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noticed in 2004, though, that it was so named and, apparently, first stated in a 1958
book by Martin Davis. We provide additional arguments partially supporting this claim as
follows: (i) with a focus on computable (real) numbers with infinitely many digits (e.g., ),
in his paper Turing was not concerned with halting machines; (ii) the two decision problems

Keywords:

Halting problem considered by Turing concern the ability of his machines to produce specific kinds of
Printing problem outputs, rather than reaching a halting state, something which was missing from Turing’s
Program termination notion of computation; and (iii) from 1936 to 1958, when considering the literature

of the field no paper refers to any “halting problem” of Turing Machines until Davis’
book. However, there were important preliminary contributions by (iv) Church, for whom
termination was part of his notion of computation (for the A-calculus), and (v) Kleene, who

essentially formulated, in his 1952 book, what we know as the halting problem now.
© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In teaching courses about programming languages, program analysis, and software engineering, the halting problem is
frequently invoked to justify the

well-known piece of folk-lore among programmers that it is impossible to write a program which can examine any other program
and tell, in every case, if it will terminate or get into a closed loop when it is run. [18]

This is often given as a simplified definition of the problem, as Turing machines and computability issues are poorly known
by newcomer students or practitioners. In contrast, the practical relevance of such program termination problem is easily
understood as soon as one points to well-known misconducts of programs like “hanging executions”, which often hide
neverending loops or infinite recursions, i.e., an undesired termination behavior (see, e.g., [1, page 24| for an informal
presentation of the halting problem in this vein). Besides its obvious interest for specialists in program termination, and its
use to provide a first understanding of undecidability issues, other authors acknowledge the halting problem as “one of the
most philosophically important theorems of the theory of computation” [17, Section 4.2].

The formulation and undecidability proof of the halting problem are usually referred to the landmark Turing’s paper [19],
that introduces his a-machines, soon renamed as Turing Machines by Church in a 1937 review of [19].! However, [4] remarks
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that, although “it is often said that Turing stated and proved the halting problem in his 1936 paper”, it was named and originally
stated by Martin Davis in [7].2

Recent books about Turing’s works and contributions already acknowledge this fact, see, e.g., [1, page 13]. Some papers
about program termination now include some mild warnings about the usual association of the halting problem to Turing,
see, e.g., [3, footnote b]. Still, many papers and textbooks refer the definition and proof of undecidability of the halting
problem to [19].

We agree with Copeland that crediting the authorship of the definition and proof of unsolvability of the halting problem
to Turing is not correct. This claim is substantiated on the basis of three different arguments:

1. a motivational point of view, where we claim that, from the material in [19], we would rather say that Turing was not
especially interested in halting machines; we believe that this is the reason why, as Copeland observes, he pays no
attention to this notion in his 1936 paper; then

2. we show that the decidability problems considered by Turing are conceptually different from the halting problem, and,
finally,

3. from a bibliographical point of view, we notice the absence of references to any “halting problem” in the considered
bibliography from [19] to the first publication referring a “halting problem”, i.e., [7] (with the remarkable exception of
[14] discussed below).

However, we also discuss the following related issues:

4. The idea of a (Turing) machine reaching a stopping state is missing from Turing’s definition of computation. In contrast,
it is part of Church’s definition of effective calculation in the A-calculus [2].
5. In his 1952 book [10] Kleene provides a statement which we easily recognize as what is called “halting problem” today.

In the following, we develop these points.
2. Turing machines and Turing’s notion of computability

A Turing machine (see [19, Section 1] but also [13]) is a device that operates on an infinite tape arranged as an infinite
sequence of possibly empty cells. A head is able to scan the tape by reading and writing (or printing) symbols; it moves step
by step along the tape. The machine is able to adopt finitely many states q1, ..., g, (m-configurations in Turing’s terminology).
The operations performed on the tape (i.e., printing symbols and/or moving to the left or to the right), and also possible
changes of state, are determined by the so-called configuration g;,sj of the machine when operating in the state g; and
the scanned symbol in the j-th cell of the tape is s;. The a-machines, usually called (simple) Turing Machines, TM in the
following, are those whose motion is completely determined by the configuration.’

Formally, the machine can be seen as a finite set of quadruples* (g,s,op,q’). Here, q and ¢’ are m-configurations (or
states in the current terminology), s is a symbol from a finite alphabet X of symbols si,..., s, (enriched with a special
symbol B, often written sg, denoting a blank cell in the tape). Operations op can be L, R, or Ps, where L and R prescribe a
one-cell-move of the head to the left or to the right of its current position in the tape, and Ps (or just s) prints symbol s in
the scanned cell.

The Standard Description (S.D.) of a TM provides a full representation of the (behavior of the) machine [19, page 240].
States g; are represented by the letter ‘D’ followed by i occurrences of letter ‘A’. Similarly, symbols s; are represented by
the letter ‘D’ followed by j occurrences of ‘C’. In this way, a sequence of quadruples representing a TM becomes a sequence
of letters. By replacing each of these letters by appropriate numbers we obtain a Description Number (D.N.) of the machine,
which uniquely determines its S.D. and structure.

2.1. Computation of sequences

Turing’s notion of computation pays no attention to any halting behavior. In the subsection about computing machines,
i.e., [19, Section 2], given an automatic machine, he writes [19, page 232]:

if the machine is supplied with a blank tape and set in motion, starting from the correct initial m-configuration, the subsequence of
the symbols printed by it which are of the first kind> will be called the sequence computed by the machine.

2 [4), page 40 and footnote 61. In personal communication to Copeland, Davis thinks likely that he used the term halting problem for the first time
during a series of lectures in 1952.

3 Turing also considered c-machines (‘c’ standing for choice), where some steps may depend on arbitrary choices made by an external operator [19,
Section 2].

4 Turing’s presentation uses quintuples, here we follow the simpler Post’s description in [13].

5 Such symbols “of the first kind” are introduced in page 232: they are called figures and restricted to be either 0 or 1.
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The machine is not required to halt, nor the subsequence of symbols of the “first kind” (the figures, i.e., 0, 1,...) is required
to be finite. In order to ‘see’ the result of the computation, we only need to consider the (possibly infinite) subsequence of
figures printed by the machine.

Furthermore, some lines below, in the subsection about circular and circle-free machines, he differentiates these two
kinds of machines, and defines the notion of computable sequence as one computed by a circle-free machine.

2.2. Circular and circle-free machines
The notions of circular and circle-free machines are given in [19, page 233]:

if a computing machine never writes down more than a finite number of symbols of the first kind, it will be called circular. Otherwise,
it is called circle-free.

At first sight, the previous sentence may suggest that circular machines always halt. However, the clarification that imme-
diately follows denies this:

A machine will be circular if it reaches a configuration from which there is no possible move, or it goes on moving, and possibly
printing symbols of the second kind.®

Example 1 (Circular and circle-free machines). Examples of circular machines (given as programs)’

Pci:  skip
which stops after doing nothing (first case of Turing’s definition). Then,

dare:

Pcr: while true do print #
which prints infinitely many symbols of the second kind (fits the second case of Turing’s definition). Finally,

Pc3: print 0; while true do skip
which prints 0 only once and then runs forever without printing anything else is circular as well. An example of circle-free
machine is

Pcr:  while true do print 0

which prints infinitely many symbols of the first kind.

Therefore, circular machines may not halt; the important point is not halting but printing finitely many figures only. Note
that circle-free machines never halt; the important point now is printing infinitely many figures. Thus,

Fact 1: Turing partitions his machines into two classes, none of which is required to halt.
2.3. Computations with Turing machines

The fact that Turing’s partition of his machines pays no special attention to any halting behavior suggests that, at least in
[19], he was not particularly interested in investigating halting machines. Furthermore, he makes explicit that only (subsequences
of) infinite sequences of figures (computed by circle-free machines) are considered as computable [19, page 233]:

A sequence is said to be computable if it can be computed by a circle-free machine.

Circular machines may halt, but, by definition, circle-free machines never stop. Turing chooses the last ones to define his
notion of computable sequence.

Fact 2: Turing’s notion of computation did not rely on (actually rejected!) any termination requirement.
3. Martin Davis’ description of Turing machines and computations

Since the notion of computed sequence (see above) includes taking any subsequence of figures printed by a machine,
computing finite sequences is possible but the exact definition of such a sequence is not intrinsically provided by the
machine operation. An “external observer” is required to extract the subsequence. This is in sharp contrast with the standard,
algorithmic, idea of a computation by a TM, which requires that the machine halts, thus providing a completely defined
finite sequence as the one which is obtained when the machine halts, cf. [7, Definition 1.9]:

6 Symbols “of the second kind” are also introduced in page 232 just as “the others”, i.e., those which are not of the first kind. Turing used two symbols
of the second kind, namely ‘9’ and ‘X’, see page 234. In this paper we only use #.

7 To improve readability, for the informal examples of Turing machines, we use a simple imperative language whose syntax is hopefully well-understood
for anybody with some familiarity with (imperative) programming languages. This is a usual practice in the literature, see, e.g., [18,8,9].
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By a computation of a Turing machine M is meant a finite sequence of instantaneous descriptions a1, . .., op such that a; — o1
for 1 <i < p and such that o, is terminal with respect to M.

Davis’ instantaneous descriptions are similar to Turing’s complete configurations, and transitions ‘—’ represent Turing’s
moves [19, last line of page 232]. The keypoint here is that the last instantaneous description o, must be terminal, i.e., no
transition is possible from it [7, Definition 1.9]. In other words, “the machine interprets the absence of an instruction as a stop
order” when reaching o [7, footnote 1 in page 7]. This is the usual notion of computation with TMs today.

Remark 1 (Computations in Church’s A-calculus). The idea of a computation that halts was already proposed by Church in
[2], where he formulates his thesis on the basis of the use of the A-calculus as a suitable notion of effective method.
Computations with the A-calculus (effective calculations in Church’s terminology) start with an expression, perform some
reduction steps, and finish when a normal form (i.e., an expression that cannot be reduced) is obtained. Thus, Church’s
notion of computation assumes that only finite sequences of reductions are considered.® In an appendix to [19] added in
August 28, 1936 (already in Princeton), Turing proves that every “A-definable sequence is computable” and vice versa.

Remark 2 (Kleene’s description of the operation of a TM). In [10] Turing’s complete configurations are called situations by Kleene.
Accordingly, TMs are used as follows [10, page 358]:

The change from the initial situation to the terminal situation (when there is one) may be called the operation performed by the
machine.

Here, the terminal situation or output is one “in which [the machine] stops”. Changes between intermediate situations are

performed in the usual way, using Turing’s moves. Davis’ notion of “computation of a TM”, then, is analogous to Kleene’s
notion of “operation performed by a TM”.

4. Decision problems about Turing machines

In his paper [19], Turing enunciates two problems about his machines (now called satisfactoriness and printing prob-
lems) and proves them undecidable. We discuss them in the next two subsections. The third subsection introduces Davis’
definition of the halting problem. The fourth subsection compares them.
4.1. The satisfactoriness problem

The first problem considered by Turing is given in page 247, as follows:

Is there a machine D which, when supplied with the S.D. of any computing machine M will test this S.D. and if M is circular will
mark the S.D. with the symbol ‘u’ and if it is circle-free will mark it with ‘s’?

Here,'v’ and ‘s’ represent an unsatisfactory or satisfactory verdict of D about M being circle-free. Copeland coined this as
the Satisfactoriness Problem [4, page 36]. In the following, we refer to it as SATIS.

4.2. The printing problem
The second problem, considered in [19, page 248], is what Turing used to show the Entscheidungsproblem impossible:

there can be no machine £ which, when supplied with the S.D. of an arbitrary machine M, will determine whether M ever prints
a given symbol (0 say).

Davis uses printing problem (PRINT in the following) to refer to it [7, page 70]. In the following, for each machine M, we
say that Print(M) is true iff M prints a given symbol, (e.g., 0) during its (finite or infinite) execution (and often say that
M is a printing machine). For instance, both Print(P¢;) and Print(Pcy) are false, but Print(Pc3) and Print(Pcg) are true.

4.3. The halting problem

According to Davis’ formulation, the halting problem for a TM M aims [7, page 70]

to determine whether or not M, if placed in a given initial state, will eventually halt.

8 Turing wrote [19] in England, before moving to Princeton to pursue a PhD with Church. Thus, Church’s and Turing’s notions of computation grew
independently. We may think of Davis’ definition as providing a kind of consensus among them: it is based on halting Turing machines.
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This is the standard understanding of the halting problem for TMs (HALT in the following). Davis proves it undecidable in
Chapter 5, Theorem 2.2. In the following, we say that Halt(M) is true iff M halts when placed in a given initial state (and
often say that M is a halting machine). For instance, Halt(P¢7) is true, but Halt(Pc2), Halt(Pc3), and Halt(Pcr) are false.

4.4. Relationship between printing and halting problems

In his book [7], Davis first introduces the halting problem and then the printing problem. He does not mention whether
Turing introduced one or the other. When introducing the printing problem, he calls it “a related problem” (to the previously
introduced halting problem). The presentation he gave of the printing problem in [7, page 70, last paragraph], i.e.,

To determine, of a given instantaneous description of M, whether or not there exists a sequence a1, ..., o of instantaneous
descriptions such that « = o1, o j_1 — o for 1 < i <k, and oy contains the symbol s.

clearly fits Turing’s definition as given above (provided that s is 0, although Turing’s formulation, “prints a given symbol (0
say)”, does not suggest a strong dependency of the problem on any specifically chosen symbol). Davis does not further
develop the relationship between the halting and printing problems (which he considers ‘related’). Although, implicitly, this
already means that both problems should not be considered identical, in the following, we point to some specific differences
between them.

4.4.1. Printing and halting machines do not coincide
There are machines M which print something but do not halt. For instance, the machines associated to programs Pc3
and Pcg. Therefore,

Print(M) = Halt(M) (1)

Vice versa, there are machines (e.g., Pc;) which stop without printing anything. Hence,
Halt(M) # Print(M) (2)
Fact 3: Printing and halting machines do not coincide.

4.4.2. Decidability of the halting and printing problems differs

There are machines M whose printing problem is decidable, but whose halting problem is not decidable. For instance,
consider the machine M = {{qo,s,0,qg)} U M’, where the initial state of M’ is qg. If the halting problem of M’ is un-
decidable, then the halting problem of M also is. However, the printing problem for M is trivially decidable as we only
need to notice that, with M in the initial state gy, a figure 0 is immediately printed before entering into M’ computations.
Therefore,

Fact 4: There are Turing Machines for which the printing problem is decidable, but the halting problem is not.

According to this discussion, it is clear that, from a conceptual point of view, the printing and halting problems address
different issues and exhibit important conceptual and technical differences. However, regarding the degree of unsolvability
of HALT and PRINT, in the following section we show the existence of a correspondence among them. We also consider
SATIS to display a full hierarchy of the three problems.

5. The hierarchy of unsolvability for the halting, printing, and satisfactoriness problems

In his PhD thesis, see [20], Turing introduced the idea of comparing different unsolvable problems by means of a variant
of his 1936 a-machines (called o-machines) where undecidable questions could be ‘answered’ with the help of an oracle, the
main idea being that questions Q which are undecidable by a TM could be answered by an extended version with some
additional knowledge provided by the oracle. Such questions would be strictly harder than problems P which are known
to be solvable by a TM. Post coined the term degree of unsolvability [12, page 289], although the problem had also been
investigated by Kleene (see, e.g., [10] and the references therein).

In the hierarchy of unsolvability, 0 represents the class of solvable problems (or recursive sets of numbers) and 0" (called
the jump of class 0) represents the class of recursively enumerable, but not recursive, sets of numbers. We have 0 < 0’
(informally: 0’ is strictly harder than 0). The degree of undecidability of HALT is 0/, written HALT = 0, see, e.g., [16, page
262].

In the following, we show that HALT, PRINT, and SATIS are related as follows:

HALT = PRINT =0’ < 0’ = SATIS (3)

where 0” denotes an unsolvability degree strictly bigger (harder) than 0’ (see below for an example).

5
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5.1. HALT and PRINT have the same undecidability degree

Davis proves the printing problem unsolvable as a consequence of the unsolvability of the halting problem [7, Chapter
5, Theorem 2.3].” Starting from a halting machine M he shows how to obtain a machine M’ that prints a given symbol.
In this way, he reduces the halting problem to the printing problem, written HALT < PRINT. With a similar construction we
show PRINT < HALT. Let qq, ..., g be the states of M. A machine M’ (with alphabet ¥ = {0, 1}) is obtained as follows. Let
I" be the set of ‘printing’ quadruples of M, as follows (without loss of generality, we focus on printing ‘0’):

(i, $,0,q; )

for se ¥ and i,j=1,2,...,k. That is, I consists of the quadruples of M that print ‘0’. We obtain M’ from M in two
steps. First, replace in M each quadruple belonging to I" by a quadruple

(qi,s,0,qn)

where qy is a new halting state. Now, let MY be the set of quadruples of M that could lead M to use a quadruple
in T, possibly after some moves. We replace each quadruple (g;,s,s’,q;) in M which is not in MY by a new quadruple
(qi, s, s, qL), where q; is a new looping state. Finally, we add to M’ quadruples (q;,s,s’,q.) for all symbols s and s’. Thus,
M eventually prints 0 if and only if M’ halts. We conclude PRINT < HALT. Thus, HALT = PRINT.

Fact 5: HALT and PRINT have the same undecidability degree.
5.2. The undecidability degree of SATIS is 0”

Turing’s proof of undecidability of PRINT [19, page 248] relies on the undecidability of SATIS.

Remark 3 (Post’s conjecture). As noticed by Post, Turing’s method of proof was reductio ad absurdum rather than reduction
as above [13, footnote 14]. Indeed, Post remarks that SATIS is “almost surely of higher-degree of unsolvability” than PRINT
(written PRINT < SATIS). Thus, a reduction of SATIS to PRINT would not be possible.

In the following, we prove Post’s conjecture. Actually, we prove that SATIS = 0". As far as we know, this is the first time
it is formally proved in the literature. Consider the following problem concerning the characterization of TMs that compute
total (monadic) functions [8, pages 378-379]:

TOT = {z € N | O(x, z) is defined for all x}

Here, ©(x, z) is the outcome of the computation of a machine M with code (D.N.) z and input x [8, page 55]. Davis and
Weyuker prove TOT unsolvable. Furthermore, they prove TOT = 0" [8, page 392].

Remark 4. TOT is equivalent to the uniform halting problem (UHALT), i.e., the problem investigating whether a TM halts for
every input, see, e.g., [11, page 57]. Hence, UHALT = TOT.

First, we show that TOT is reducible to SATIS (i.e.,, TOT < SATIS) by means of a machine S, which we define in two
steps.

1. Let T be the set of quadruples (g,s,s’,q’) which are not in M, and MYV be the set of quadruples of M leading,
after some moves with M, to a (halting) configuration g s with (q,s,s’,q’) in I" for some s’ and ¢’. Let M; be M
after replacing each (g;,s,s’,qj) € M — MY by (qi,s, B,qr). Then, M’ is obtained from M; by adding quadruples
(qL, s, B, qp) for all possible symbols s and a new ‘looping state’ q;. Note that M’ halts if M does, but if M does not
halt, then M’ ultimately prints infinitely many blanks only.

2. We obtain S by combining M’ and a new machine N which generates all possible numbers one by one ([19, page
234] defines a similar one); after generating each number, M’ is applied to write an output. If M is ‘total’ then the
infinite generation of figures implemented by A makes S, circle-free. Otherwise, the generation of figures is stopped
by M’ and S, is not circle-free.

Thus, M defines a total function if and only if Sy, is circle-free: TOT < SATIS. This already confirms Post’s claim.

Now, we prove SATIS < TOT. Given a TM M we obtain a machine 74 in two steps as follows:

9 More precisely, Davis proves the existence of a machine whose printing problem is undecidable from the existence of a machine whose halting problem
is undecidable (which he also shows).
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HALT = PRINT =0’ < 0" = TOT = UHALT = SATIS

Fig. 1. Undecidability hierarchy for PRINT, and SATIS, also with TOT and UHALT.

1. A new machine M’ is obtained by first extending M with new quadruples (q, s, B, q;) for each halting configuration gs
of M, where q; is a new looping state. Now, add (q;, s, B, q;) for each symbol s to obtain M’. Note that M’ does not
halt. If M does not halt, M’ and M print the same symbols when starting from any state originally in M. However,
if M halts, then M’ enters into a loop and prints infinitely many blank symbols only.

2. Now, given a natural number n represented on the tape (by a sequence of n digits 0), 7 executes M’ and halts when
exactly n figures have been printed by M’.

If M is circle-free, then M’ produces infinitely many figures and 7,4 is total. If M is not circle-free, then M’ prints
finitely many figures only, but it does not halt. Therefore, there will be a number ng for which the inspection of 75 over
the tape of M’ whilst simulating its moves never ends. Thus, 7 is not total. Hence,

SATIS=0" (4)

Fact 6: The undecidability degree of SATIS is strictly bigger than the undecidability degree of HALT and PRINT.

The full hierarchy of the considered problems regarding their undecidability degrees is shown in Fig. 1.
6. Bibliographical analysis

The (necessarily incomplete) analysis of the literature about computability and undecidability for the period from 1936
to 1958 shows that, apparently, the term “halting problem” was not used before the publication of [7]. A number of journals
and repositories in the fields of mathematics, logic, and computer science with facilities to search for (prefixes of) words in
their archives were considered and ‘halt’ tried on the corresponding search devices for the period 1936-1958. In particular,
journals which were available in this period like Abhandlungen aus dem Mathematischen Seminar der Universitdt Hamburg,
Acta Mathematica, Acta Mathematica Hungarica, Acta Scientiarum Mathematicarum, American Journal of Mathematics, American
Mathematical Society, Archive For Mathematical Logic, The Journal of Symbolic Logic, Mathematics of Computation were considered
for this purpose. The obtained outcomes had nothing to do with the halting problem.

Fact 7: Apparently, the term “halting problem” was not used in the literature before the publication of [7] (but see the
discussion below).

Remark 5 (Kleene’s statement). In his 1952 book, Kleene makes the following statement [10, Chapter XIII, Section 71]'°
there is no algorithm for deciding whether any given machine, when started from any given situation, eventually stops.

which corresponds to what we currently know as the halting problem, although the word “stops” is used instead of “halts”.
Kleene justifies this statement by using Turing’s arguments, but without citing any of his results. This suggests that Kleene
does not identify any of Turing’s results in [19] as being equivalent to the statement above.

Early references by Davis to a preliminary (“in preparation”) version of [7] can be found in [5,6]. However, they did
not mention the halting problem yet. Remarkably, Rogers’ 1957 book [14] (a preliminary version of [16]) includes what
apparently is the first printed reference to the halting problem. He writes [14, page 19]:

There is no effective procedure by which we can tell whether or not a given effective computation will eventually come to a stop.
(Turing refers to this as the unsolvability of the halting problem'! for machines. This and the existence of the universal machine
are the principal results of Turing’s first paper.)

Clearly, Rogers does not claim the authorship of the notion, as he refers to Turing instead. But Copeland already mentioned
that Turing never used the word “halting” in [19]. In the preface, Rogers says that the manuscript of [7] was available to him
when preparing the book [14, page 3]. Moreover, one year later, in [15, page 333], with [7] already published, he mentions
the halting problem again but he does not mention Turing anymore; instead he cites [7].

10 This pointer was provided by one of the referees.
1 Underlined in the original.
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7. Conclusions

The subject of Turing’s paper was “ostensibly the computable numbers” [19, page 230]. He defines a number as computable
if “its decimal part can be written down by a machine”; and points to numbers like 7 (with infinitely many decimals without
any repetition pattern), as computable [19, page 230]. Thus, if Turing’s focus was on infinitary computations, it is not
surprising that investigating halting machines was not a priority. Furthermore, Turing needed nonterminating machines but
only ‘productive’ ones, in the sense that infinitely many figures are printed during the computation. He defines a number as
“computable if it differs by an integer from the number computed by a circle-free machine”.!> Accordingly, this is the focus of his
first undecidability result: SATIS tries to determine whether a given machine is circle-free (satisfactory!), and hence able
to generate a sequence that corresponds to a computable number. Halting machines were just a subclass of unsatisfactory
machines.

So, why the halting problem should concern him?

Another indirect reason to think like that is Strachey’s account of his encounter with Turing in 1953. Although Strachey
does not mention the halting problem of TMs as he rather speaks of programs and program termination, as quoted in the
introduction, in [18] Strachey writes

I have never actually seen a proof of this in print, and though Alan Turing once gave me a verbal proof (in a railway carriage on the
way to a Conference at the NPL in 1953), [ unfortunately and promptly forgot the details.

This suggests that Turing’s (obviously printed) results in [19] were not considered (either by Turing or Strachey, or Kleene,
as remarked above) as providing a proof of undecidability of the halting problem.

Summarizing: Church included termination as part of his notion of effective calculation [2], but this concerns A-calculus
as computational mechanism, not Turing machines. He proved termination of effective calculations undecidable.

When introducing his a-machines [19], Turing was not interested in halting machines and his notion of computation
focused instead on the generation of infinite sequences of figures. His undecidability results were according to this.

Kleene’s notion of computability considered stopping as an ingredient of the notion of computation (of a partial number-
theoretic function), which could be required or not, thus leading to alternative notions [10, Section 67, in particular pages
361-362]. Still, as discussed in Remark 2, his notion of operation of a TM essentially coincides with Davis’ notion of compu-
tation. He formulated and informally proved a statement (see Remark 5) which we easily recognize as what we call halting
problem now (but ‘stops’ is used instead of ‘halts’).

Davis’ notion of computation required a halting behavior of the machines. It is not surprising, then, that Davis formulated
the halting problem and proved it undecidable. Strikingly, the last sentence of [7, Chapter 5, Section 2]:

It might also be mentioned that the unsolvability of essentially these problems was first obtained by Turing

probably contributed to give credit on the halting problem to Turing. However, as discussed in the previous sections, and
summarized through Facts 1-7, the conceptual differences between Turing’s decision problems and the halting problem
suggest that this claim just honors Turing’s pioneering work in posing and solving relevant problems in Computer Science,
including the undecidability of the satisfactoriness and printing problems. However, the halting problem is not among the
contributions of Turing in [19].

Conclusion: Martin Davis deserves credit for the wording of the current formulation of the halting problem (and also for
the somehow standard expression “halting problem”). It seems, however, that it was Stephen C. Kleene the one who first
mentioned the problem, although using a different wording (see Remark 5). Alonzo Church made an important, early con-
tribution by requiring termination as part of his notion of computation (“effective calculation”) in the A-calculus (Remark 1).
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