
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://hdl.handle.net/10251/189490

Beltrán, A.; Felipe Román, MJ. (2021). Cosets of normal subgroups and powers of
conjugacy classes. Mathematische Nachrichten. 294(9):1652-1656.
https://doi.org/10.1002/mana.201900554

https://doi.org/10.1002/mana.201900554

John Wiley & Sons

This is the peer reviewed version of the following article: Beltrán, A, Felipe, MJ. Cosets of
normal subgroups and powers of conjugacy classes. Mathematische Nachrichten. 2021;
294: 1652-1656, which has been published in final form at
https://doi.org/10.1002/mana.201900554. This article may be used for non-commercial
purposes in accordance with Wiley Terms and Conditions for Self-Archiving.



Cosets of normal subgroups and

powers of conjugacy classes

Antonio Beltrán
Departamento de Matemáticas,
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Abstract

Let G be a finite group and K = xG the conjugacy class of an element
x of G. In this paper, it is proved that if N is a normal subgroup of
G such that the coset xN is union of K and K−1 (the conjugacy class
of the inverse of x), then N and the subgroup 〈K〉 are solvable. As an
application, we prove that if there exists a natural number n such that
Kn = K ∪K−1, then 〈K〉 is solvable.
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1 Introduction

Let N be a normal subgroup of a finite group G. In [4] it was proved, by
appealing to the Classification of the Finite Simple Groups, that whenever all
elements of the coset xN are conjugate to x ∈ G then N is solvable. In fact,
the result goes further and, for example, it is shown that if all elements in xN
are p-elements for some odd prime p, then N is solvable, and if in addition they
are conjugate, then N has normal p-complement. This is not the case for p = 2.
In this note, we investigate the case in which a coset xN is the union of the
conjugacy class of x and that of its inverse, and our first objective is to prove
the following
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Theorem A. Let G be a finite group and let N be a normal subgroup of G.
Let K = xG be the conjugacy class of an element x ∈ G. Suppose that xN =
K ∪K−1. Then N is solvable. As a consequence, 〈K〉 is solvable too.

We employ Theorem A to address a concrete problem on products of con-
jugacy classes. We recall that Arad and Fisman’s conjecture asserts that the
product of two non-trivial conjugacy classes cannot be a conjugacy class in a
non-abelian finite simple group. Even though it remains unsolved, this subject
is of keen interest for many authors, who have tried to find solvability conditions
related to the product of conjugacy classes. For instance, a specific case of Arad
and Fisman’s conjecture is the following: If K is a conjugacy class, then the
fact that K2 is again a conjugacy class implies that 〈K〉 is solvable (Theorem A
of [4]), and likewise, when Kn is a conjugacy class for some n ≥ 3 (Theorem A
of [2]). We study a particular case of the following conjecture, which was posed
in [2].

Conjecture. Let G be a group and let K be a conjugacy class of G. If Kn =
D ∪D−1 for some n ≥ 2 where D a conjugacy class of G, then 〈K〉 is solvable.

The above hypotheses are not unusual and it is not difficult, for instance
with the help of [3], to find numerous examples (see Examples 3 and 4 of [2]
for the case n = 2 and also see Section 3 for n = 3). It turns out that either
|K| = |D|/2 or |K| = |D|. The first case was already solved in [2], and our
contribution here concerns the case K = D.

Theorem B. Let G be a finite group and let K = xG be a conjugacy class of
G. If Kn = K ∪K−1 for some n ∈ N and n ≥ 2, then 〈K〉 is solvable.

2 Cosets and characters

We start by stating two preliminary results on products of conjugacy classes,
whose proofs are based on the Classification of the Finite Simple Groups.

Lemma 2.1. Let G be a group and K,L and D non-trivial conjugacy classes
of G such that KL = D with |D| = |K|. Then G possesses a proper normal
solvable group which is 〈LL−1〉. In particular, 〈L〉 is solvable.

Proof. See Lemma 2 of [2].

Theorem 2.2. Let K = xG be a conjugacy class of a group G. There exists
n ∈ N and n ≥ 2 satisfying that Kn is a conjugacy class if and only if

χ(x)n = χ(1)n−1χ(xn)

for every χ ∈ Irr(G). In this case, 〈K〉 is solvable.

Proof. This is Theorem A of [2].
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Next we study some properties of the character values for the conjugacy
classes that we are dealing with.

Lemma 2.3. Let G be a finite group and let N be a normal subgroup of G.
Let K = xG be the conjugacy class of an element x ∈ G. Suppose that xN ⊆
K ∪K−1. If χ ∈ Irr(G) does not contain N in its kernel, then χ(x) is a purely
imaginary number. Furthermore, if χ(x) 6= 0 with χ ∈ Irr(G), then χ(n) is
integer for every n ∈ N .

Proof. Let X be a representation of G that affords χ. We know that X can be
linearly extended to C[G] and for every conjugacy class of G, say T , we denote

by T̂ the sum of all elements in T in the group algebra C[G]. Since N is a
disjoint union of conjugacy classes of G, the sum

N̂ =
∑
n∈N

n ∈ Z(C[G])

and, by Schur’s Lemma, X(N̂) is a scalar matrix. The trace of X(N̂) is∑
n∈N

χ(n) = |N |[χN , 1N ] = 0,

so X(N̂) = O, whereO denotes the zero matrix, and X(x̂gN) = X(xg)X(N̂) = O,
for every g ∈ G.

Observe that, by hypothesis, KN ⊆ K ∪ K−1, and since KN is union
of conjugacy classes then KN = K or KN = K ∪ K−1. Assume first that
KN = K. Taking the trace of X(x̂N), we have

0 =
∑
n∈N χ(xn) = mχ(x)

for certain positive integer m, so χ(x) = 0 and we have finished. Consider now

the case KN = K ∪K−1 = K−1N . Then X(K̂N̂) =
∑
x∈K X(x̂N) = O and,

analogously, X(K̂−1N̂) = O.

On the other hand, we can write K̂N̂ = m1K̂ + m2K̂−1 with m1 and m2

positive integers. Taking inverses, we have K̂−1N̂ = m2K̂ +m1K̂−1. We know
that

X(K̂) = wχ(K̂)I,

where

wχ(K̂) =
|K|χ(x)

χ(1)

and I is the identity matrix. Hence

O = X(K̂N̂) + X(K̂−1N̂) = X((m1 +m2)K̂ + (m1 +m2)K̂−1).

By taking traces

(m1 +m2)|K|χ(x) + (m1 +m2)|K|χ(x−1) = (m1 +m2)|K|(χ(x) +χ(x−1)) = 0.
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Thus, χ(x) = −χ(x−1) = −χ(x), so the first assertion of the lemma is proved.
For proving the last assertion of the statement, suppose that χ(x) 6= 0 with

χ ∈ Irr(G). We can trivially assume that N is not contained in the kernel of χ.
By Problem 3.12 of [5],

χ(x)χ(n) =
χ(1)

|G|
∑
g∈G

χ(xng)

and, since χ(x) is a purely imaginary number and xN ⊆ K∪K−1, which means
that χ(xng) is equal to either χ(x) or χ(x−1), we deduce as a result that χ(n)
is rational (and algebraic integer). So χ(n) is integer.

We are ready to prove Theorem A, which we state again.

Theorem 2.4. Let G be a finite group and let N be a normal subgroup of
G. Let K = xG be the conjugacy class of an element x ∈ G. Suppose that
xN = K ∪K−1. Then N is solvable. As a consequence, 〈K〉 is solvable too.

Proof. We assume that K is non-real, otherwise the theorem is proved by The-
orem B(a) of [4]. We will work by induction on |G|. It is clear that xN = x−1N
and then x2N = N = (K∪K−1)(K∪K−1), so in particular K2 ⊆ N . Therefore,
|〈K2〉| divides |N | = 2|K|. But |K| ≤ |K2| < |〈K2〉|, and this forces 〈K2〉 = N .
Moreover, we have K3 ⊆ NK = K ∪K−1. If K3 = K or K3 = K−1, it follows
that 〈K〉 is solvable by Theorem 2.2 and then N is solvable as well (notice that
〈K〉/N is cyclic of order 2). Thus we can assume that K3 = K∪K−1. We claim
that K2n+1 = K3 for every n ≥ 1. Indeed, since K2 ⊆ N , then (K2)n ⊆ N for
every n ≥ 1, so K2n+1 ⊆ KN = K ∪K−1, and in fact, the equality can be as-
sumed to hold again by Theorem 2.2, so the claim is proved. As a consequence,
x must be a 2-element. Let C = CG(x) be the centralizer of x in G. We have

|G : C| = |G : NC||NC : C| = |K| = |N |/2.

Also, if n ∈ CN (x), then as xn has the same order as x, we have that n must be
a 2-element too. Accordingly, CN (x) is a 2-group and |G : NC| = |CN (x)|/2 is
a 2-number. We obtain G = PNC, for every Sylow 2-subgroup P of G and, by
induction, we can consider G = NP , that is, the index |G : N | is a power of 2.

On the other hand, as x is a 2 element, it is well-known that

χ(x) ≡ χ(1) mod 2

(in the ring of algebraic integers), for every χ ∈ Irr(G). Now, since G/N is
a 2-group, the degree of every non-linear irreducible character of G containing
N in its kernel is a power of 2. Also, if χ ∈ Irr(G) does not contain N in its
kernel and it is real-valued, necessarily χ(x) = 0 by Lemma 2.3, and hence, by
the above congruence, χ(1) is even. Therefore, we conclude that all non-linear
real-valued irreducible characters of G have even degree. By Theorem A of [6],
this is equivalent to the fact that G has normal 2-complement, so in particular,
G is solvable. Then N and 〈K〉 are solvable as well.
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We wonder if Theorem A will still be true when the hypothesis xN = K ∪
K−1 is weakened to xN ⊆ K ∪K−1 as is the case with Lemma 2.3, however,
we have not been able to demonstrate it by using similar methods.

3 Proof of Theorem B

We employ the results of Section 2 to solve a specific case of the conjecture
stated in the Introduction. For that purpose, we need to work with the complex
group algebra C[G]. Let D1, . . . , Dk be the conjugacy classes of a finite group G

and let S be a G-invariant set of G, then the sum Ŝ =
∑k
i=1 niD̂i with ni ∈ N

for 1 ≤ i ≤ k. We write (Ŝ, D̂i) = ni following [1]. We will use the following
properties.

Lemma 3.1. If D1, D2 and D3 are conjugacy classes of a finite group G, then

1. (D̂1D̂2, D̂3) = (D̂−11 D̂−12 , D̂−13 )

2. (D̂1D̂2, D̂3) = |D2||D3|−1(D̂1D̂
−1
3 , D̂−12 )

3. (D̂1D̂2, D̂1) = |D2||D1|−1(D̂1D̂
−1
1 , D̂−12 ) = (D̂2D̂

−1
1 , D̂−11 ) = (D̂−12 D̂1, D̂1).

Proof. See the proof of Theorem A of [1].

We give the proof of Theorem B.

Proof of Theorem B. We can assume that K is non-real, since the real case is
a particular case of Theorem 2.2. Also, the case n = 2 is already proved in
Theorem D of [2]. Henceforth, we will assume n ≥ 3 and argue by induction on
|G|. Since Kn−1 is a G-invariant set, we write Kn−1 = L1 ∪ · · · ∪ Ls where Li
are distinct conjugacy classes of G (possibly 1) for every 1 ≤ i ≤ s. Then

Kn = KKn−1 = K(L1 ∪ · · · ∪ Ls) = K ∪K−1.

Suppose that Li is a non-trivial conjugacy class. If either KLi = K or KLi =
K−1, by Lemma 2.1, we know that 〈Li〉 is solvable. Consider now G = G/〈Li〉
and observe from the hypothesis that Kn = K ∪K−1. Then 〈K〉 is solvable by
induction. Notice that if K = K−1, then Kn = K and 〈K〉 is solvable again by
Theorem 2.2. Consequently, 〈K〉 is solvable.

Therefore, we can assume that KLi = K ∪K−1 for every non-trivial class
Li. By Lemma 3.1(2), we know that

0 6= (K̂L̂i, K̂−1) =
|Li|
|K|

(K̂2, L̂−1i ).

Thus, L−1i ⊆ K2 and then Li ⊆ K−2. We deduce that Kn−1 ⊆ K−2 ∪ {1}. On
the other hand, |K2| = |K−2| ≤ |Kn−1| ≤ |K2| + 1 (in the first inequality we
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are using that n ≥ 3), thus either Kn−1 = K−2 or Kn−1 = K−2 ∪ {1}. In both
cases, K−2 ⊆ Kn−1. Moreover, if Li is a non-trivial conjugacy class, again by
Lemma 3.1(2), we have

0 6= (K̂L̂i, K̂) =
|Li|
|K|

(K̂K̂−1, L̂−1i ).

Hence L−1i ⊆ KK−1 and then Li ⊆ KK−1. In addition, K−1Li ⊆ K−1K−1K ⊆
Kn−1K = Kn and consequently, K−1Li ⊆ K ∪ K−1. If K−1Li = K or
K−1Li = K−1, then 〈K〉 is solvable by arguing as before. We can assume then
that K−1Li = K ∪ K−1 for every non-trivial Li. In particular, by applying
Lemma 3.1(1) and (2)

0 6= (K̂−1L̂i, K̂) = (K̂L̂−1i , K̂−1) =
|Li|
|K|

(K̂2, L̂i),

which means that Li ⊆ K2. Therefore, Kn−1 ⊆ K2∪{1}. Analogously as above,
taking cardinalities we obtain that either Kn−1 = K2 or Kn−1 = K2 ∪ {1}. In
both cases, K2 ⊆ Kn−1. Hence K3 ⊆ Kn = K ∪ K−1. By applying Lemma
2.1 again, it can be assumed that K3 = K ∪ K−1. Taking into account that
K2 = K−2, we obtain

K5 = K2K3 = K2(K ∪K−1) = K3 ∪K−2K−1 = K3 ∪K−3 = K ∪K−1.

Inductively, we easily get K2k+1 = K ∪ K−1 for every k ≥ 1, and as a con-
sequence, K〈K2〉 = K ∪ K−1. The fact that K ∪ K−1 is union of cosets of
the normal subgroup 〈K2〉 shows that |〈K2〉| divides 2|K|. Now, note that
|K| ≤ |K2| < 1 + |K2| ≤ |〈K2〉|, so we conclude that |〈K2〉| = 2|K|. By cardi-
nalities, it follows that x〈K2〉 = K ∪K−1, and then, we apply Theorem A to
get that 〈K2〉 and 〈K〉 are solvable.

Example 3.2. We give an example of a group satisfying the hypotheses of
Theorem B with n = 3, in which the order of the elements in K is not a prime.
Let G = 〈a, x | a8 = x2 = 1, ax

−1

= a3〉 the semidihedral group of order 16 and
K = aG which satisfies K3 = K ∪K−1.
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