and control of the implemented

measures are highly limited due to the low temporal resolution.

3.2. Methods

The process of transforming the traffic data into GHG emissions depends on

the circulating vehicles and how they convert fuel into emission. On the other

hand, the vehicles circulate on the streets of the city, which will be modelled as

a network. The methodology we followed for the data treatment and network

definition is detailed in the following subsections.

3.2.1. Analysis and categorisation of the vehicle fleet

The requested data for categorising and characterising the units that make up

the vehicle fleet are: number of vehicles with their main distinctive features
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(type of vehicle, engine technology, and fuel category used).

As sources of emissions, only those vehicles that consume one of the various

types of fuel (petrol, diesel) and their liquid or gaseous derivatives (biofuels, gas

and biogas) are considered.

In the IPCC report (Intergovernmental Panel on Climate Change (IPCC), 2006)

the section that covers polluting emissions from transport corresponding to road

traffic of vehicles is coded as ”NFR1.A.3.b.i-iv Road transport”. NFR stands for

”Nomenclature for Reporting”, which refers to the format for reporting national

data in accordance with the Convention on Long-Distance Transboundary Air

Pollution (CLRTAP). In relation with this code there are four different cate-

gories of vehicles (see Table 1).

Table 1: Categorization of vehicle types according to NFR code. Source: EMEP/EEA air

pollutant emission inventory guidebook 2016, updated July 2018.

NFR Category Title

1.A.3.b.i Passenger cars

1.A.3.b.ii Light commercial trucks

1.A.3.b.iii Heavy-duty vehicles including buses

1.A.3.b.iv Mopeds and motorcycles

As stated, according to IPCC guidelines we classify the main features of the

mobile fleet with three variables for each vehicle: the vehicle type, the fuel used

by it and the technological regulations used when manufacturing the vehicle.

The available values of these variables are shown in Table 2.
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Table 2: The three variables defining the mobile fleet and their values

Vehicle type Technological

regulations

Fuel type

Passenger cars

Light commercial

vehicles

Light trucks

Heavy trucks

Buses

Motorcycles

Mopeds

Others

Conventional

ECE-15.14 and previous

EURO 1,2,3,4,5

6-2016, 6-2017 and later

EURO I, II, III, IV, V

VI-2016, VI-2017 and later

Biomethane

Butane

Diesel

Ethanol

LPG, CNG, LNG

Petrol

Others

The database of the Directorate-General for Transport (DGT) statistical por-

tal (Dirección General de Tráfico, 2020) was used to obtain the evolution and

particularities of the available attributes of the mobile fleet and its distribution

in the timeline of the studied years.

Then, to analyse the temporal variability, an analysis of these data was carried

out with monthly granularity and annual aggregations. The available attributes

were filtered to obtain an average value of 626 different vehicle categorisations,

out of an average fleet of approximately 460 000 vehicles.

The age of the different categories was correlated with the technological regu-

lations that correspond to the specific time range. Following this approach, we

managed to reduce the different categorisations to an average value of 136.

Finally, to assign the influence of each vehicle categorisation obtained to the

emissions of the pollutants studied, we calculated the relative weights (RW )

of each one based on their percentage with respect to the total number of ve-

hicles, affected by the average distance travelled by category vehicle on urban
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roads (%UD).

As a result, we were able to set up a database consisting of vehicle types, fuel,

technological regulations, relative weight (RW), and percentage of urban mileage

(%UD) for each of the vehicle categories included in our categorisation. Figure 1

depicts the methodological process followed.

Figure 1: Sequential methodology

3.2.2. Determination of emission factors for pollutants

The Core Inventory of Air Emissions working group (CORINAIR) is considered

as a pioneer initiative in analysing emissions at the European level, which con-

sists of developing emission inventory methods. It began in 1987 with the aim

of developing a system to determine the appropriate factors to measure vehicle

emissions. A computer program, COPERT , was subsequently developed to

assist its implementation (Burón et al., 2004)(Wang et al., 2018).

A common use of the COPERT methodology is to produce emission inventories

generated by road transport based on fuel sales. From a geographical perspec-

tive, this criterion is valid for countries or regions (top-down approach) but not

for urban settings. In urban settings, an energy balance (bottom-up approach) is

more appropriate than a fuel balance to determine the emission factors needed

to calculate the CO2 emissions. These emission factors are derived from dif-
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ferent consumption and efficiency factors as follows from the following generic

expression (Mahesh et al., 2018):

EF =
EC

CV
·RATIO = FC ·RATIO (1)

where the EF is the Emission Factor, EC is the Energy Consumption (MJ/km),

CV is the Caloric Value of fuel (MJ/kgfuel), RATIO is the proportion of con-

taminant in fuel (gCO2
/kgfuel) and FC is the Fuel Consumption (kgfuel/km).

This expression is individualised for each polluting gas corresponding to each

type of vehicle and fuel, e.g. CO2 emission factor of the passenger car EURO 6

using diesel, and then applied to each monitored stretch.

To obtain an aggregate, the emission factors obtained must be multiplied with

their relative weights (RW) against the total number of vehicles, and by the

percentage of urban mileage (%UD) in comparison with the total mileage, of

each vehicle category (defined by type of vehicle, used fuel, and technological

regulations). Furthermore, to obtain the emissions in equivalent CO2 the global

warming potential (GWP) of each pollutant has to be considered: 1 for CO2, 28

for CH4 and 265 for N2O (these values are extracted from Myhre et al. (2014)).

The above described COPERT–based scheme was used only for the estimation

of the emission factors (Figure 2 outlines the flow diagram), but not for the

quantification of GHG emissions. To allow quantifying GHG and pollutant

emissions, we have developed a new aggregation scheme relying on metrics and

data more suited to the urban environment (bottom-up approach) as it will be

described in the next subsection.
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Figure 2: COPERT usage flow chart

The extensive reviews and cross-checks of the transport data along with the re-

liability of the data sources, ensure the high quality of the data set obtained for

the different emission factors. The emission factors are extracted using a model

based on local scope specification, in accordance with the IPCC recommen-

dations for emission inventories (Intergovernmental Panel on Climate Change

(IPCC), 2020).

3.2.3. Network model description

We have defined the concept of road segment as a road stretch with a given

distance between intersections in which the number of input vehicles is equal

to the number of output vehicles. The starting point to develop the network

of road segment is the traffic control system characteristics. In the pilot city,

the traffic control system is made up of 3500 sensors (mainly induction loops)

producing data every 10 minutes (see Figure 3). From the location of those

sensors, a total of 1326 measured road segments distributed have been defined

across the pilot city.
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Figure 3: Location of induction loops of traffic control system

In each monitored road segment s, the ITAs value represents the number of

vehicles that crossed the given segment within a prescribed time window. Each

sensor signals contributes to traffic intensity values (ITA) of one or more moni-

tored road segments. This magnitude is described in the following equation:

ITAs =

ns∑
i=1

Ci,s · PE,i (2)

where each measured road segment is affected by a varying number of sensors

(ns), PE,i is the electric output that characterises the response of the i-th sensor,

and Ci,s is the coefficient that quantifies the effect of the i-th sensor on the road

segment s. Despite the fact that original data have a ten-minute period, we

have increased the period to one hour in order to allow a reasonable balance

between data manageability and time resolution.

If, as in this case, no specific information is available on the actual vehicle dis-

tribution that circulates in a certain road segment s, we can mistakenly assume

that the distribution is statistically homogeneous and represented by the vehicle
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category distributions obtained for the whole city. This underestimation would

be wrong since the amount of a given type of vehicles within the distribution

of categories does not depend on the road segment index s. So, the conversion

between intensity data and CO2 emissions during the prescribed time window

results from expression 3:

E =

(
N∑
s=1

ITAs · ls

)
·

(∑
v

ρv
∑
g

EFv,g · GWPg

)
, (3)

where the three indices are referred to the target road segment s, the vehicle

typology v and the type of greenhouse gas g. N is the total number of monitored

road segments included in the system.

The different elements of the equation are:

• ITAs: Vehicle intensity of the road segment t in the one-hour time interval

(#vehicles/hour).

• ls: Length of the road segment s (km).

• ρv: Number of vehicles with the typology v (#vehicles).

• EFv,g: Emission factor (see Equation 1) of the vehicle typology and fuel

used v for the polluting gas g (gCO2
/km).

• GWPg: Global warming potential of the gas g: 1 for CO2, 28 for CH4 and

265 for N2O (from Myhre et al. (2014)).

3.3. Data description

The Smart City Office of Valencia city has provided its dataset for the current

study. It compiles four years of measurements of traffic intensity across the city,

from January 2016 to December 2019. Originally, the dataset was provided as

independent files (one per year), but currently a server system has been prepared

to allow a real-time transfer of data.

The dataset is composed by ITAs (see Section 3.2.3) from a total of 1326 mon-

itored road segments, 10 of which correspond to bus lane–type road segments,
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115 to bicycle lanes and the rest to the remaining road traffic. The informa-

tion from the bicycle lanes was disregarded for this study. Table 3 shows the

summary statistics for this dataset.

Table 3: Description statistics of the series in datasets. ITA in vehicles per hour (v/h) and

Segments Lengths in meters (m).

Data series Min. Max. Mean Median
Std.

Dev.
Variance

ITA 2016 (v/h) 0 7636 456 233 551 303

ITA 2017 (v/h) 0 47 091 458 231 577 332

ITA 2018 (v/h) 0 5543 449 228 543 294

ITA 2019 (v/h) 0 6153 439 222 531 282

Seg. Lengths (m) 17 1343 216 200 134 18

3.4. Data processing

The retrieved information had a format that made it difficult to locate each

monitored road segment. A first step in the data analysis was to get a precise

location of each sensor, with its corresponding latitude and longitude.

In addition to this, raw signals from induction loops can be affected by different

errors. The errors must be detected and corrected to eliminate abnormal data

with a potentially high impact on the statistical quality of the outcome. The

errors may result from sensor failures of any of the loops that contribute to

a given road segment, but also to different events such as stretch, physical

interventions on the road, closed street, parades, etc. In Figure 4, three typical

examples of raw data with errors are shown.
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Figure 4: Vehicle intensity of several measurement points showing typical anomalies: missing

data (upper and middle graphs) and outliers (in all the graphs).

To discard signals with errors, filtering was performed in those road segments

where a high percentage of data is missing over study length. A threshold has

been established that allowed us to discard those detectors whose corresponding

data set what not complete during the four year survey. Specifically, we used

the 95% percentile criterion and, as a result, 468 detectors were found to be

non-compliant and subsequently discarded.

Finally, an account assignment was made for the outliers (generated from the

average data) and no outliers (obtained for the same stretch at the same month,

weekday and hour). The daily seasonality is also taken into account. So, are

not included in the calculation of this average. This assumption will be justified

in the following section.
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4. Results

In this section, we will present the main results of the application of our method-

ology to the complete four–year (2016 – 2019) dataset of the traffic in the pilot

city. The first step is the application of the COPERT–based methodology to

collect the emission factors. Emissions have been identified as a result of the

filtering procedures described in Section 3.2.2. Our analysis allows deriving a

timeline and a spatially disaggregated view of the emissions in the city. This

view allows drawing an initial preliminary analysis of the observed trends, which

can be extremely useful for future decision-making.

A detailed analysis of the resulting information is beyond the scope of this paper,

which pays more attention to the methodological aspects of the survey.

4.1. Emission factor for pilot city

The value of the average emission factor of the mobile fleet used in this work

is 205.47 g CO2-eq/km. This value has been obtained from the database of the

city’s mobile park in 2017, the latest update of the vehicle fleet published by

DGT (Dirección General de Tráfico, 2020). Unfortunately, there is currently no

accessible information that allows to link a given road segment traffic intensity

with the types of vehicles passing that road segment. Hence we used the average

distribution of vehicle type categories for the whole city.

Regarding the change in the fleet distribution with time, although there is acces-

sible information on an annual basis about registration and removal of vehicles,

it was neither possible to determine the type of these vehicles, nor their emis-

sion technology, nor the fuel used. Thus, this source of information did not

contribute to an improved accuracy of estimations. A basic sensitivity analysis

was carried out to see how the EF would have been affected if all the updates

had been in the highest and lowest emitting vehicle classes. The results showed

no significant differences in average EF value, the one used in the pilot. For this

reason, and given that the 2017 data are the most current, it was decided to use

that year’s fleet composition data for the four years studied (2016 to 2020).
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4.2. CO2 emission results

The model based on the methodology object of this research allows us to obtain

GHG emissions from urban road traffic on the measured sections in the pilot city

of Valencia. We can disaggregate these values by type of vehicle (see Figure 5)

or by fuel used (see Figure 6) for each of the measurement points in the city

(see Figure 3). The figures show how emissions from passenger cars and diesel

fuel stand out over the rest of the types of vehicles and fuels, with percentages

of 62% and 81% respectively.
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Figure 5: GHG emissions by type of vehicle in one measurement location.
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After showing the resolution of the graphical representation of results, this sec-

tion provides an analysis of the CO2 emissions data that comes from the vehicle

detectors available from 2016 to 2019. Bellow, the analysis is organised to ob-

serve the annual data following different criteria.

Firstly, Figure 7 shows how CO2 emissions are influenced by year seasonality. So,

they vary significantly throughout the months of the year (each curve represents

one specific year). To facilitate the comparison, the time series on the horizontal

axis is set from January to December uniformly, while in the vertical axis the

daily average of tons of CO2 equivalent is placed. As can be seen, the monthly

changes in CO2 emissions stay relatively constant throughout the years showing

a common pattern.
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Figure 7: Average daily equivalent CO2 emission per month for years 2016 to 2019

Figure 8 shows a comparison of average daily emissions during a week for each

year. In order to have a better comparison, the time series on the horizontal

axis is set from Monday to Sunday uniformly. In contrast, in the vertical axis,

the average of tons of CO2 equivalent is placed. To compare the difference

between average emission on working days, weekends and holidays is essential

to consider the working days from Monday to Friday; Saturday and Sunday are

deemed weekends, and holidays are days off that fall on weekdays.
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Figure 8: Average daily equivalent CO2 emission according to the weekday for years 2016 to

2019

As a general weekly trend, CO2 emissions show a stable and regular increase

throughout the workdays. The increased mobility towards the weekend houses

may explain this increase in traffic towards Friday. Weekends, predictably, result

in a substantial drop of CO2 emissions, about 16% and 30% compared to the

average of the workdays respectively. Trends and emission values are quite

similar along the years allowing to establish patterns and draw conclusions that

may be valuable for planning purposes.

A similar comparative can be done taking into account the labour characteristic

of days. In Figure 9, the boxes represent the graphical representation of CO2

emissions by different day types: workdays, weekends and holidays. Grey box

plots indicate the range of values according to the percentiles and median for

each type of day being very similar.
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Figure 9: Average daily equivalent CO2 emission comparison among workday, weekends and

holidays

To compare average hourly emission in a day, Figure 10 shows 24 hours of an

average day for each workday and non-workday in the horizontal axis. Each

curve represents a year. The vertical axis presents the average of tons of CO2

equivalent. Visual comparison of both plots in Figure 10 indicates that from

00:00 up to 4:59, CO2 emissions are slighter higher on non-workdays than a

working day, but from that moment the emissions are lower on non-workdays.
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Figure 10: Average hourly equivalent CO2 emission during (a) workdays and (b) non-workdays

(weekends and holidays) for years 2016 to 2019

The previous results show timeline plots in different scales (monthly, weekly

and hourly), but the described methodology also allows associating emission to

more specific locations within the urban settings, i.e. to study emissions from

a spatial perspective.

For a qualitative comparison between the different city areas, we provide a

geographic map (see Figure 11 with the total amount of CO2 emitted in 2016).

In order to prevent all areas being associated with the same number of monitored

road segments, the total CO2 emissions were normalised with the total number

23



of kilometres sensorised within each of the areas Ak, k = 1 . . . 68 in which the

city was divided. This length is given by LAk
=
∑

t;t∈Ak
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Figure 11: Total equivalent CO2 per kilometre sensorised for the different zones of Valencia

in 2016.

4.3. CO2 emissions trend in Valencia

One of the difficulties to characterise the historical trend of CO2 emissions in

the studied period is the need to define stable criteria or references for enabling

an accurate comparison. One possible perspective is shown in Figure 12, where

the Cumulative Distribution Function (CDF) of daily emissions is compared on

a year by year basis. This allows not only seeing quantitative trends in absolute

emissions, but also if the distribution itself is changing. The CDF related to

year 2019 is most of the times at left with respect to the rest being 2016 at the

utmost right. This clearly outlines that 2019 emissions were lower specially in

the range of days in which emissions are statistically higher.
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Figure 12: CDF plot for daily equivalent CO2 emission for years 2016 to 2019.

In order to check the statistical significance of the outlined trends, a p-value

table obtained by means of a Kolgomorov-Smirnov test (Marsaglia et al., 2003)

applied to pairs of year checking for equality and order is shown in Table 4.

The analysis points out that only in the case of pair 2016–2017, none of the

ordering or equality hypotheses can be rejected. In any case, the hypothesis that

emissions show a diminishing trend throughout the years is always associated

with the highest p–value. For the rest of the year pairs, there is a pattern in the

test: the years are not coming for same distribution (reject equal null-hypothesis

with a p-value under 0.05), neither can be the more recent year considered to

have a lower distribution than the less recent (reject less null-hypothesis with a

p-value under 0.05). The conclusion is that there is evidence to suggest, from a

statistic viewpoint, that emissions were at steep decline of 95%, as it has been

previously argued.
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Table 4: Results of Kolgomorov-Smirnov comparison tests for whole year emission

Compared pairs Greather Equal Lower

a vs. b a > b a = b a < b

2016 vs. 2017 0.872 0.497 0.253

2016 vs. 2018 0.976 0.001 0.001

2016 vs. 2019 0.993 3 × 10−13 1 × 10−13

2017 vs. 2018 0.299 0.013 0.006

2017 vs. 2019 0.453 2 × 10−11 1 × 10−11

2018 vs. 2019 1 7 × 10−8 3 × 10−8

This evolution, from a geographical perspective, is shown in Figure 13. The

maps in the figure show the cumulative difference from base year 2016 (Fig-

ure 11 shows base year total emissions). The maps show small variation in most

of the districts, on the scale red zone if it increases and on the blue if it decreases.

0.125 0.100 0.075 0.050 0.025 0.000 0.025 0.050

Ton CO2 per km sensorized

Figure 13: Progression of the total CO2 per kilometre sensorised for the different zones of

Valencia in 2017 (left), 2018 (centre) and 2019 (right), in comparison with the emissions in

2016.

5. Discussion

The developed methodology allows real–time monitoring of GHG emissions gen-

erated by road traffic in a city with traffic monitoring system, as is the case in the
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pilot city. Therefore, it is possible to carry out continuous air pollution/quality

assessments by city sectors due to the high spatial and temporal resolution of

the developed model.

Focusing on CO2 emissions, we are able to acquire an intensive knowledge on

daily emissions with a high degree of hourly granularity, also with high accuracy

as in our case, comparative studies can be carried out to determine the most

influential factors in the amount of emissions (day of the week, time, etc.) and

if these factors are maintained throughout years.

One of the most significant aspects to analyse is the daily emissions profile for

each month of the year. The developed methodology and the obtained results

shown in Figure 7 demonstrated how these annual profiles are qualitatively

similar throughout the series studied between 2016 and 2019. Every year they

show the same seasonality pattern as it is expected for the real traffic-related

emissions. The most outstanding differences are found in those months in which

a larger number of citizens enjoy their work holidays along with their children

while they are having their school holidays:

• March: the local festivity in the pilot city of Valencia Fallas has a strong

impact on the normal functioning of the city between 1st and 19th, and

this is more intense from 14th to 19th.

• Eastern Holidays (March-April). Specific dates vary depending on each

year’s calendar.

• August: usual summer-holiday-month in the pilot city, which usually lasts

from two to four weeks

• December: days 6th and 8th are national holidays. Christmas holidays, at

schools from the 22nd until the 7th of January, are 24th, 25th and 31th the

most crucial days

Similarly, the developed methodology and the obtained results allow also demon-

strating a clear similarity of the weekly pattern between the different years, with
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a significantly lower emission values on weekends (Figure 8).

By analysing the results, it becomes clear the difference between work and

vacation patterns. This leads us to assume that there might be three categories:

working days, weekends, and holidays. As a first step of a more exhaustive

analysis, a graphic representation of the data has been carried out in Figure 9.

The differences observed between these three types of days are stable throughout

the years and are clearly identifiable in the graphs in Figure 10, where the trends

between working days and non-working days can be demonstrated on a single

scale.

After the descriptive analysis, the interpretation of Figure 10 (a) is in accor-

dance with the school and work activity in the pilot city. The start time of

these activities is between 7:00 a.m. and 9:00 a.m. , a period with increased

emissions. The second peak that appears coincides with the end times of the

working days and with lunchtime between 1:00 p.m. and 3:00 p.m. Finally, a

third less pronounced peak corresponding to the departure from work and/or

extracurricular activities between 6:00 p.m. and 8:00 p.m. is again observed,

followed by a drop with the shops closing and the end of the working activities.

The pattern shown for non-working days in Figure 10 (b) differs significantly

from Figure 10 (a): it is quantitatively smaller and has a less pronounced profile,

showing only two increments and with smoother variations. A delay in the start

of activity in the city as well as the influence of a possible leisure factor in the

late afternoon can be also observed.

The spatial precision of the model allows to assign and represent qualitatively

and quantitatively the emissions of the different areas segmented in the city.

These results are shown in Figure 11 with data from 2016. There is a clear

correlation between the areas that reach higher levels of contamination with

city’s main entry and exit routes.

Based on the year 2016, Figure 12 and Table 4 shows the comparison of CO2

levels with the rest of the years in the time series studied, confirming a steady de-
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cline in emissions starting from 2017 until the last analysed year (2019). Finally,

the results shown in Figure 13 demonstrated the evolution of emissions spatially,

showing the values for the different sectors of the city through the years. Specif-

ically, a clear decrease can be observed in the city centre. One possible cause

may be the actions on urban mobility launched by the local administration, such

as the creation of new sections of bike lanes and the pedestrianisation of some

streets. In the opposite direction, one of the main accesses to the city and the

port activity area have increased their emission levels. It should be taken into

account that all these observations must be viewed in the broader context of

general economic activity indicators that, altogether, will offer a clearer picture

about the influences and causes that are on the basis of the observed trends.

Our results are obtained from a hypothesis based on certain initial assumptions.

Far from the necessary extrapolations carried out in top-down methodologies,

our bottom-up methodology is based on actual traffic measurements within the

pilot city and from a specific mobile fleet. In its present form, the developed

network model uses the same formulation for all the monitored segments which

results in a single average value of the emission factor of 205.47 g CO2-eq./km.

The application of the developed model allows to classifying hours, days and

months based on their emissions’ patterns, showing that the resulting picture

is coherent with the real activity of the pilot city. However, for an absolute

quantification of GHG emissions we assume that our procedure involves some

uncertainty.

This methodology also intends to show polluted areas of the city on a timeline,

showing how pollutant and GHG concentrations vary among neighbourhoods

or districts.

In summary, applying the methodology developed to the data collected by the

traffic management system of the pilot city, we have obtained a series of descrip-

tive methods of analysis of this data, which should support to acquire advanced

knowledge and comprehension what agents/variables (instants of time, places

in the city, employment patterns, meteorology...) are significant in the traffic
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behavior and, therefore, in GHG emissions and other pollutants.

6. Conclusions and Future Work

Tackling climate change is a challenge for society and, therefore, for our cities.

Road transport and mobility is a key element to mitigate climate change because

it is responsible of more than 20% of total greenhouse gases (GHG) emissions

in the EU. This value has been obtained from known and proven measuring

processes based on top-down methodologies. Yet, top-down methodologies are

not appropriate for local policy-makers due to their very low degree of spatial

and temporal resolution.

We have designed, developed and applied a new bottom-up methodology that

uses the data from traffic monitoring systems combined with the Vehicle Kilo-

metres Travelled (VKT) methods recognised by the Intergovernmental Panel on

Climate Change (IPCC), in order to improve the state-of-the art. IPCC VKT

allows getting the factors relating emissions and the specific city mobile fleet.

The developed and tested methodology defines how to combine those factors

with the data from traffic monitoring systems in order to get GHG emission

estimations with high spatial and temporal resolution.

In this research, we have applied the methodology to data from the pilot city.

IPCC VKT data gives an average value of 205.47 g CO2-eq./km for the emission

factor. This value has been applied to the data obtained throughout a period

of four years from the control traffic system of Valencia.

The results obtained can be used in different scenarios. On one hand, as the

spatial distribution of GHG emissions has a good resolution, it allows detect-

ing emission hot-spots in the city or comparing the measures with citizenship

perception for social evaluation. On the other hand, the temporal resolution

allows detecting emission patterns that can be used to develop or modify the

city policies and regulations.

The developed methodology and tools can be used by policy-makers to improve
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planning and monitoring of climate and mobility policies in a quantitative, ob-

jective, and transparent manner. The possibilities of a close-in-time follow up of

the effect of traffic related mitigation measures will in particular enable public

stakeholders to detect the effects of their city policies in a virtually instant way.

Policies enabling a bidirectional feedback between end-users and system man-

agers will be subsequently possible in ways that could not be possible before.

There are still open issues for future research and technological developments.

The first challenges we are currently addressing are how to enable a real–time

connection between our algorithms and traffic control system. Furthermore, the

analysis of data itself is still a pending issue. Third, as discussed in the above

paragraphs, the methodology itself has room for improvement and validation in

cities with lower degree of traffic sensor systems.

With the development and deployment of new technologies in traffic manage-

ment (advanced induction-loop sensors, vehicle recognition cameras, etc.), it

will be possible to track emissions even more accurately, individualising the cat-

egory of vehicles circulating in each segment or even their kinematic parameters

(velocity, acceleration and stops). Together with the large number of detection

loops available, this will allow an accuracy not achieved so far in this type of

studies and also to characterise uncertainties associated with the simplifying hy-

pothesis made in our study about the absolute quantities of GHG gases released

to the atmosphere.

The real time connection to traffic control system will reduce the time need

for evaluating the impact of new regulations, improving the decision making

process. Additionally, anomaly GHG emissions levels could be detected making

easier their diagnosis.

The results obtained in the pilot city seem to show reductions of the GHG

emission year after year from 2016 to 2019, but a deeper analysis of the data

is needed to detect what have been the main drivers of these changes and their

relative significance.
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The application of the developed methodology to other cities and the analysis of

the results would enlarge the base of experience in using our method and pave

the way to a wider application to mitigate Climate Change.

Finally, our research group is integrating all the tools needed for the methodol-

ogy with other tools developed to study the GHG emission at local level (build-

ing efficiency, renewable energy use and production, etc.) This integration will

largely standardise, enable automatism and simplify the process of construct-

ing the emissions inventories at city scale, which is a necessary step forward to

mitigate GHG emissions based on solid and quantifiable policies.
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