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Abstract 8 

In livestock, adverse effects on reproductive performance, health traits and robustness 9 

have been demonstrated in animals selected for high production and efficiency. Using embryo 10 

cryopreservation and rederivation, we compared phenotypic traits between rabbit 11 

populations separated for 18 generations under growth rate selection pressure (R18 vs R36). 12 

To do so, embryos from the ancestral population (R18) and the most recent population (R36) 13 

were vitrified in 2000 and 2015, respectively, and rederived and grown together in a 14 

randomized controlled environment in 2015. To eliminate confounding maternal and embryo 15 

handling effects, traits were measured in the second generation after rederivation (R20 and 16 

R38 generations). Our study suggests that selection for growth rate has no adverse effect on 17 

litter size components. Thus, in the R38 generation we observed a significant increase in 18 

embryo implantation (7.2±0.71 vs 5.1±0.79) and litter size (7.1±0.29 vs 6.5±0.32). Besides, the 19 

foetal sac area at day 12 of gestation (2.44±0.070 vs 2.07±0.071 mm2, for R38 vs R20, 20 

respectively), and foetal placenta area (136.7±6.14 vs 116.0±6.31 mm2, for R38 vs R20, 21 

respectively) and crown-rump length of the foetus (38.0±0.68 vs 35.8±0.68 mm, for R38 vs 22 

R20, respectively) at day 19 of gestation were higher in the R38 generation. Altogether, these 23 

results show that selection for growth rate does not adversely affect components of litter size, 24 
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foetal growth and reproductive performance. However, the extent to which foundation 25 

criteria play a role in the high prenatal and perinatal mortality rate remains unclear in paternal 26 

lines. 27 

Keyword: foetal growth, reproductive performance, paternal line, rederived population, 28 

rabbit. 29 

 30 

1. Introduction 31 

Rabbit lines specialized for growth rate or feed efficiency and litter size are a common 32 

selection objective, as in other animal farms, due to their economic interest (Blasco et al., 33 

2018). Nevertheless, the relationship between growth and maternal traits and their correlated 34 

responses, unclear or not, is always positive. Although maternal effects have long been 35 

acknowledged as potentially important factors in artificial selection, their magnitude of 36 

response remains unclear. In mammals, the role of maternal effects is especially complex due 37 

to the fact that progeny experience two distinct maternal environments (prenatal uterine and 38 

postnatal nursing) influenced by numerous factors, such as the number of foetuses or litter 39 

size, parity, age, breed, heat stress and nutrition (Vuguin, 2007; Wolf et al., 2011). 40 

The success of selection for high prolificacy in polytocous species is related with 41 

negative consequences in survival, foetal growth and birth weight in rabbit (Vicente et al., 42 

1995; Argente et al., 2003 and 2008) and pigs (Damgaard et al., 2003; Foxcroft et al., 2006; 43 

Wolf et al., 2008). Argente et al. (2003) found a reduction in placental and foetal development 44 

in rabbits with each additional implanted embryo at 25 days of gestation. Moreover, higher 45 

intrauterine crowding has been correlated with higher foetal mortality at 18 days of gestation 46 

(Argente et al., 2008). In pigs, it has been shown that selection for increased litter size entails 47 

the possibility of various degrees of intrauterine growth retardation associated with impaired 48 

foetal and placental growth, which can result in lower birth weights (Town et al., 2004). Thus, 49 



  Versión autor 

3 
 

postnatal variation in growth performance variation may be pre-programmed during foetal 50 

development in the uterus. Furthermore, it is likely that these pre-programmed limitations in 51 

growth performance will only finally express themselves in the late grower and not at the early 52 

finisher stage of production (Du et al., 2010).  53 

Some studies suggest that long-term selection for growth rate results in physiological 54 

and reproductive changes (Rauw et al., 1998). For example, mice selected for increased early 55 

body weight gains showed a decreased response to superovulation and oestrous 56 

synchronization, and when they were used as recipients, they produced pups that were 57 

significantly larger with respect to body weight and tail length compared with litters gestated 58 

in females non-selected or selected divergently (Ernst et al., 2000). These authors suggested 59 

that retarded pre-pubescent reproductive development results in reproductive uterine horns 60 

more efficient for sustaining pregnancy, foetal development and growth. Thus, cattle breeds 61 

with postnatal different growth impetus and muscularity show differences in foetal 62 

development, especially in muscle tissue deposition and development (Mao et al., 2008). In 63 

rabbit paternal line, the reproductive performance traits are not a selection factor, as 64 

reproductive traits like parity and litter size had a negligible effect on growth rate (Piles and 65 

Blasco, 2003), but is unclear whether a selection programme for growth rate affects 66 

reproductive traits in rabbits. Low or null correlations between litter size at birth and postnatal 67 

growth rate have been observed in rabbit (García and Baselga, 2002; Mocé and Santacreu, 68 

2010; Drouilhet et al., 2013; Mínguez et al., 2016; Peiró et al., 2019) and an uncertain pattern 69 

was found in pigs (Damgaard et al., 2003 Wolf et al., 2008; Zhang et al., 2016). Meanwhile, a 70 

positive genetic correlation was estimated between postnatal growth rate and ovulation rate 71 

in pig and rabbit (Bidanel et al., 1996; Ruiz-Flores and Johnson, 2001; Drouilhet et al., 2013; 72 

Peiró et al., 2019). In rabbit, reproductive differences have been described between maternal 73 
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and paternal lines. Females from the paternal line showed widespread failures, such as altered 74 

LH and steroidogenic patterns, low response to ovulation frequency and high losses in 75 

implantation during foetal development and birth (Vicente et al.; 2012, Naturil-Alfonso et al., 76 

2015 and 2016). Paternal line males did not present normal sexual behaviour, observing low 77 

libido, lower sperm production (Pascual et al., 2004; Rosell and De La Fuente, 2009) and 78 

changes in seminal and sperm proteome (Lavara et al., 2011; Casares-Crespo et al.; 2018, 79 

Juárez et al., 2020).  80 

The aim of this study was to evaluate whether the selection programme for daily gain 81 

in fattening period has changed foetal growth and prenatal survival, using two rederived 82 

populations separated for 18 generations. To this end, embryos from the population R18 and 83 

the most recent population (R36) were vitrified, rederived and grown together in a 84 

randomized controlled environment. To rule out confounding maternal and embryo handling 85 

effects, prenatal growth traits and litter size components were measured in the second 86 

generation after rederivation (R20 and R38). 87 

 88 

2. Materials and methods 89 

The animal study protocol was reviewed and approved (code number 90 

2015/VSC/PEA/00061) by Ethical Committee of the Universitat Politècnica de València before 91 

initiating the study. All experiments were performed following guidelines and regulations 92 

outlined in Directive 2010/63/EU EEC. Animal experiments were conducted at an accredited 93 

animal care facility (code: ES462500001091). 94 

 95 

 96 

 97 
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2.1. Animals 98 

A rabbit paternal line (R) selected at the Universitat Politècnica de Valencia was used. 99 

This line was founded in 1989 from two closed paternal lines selected according to individual 100 

weigh gain from weaning to end of fattening period (77 days old) during 12 and 9 generations 101 

(Estany et al., 1992). Since then, the line has been selected for individual weight daily gain 102 

from 28 days (weaning) to 63 days of age (end of fattening). For the present study, two 103 

populations (R19V and R37V) separated for 18 generations of selection were used. R19V 104 

population was rederived from 256 embryos of 25 donors belonging to 10 different sire 105 

families of 18th generation and vitrified in 2000. R37V population was rederived from 301 106 

embryos from 28 donors belonging to 15 different sire families of 36th generation, which were 107 

vitrified in 2015. Both populations were rederived at the same time in 2015 (see details in 108 

Marco-Jiménez et al., 2018). Offspring were bred in non-overlapping generations; 101 females 109 

from generations 20 and 38 were used in this experiment (named R20 and R38, respectively). 110 

Environmental conditions were maintained using a control system for light (16:8 light/dark 111 

photoperiod), ventilation and temperature (18–25 ºC) and relative humidity: 60 to 75% by a 112 

forced ventilation system. Rabbits does were fed ad libitum throughout the gestation and 113 

lactation period with a commercial pelleted diets (2900 kcal of digestible energy / kg, 3.5% 114 

crude fat, 15.5% crude fibre and 17% crude protein dry matter). Non-pregnant rabbit does 115 

were fed with 140 g/animal/day until a positive pregnancy diagnosis. 116 

 117 

2.2. Reproduction management 118 

One hundred and forty-two females were inseminated by males from the 119 

corresponding generation (60 from R20 and 82 from R38). To control inbreeding, males and 120 

females sharing a grandparent were avoided. Receptivity of does was improved with 12-15 UI 121 
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of eCG via intramuscular 48 hours before insemination. First insemination was performed at 122 

20 weeks of age and then 10-12 days after parturition. Fourteen days post-insemination, 123 

pregnancy was diagnosed by abdominal palpation and, if they were non-pregnant, females 124 

were inseminated again 7 days later. Young rabbits were weaned at 28 days of age. 125 

Insemination was performed after evaluation of ejaculate with 0.5 ml and 20 to 40 126 

million sperm per seminal dose. Only ejaculates with more than 70% of motility rate and less 127 

than 20% of abnormal sperm were used.  Ejaculates were diluted with tris-citric-glucose 128 

diluent to adjust the concentration (Viudes-de-Castro and Vicente, 1997). Immediately after 129 

insemination, ovulation was induced by an intramuscular injection of 1µg of Buserelin Acetate 130 

(Suprefact, Hoechst Marion Roussel, S.A., Madrid, Spain). Reproductive status of does at 131 

insemination time (nulliparous, primiparous lactating, multiparous lactating and non-lactating 132 

does), total litter size, liveborn and litter size at weaning were recorded for each female.  133 

 134 

2.3. Laparoscopy and evaluated litter size components 135 

A total of 85 does were used and 103 laparoscopies were carried out on females from 136 

fourth and fifth parity (38 does from R20 and 47 does from R38). In brief, the females were 137 

sedated with intramuscular injection of 5 mg xylazine/kg (Rompun, Bayer AG, Leverkusen, 138 

Germany) and 3 mg/kg morphine chloride (). Five minutes later, 35 mg/kg Ketamine 139 

hydrochloride (Imalgene®, Merial, S.A., Lyon, France) was administered intravenously.  After 140 

laparoscopy, does were treated with antibiotics (200,000 IU procaine penicillin and 250 mg 141 

streptomycin, Duphapen® Strep, Pfizer, S.L.), 0.03 mg/kg of buprenorphine hydrochloride 142 

every 12 hours and 0.2 mg/kg of meloxicam every 24-h for 3 days. The number of corpora 143 

lutea, the number of implanted embryos at 12 days (IE) and litter size at birth (LS) were 144 

recorded per female. The following variables were calculated using the above data. Ovulation 145 
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rate (OR), defined as the number of corpora lutea, was recorded to determine ovulation rate 146 

(OR), embryonic loss rate (ELR), estimated as (OR-IE)/OR, and foetal loss rate (FLR), estimated 147 

as (LS-EI)/LS. 148 

 149 

2.4. Foetal growth. Ultrasound measurement 150 

Thirty-one pregnant does from laparoscopised females (15 from R20 and 16 from R38) 151 

were examined on day 12, 19 and 26 of gestation using a portable colour Doppler ultrasound 152 

device (Esaote, Spain) with a 7.5 MHz linear probe (4–12 MHz range). Does were sedated 153 

according to the procedure described above and placed in a polystyrene cage where they were 154 

prevented from moving. The ultrasound examination was performed from right to left with 155 

the probe in sagittal orientation and, after localization of different foetal sacs, 4–6 whole 156 

foetal sac examinations per doe were performed. The identifiable structures (foetal sac, 157 

foetus and foetal and maternal placenta) were measured from frozen frame pictures on the 158 

monitor, using the Esaote 16 ultrasound software. Measurements on different days of 159 

gestation are illustrated in Fig. 1. Briefly, foetal sac (FS, A, C and E) measurements were taken 160 

when the largest surface area appeared on the screen. For whole foetus measurements, 161 

crown-rump length (CRL) was determined as the maximum distance from crown to tail base, 162 

with the foetus on a sagittal plane (Fig. B, D and F). Placental size was difficult to assess, but 163 

placental measurements were determined when the maximal placental surface with the two-164 

lobed foetal (L1FP and L2FP) and maternal placenta (MP) were visible on screen (Fig. 1A, 2A, 165 

3A). 166 

 167 

 168 

 169 
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2.5. Statistical analyses 170 

  Reproductive performance was analysed with a linear general model including as fixed 171 

effects rederived generation group (R20 and R38), reproductive status of does (nulliparous, 172 

primiparous lactating, multiparous lactating and non-lactating does), month-year in which 173 

insemination was done (18 levels) and the interaction between generation group and 174 

reproductive status of the mothers. Delivery rates were analysed using a probit link with 175 

binomial error distribution, included in the generalized model described above.  176 

Litter size components (ovulation rate, implanted embryos, litter size, liveborn and 177 

rates of embryo and foetal losses) were analysed by a generalized linear model including as 178 

fixed effects rederived generation group (R20 and R38) and lactating or non-lactating status 179 

and their interactions.  180 

To analysis foetal sac area, crown-rump length of foetus, foetal and maternal placenta 181 

areas at days 12, 19 and 26 of gestation and, weight of liveborn kits, a mixed linear mode was 182 

used:  183 

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝑃𝑖 + 𝑅𝑗 + 𝑃𝑅𝑖𝑗 + 𝐶𝑂𝑘 + 𝐶𝑜𝑣 𝑋𝑙 + 𝑒𝑖𝑗𝑘𝑙 184 

, where Yijkl was the trait to analyse, µ was the general media, Pi was the fixed effect 185 

of the rederived generation group (R20 and R38), Rj was the fixed effect of reproductive status 186 

of the doe used to analysis of weaning weight (lactating and non-lactating doe); PRij was the 187 

effect of interaction between rederived population and reproductive status of the mothers 188 

used to analysis of weaning weight,  COk was the random effect of common litter, Cov Xl was 189 

the covariate of number of implanted embryos and eijklm was the error term of the model. 190 

Values were considered statistically different at P < 0.05. Results were reported as least 191 

square means with standard error of the mean (SEM). All analyses were performed with SPSS 192 

26.0 software package (SPSS Inc., Chicago, Illinois, USA, 2012).  193 
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3. Results 194 

3.1. Reproductive performance between rederived populations 195 

Of the different reproductive parameters evaluated, only litter size at parturition was 196 

significantly different between the two rederived populations, with the litter size being larger 197 

in the most recent generation R38 (6.5 0.32 vs 7.1 0.29, Table 1). However, the high mortality 198 

in both groups around delivery and during the lactation period (more than 20% and 40%, 199 

respectively, Table 1) make this difference irrelevant. In addition, the delivery rate was also 200 

similar in both groups (Table 1). 201 

Considering the reproductive status of the doe at the time of insemination, nulliparous 202 

females had the highest delivery rates, the lowest litter size and the highest mortality rate 203 

during lactation (Table 1). Furthermore, it is necessary to highlight that the females with 1 or 204 

more deliveries that were not pregnant presented problems to gestate again, obtaining the 205 

lowest delivery rate (Table 1). 206 

Non-significant effects of year-month and interactions between generational group 207 

and week of reproductive status were observed for all evaluated traits. 208 

 209 

3.2. Litter size components between rederived groups 210 

 Litter size components evaluated such as ovulation rate, foetal and embryo losses were 211 

not different between the rederived populations, despite the 18 generations of selection that 212 

separate them (Table 2). However, a significant increase in the number of implanted embryos 213 

was observed in R38 vs R20 population if the number of implanted embryos included those 214 

females that did not implant any. Both rederived populations showed high rates of loss at 215 

implantation and from implantation to parturition, but not significantly different (Table 2). 216 

Total implantation failure was 38.6% (17) in R20, while this occurred at 23.7% (14) in the R38 217 
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population. Non-significant interactions between generational group and lactation status 218 

were observed for evaluated traits. 219 

 220 

3.3. Foetal growth during gestation 221 

 Early differences in foetal sac growth, foetal placenta and Crown-rump length of 222 

foetuses were observed at day 12 and 19 of gestation, respectively, between both populations 223 

(Table 3). At the onset of gestation, the lactation status affected the foetal sac size at 12 and 224 

19 days and the foetal placenta size at 19 days. On day 26 of gestation, neither the generation 225 

nor the lactation status affected any trait. The bodyweight of the liveborn kits was significantly 226 

different between generations, but was not influenced by the lactating status. The highest 227 

birth weight was obtained in the offspring of R38 population (57.2±3.47 vs 69.3±3.89 for R20 228 

and R38 from 48 and 42 liveborn kits, respectively.  Data not shown in tables). 229 

 230 

4. Discussion 231 

 To the best of our knowledge, this is the first in-depth study to evaluate the effect of 232 

selection for growth on reproductive parameters or traits using populations rederived (re-233 

established) from cryopreserved embryos. Although rarely used in selection experiments, 234 

cryopreserved populations offer the advantages of optimizing the experimental facilities and 235 

reducing genetic drift (García and Baselga, 2002; Piles and Blasco, 2003), and it is a successful 236 

strategy to re-establish a population to continue the breeding programme (Marco-Jiménez et 237 

al., 2018). Our study suggests that selection for growth rate has no adverse effect on litter 238 

size, foetal growth and reproductive performance, and we even observed a slight 239 

improvement in the embryo implantation and litter size and bodyweight at birth after 18 240 

generations of selection. 241 
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Livestock animals selected for high production efficiency (litter size, growth, feed 242 

efficiency or carcass composition and meat quality) have impaired reproductive performance 243 

(Rauw et al., 1998; Bunger et al., 2005) or health traits and robustness (Rauw et al., 1998; 244 

Prunier et al., 2010; Phocas et al., 2014; Rauw and Gomez-Raya, 2015). These adverse effects 245 

of selection are often difficult to reveal as a consequence of not being registered or because 246 

the feeding or environmental conditions are being modified. For example, in swine a long-247 

term selection for a combined breeding goal (growth, feed efficiency, body composition and 248 

litter size) has been accompanied by an improvement in litter size and weight, but 249 

unfavourable effects of selection for several traits such as an increase in stillbirths and in 250 

postnatal mortality, reduced longevity and productive life, a reduced milk production and 251 

robustness (Silalahi et al., 2016 and 2017). It is known that rabbit selection for growth traits 252 

has negative genetic correlations on ejaculate traits such as mass motility, volume, abnormal 253 

sperm rate or head sperm morphometry (Brun et al., 2006: Lavara et al., 2012 and 2013) and 254 

the female contribution to fertility has been found (Piles and Tussel, 2012). Moreover, several 255 

studies showed an impaired reproductive performance of paternal line R when it was 256 

compared with maternal lines, with high embryonic, foetal, perinatal losses and during the 257 

lactation period (Vicente et al., 2012 and 2013; Naturil-Alfonso et al., 2016). Nevertheless, the 258 

present study showed that selection for growth rate does not adversely affect litter size and 259 

reproductive performance. It is worth mentioning that, after 18 generations of the selection 260 

process, females increased in implanted embryos, ending in improved litter size. Moreover, 261 

similar prenatal losses were observed between both generations, in line with our previous 262 

results in which implantation and gestational losses were around 20-30% and 50%, 263 

respectively (Vicente et al., 2012). In maternal or crossed rabbit lines, embryonic and foetal 264 

loss rates are 10 and 20%, respectively, and up to 15% for perinatal losses (Santacreu et al., 265 
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1992; Fortun et al., 1993; García and Baselga, 2002; Santacreu et al., 2005; Mocé et al., 2005; 266 

Vicente et al., 2012; Ragab et al., 2014). Some of the causes of the high implantation failures 267 

and foetal losses of this paternal line could be linked to high levels of IGF-1 and leptin, lower 268 

oestrogen and progesterone levels and lower mRNA expression levels of insulin-like growth 269 

factor II receptor (IGF-IIR) at endometrial tissue found in the females (Vicente et al., 2012; 270 

Llobat et al., 2012; Naturil-Alfonso et al., 2016).  271 

Additionally, perinatal and lactation mortality rates were similar and high between 272 

both generations. Perinatal and lactation losses found in both can be associated with impaired 273 

maternal behaviour and were already reported for this line by Lavara et al. (2002). Moreover, 274 

this could be related to the abnormal levels of oestradiol and progesterone during gestation 275 

observed in this line (Vicente et al., 2013) and with a low litter size. This endocrine disruption 276 

might trigger a cascade of events that would affect the construction of the nest, the 277 

pheromonal cues, nursing behaviour and, finally, milk production. González-Mariscal et al. 278 

(2016) reviewed maternal behaviour and sibling interactions in rabbits, describing the role of 279 

changing concentrations of oestradiol, progesterone and prolactin throughout gestation to 280 

prime the mother's brain to respond to the newborn and as regulators of nest-building, and 281 

how the duration and periodicity of nursing will depend on the stimulation of the teats by the 282 

kits (suckling young). This should be evaluated in a subsequent study in order to improve 283 

reproductive efficiency, among other things, carry out adoptions at birth to prevent the 284 

number of young rabbits from being less than 6 so that an adequate nursing behaviour 285 

develops. Regarding negative outcomes of non-lactating does, it is probable that in spite of 286 

feed control, these females tended to accumulate fat and had difficulty mobilizing during 287 

gestation or lactation. R line does seem to prioritize maintaining their heavier body size rather 288 

than litter development, a difference from other lines (Arnau-Bonachera et al., 2018 a and b), 289 
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which may be further aggravated if does do not become pregnant and continue to gain weight 290 

(Rommers et al. 1999) and, consequently, negatively affects their long-term reproductive 291 

function (Castellini et al., 2006). 292 

This study also enabled us to explore whether selection for growth rate affects 293 

placentae and foetal growth. Our findings revealed that the foetal sac and foetal placenta area 294 

at day 12 of gestation and foetal placenta area at day 19 of gestation was higher in the R38 295 

generation. Nevertheless, no differences between generations were found at day 26 of 296 

gestation, indicating that the possible effects of both selection and the gestation-lactation 297 

overlap were compensated at the end of gestation but not in the weight of liveborn kits. This 298 

could be because during the last week of gestation the fastest increase in bodyweight takes 299 

place (Vicente et al., 1995 and 2013; Argente et al., 2003).  So, we have observed evidence 300 

that growth selection influenced foetal structures and final weight of foetuses. The changes 301 

in foetal structures take place at a critical period between day 12 and 19 of gestation, in which 302 

organogenesis is defined, which could be important in the final growth of gestation and during 303 

postnatal life (Vuguin, 2007; Sartori et al., 2020). During foetal development, extrauterine 304 

signalling provides a link between environmental changes and physiology of the foetus as the 305 

impetus to prepare the organism for the postnatal environment, guided mainly by epigenetic 306 

changes (Gluckman et al., 2005; Sarkies, 2020). If these adaptive responses are directed to a 307 

nutritionally deficient postnatal environment, they could potentially affect muscle, adipose 308 

and reproductive tissue development (Ford et al., 2007; Ford and Long, 2012). Skeletal muscle 309 

or reproductive tissue have a lower priority in nutrient partitioning compared to the brain and 310 

heart in response to challenges to the foetus during development, and are particularly 311 

vulnerable to nutrient deficiency (Caton et al., 2019; Crouse et al., 2019). Females from the 312 

paternal rabbit line used in this study, regardless of the repercussions due to the selection 313 
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process, shows some negative phenotypic characteristics at endocrine level and a different 314 

nutritional partition that could be triggered during prenatal development and in the first steps 315 

of postnatal development (suckling). So, a more in-depth study of these stages is necessary. 316 

In conclusion, selection for growth rate does not adversely affect components of litter 317 

size, foetal growth and reproductive performance in rabbit does. Nevertheless, this study 318 

reinforces some significant reproductive problems, such as high prenatal and perinatal 319 

mortality in this paternal line, that were already present in generation 18. Therefore, further 320 

studies must elucidate how the founders and not the selection process could play a 321 

fundamental role in the adverse reproduction outcomes. 322 
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 535 

Table 1. Effect of selection for growth rate on total litter size, liveborn, litter size at weaning, perinatal and lactation mortality rates and 536 

delivery rate from two rederived population separated by 18 generations. 537 

Type n 
Litter size Mortality rate (%) 

Delivery rate (%) 
Total Liveborn At weaning Perinatal Lactation 

Generation 
R20 179 6.5±0.32b  5.1±0.36  3.1±0.34 23.2±3.33 46.1±4.11 0.57±0.029 

R38 278 7.1±0.29a  5.8±0.33 3.7±0.31 21.9±3.03 42.5±3.68 0.59±0.024 

Lactation status 

Nulliparous 142 5.9±0.37b 4.1±0.35b 2.3±0.39b 29.8±3.86 56.7±4.80b 0.76±0.032a 

Primiparous Lactating 75 7.1±0.46a 5.7±0.52a 3.2±0.49ab 23.3±4.76 46.4±5.91ab 0.59±0.044b 

Multiparous lactating 143 7.1±0.36a 6.1±0.41a 4.2±0.38a 17.3±3.72 33.8±4.60a 0.58±0.032b 

Non-lactating 97 7.1±0.37a 5.9±0.42a 3.9±0.39a 19.9±3.86 40.3±4.72a 0.37±0.031ca 

n: Number of inseminations.  Data are expressed as least squared mean  standard error of means. a,b Values with different superscripts in 538 

column differ significantly (p < 0.05).  539 

 540 
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 542 

Table 2. Effect of selection and lactation status on litter size components from two rederived population separated by 18 generations. 543 

 544 

 545 

 546 

 547 

 548 

 549 

 550 

 551 

 552 

 553 

 554 

 555 

 556 

Data are expressed as least squared mean  standard error of means. n: number of laparoscopies.  557 

1 It was determined as the number of corpora lutea.  558 

2 Implanted embryos in pregnant does. 559 

a,b Values in the same column and factor with different superscripts are statistically different (P < 0.05).  560 

561 

Type Ovulation rate1 

Implanted embryo Loss rate (%) 

Litter size Implanted 

embryo 

2Implanted 

embryos 
1Embryonic Foetal 

Generation 

R20 12.1±0.45 5.1±0.79b 8.1±0.73 37.0±5.19 42.8±7.31 5.0±0.80 

(n) (44) (44) (27) (27) (27) (26) 

R38 12.7±0.39 7.2±0.71a 9.4±0.60 28.5±4.26 33.4±6.00 6.7±0.65 

(n) (59) (59) (45) (45) (45) (44) 

Lactation status 

Non-

lactating 

12.8±0.47 6.5±0.86 8.3±0.71 36.7±5.11 40.0±7.19 5.7±0.79 

(n) (36) (36) (28) (28) (28) (27) 

Lactating 12.0±0.37 5.8±0.64 9.1±0.61 28.9±4.36 36.2±6.14 6.1±0.66 

(n) (67) (67) (44) (44) (44) (43) 
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Table 3. Effect of selection and lactation status on foetal sac and placentae area and foetal size at 12, 19 and 26 days of gestation from two  562 

rederived population separated by 18 generations.  563 

 

Group 
Day of 

gestation 
n 

Foetal sac 

area (cm2) 

Maternal 

placenta area 

(mm2) 

Foetal  

placenta area  

(mm2) 

Crown-rump 

length of 

foetus (mm) 

Generation 

R21  
12 

82 2.07±0.071b 44.9±2.46 42.0±2.29 11.2±0.35 

R39  95 2.44±0.070a 50.7±2.44 46.7±2.28 11.5±0.34 

R21  
19 

77 5.81±0.178 111.8±6.30 116.0±6.31b 35.8±0.68b 

R39  94 6.27±0.176 118.2±6.13 136.7±6.14a 38.0±0.68a 

R21  
26 

66 10.01±0.530 197.8±12.21 247.6±15.67 73.1±1.85 

R39  62 10.24±0.560 193.1±13.57 244.5±17.59 72.0±1.92 

Lactation status 

Non-lactating 
12 

70 2.36±0.072a 48.4±2.49 46.8± 2.32 11.3±0.35 

Lactating 107 2.15±0.058b 47.2±2.02 42.0±1.88 11.4±0.29 

Non-lactating 
19 

69 6.49±0.181a 116.2±6.23 139.0±6.27a 36.9±0.71 

Lactating 104 5.59±0.147b 113.8±5.13b 113.7±5.14b 36.9±0.57 

Non-lactating 
26 

54 10.15±0.695 211.7±17.01 233.2±22.04 71.6±2.42 

Lactating 74 10.10±0.602 179.1±13.90 258.9±17.91 73.6±2.08 

a,b Values in the same column and factor with different superscripts are statistically different (P < 0.05). 564 
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 567 

Figure. 1. Ultrasonography measurements of the foetal sac (FS), crown-rump length (CRL) of 568 

foetus and the placental measurements of the two-lobed foetal (L1FP and L2FP) and maternal 569 

(MP) at 12, 19 and 26 day of gestation. 570 
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