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Abstract
The proliferation of harmful content on social media affects a large part of the user community. Therefore, several approaches
have emerged to control this phenomenon automatically. However, this is still a quite challenging task. In this paper, we
explore the offensive language as a particular case of harmful content and focus our study in the analysis of keywords in
available datasets composed of offensive tweets. Thus, we aim to identify relevant words in those datasets and analyze how
they can affect model learning. For keyword extraction, we propose an unsupervised hybrid approach which combines the
multi-head self-attention of BERT and a reasoning on a word graph. The attention mechanism allows to capture relationships
among words in a context, while a language model is learned. Then, the relationships are used to generate a graph from
what we identify the most relevant words by using the eigenvector centrality. Experiments were performed by means of two
mechanisms. On the one hand, we used an information retrieval system to evaluate the impact of the keywords in recovering
offensive tweets from a dataset. On the other hand, we evaluated a keyword-based model for offensive language detection.
Results highlight some points to consider when training models with available datasets.

Keywords Unsupervised keyword extraction · Offensive language detection · Attention mechanism · Graph representation

1 Introduction

Automatic keyword extraction (AKE) is a technique of text
analysis which consists of automatically extracting the most
relevant words in a text. In general, it can be used to iden-
tify topics in a text, summarize its content, index data,
or generate tag clouds with the most representative words. In
this paper, we aim to apply the idea of AKE to obtain words
that best describe the offensive language as a particular case
of harmful content. Therefore, in the scope of this work, we
define keywords as words that are relevant to identify offen-
sive content. There are different approaches and available
tools for keyword extraction, but they have been designed
with a general purpose. Those methods extract keywords
from texts with certain criteria, such as frequency. In this
sense, we have identified some limitations to extract key-
words of our interest, since we cannot make a distinc-
tion between offensive and non-offensive texts. This is a
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problem because a relevant word in non-offensive texts
should not be selected as a keyword. A shallow solution
would be to analyze only offensive texts, but relevant words
in offensive texts that are also relevant in non-offensive
texts should not be selected as keywords. Therefore, we
need to solve the keyword extraction problem for our par-
ticular case, i.e. how to select words that are relevant in
offensive tweets and at the same time very little relevant in
non-offensive tweets.

Our methodology consists of three stages: (i) weighting
pairs of words by their relationship in the tweets, (ii) buil-
ding a graph where the vertices are words and the edges
are weighted with the values obtained in the previous stage,
and (iii) reasoning on the graph to identify the most relevant
words. In the first stage, we consider the class of the tweet
from which each word pair is taken. If the tweet is non-
offensive, the corresponding weight is penalized. In that
way, we address the aforementioned limitation. In order to
obtain the weights for each word pair, the method we pro-
pose is based on the multi-head self-attention mechanism
of BERT [10]. Although there are other strategies that can
be adapted, we are motivated by the state-of-the-art results
that BERT has obtained in several tasks, including offen-
sive language detection and related tasks. The attention
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mechanism is precisely one of the strengths of BERT. This
mechanism allows capturing relationships among words in
a context, while a language model is learned.

The main contributions of our work are the following:

i. We propose a method for extracting keywords from
datasets composed of offensive and non-offensive
tweets. The method distinguishes between tweets
from different classes.

ii. We use an unsupervised method which does not need
annotated datasets for automatic keyword extraction,
that is, datasets with gold-keywords of the texts.
Instead, our method only uses a set of tweets tagged
as offensive or non-offensive.

iii. We present a way to exploit the multi-head self-
attention mechanism of BERT to weight word pairs
from tweets.

iv. We use a method to represent the words and their
relationships in a graph for extracting relevant words
by using the eigenvector centrality.

v. We analyze the extracted keywords and evaluate their
impact in the offensive language identification. As
results, we give insights about points to consider when
training models with available datasets.

An important advantage of our proposal lies in the faci-
lity to be adapted to related phenomena, such as hate speech,
misogyny, and sexism [2, 11]. These are similar phenomena
with common characteristics and similar datasets. In fact,
there are no clear boundaries among them, although
each one has particular characteristics [25]. For instance,
offensiveness includes rude or vulgar language that does
not represent hatred. However, our method can be applied
to hate speech or other related tasks by varying the type of
datasets and fixing the hyper-parameters of the model.

The rest of this paper is organized as follows. Section 2
summarizes the related work and Section 3 presents
the problem formally. Our keyword extraction method is
proposed in Section 4. Section 5 describes the experiments
and Section 6 presents a discussion of the results. Finally,
Section 7 concludes the paper.

2 Related work

This section presents a summary of some widely used
keyword extraction techniques. Then, we provide a brief
overview of offensive language detection, both in the sense
of keyword-based strategies and in the sense of BERT-based
approaches. Finally, this section introduces a synopsis of
textual graph representation, with focus on techniques used
for keyword extraction.

2.1 Automatic keyword extraction

AKE has been developed with different approaches [13, 16,
20]. Using statistics is one of the simplest mechanisms for
selecting keywords within a text. This approach includes
well-known techniques such as word frequency, term
frequency-inverse document frequency (TF-IDF), word col-
locations, and co-occurrences. Roughly, they consist of
listing the words according to some criterion and selec-
ting the top ones. For instance, the word frequency techni-
que looks for the most common words occurring within a
collection of texts. The advantage of this kind of approach
relies on that they do not need training data in order to
extract keywords. However, they may ignore some relevant
words that are mentioned only once but are indeed relevant.
Linguistic approach is another type of mechanism which
considers linguistic information about texts. Some strate-
gies involve morphological, syntactic, or semantic infor-
mation about the words, such as part-of-speech or the
relations between words in a dependency grammar. This
kind of information provides an important tool for key-
word extraction [14]. Moreover, AKE is also addressed by
employing machine learning techniques which are usually
supervised approaches. A well-known method that trans-
forms AKE into a binary classification task was presented
in [36]. Other methods include models such as support vec-
tor machines, conditional random fields and deep learning
strategies [12]. The authors of [28] proposed a keyphrase
extraction as a sequence labeling task. They used BERT
to obtain contextual embeddings, although they required
manually annotated keyphrases.

Some of the previous techniques are combined in a
hybrid mechanism in order to obtain better results. In this
paper, we exploit this idea.

2.2 Keywords in offensive language detection

Regarding offensive language, keywords have been mainly
used to build datasets. The data collection for the construc-
tion of the Offensive Language Identification Dataset
(OLID) [37], used in OffensEval 2019 shared task [39],
was based on searching for keywords and constructions that
are often included in offensive messages. Initially, a set of
words was used to collect tweets, and then some keywords
that were not frequent in offensive content were excluded
during the trail annotation. Similarly, for the dataset of the
HASOC track [18], the data were acquired using hashtags
and keywords with offensive content. Here, we aim to
use a keyword-based technique to evaluate our keyword
extraction method by analyzing how these keywords can
influence the detection of offensive language. However, it
is important to consider that the keyword-based strategies
have been found to be biased and problematic for offensive
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language detection and related tasks. They overlook cases in
which no profane nor offensive words are used but the text
actually conveys an offense. Moreover, these strategies can
cause non-offensive texts that contain some keywords to be
misclassified. That is why we only employ a keyword-based
strategy to evaluate the extracted keywords, not to improve
the offensive language detection.

2.3 BERT for offensive language detection

Most of the strategies used for offensive language detection
are based on traditional machine learning and deep
learning [24, 29, 30, 33]. Among them, BERT and other
transformers-based models are state-of-the-art in the latest
results, specially in shared tasks such as OffensEval 2020
[40]. The best team used RoBERTa-large, which was fine-
tuned on the dataset by using the masked language modeling
objective [34]. The second team used an ensemble which
combined XLM-RoBERTa-base and XLM-RoBERTa-large
[32]. In general, the top teams used BERT, RoBERTa, or
XLM-RoBERTa [7, 9, 23].

2.4 Text representation based on graph

A graph-based text representation allows exploration of the
relationships and structural information into a text very ef-
fectively. Then, AKE is often performed by selecting verti-
ces or groups of vertices with a search on a graph. TextRank
[19] is a model widely used in this type of approach. It
is derived from PageRank [5] which scores each vertex ta-
king into account the importance of its neighborhood. Ao
et al. [1] recently proposed a new keyword extraction algo-
rithm based on TextRank. However, Boudin [4] compares
various centrality measures for graph-based AKE and the
experiments on datasets in English and French show that
the simple degree centrality achieves results comparable
to TextRank. We test our proposal with different types of
degree centralities to select vertices from a word graph.
Finally, we use the eigenvector centrality as it is explained
later.

3 The problem

The problem we address in this work can be formally
described as follows: Let O and N be two sets of
offensive and non-offensive tweets respectively, for which
the following holds: {O∩N = ∅}. Let W be the set of words
from {O∪N}. The problem is to identify a set of words K ⊂
W such that each k ∈ K is in the top ranking of the words
highly relevant in O and little relevant in N . In modeling
this problem, we represent W in a graph with weighted
edges from which we rank the words. In the graph each

vertex is a word of W and each edge (w1, w2), w1, w2 ∈ W ,
indicates the weight between the words w1 and w2. We aim
to calculate the weights considering the context of the words
in each tweet, as well as whether the tweet is offensive or
not. For that, BERT can be suitable since its self-attention
mechanism analyzes each word looking at other words in
the context. Thus, the research questions we address in this
work are:

RQ1: How can we leverage the attention mechanism of
BERT to weight pairs of words in the context of a text?
RQ2: How can we effectively extract words that are
relevant in offensive tweets and little relevant in non-
offensive tweets from a dataset?

4 Keyword extraction based on BERT

In this section we first introduce our methodology for
keyword extraction from a dataset. Then, we explain in
detail each of the stages of the methodology and comment
how our method can be extended to deal with longer
texts.

Figure 1 illustrates the elements in which our proposal
is based on. The methodology is composed of three stages.
The first stage consists of obtaining a relationship between
words in the dataset. In this sense, we obtain a weight for
each pair of words by relaying on BERT and specifically
on the multi-head self-attention mechanism. In the second
stage we generate a graph where the vertices are the words
from the datasets, and the edges are weighted according to
the relationship between words. The weight of each edge is
updated every time the corresponding word pair appears in
a text. For each text, the weight calculated for each pair is
added to the weight of the corresponding edge in the graph
if the text is offensive, and is subtracted otherwise. In this
way, we penalize the non-offensive texts. Finally, we obtain
a keyword list in the third stage by identifying the most
relevant vertices in the graph with the eigenvector centrality.

4.1 Attention from BERT

In text classification, some parts of the input can often be
more relevant compared to others. Attention mechanisms
incorporate the notion of relevance by allowing a model
to dynamically pay attention to only certain parts of the
input. The assumption is that the higher attention weights
correlate with how relevant a specific region of input is
[8]. The following example shows three texts from the
OffensEval 2019 dataset [38]. An attention mechanism can
help to classify the second example as offensive and identify
fu**ing in that text as more meaningful to determine
offensive.
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He is such a good ad for conservatives.
She is fu**ing delusional. I quite enjoy these
tweets you are liking.

We use this idea to obtain the relationship between
words in the texts of a dataset. Concretely, we leverage the
multi-head self attention mechanism from BERT.

The first step is fine-tuning a pre-trained BERT model
for the offensive language detection task as the first part of
the Fig. 1 shows. For this, we use a dataset with offensive
and non-offensive texts (1 or 0 respectively). Thus, while the
model is trained, the parameters of the attention mechanism
in each layer of the BERT model are updated according to
the data.

In this step of fine-tuning, the input is text and a softmax
is added on the top of the last layer of BERT. We only retain
non-padding tokens to feed the softmax by multiplying
the output with a mask. Cross entropy is used as the loss
function (1), where yi is the true classification of a text i,
and ŷi its predicted value.

L = −Σi yi ∗ log(ŷi) (1)

Now, it is important to understand what happens inside
BERT. With the self-attention mechanism, each position
t in the input (token) is processed by looking at other
positions to obtain a good encoding for t . Thus, this
mechanism is used to capture related and important words.
Basically, self-attention creates three vectors for each word
by multiplying the input embedding by three matrices which
are fitted in the training process. The vectors are known
as query (q), key (k), and value (v), and the matrices of
parameters are Wq, Wk , and Wv respectively. Then, a score
is calculated for each word against each of the other words.
The calculation is done by a normalized dot product of
the q vector of the current token t and the k vector of
the other tokens. Thus, a vector is obtained for each token
where the components determine how much focus to put
on the other parts of the input at this position. Next, this
vector is multiplied by the v vector to keep the values of
the original token t . Equation 2 recaps this process for the
matrix calculation for all words at once [31]). Where dk is
the dimension of q, k, v, and Q, K , and V are the matrix
representations respectively for the text.

Attention(Q, K, V ) = sof tmax

(
QKT

√
dk

)
V (2)

Fig. 1 Illustration of our keyword extraction model
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Fig. 2 Attention visualization
for a sample text

Figure 2 shows the visualization of the weights between
pairs of words for the text ‘she is useless she never does
anything right’ using the pre-trained BERT base model.
This is an offensive text taken from the dataset of the
OffensEval 2019 shared task. On the left (Fig. 2(a)), we
can see the higher weights with a more intense color,
which indicates relevant parts of the text for each term. For
example, the word ‘anything’ seems to be quite relevant
when the word ‘never’ is analyzed. On the right, Fig. 2(b)
shows the particular case of the attention values (weights)
between the word ‘is’ and the other words in the text.

Furthermore, BERT incorporates a multi-head attention
which expands the ability to focus on different positions by
giving the attention layer multiple representation subspaces
from multiple sets of Q/K/V weight matrices. Thus, there
are L ·H self-attention patterns in the model, where L is the

number of layers in the model and H the number of heads
in each layer.

Figure 3 shows 12 patterns for the text analyzed pre-
viously. They correspond to the three last layers of the
model, which are usually the most used layers for obtain-
ing the output. The first row corresponds to the layer #12
(the last one of the model), the second row corresponds to
the layer #11, and the third row corresponds to the layer
#10. For each layer, we show the first four heads from left
to right. That is, the first column corresponds to head #1.
We can see interesting patterns in these layers. For exam-
ple, the fourth head in the layer #12 represents a pattern
where the attention for each word is focused on the pre-
vious word in the text. This makes sense because adjacent
words are often relevant for predicting the next word. On
the other hand, the second head of the same layer matches

Fig. 3 Visualization of 12 heads
of the attention mechanism



Pers Ubiquit Comput

the one shown in Fig. 2. Other heads, like the fourth one in
the layer #11, represent a null pattern where almost all the
attention is focused on the token CLS. This probably indi-
cates that those heads did not find a linguistic phenomenon.
However, with the multi-head mechanism different strate-
gies are combined to analyze the relationship between
words.

Once the parameters of BERT are learned in the fine-
tuning step, the texts feed the model again to obtain the
attention values for each pair of words in the dataset. These
attention values are obtained by the condensation of the
pattern of each head in the last layer of BERT as (3), where
h is the number of heads in the layers. That is, first all
attention heads are concatenated and then, it is projected
into a new space by multiplying for a matrix W , which is
also fitted in the training step.

Atti = Attention(Qi, Ki, Vi), i = 1, h

MHA = Concat (Att1, . . . , Atth)W (3)

As result, we obtain a matrix A ∈ M|T |(R) with the
relativity of words, where T is the set which contains the
words, | · | denotes the size of a set, and Mn(R) represents
the set of square matrices of size n with inputs in the field R.

We consider a word as the terms that are not stopwords
and that represent English words. That is, the special tokens
CLS and SEP are not selected into T . They do not have
a meaning in the human language, therefore they cannot
be selected as keywords. Moreover, these tokens tend to
get high scores due to the null patterns in the attention
mechanisms. Furthermore, the tokens starting with the
characters ‘##′ are not considered as words because they
only represent parts of words.

Earlier, we have seen how to get the matrix A for a set
of text, now we explain how to update this matrix with new
texts. Let Tt = {w : w ∈ t} be a set of words for a sample
text t from the dataset, then T is modified as T = T ∪ Tt .
Moreover, let At be the attention matrix obtained given t ,
that is At = MHA for t . The attention matrix A is updated
with t by a function θ : {0, 1} × M|Tt |(R) × M|T |(R) →
M|Tt∪T |(R) as (4) where yt is the label of t and ε is a
parameter to control the change in A given t .

A′
t = (2 · yt − 1) · ε · At

θ(yt , At , A) =
{

(A)i,j + (A′
t )i,j if ∃(A)i,j

add((A′
t )i,j ) if � ∃(A)i,j

(4)

i, j = 1, |Tt |

The function add(·) incorporates a raw and a column in
A for each word in Wt = {w : w ∈ Tt ∧ w �∈ T }. Then, for
each pair of words that is out of A′

t , that is a pair (w1, w2)

such that w1 ∈ Wt and w2 ∈ {w : w ∈ A ∧ w �∈ Wt } or

vice versa, the function puts 0 in the corresponding cell of
A; otherwise, the value into A′

t for the pair is taken.
Notice that for an offensive text (label 1) the new

attention value of each word pair is added according to the
magnitude of ε. In contrast, the new attention values for
a non-offensive text (label 0) are subtracted. In this way,
we control the score of each word pair, penalizing those
extracted from non-offensive texts.

4.2 Graph representation

We use a graph as a mathematical model to represent the
relation among pairs of words from the matrix A of attention
values. Formally, we build a directed graph G = (V , EA)

as a set of vertices V that matches with the set T and a
set of edges EA ⊆ {(w1, w2) : (w1, w2) ∈ T × T }.
Also, we define a function val : EA → R such as
val(w1, w2) = (A)w1,w2 to assign a weight to each edge.
Thus, the vertices represent words and the edges represent
the relation between pairs of words (attention values).

In the construction of the graph, we define the function
Φ : M|T |(R) → EA such that Φ(A) = {(w1, w2) :
(w1, w2) ∈ T × T , val(w1, w2) > 0}. Hence, we only
represent the relationships between words with a positive
attention value. Furthermore, we use this function Φ to
update the graph G once new texts are incorporated in the
analysis.

4.3 Keyword extraction from graph

The candidate keyword list Γ (G) is obtained by selecting
the words associated to the most relevant vertices into the
graph G. To carry it out, we rank the vertices using a
measure which assigns a score to each vertex considering
the weights of the edges in G.

The eigenvector centrality (EC) is the measure we use for
the ranking [21]. EC measures the influence of a vertex in a
graph scoring each vertex as a function of the centralities of
its neighbors as (5), where λ is a constant called eigenvalue
and N (w) = {wj : (w, wj ) ∈ EA} is the neighborhood of
the vertex w.

EC(wi) = 1

λ

∑
wj ∈N (wi)

val(wi, wj ) · EC(wj ) (5)

Alternatively, we use some centrality measures based on
the degree of the vertices. Unlike EC, they do not take
into account the weight of the edges. Instead, they just
use the information of the neighborhood of each vertex.
These measures have sense since vertices with a high degree
indicate words with relevance. However, the comparison
among all the strategies allows to analyze the importance of
considering the weight of edges estimated from the attention
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mechanism. We used the following alternative centrality
measures:

– Degree (DC): DC(v) is calculated by dividing the
amount of vertices that v is connected to, by the
maximum possible degree in G.

– In degree (IC): IC(v) is calculated by dividing the
amount of incoming edges at v, by the maximum
possible degree in G.

– Out degree (OC): OC(v) is calculated by dividing the
amount of outgoing edges from v, by the maximum
possible degree in G.

Selection criterion based on part-of-speech Once the rank-
ing of vertices is obtained, we select as keywords those
candidates that are one of the parts of speech: noun,
adjective, or verb. This idea has been developed in some
approaches where usually only nouns and adjectives are
taken into account [15]. We consider that verbs also can
express offenses, like for instance ‘fu**’.

4.4 Analyzing longer texts

Notice that our method is designed to work with tweets,
that are small texts. However, our proposal can be extended
based on the way that BERT can be generalized to deal with
longer texts. BERT can handle input sequences up to 512
tokens long. However, there are some strategies that can be
adopted. Among them, the strategy presented in [22] is a
good one. The idea is to divide each large text into segments
and feed BERT with each of them. The pooled output and
the logits are used as representations for each segment.
Then, they are passed along to either an LSTM recurrent
neural network model (RoBERT variant) or a lightweight
transformer (ToBERT variant). Thus, our method can be
used in the same way.

5 Experiments

This section presents our experiments and results. We first
describe the datasets and the evaluation methods we used.
Then, we detail the experimental setup and other models
used to compare our proposal. Finally, we present the results
and analysis.

Datasets We used the datasets released for the OffensEval
shared task in its two editions: OffensEval 2019 [39] and
OffensEval 2020 [40]. Both tasks focus on the identification
of offensive language in tweets.

OffensEval 2019 (OFF19) This is a dataset which contains
English tweets. The labels are organized in a hierarchical

tag set [37]. We used the tags at the level of the binary
classification, such that we worked with the two labels
offensive (4640 tweets) and non-offensive (9460 tweets).

OffensEval 2020 (OFF20) This is a multilingual dataset
with tweets in five different languages [27]. We randomly
selected 30,000 tweets from the nine million of English
tweets, keeping the proportion between offensive (4782
selected) and non-offensive (25,218 selected) tweets in the
original set. In this dataset we had access to the average of
,the confidence in the offensive class of several supervised
models. In order to work with binary labels, we transformed
the averages values by considering as offensive a tweet with
a confidence average greater than or equal to 0.5, otherwise
we considered it as non-offensive.

Evaluation methods An AKE model is usually evaluated
with a set of ‘gold’ keywords that constitute the references.
The idea is to compare these references with the extracted
keyword list. In this case, we do not have this kind of
labeled datasets. Therefore, we use an extrinsic evaluation
method with two relevant applications. Thus, we evaluate
the keywords by means of their impact in other two tasks:
information retrieval and offensive language detection.

Information retrieval (IR) We evaluated the keywords by
searching tweets in a collection of indexes tweets. The
idea is to analyze how suitable the keywords are to extract
offensive tweets. In this regard we defined an IR task as
finding offensive tweets from a large set of tweets given a
keyword list as query. We created a model which indexes the
documents (tweets) by concepts. Then, we use the BM25
algorithm [26] to retrieve tweets given a set of keywords.
As the evaluation measure we use the Precision@K (P@K)
and F@K which compute the precision and F1-score
respectively over the top-K retrieved tweets [6]. Here, a true
positive is a retrieved tweet that is offensive.

Offensive language detection (OLD) In order to study how
the keywords can impact offensive language detection, we
evaluated a keyword-based model. We have to point out
that keyword-based approaches can be very misleading for
detecting offensive language, since they overlook many
cases in which no offensive words are used but the text still
conveys extremely offensive content [35]. In this sense, our
aim is not to improve the state-of-the-art in this task, but
rather to analyze how relevant words in the datasets used
to train models can influence the task. We used a LSTM
recurrent neural network and its output is concatenated with
a vector of similarity values between the input (tweet) and
each of the keywords. Finally, the classification is obtained
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with a softmax.1 As the evaluation measure we used the
macro-averaged F1-score (F1).

Experimental setting In order to obtain the keywords, we
used the pre-trained BERT base2 model which has 12 layers
and 12 heads per layer. Moreover, we used NLTK3 to obtain
the part-of-speech tags of each word, since our method
only considers nouns, adjectives and verbs, as we explained
before. We trained BERT for 4 epochs with minibatches of
size 16. The optimizer we used was Adam [17] and we set
the learning to 5e-5. The parameter ε of our proposal was
fixed to 0.1 after a parameter setting. For OLD we relied
on the stratified 5-fold cross-validation technique and the
paired permutation test with p-value < 0.05 for the analysis
of statistical significance. For IR we used the t-test with p-
value < 0.05 For the reproducibility of the experiments we
set the random seed to 5.

Furthermore, in our experiments we only used the
datasets introduced before. Both OFF19 and OFF20 are
composed of tweets, but they are different in the sense
of data collection and annotation. OFF19 was collected
by retrieving tweets with keywords that are common in
offensive texts, while OFF20 was collected by searching
the 20 most common English stopwords to ensure a variety
of random tweets. Moreover, a semi-supervised labeling
was used for OFF20. Thus, OFF19 can be more biased
towards the keywords used in the collection, and OFF20
towards the way it was annotated. In this sense, we followed
the two possible cross-evaluations: (i) obtain the keywords
from OFF19 and then use OFF20 to evaluate the OLD and
IR tasks considering the keywords from OFF19 (OFF19-
OFF20) and (ii) vice versa (OFF20-OFF19).

In addition, we carried out two in-domain evaluations
OFF19-OFF19 and OFF20–OFF20 to study how the bias in
the datasets can influence the extraction of keywords. For
example, we suppose that the keywords from OFF19 should
reflect the bias in this dataset. Therefore, the use of these
keywords should affect the detection of offenses.

Benchmarks As part of our experiments, we used some
well-known models to extract keywords. The objective is to
analyze the relevance of our proposal by comparing it with
methods that are not tailored to our concern. We adapted
term frequency-inverse document frequency (TFIDF) by
calculating TF in the offensive tweets and IDF in the
non-offensive tweets. Moreover, we used TF, TEXTRANK

1We also use this model without concatenating the vectors with the
keyword information. We refer to this model as the base model in this
paper.
2https://tfhub.dev/google/bert uncased L-12 H-768 A-12/1
3https://www.nltk.org/

Table 1 F1-score with BERT. Each column corresponds to the layer(s)
used to feed the classifier in the fine-tuning

Layers

Dataset [12] [11] [9–12]

FF19 0.789 0.770 0.779

OFF20 0.895 0.894 0.885

(TRANK), RAKE [3], and YAKE.4 This last method reports
state-of-the-art results. For each of these last five methods,
we only used the set of offensive tweets, since they are not
thought to discriminate between classes.

5.1 Results

Table 1 shows the performance of BERT in offenses detec-
tion after fine-tuning with each of the datasets. We evaluated
different layers as output to feed the classifier on the top
of BERT, including the concatenation of some layers. Speci-
fically, we evaluated the last layers and their concatenation.
That is why Table 1 shows the results for the two last layers,
as well as for the concatenation of the four last layers. In
general, the results are similar among them. Hence, in the
rest of the experiments, we used the output of the last layer
(layer #12) to feed the classifier for fine-tuning. Further-
more, in the experiments, we used lists of keywords of diffe-
rent sizes. However, we only report the results taking into
account 20 keywords.5

A. Implication of the parameter ε In this section, we present
the results obtained in the setting of the parameter ε. This is
the parameter that our method uses to update the weights of
the word pairs in the graph. Since one of our objectives is to
discriminate between offensive and non-offensive tweets to
select the keywords, this parameter is relevant in the model.
Table 2 illustrates the results for different values of ε in
IR. Although there are no relevant differences among the
results, 0.1 seemed to be an appropriate value considering
F@50. That is, we obtained more suitable weighted graphs
with this value of ε. From these graphs we obtained
keywords that allowed us to retrieve offensive tweets from
datasets with 0.550 of F@50 in OFF19 and 0.732 in OFF20.

B. Implication of the parameters related to the attention
mechanism We also evaluated different parameters regard-
ing the multi-head self-attention mechanism of BERT that
we used in our method. In each cas, we fixed ε to 0.1.

4https://github.com/LIAAD/yake
5Similar results are obtained with other numbers of keywords.

https://tfhub.dev/google/bert_uncased_L-12_H-768_A-12/1
https://www.nltk.org/
https://github.com/LIAAD/yake
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Table 2 IR results for different values of ε

OFF20-OFF19 OFF19-OFF20

ε P@50 F@50 P@50 F@50

0.01 0.640 0.464 0.518 0.675

0.1 0.620 0.550 0.527 0.732

0.5 0.633 0.458 0.514 0.672

1.0 0.627 0.456 0.513 0.670

Each column corresponds to an evaluation A-B: A is the dataset used
to obtain the keywords and B is the dataset used in the evaluation

First, we compared the results by varying the layer of
BERT from which we leverage the attention mechanism.
Table 3 shows the results for different layers, specifically for
the two last layers and the two first ones. We could see that
using a specific BERT layer to obtain the attention values
(weights of word pairs) does not seem to be significant.
However, the last layer seems to be better. That is why we
used the layer #12 to study other parameters.

Then, we evaluated different heads into the attention
mechanism of the layer #12. That is, we obtained the
weights of the word pairs for a specific head in that layer,
and compared the results with our variant of taking the
combination of all the heads. Table 4 shows the comparison
for the second and penultimate layers. We obtained worse
results with the first and last layers. They seemed to be
null patterns. In general we noticed that one of the heads
obtained better results than the others, when they are used
individually. It can be for the type of pattern represented
in each particular head. The 11th head was the best in the
experiments for both datasets. However, our proposal uses
the combination of all the heads which obtained slightly
better results according to F@50.

Moreover, we analyzed the centrality measure (CM) used
to look for relevant vertices in the graph of words. Table 5
shows the comparison among the use of EC and other
alternatives based on degree of vertices. As we expected,
the best results are obtained with the keywords obtained by

Table 3 IR results when varying the attention layer

Off20-OFF19 OFF20-Off19

Layer P@50 F@50 P@50 F@50

12 0.620 0.550 0.527 0.732

11 0.637 0.468 0.527 0.684

2 0.630 0.460 0.521 0.675

1 0.637 0.468 0.516 0.676

Each column corresponds to an evaluation A-B: A is the dataset used
to obtain the keywords and B is the dataset used in the evaluation

Table 4 IR results for different heads in the layer #12

Off20-OFF19 Off19-OFF20

Head P@50 F@50 P@50 F@50

All 0.620 0.550 0.527 0.732

2 0.593 0.437 0.505 0.614

11 0.415 0.537 0.527 0.684

Each column corresponds to an evaluation A-B: A is the dataset used
to obtain the keywords and B is the dataset used in the evaluation

using EC which takes into account the weight of edges in
the graph.

C. Comparison with other keyword extraction methods We
fixed the parameters of our method according to the
previous results. That is, we used the combination of all the
heads in the attention mechanism of the layer #12 of BERT.
Moreover, we set ε to 0.1 and used the EC for extracting
the keywords from the graph. With this configuration we
compare our results with other keyword extraction methods.

On the one hand, Table 6 illustrates the results in IR. As
we expected, the results with our method are higher than
those obtained with other methods that have shown good
performance in general purpose keyword extraction.

On the other hand, Table 7 shows the results in OLD.
Once again, our proposal outperformed other general
purpose keyword extraction methods. However, it is
important to consider that the keyword-based models might
lead to skewed results according to the bias in the datasets.
Therefore, we analyze this problem later, where we compare
the results with those obtained with a method that is not
based on keywords.

5.2 Bias analysis

Along with the cross-validation, we included both evalua-
tion OFF19-OFF19 and OFF20-OFF20 (in-validation). The
idea is to illustrate how the extracted keywords can reveal

Table 5 IR results for different centrality measures (CM)

Off20-OFF19 Off19-OFF20

CM P@50 F@50 P@50 F@50

EC 0.620 0.550 0.527 0.732

DC 0.607 0.442 0.514 0.662

IC 0.600 0.438 0.512 0.672

OC 0.597 0.436 0.516 0.677

Each column corresponds to an evaluation A-B: A is the dataset used
to obtain the keywords and B is the dataset used in the evaluation
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Table 6 F@50 in IR

Approach Off20-OFF19 Off19-OFF20

Our 0.550 0.732

TF 0.399 0.581

TFIDF 0.490 0.605

RAKE 0.541 0.440

YAKE 0.325 0.483

TRANK 0.382 0.495

Each column corresponds to an evaluation A-B: A is the dataset used
to obtain the keywords and B is the dataset used in the evaluation

the bias in the datasets. The three last rows in Table 8 show
the results when we used OFF20 in the evaluation. Among
these three rows, the first one corresponds to the results
obtained with a model based on the keywords extracted
from OFF19. The second row corresponds to the results
obtained with a model based on the keywords extracted
from OFF20, while the third row shows the results obtained
without considering keywords.

First, we can see that the use of keywords can improve
slightly the results. However, it depends on the characteris-
tics of the keyword list. The base method (LSTM) obtained
0.7958 and this results increased to 0.8071 when the
keywords from OFF20 were added. On the other hand, the
results were considerably on decline when the keywords
from OFF19 were added instead. This makes sense, since
the first keyword list is from the same domain of the dataset
used for the evaluation. Nevertheless, let us analyze the
results in the evaluation with OFF19.

The three rows corresponding to the evaluation with
OFF19 show a different performance. In this case, the base
method obtained 0.5864 and the inclusion of keywords
did not improve it, neither the keywords from OFF20
nor the keywords from OFF19. It can be explained by
the bias in OFF19 that affects not only the performance
when a keyword-based method is used, but also the list
of keywords extracted from this dataset. I.e. the keywords

Table 7 F1-scores in OLD

Approach Off20-OFF19 Off19-OFF20

Our 0.5687 0.5798

TF 0.3747 0.4108

TFIDF 0.5047 0.5588

RAKE 0.4707 0.4588

YAKE 0.5327 0.5548

TRANK 0.4287 0.4718

Each column corresponds to an evaluation A-B: A is the dataset used
to obtain the keywords and B is the dataset used in the evaluation

Table 8 Cross-validation and in-validation in OLD

Evaluation with F1-score

OFF19 OFF19-OFF19 0.5651

OFF20-OFF19 0.5687

*-OFF19 0.5864

OFF20 OFF19-OFF20 0.5798

OFF20-OFF20 0.8071

*-OFF20 0.7958

Each row corresponds to an evaluation A-B: A is the dataset used to
obtain the keywords and B is the dataset used in the evaluation. A is *
in the method that does not use keywords

are biased according to the characteristics of the dataset.
Thus, conforming our results, the more skewed the dataset
(from which the keywords are extracted), the worse the
generalization of the keyword-based models (based on the
extracted keywords).

6 Discussion

Regarding the use of the attention mechanism of BERT
to weight the word pairs (RQ1), we first fine-tuned BERT
with a set of texts for the offensive language detection task.
Then, with the learned weights of BERT, we captured the
attention each word assigns to other words in its context
to estimate the weights of the corresponding pairs. In the
experimentation we varied the parameters of the attention
mechanism, i.e. the layer and heads. The variation does
not seem to be significant. However, the experimental
results suggest the use of the last layer of BERT and the
combination of all the heads in the selected layer.

With respect to the distinction between the offensive
and non-offensive texts (RQ2), we designed the method to
update the weights between words according to the class of
each tweet. That is, for each offensive text, the weight of
each word pair updates in a positive sense the corresponding
edge in the word graph, while for each non-offensive text,
the update is in a negative sense. Thus, we penalize the
words that can be relevant to the non-offensive texts. More-
over, we used a parameter ε to control the update. The
higher the value of ε, the greater the increase or decrease of
the weight of the word pairs. In the experiments, we varied
the value of ε and saw that small variations in this parameter
are not relevant. However, we verified the suitability of our
proposal for keyword extraction by the IR and OLD tasks.
Besides, we point out that the proposed method is unsu-
pervised, in the sense that it does not require a dataset with a
set of keywords as reference, instead it effectively only uses
a set of offensive and non-offensive texts.
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Table 9 List of keywords

Dataset Keywords

OFF19 ‘trump’, ‘hate’, ‘gun’, ‘anti’, ‘mag’, ‘liberals’,

‘stupid’, ‘sick’, ‘black’, ‘government’, ‘violence’,

political’, ‘wrong’, ‘bad’, ‘election’, ‘violent’,

‘woman’, ‘conservatives’, ‘control’, ‘vote’, ‘stop’,

‘country’, ‘people’, ‘president’, ‘law’, ‘white’

OFF20 ‘bitch’, ‘hate’, ‘bad’, ‘ass’, ‘trump’, ‘girl’, ‘stop’,

‘black’, ‘last’, ‘someone’, ‘real’, ‘season’, ‘game’,

‘world’, ‘little’, ‘guess’, ‘school’, ‘hard’, ‘person’,

‘god’, ‘old’, ‘twitter’, ‘sad’, ’fun’, ‘white’, ‘work’

6.1 Error analysis

In order to gain deeper insight on our method performance,
we conducted an error analysis. First, we manually analyzed
some keywords extracted for each of the datasets. Then,
we analyzed the presence of the keywords in the instances
misclassified.

Table 9 illustrates examples of extracted keywords
per dataset.6 Some of them can be easily recognized as
offensive words, like for example ‘stupid’ in OFF19 and
‘bitch’ in OFF20. However, others are non-offensive in
a general sense. For instance, the word ‘liberals’ was
selected as an offensive keyword from OFF19, but we do
not consider it as an offensive word. We checked on the
original paper where the dataset was proposed and realized
that ‘liberals’ was one of the terms used to filter tweets.
Nevertheless, other terms that were also used in the filtering
of tweets as ‘antifa’, were not extracted as keywords
by our method. Therefore, we calculated the percentage
of occurrence of the words used to collect the dataset,
discriminating between offensive and non-offensive tweets.
As we expected, these words are very frequent in the dataset.
In the case of ‘liberals’, the percentage of occurrence in
offensive tweets is higher. Thus, errors can arise from those
non-offensive words which are relevant only in the offensive
tweets. On the other hand, errors can appear due to those
non-offensive tweets that contain offensive words.

Furthermore, we conducted an error analysis on the
experimental results in OLD. We observed that most of the
errors were in tweets that do not contain keywords. That is,
tweets which do not contain at least one of the keywords
from the list we extracted. Table 10 illustrates a statistic
related to the tweets misclassified with both the keyword-
based models and the models which do not consider the
keywords (base model). In each case, it is shown the

6Some examples can represent offensive content. They are not the
views of the authors.

Table 10 Percentage of misclassified tweets

Evaluation % of tweets % of tweets

with keywords without keywords

OFF20-OFF19 28.8 74.2

*-OFF19 24.2 75.8

OFF19-OFF20 21.3 78.7

*-OFF20 19.7 80.3

Each row corresponds to an evaluation A-B: A is the dataset used to
obtain the keywords and B is the dataset used in the evaluation. A is *
in the method that does not use keywords

percentage of misclassified tweets without keywords (last
column) and the percentage of misclassified tweets with
at least one keyword. With the keyword-based method,
74.24% of the errors came from tweets without keywords in
OFF19, and 78.7% in OFF20. These percentages increased
to 75.76% and 80.28% respectively, with the base models.
Thus, the probability of error is higher in tweets which do
not contain keywords.

Regarding OFF20-OFF19, 91.3% of the misclassified
tweets that do not contain keywords (74.2% of the total
of misclassified tweets), corresponds to offensive tweets.
This amount represents 74.7% of the total of misclassified
offensive tweets. This data suggests that a large part
of the errors come from offensive tweets that do not
contain offensive keywords. The rest 8.7% of misclassified
tweets without keywords are non-offensive that represents
the 58.5% of all the misclassified non-offensive tweets.
Therefore, a large percentage (41.5%) of errors in non-
offensive tweets is due to the presence of keywords.
This suggests a possible bias in the dataset in relation
to some keywords. In the case of OFF19-OFF20, all
the misclassified tweets without keywords correspond to
offensive tweets, that represent the 80% of the total of the
misclassified offensive texts.

6.2 Limitations of our work

One limitation of our keyword extraction method is that
it does not consider the tokens starting with ##. BERT
uses this symbol to identify parts of unknown words in the
tweets. We intend to include this information in coming
works. Moreover, we attempt to extend the method for
phrase extraction. The idea is to define some patterns to
identify phrases in the tweets and extract those that contain
closed keywords. One way to measure closeness among
keywords is the sum of the weights of all the edges on the
path between the words in the word graph.

Another limitation is the characteristic of the phe-
nomenon that we aim to address. Since offensive language
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can be expressed in a subtle manner, many offensive tweets
may simply not have words that are considered offensive.
Thus, our method can extract lists of words that do not gen-
eralize an offensive content. Moreover, our method depends
on the distribution of words between the classes in the
dataset. The words that are relevant in non-offensive tweets
will not be extracted as keywords, even when they are offen-
sive. Therefore, the quality of the extracted keywords is
data-dependent. Anyway, this can be useful, because it helps
us characterize the dataset used by our method.

7 Conclusion and future work

In this paper, we proposed an unsupervised method for
extracting keywords from datasets with offensive content.
The aim is to study the offensive language as a particular
case of online harmful content. Our approach provides a
way to extract keywords from datasets without the need
of a tagged dataset with reference keywords. Instead the
method only uses a set of tweets tagged as offensive or
non-offensive. In this sense, the extracted keywords can
be used to explain the offensive language within a dataset,
since they are relevant words in the offensive tweets. An
important contribution lies in the exploitation of BERT. We
designed the method by leveraging the abilities of the multi-
head self-attention mechanism of BERT to assign attention
values among word pairs in a context. In the proposal, we
calculate a weight for each word pair from the tweets as the
attention value obtained with BERT for this pair. Then, the
weight is updated when processing each tweet containing
the pair. The proportion of the update of the weight is
controlled by a parameter ε, and the weight increases if the
processed tweet is offensive and decreases otherwise. Thus,
we penalized the word pairs from non-offensive tweets for
distinguishing between offensive and non-offensive tweets.
Then, the weights are used to represent the edges of a
graph where the vertices are the words from all the tweets.
This representation finally allows to select the keywords by
using the eigenvector centrality. We extrinsically evaluated
the quality of the generated keyword list in two ways. On
the one hand we tested an information retrieval system to
extract offensive tweets taking the keywords as queries.
On the other hand, we evaluated the performance of a
model for offense detection as a classification task. Firstly,
we made experiments to find a good configuration for the
parameters of our method. Then, we evaluated the suitability
of our method to extract keywords for our particular purpose
over other general purpose AKE techniques. Moreover, we
evaluated how our method can detect some characteristics in
the datasets that can influence the performance of offenses
detection. As future work we aim to expand our method for
dealing with multilingual datasets.
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